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THE TWO-TO-INFINITY NORM AND SINGULAR SUBSPACE
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The singular value matrix decomposition plays a ubiquitous role through-
out statistics and related fields. Myriad applications including clustering, clas-
sification, and dimensionality reduction involve studying and exploiting the
geometric structure of singular values and singular vectors.

This paper provides a novel collection of technical and theoretical tools for
studying the geometry of singular subspaces using the two-to-infinity norm.
Motivated by preliminary deterministic Procrustes analysis, we consider a
general matrix perturbation setting in which we derive a new Procrustean
matrix decomposition. Together with flexible machinery developed for the
two-to-infinity norm, this allows us to conduct a refined analysis of the in-
duced perturbation geometry with respect to the underlying singular vectors
even in the presence of singular value multiplicity. Our analysis yields singu-
lar vector entrywise perturbation bounds for a range of popular matrix noise
models, each of which has a meaningful associated statistical inference task.
In addition, we demonstrate how the two-to-infinity norm is the preferred
norm in certain statistical settings. Specific applications discussed in this pa-
per include covariance estimation, singular subspace recovery, and multiple
graph inference.

Both our Procrustean matrix decomposition and the technical machinery
developed for the two-to-infinity norm may be of independent interest.

1. Introduction.

1.1. Background. The geometry of singular subspaces is of fundamental im-
portance throughout a wide range of fields including statistics, machine learning,
computer science, applied mathematics, and network science. Singular vectors
(resp., eigenvectors) together with their corresponding subspaces and singular val-
ues (resp., eigenvalues) appear throughout various statistical applications including
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principal component analysis [7, 27, 29, 39], covariance matrix estimation [19–21,
26], spectral clustering [31, 45, 47, 56], and graph inference [51, 52, 54].

Singular subspaces are also studied in random matrix theory, a discipline which
has come to have a profound influence on the development of high-dimensional
statistical theory [2, 59]. In random matrix theory, topics of interest include the
phenomenon of eigenvector delocalization [46] as well as the spectral behavior
of (often low rank) matrices undergoing random perturbations [3, 41]. For an
overview of recent work on the properties of eigenvectors of random matrices,
see [40]. Further discussion of how random matrix theory has come to have an
impact on statistics can be found in [42].

From a computational perspective, optimization algorithms in signal processing
and compressed sensing are often concerned with the behavior of singular vectors
and subspaces [17]. The study of algorithmic performance on manifolds and mani-
fold learning, especially involving the Grassmann and Stiefel manifolds, motivates
related interest in a collection of Procrustes-type problems [4, 6, 16]. Procrustes
analysis occupies an established area within the theoretical study of statistics on
manifolds [12] and arises in applications including diffusion tensor imaging [14]
and shape analysis [15]. See [23] for an extended treatment of both theoretical and
numerical aspects concerning Procrustes-type problems.

Foundational results from matrix theory concerning perturbations of singular
values and vectors date back to the original work of Weyl [58], Davis and Kahan
[13], and Wedin [57], among others. Indeed, these results form the backbone of
much of the linear algebraic machinery that has since been developed for use in
statistics. The references [5, 25, 48] provide an overview of classical perturbation
results and historical developments.

1.2. Overview. This paper provides a collection of technical and theoretical
tools for studying the perturbations of singular vectors and subspaces with re-
spect to the two-to-infinity norm (defined below). Our main theoretical results are
first presented quite generally and then followed by concrete consequences thereof
to facilitate direct statistical applications. In this work, we establish perturbation
bounds for both low and high rank matrices. Among the advantages of our meth-
ods is that we allow singular value multiplicity and merely leverage a population
singular value gap assumption in the spirit of [61].

As a special case of our general framework and methods, we improve upon
results in [21] wherein the authors obtain an �∞ norm perturbation bound for sin-
gular vectors of low rank matrices exhibiting specific coherence structure. In this
way, beyond the stated theorems in this paper, our results can be applied analo-
gously to robust covariance estimation involving heavy-tailed random variables.

Our Procrustes analysis complements the study of perturbation bounds for sin-
gular subspaces in [8]. When considered in tandem, we demonstrate a Procrustean
setting in which one recovers nearly rate-matching upper and lower bounds with
respect to the two-to-infinity norm.
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Yet another contribution of this work is that we extend and complement current
spectral methodology for graph inference and embedding [32, 37, 51]. To the best
of our knowledge, we obtain among the first-ever estimation bounds for multiple
graph inference in the presence of edge correlation.

1.3. Setting. This paper formulates and analyzes a general matrix decompo-
sition for the aligned difference between real matrices U and Û , each consisting
of r orthonormal columns (i.e., partial isometries; Stiefel matrices; orthogonal r-
frames), given by

(1.1) Û − UW,

where W denotes an r ×r orthogonal matrix. We focus on (but are strictly speaking
not limited to) a certain “nice” choice of W which corresponds to an “optimal”
Procrustes transformation in a sense that will be made precise.

Along with the matrix decomposition considerations presented in this paper,
we provide technical machinery for the two-to-infinity subordinate vector norm on
matrices, which for A ∈ R

p1×p2 is given by

(1.2) ‖A‖2→∞ := sup
‖x‖2=1

‖Ax‖∞.

Together, these allow us to obtain a suite of perturbation bounds within an additive
perturbation framework of the singular value decomposition.

The two-to-infinity norm yields finer uniform control on the entries of a matrix
than the more common spectral and Frobenius norms. We shall demonstrate that, in
certain settings, the two-to-infinity norm is preferable to these and to other norms.
In particular, matrices exhibiting bounded coherence in the sense of [9] form a
popular and widely-encountered class of matrices for which the two-to-infinity
norm is demonstrably an excellent choice.

The two-to-infinity norm has previously appeared in the statistics literature, in-
cluding in [37] wherein it is leveraged to prove that adjacency spectral embedding
achieves perfect clustering for certain stochastic block model graphs. More re-
cently, it has also appeared in the study of random matrices when a fraction of the
matrix entries are modified [44]. In general, however, the two-to-infinity norm has
received far less attention than other norms. Among the aims of this paper is to
advocate for the more widespread consideration of the two-to-infinity norm.

1.4. Sample application: covariance estimation. We pause here to present an
application of our work and methods to estimating the top singular vectors of a
structured covariance matrix.

Denote a random vector Y by Y := (Y (1), Y (2), . . . , Y (d))� ∈ R
d , and let

Y,Y1, Y2, . . . , Yn be independent and identically distributed (i.i.d.) mean zero mul-
tivariate Gaussian random (column) vectors with common covariance matrix � ∈
R

d×d . Denote the singular value decomposition of � by � ≡ U�U� +U⊥�⊥U�⊥ ,
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where [U |U⊥] ≡ [u1|u2| . . . |ud ] ∈ R
d×d is an orthogonal matrix. The singular val-

ues of � are indexed in nonincreasing order, σ1(�) ≥ σ2(�) ≥ · · · ≥ σd(�), with
� := diag(σ1(�), σ2(�), . . . , σr(�)) ∈ R

r×r , �⊥ := diag(σr+1(�), σr+2(�), . . . ,

σd(�)) ∈ R
(d−r)×(d−r), δr(�) := σr(�) − σr+1(�) > 0, and r 
 d . Here, � may

be viewed as containing the “signal” (i.e., spike) singular values of interest, while
�⊥ contains the remaining “noise” (i.e., bulk) singular values. The singular val-
ues of � are not assumed to be distinct; rather, the assumption δr(�) > 0 simply
specifies a singular value population gap between � and �⊥.

Let �̂n denote the empirical covariance matrix �̂n := 1
n

∑n
k=1 YkY

�
k with de-

composition �̂n ≡ Û�̂Û� + Û⊥�̂⊥Û�⊥ . Let En := �̂n − � denote the difference
between the empirical and theoretical covariance matrices. Below, C,c, c1, c2, . . .

are positive constants (possibly related) of minimal interest. We use Var(Y (i)) to
denote the variance of Y (i) and o(·) to denote little-o notation.

We are interested in the regime where the sample size n and the covariance
matrix dimension d are simultaneously allowed to grow. In this regime, an im-
portant measure of complexity is given by the effective rank of �, defined as
r(�) := trace(�)/σ1(�) [29].

THEOREM 1.1 (Application: covariance estimation). In Section 1.4, assume
that max{r(�), logd} = o(n), σ1(�)/σr(�) ≤ c1, δr(�) ≥ c2σr(�) > 0, and

‖U‖2→∞ ≤ c3
√

r/d . Let ν(Y ) := max1≤i≤d

√
Var(Y (i)). Then, there exists an

r × r orthogonal matrix WU and a constant C > 0 such that with probability
at least 1 − d−2,

‖Û − UWU‖2→∞ ≤ C

√
max{r(�), logd}

n

(
ν(Y )r√
σr(�)

+ σr+1(�)

σr(�)

)

+ C

(
max{r(�), logd}

n

)(√
σr+1(�)

σr(�)
+

√
r

d

)
.

REMARK 1.2. In the setting of Theorem 1.1, spectral norm probabilistic con-
centration [28, 29] can be applied to yield a naïve two-to-infinity norm bound of
the form

(1.3) ‖Û − UWU‖2→∞ ≤ C

√
max{r(�), logd}

n
.

When � exhibits the additional spike structure � ≡ U(� + c2I )U� + c2U⊥U�⊥
with σ1(�) ≥ c4(d/r), then

√
σr+1(�), ν(Y ) ≤ c5

√
σ1(�)

√
r/d , and so the bound

in Theorem 1.1 simplifies to the form

(1.4) ‖Û − UWU‖2→∞ ≤ C

√
max{r(�), logd}

n

√
r3

d
.

The bound in equation (1.4) manifestly improves upon equation (1.3) since here
r 
 d and d is taken to be large.
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1.5. Organization. The rest of this paper is organized as follows. Section 2
establishes notation, motivates the use of the two-to-infinity norm in a Procrustean
context, and presents the additive matrix perturbation model considered in this pa-
per. Section 3 collects our main results which fall into two categories: matrix de-
compositions and matrix perturbation theorems. Section 4 demonstrates how this
paper improves upon and complements existing work in the literature by way of
considering three statistical applications involving covariance estimation (see also
Section 1.4), singular subspace recovery, and multiple graph inference. Section 5
offers some final remarks. Section 6 contains the technical machinery developed
for this paper as well as proofs of our main theorems.

2. Preliminaries.

2.1. Notation. All vectors and matrices in this paper are taken to be real-
valued. The symbols := and ≡ are used to assign definitions and to denote for-
mal equivalence. For any positive integer n, let [n] := {1,2, . . . , n}. We use Cα to
denote a general constant that may change from line to line unless otherwise speci-
fied and that possibly depends only on α (either a parameter or an indexing value).
Let O(·) denote standard big-O notation, possibly with an underlying probabilis-
tic qualifying statement. These conventions are simultaneously upheld when we
write Oα(·). We let Op,r denote the set of all p × r real matrices with orthonormal
columns so that Op ≡ Op,p denotes the set of orthogonal matrices in R

p×p .
For (column) vectors x, y ∈ R

p1 where x ≡ (x1, . . . , xp1)
�, the standard Eu-

clidean inner product between x and y is denoted by 〈x, y〉. The classical �p vec-
tor norms are given by ‖x‖p := (

∑p
i=1 |xi |p)1/p for 1 ≤ p < ∞, and ‖x‖∞ :=

maxi |xi |. This paper also makes use of several standard matrix norms. Letting
σi(A) denote the ith largest singular value of A, then ‖A‖2 := σ1(A) denotes

the spectral norm of A, ‖A‖F :=
√∑

i σ
2
i (A) denotes the Frobenius norm of A,

‖A‖1 := maxj

∑
i |aij | denotes the maximum absolute column sum of A, and

‖A‖∞ := maxi

∑
j |aij | denotes the maximum absolute row sum of A. Addition-

ally, we consider ‖A‖max := maxi,j |aij |.

2.2. Norm relations. A central focus of this paper is on the two-to-infinity
norm, which for the matrix A is given by ‖A‖2→∞ := sup‖x‖2=1 ‖Ax‖∞. Proposi-
tion 6.1 establishes the elementary fact that this norm corresponds to the maximum
Euclidean row norm of A. As such, the two-to-infinity norm is easy to interpret and
straightforward to compute. In certain settings, ‖ · ‖2→∞ will be shown to serve as
an attractive surrogate for ‖ · ‖max in light of additional algebraic properties that
‖ · ‖2→∞ enjoys.

For A ∈ R
p1×p2 , the standard relations between the �p norms for p ∈ {1,2,∞}

permit a quantitative comparison of ‖ · ‖2→∞ to ‖ · ‖max and ‖ · ‖∞. In particular,
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these matrix norms are related through matrix column dimension via

1√
p2

‖A‖2→∞ ≤ ‖A‖max ≤ ‖A‖2→∞ ≤ ‖A‖∞ ≤ √
p2‖A‖2→∞.

In contrast, the relationship between ‖ · ‖2→∞ and ‖ · ‖2 depends on the matrix
row dimension (see Proposition 6.3) via

‖A‖2→∞ ≤ ‖A‖2 ≤ √
p1‖A‖2→∞.

As an example, consider the rectangular matrix A := {1/
√

p2}p1×p2 , for which
‖A‖2→∞ = 1 while ‖A‖2 = ‖A‖F = √

p1. This example, together with the above
norm relations, demonstrates that possibly ‖A‖2→∞ 
 ‖A‖2 when the row di-
mension of A is large relative to the column dimension, that is, p1 � p2. Bound-
ing ‖A‖2→∞ would then be preferred to bounding ‖A‖2 when seeking more re-
fined (e.g., entrywise) control of A. The same observation holds with respect to
the Frobenius norm which satisfies the well-known, rank-based relation with the
spectral norm given by

‖A‖2 ≤ ‖A‖F ≤ √
rank(A)‖A‖2.

We pause to point out that the two-to-infinity norm is not in general submulti-
plicative for matrices. Moreover, the “constrained” submultiplicative behavior of
‖ · ‖2→∞ (see Proposition 6.5), when taken together with the noncommutativity
of matrix multiplication and standard properties of more common matrix norms,
yields substantial flexibility when bounding matrix products and passing between
norms. For this reason, a host of bounds beyond those presented in this paper
follow naturally from the matrix decomposition results in Section 3.1. The rela-
tive strength of derived bounds will depend upon underlying, application-specific
properties and assumptions.

2.3. Singular subspaces and Procrustes analysis. Let U and Û denote the sub-
spaces for which the columns of U, Û ∈ Op,r form orthonormal bases, respec-
tively. From the classical CS matrix decomposition, a natural measure of distance
between these subspaces (corresponding matrices) is given via the canonical (i.e.,
principal) angles between U and Û . More specifically, for the singular values of
U�Û , denoted by {σi(U

�Û )}ri=1 and indexed in nonincreasing order, the canoni-
cal angles are the main diagonal elements of the r × r diagonal matrix


(Û,U) := diag
(
cos−1(

σ1
(
U�Û

))
, cos−1(

σ2
(
U�Û

))
, . . . , cos−1(

σr

(
U�Û

)))
.

For an in-depth review of the CS decomposition and canonical angles see, for
example, [5, 48]. An extensive summary of the relationships between sin
 dis-
tances, specifically ‖ sin
(Û,U)‖2 and ‖ sin
(Û,U)‖F, as well as various other
distance measures, is provided in [8]. This paper focuses on sin
 distance in rela-
tion to Procrustes analysis.
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Given two matrices A and B together with a set of matrices S and a norm ‖ · ‖,
a general version of the Procrustes problem is to investigate

inf
S∈S‖A − BS‖.

For U, Û ∈ Op,r and η ∈ {max,2 → ∞,2,F}, this paper specifically considers

inf
W∈Or

‖Û − UW‖η.(2.1)

For each choice of η, the corresponding infimum in equation (2.1) is provably
achieved by the compactness of Or together with properties of norms in finite-
dimensional vector spaces. As such, let W�

η ∈ Or denote a corresponding Pro-
crustes solution under η (where dependence upon the underlying matrices U

and Û is implicit from context). Unfortunately, these solutions are not analyti-
cally tractable in general, save under the Frobenius norm, in which case WU ≡
W�

F(U, Û) corresponds to the the classical orthogonal Procrustes problem solution
[23] given explicitly by WU ≡ W1W

�
2 when the singular value decomposition of

U�Û ∈ R
r×r is written as U�Û ≡ W1�UW�

2 .
For each η, it is therefore natural to study the behavior of

‖Û − UWU‖η.(2.2)

To this end, sin
 distances and the above Procrustes problems are related in the
sense that (e.g., [8])∥∥sin
(Û,U)

∥∥
F ≤ ‖Û − UWU‖F ≤ √

2
∥∥sin
(Û,U)

∥∥
F

and ∥∥sin
(Û,U)
∥∥

2 ≤ ∥∥Û − UW�
2

∥∥
2 ≤ ‖Û − UWU‖2 ≤ √

2
∥∥sin
(Û,U)

∥∥
2.

By Lemma 6.8, ‖Û − UWU‖2 can be bounded differently in a manner suggesting
that the performance of WU is “close” to the performance of W�

2 under ‖ · ‖2,
namely

‖Û − UWU‖2 ≤ ∥∥sin
(Û,U)
∥∥

2 + ∥∥sin
(Û,U)
∥∥2

2.

Loosely speaking, it follows that the discrepancy between WU and W�
2 in the spec-

tral norm Procrustes problem behaves as O(‖ sin
(Û,U)‖2
2).

As for the two-to-infinity norm, simply considering the naïve relationship be-
tween ‖ · ‖2→∞ and ‖ · ‖2 yields

1√
p

∥∥sin
(Û,U)
∥∥

2 ≤ ∥∥Û − UW�
2→∞

∥∥
2→∞ ≤ ‖Û − UWU‖2→∞.

These observations collectively suggest that direct analysis of Û − UWU may
yield meaningfully tighter bounds on ‖Û − UWU‖2→∞ in settings wherein
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‖Û − UWU‖2→∞ 
 ‖Û − UWU‖2 when p � r . In such a regime, ‖ · ‖2→∞ and
‖·‖max differ by at most a (relatively small) r-dependent factor, so it is conceivable
that ‖ · ‖2→∞ may serve as a decent proxy for ‖ · ‖max.

We now proceed to introduce a matrix perturbation framework in which Û rep-
resents a perturbation (i.e., estimate) of U . We then formulate a Procrustean ma-
trix decomposition in Section 3.1 by further decomposing the underlying matrices
whose spectral norm bounds give rise to the above quantities ‖ sin
(Û,U)‖2 and
‖ sin
(Û,U)‖2

2. Together with two-to-infinity norm machinery and model-based
analysis, we subsequently derive a collection of perturbation bounds and demon-
strate their utility in problems of statistical estimation.

2.4. Perturbation framework for the singular value decomposition. For rect-
angular matrices X,E ∈ R

p1×p2 , let X denote an unobserved matrix, let E denote
an unobserved perturbation (i.e., error) matrix, and let X̂ := X + E denote an ob-
served matrix that amounts to an additive perturbation of X by E. For X and X̂,
their respective partitioned singular value decompositions are given in block ma-
trix form by

X = [
U U⊥

] ·
[
� 0
0 �⊥

]
·

[
V �
V �⊥

]
= U�V � + U⊥�⊥V �⊥

and

X̂ := X + E =
[
Û Û⊥

]
·

[
�̂ 0
0 �̂⊥

]
·

[
V̂ �
V̂ �⊥

]

= Û �̂V̂ � + Û⊥�̂⊥V̂ �⊥ .

Above, U ∈ Op1,r , V ∈ Op2,r , [U |U⊥] ∈ Op1 , and [V |V⊥] ∈ Op2 . The matri-
ces � ∈ R

r×r and �⊥ ∈ R
(p1−r)×(p2−r) contain the singular values of X, where

� = diag(σ1(X), . . . , σr(X)) and �⊥ contains the remaining singular values
σr+1(X), . . . on its main diagonal, possibly padded with additional zeros, such
that σ1(X) ≥ · · · ≥ σr(X) > σr+1(X) ≥ · · · ≥ 0. The quantities Û , Û⊥, V̂ , V̂⊥, �̂,
and �̂⊥ are defined analogously.

This paper is primarily interested in the situation when σr(X) � σr+1(X),
although our results and framework hold more generally when � is redefined
to contain a collection of sequential singular values that are separated from the
remaining singular values in �⊥. In such a modified setting, one would have
� = diag(σs(X), . . . , σs+r (X)) for some positive integers s and r , where subse-
quent bounds and necessary bookkeeping would depend both on the two-sided
gap min{σs−1(X) − σs(X), σs+r (X) − σs+r+1(X)} and on the magnitude of the
perturbation E, as in [61].
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3. Main results.

3.1. A Procrustean matrix decomposition and its variants. Below, Theo-
rem 3.1 states our main matrix decomposition in general form. Remark 3.2 sub-
sequently provides accompanying discussion and is designed to offer a more intu-
itive, high-level explanation of the decomposition considerations presented here.
The formal procedure for deriving Theorem 3.1 is based on geometric considera-
tions presented in Section 6.3.

THEOREM 3.1 (Procrustean matrix decomposition). In the setting of Sec-
tions 2.3 and 2.4, if X̂ has rank at least r , then Û − UWU ∈ R

p1×r admits the
decomposition

Û − UWU = (
I − UU�)

EV WV �̂−1(3.1)

+ (
I − UU�)

E(V̂ − V WV )�̂−1(3.2)

+ (
I − UU�)

X
(
V̂ − V V �V̂

)
�̂−1(3.3)

+ U
(
U�Û − WU

)
.(3.4)

This decomposition still holds when replacing the r × r orthogonal matrices WU

and WV with any real r × r matrices T1 and T2, respectively. The analogous de-
composition for V̂ − V WV is given by replacing U, Û,V , V̂ ,E,X,WU , and WV

above with V, V̂ ,U, Û ,E�,X�,WV , and WU , respectively.

REMARK 3.2 (Intuition for Theorem 3.1). The decomposition presented in
Theorem 3.1 can be loosely motivated in the following way. When X and X̂

have rank at least r , then by Section 2.4, U ≡ XV �−1 and Û ≡ X̂V̂ �̂−1 =
XV̂ �̂−1 + EV̂ �̂−1. It is thus conceivable that the difference between U and Û

behaves to leading order as EV �−1 (modulo proper orthogonal transformation)
under suitable perturbation and structural assumptions. Indeed, we repeatedly ob-
serve such first-order behavior via the matrix term (I − UU�)EV WV �̂−1 when
‖U‖2→∞ 
 1.

For the purpose of obtaining upper bounds, passing from �̂−1 to �−1 amounts
to transitioning from σr(X̂) to σr(X); this can be achieved via Weyl’s inequality
[5] provided the perturbation E is suitably small in norm relative to σr(X).

Subsequent results in Section 3.2 will demonstrate that lines (3.2)–(3.4) amount
to situational residual and approximation error terms. Namely, with respect to the
two-to-infinity norm:

• Line (3.2) can be much smaller than ‖ sin
(V̂ ,V )‖2 as a function of the relative
magnitudes of E and �̂−1.

• Line (3.3) can be much smaller than ‖ sin
(V̂ ,V )‖2 as a function of the multi-
plicative singular value gap σr+1(X)/σr(X̂).
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• Line (3.4) can be much smaller than ‖ sin
(Û,U)‖2
2 as a function of ‖U‖2→∞,

specifically when ‖U‖2→∞ 
 1.

Theorem 3.1 can be rewritten in terms of the spectral matrix decomposition
when X and E are both symmetric matrices. For ease of reference, we state this
special case in the form of a corollary.

COROLLARY 3.3. Let X,E ∈ R
p×p be symmetric matrices. Rephrase Sec-

tion 2.4 to hold for the spectral matrix decomposition in terms of the eigen-
values and eigenvectors of X and X̂. Provided X̂ has rank at least r , then
Û − UWU ∈ R

p×r admits the decomposition

Û − UWU = (
I − UU�)

EUWU�̂−1

+ (
I − UU�)

E(Û − UWU)�̂−1

+ (
I − UU�)

X
(
Û − UU�Û

)
�̂−1

+ U
(
U�Û − WU

)
.(3.5)

REMARK 3.4 (The orthogonal matrix WU ). This paper does not assume that
the leading r singular values of X or X̂ are distinct. As such, in general Û alone
cannot hope to recover U in the presence of singular value multiplicity. Indeed,
Û can only be viewed as an estimate of U up to an orthogonal transformation,
and our specific choice of WU is based upon the aforementioned Procrustes-based
considerations.

To reiterate, WU depends upon the perturbed quantity Û , which in turn depends
upon the perturbation E. Consequently, WU is unknown (resp., random) when E

is assumed unknown (resp., random). We note that statistical inference method-
ologies and applications are often either invariant under or equivalent modulo or-
thogonal transformations as a source of nonidentifiability. For example, K-means
clustering applied to the rows of U in Euclidean space is equivalent to clustering
the rows of UWU .

It will subsequently prove convenient to work with the following modified ver-
sions of Theorem 3.1 which are stated below as corollaries.

COROLLARY 3.5. The decomposition in Theorem 3.1 can be rewritten as

Û − UWU = (
I − UU�)

E
(
V V �)

V WV �̂−1

+ (
I − UU�)

(E + X)(V̂ − V WV )�̂−1

+ U
(
U�Û − WU

)
.(3.6)
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COROLLARY 3.6. Corollary 3.5 can be equivalently written as

Û − UWU = (
U⊥U�⊥

)
E

(
V V �)

V WV �̂−1

+ (
U⊥U�⊥

)
E

(
V V �)

V
(
V �V̂ − WV

)
�̂−1

+ (
U⊥U�⊥

)
E

(
V⊥V �⊥

)(
V̂ − V V �V̂

)
�̂−1

+ (
U⊥U�⊥

)
X

(
V⊥V �⊥

)(
V̂ − V V �V̂

)
�̂−1

+ U
(
U�Û − WU

)
.(3.7)

For Corollaries 3.5 and 3.6, the first term following the equality sign in each
display equation is shown in practice to be the leading order term of interest. This
point shall be made more precise and quantitative below.

3.2. General perturbation theorems. This section presents a collection of per-
turbation theorems derived via a unified methodology that combines Theorem 3.1,
its variants, the two-to-infinity norm machinery in Section 6.1, and the geometric
observations in Section 6.2. We bound Û − UWU , while similar bounds hold for
V̂ − V WV under the appropriate modifications detailed in Theorem 3.1.

THEOREM 3.7 (Baseline two-to-infinity norm bound). Provided σr(X) >

σr+1(X) ≥ 0 and σr(X) ≥ 2‖E‖2, then

‖Û − UWU‖2→∞ ≤ 2
(‖(U⊥U�⊥ )E(V V �)‖2→∞

σr(X)

)

+ 2
(‖(U⊥U�⊥ )E(V⊥V �⊥ )‖2→∞

σr(X)

)∥∥sin
(V̂ ,V )
∥∥

2

+ 2
(‖(U⊥U�⊥ )X(V⊥V �⊥ )‖2→∞

σr(X)

)∥∥sin
(V̂ ,V )
∥∥

2

+ ∥∥sin
(Û,U)
∥∥2

2‖U‖2→∞.(3.8)

Let CX,U and CX,V denote upper bounds on the quantities ‖(U⊥U�⊥ )X‖∞
and ‖(V⊥V �⊥ )X�‖∞, respectively, and define CE,U and CE,V analogously. The-
orem 3.8 provides a uniform perturbation bound for ‖Û − UWU‖2→∞ and
‖V̂ −V WV ‖2→∞. When rank(X) = r , Corollary 3.9 presents a weaker but simpler
version of the bound in Theorem 3.8.

THEOREM 3.8 (Uniform perturbation bound for rectangular matrices). Sup-
pose σr(X) > σr+1(X) > 0 and that

σr(X) ≥ max
{
2‖E‖2, (2/α)CE,U ,

(
2/α′)CE,V , (2/β)CX,U ,

(
2/β ′)CX,V

}
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for constants 0 < α,α′, β,β ′ < 1 such that δ := (α + β)(α′ + β ′) < 1. Then

(1 − δ)‖Û − UWU‖2→∞ ≤ 2
(‖(U⊥U�⊥ )E(V V �)‖2→∞

σr(X)

)

+ 2
(‖(V⊥V �⊥ )E�(UU�)‖2→∞

σr(X)

)

+ ∥∥sin
(Û,U)
∥∥2

2‖U‖2→∞

+ ∥∥sin
(V̂ ,V )
∥∥2

2‖V ‖2→∞.(3.9)

If rank(X) = r so that σr+1(X) = 0, then the above bound holds for δ := α × α′ <
1 under the weaker assumption that

σr(X) ≥ max
{
2‖E‖2, (2/α)CE,U ,

(
2/α′)CE,V

}
.

COROLLARY 3.9 (Uniform perturbation bound for low rank matrices). Sup-
pose σr(X) > σr+1(X) = 0 and that

σr(X) ≥ max
{
2‖E‖2, (2/α)CE,U ,

(
2/α′)CE,V

}
for some constants 0 < α,α′ < 1 such that δ := α × α′ < 1. Then

(3.10) (1 − δ)‖Û − UWU‖2→∞ ≤ 12 × max
η∈{1,∞}

{ ‖E‖η

σr(X)

}
× max

Z∈{U,V }
{‖Z‖2→∞

}
.

4. Applications. This section applies our perturbation theorems and two-to-
infinity norm machinery to three statistical settings corresponding to, among oth-
ers, the results in [8, 21, 37], thereby yielding Theorem 4.2, Theorem 4.3, and
Theorem 4.7. Each of these theorems (including Theorem 1.1 presented earlier) is
obtained by combining general considerations with application-specific analysis.

Moving forward, consider the following structural matrix property which arises
within the context of low rank matrix recovery.

DEFINITION 4.1 (Coherence [9]). Let U be a subspace of dimension r in R
p ,

and let PU be the orthogonal projection onto U . Then the coherence of U (vis-à-vis
the standard basis {ei}) is defined to be

(4.1) μ(U) :=
(

p

r

)
max
i∈[p] ‖PUei‖2

2.

For U ∈Op,r , the (orthonormal) columns of U span a subspace of dimension r

in R
p , so it is natural to abuse notation and to interchange U with its underlying

subspace U . In this case, PU ≡ UU�, and so Propositions 6.1 and 6.6 lead to the
equivalent formulation

μ(U) :=
(

p

r

)
‖U‖2

2→∞.
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Observe that 1 ≤ μ(U) ≤ p/r , where the upper and lower bounds are achieved for
U consisting of all standard basis vectors and of vectors whose entries each have
magnitude 1/

√
p, respectively. Since the columns of U are mutually orthogonal

with unit Euclidean norm, the magnitude of μ(U) can be viewed as quantifying
the row-wise accumulation of “mass” in U .

The bounded coherence property [9] corresponds to the existence of a positive
constant Cμ ≥ 1 such that

(4.2) ‖U‖2→∞ ≤ Cμ

√
r

p
.

Bounded coherence arises naturally in the random orthogonal (matrix) model and
influences the recoverability of low rank matrices via nuclear norm minimization
when sampling only a subset of the matrix entries [9]. Bounded coherence is also
closely related to the notion of eigenvector delocalization in random matrix theory
[46]. Examples of matrices whose row and column space factors exhibit bounded
coherence can be found, for example, in the study of networks. Specifically, it is
not difficult to check that bounded coherence holds for the top eigenvectors of
the (non-random) low rank edge probability matrices corresponding to the Erdős–
Rényi random graph model and the balanced K-block stochastic block model.

4.1. Singular vector (entrywise) perturbation bound. In [21], the authors con-
sider low rank matrices exhibiting bounded coherence. For such matrices, the
results therein provide singular vector perturbation bounds under the �∞ vector
norm, which are then applied to robust covariance estimation.

In this paper, Corollary 3.9 states a perturbation bound that is similar in kind to
those in [21]. It is worth emphasizing that upper bounding ‖Û − UWU‖2→∞ im-
mediately bounds both ‖Û −UWU‖max and infW∈Or

‖Û −UW‖max, thereby pro-
viding �∞-type bounds for the perturbed singular vectors up to orthogonal trans-
formation, the analogue of sign flips for well-separated, distinct singular values
(similarly for V , V̂ and WV ). The joint, symmetric nature of the singular value gap
assumption controls the dependence of ‖Û − UWU‖2→∞ and ‖V̂ − V WV ‖2→∞
on one another and takes into account the underlying matrix dimensions.

For symmetric matrices, Theorem 4.2 improves upon [21] and implicitly applies
to the applications discussed therein.

THEOREM 4.2 (Application: eigenvector (entrywise) perturbation bound). Let
X,E ∈ R

p×p be symmetric matrices where rank(X) = r and X has spectral de-
composition X = U�U� + U⊥�⊥U�⊥ ≡ U�U� with leading eigenvalues |λ1| ≥
|λ2| ≥ · · · ≥ |λr | > 0. If |λr | ≥ 4‖E‖∞, then there exists an orthogonal matrix
WU ∈ Or such that

‖Û − UWU‖2→∞ ≤ 14
(‖E‖∞

|λr |
)
‖U‖2→∞.(4.3)
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Theorem 4.2 provides a user-friendly, deterministic perturbation bound that
permits repeated eigenvalues in X and makes no assumption on the behavior of
‖U‖2→∞. When bounded coherence does hold, combining equation (4.2) with
Theorem 4.2 immediately yields the bound

‖Û − UWU‖2→∞ ≤ 14Cμ

(√
r‖E‖∞√
p|λr |

)
.

It is worth emphasizing that stronger (albeit more complicated) bounds are ob-
tained in the proof leading up to the statement of Theorem 4.2.

4.2. Singular subspace perturbation and random matrices. This section inter-
faces the results in this paper with the spectral and Frobenius-based rate-optimal
singular subspace perturbation bounds obtained in [8].

Consider the setting wherein X ∈ R
p1×p2 is a fixed rank r matrix with r 


p1 
 p2 and σr(X) ≥ C(p2/
√

p1). Let E ∈ R
p1×p2 be a random matrix with

independent standard normal entries. Then by [8], the following bounds hold for
the left and right singular subspaces with high probability:

∥∥sin
(Û,U)
∥∥

2 ≤ C

( √
p1

σr(X)

)
and

∥∥sin
(V̂ ,V )
∥∥

2 ≤ C

( √
p2

σr(X)

)
.

Here, working with V and V̂ is desirable though comparatively more difficult. The-
orem 4.3 demonstrates how (even relatively coarse) two-to-infinity norm analysis
allows one to recover upper and lower bounds for ‖V̂ − V WV ‖2→∞ that at times
nearly match. For ease of presentation, Theorem 4.3 is stated simply as holding
with high probability.

THEOREM 4.3 (Application: singular subspace recovery). Let X,E ∈ R
p1×p2

be as in Section 4.2. There exists an orthogonal matrix WV ∈ Or and Cr > 0 such
that, with high probability,

‖V̂ − V WV ‖2→∞

≤ Cr

(
log(p2)

σr(X)

)(
1 +

(
p1

σr(X)

)
+

( √
p1

log(p2)

)
‖V ‖2→∞

)
.(4.4)

If in addition σr(X) ≥ cp1 and ‖V ‖2→∞ ≤ cr/
√

p2 for some c, cr > 0, then with
high probability

(4.5) ‖V̂ − V WV ‖2→∞ ≤ Cr

(
log(p2)

σr(X)

)
.

The lower bound 1√
p2

‖ sin
(V̂ ,V )‖2 ≤ ‖V̂ −V WV ‖2→∞ always holds by Propo-

sition 6.3 and Lemma 6.7.
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4.3. Statistical inference for random graphs. In the study of networks, com-
munity detection and clustering are tasks of central interest. A network (i.e.,
a graph G ≡ (V,E) consisting of a vertex set V and edge set E) may be repre-
sented by its adjacency matrix, A ≡ AG , which captures the edge connectivity of
the nodes in the network. For inhomogeneous independent edge random graph
models, the adjacency matrix can be viewed as a random perturbation of an under-
lying (often low rank) edge probability matrix P , where in expectation P ≡ E[A].
In the notation of Section 2.4, the matrix P corresponds to X, the matrix A − P

corresponds to E, and the matrix A corresponds to X̂. By viewing Û (here the ma-
trix of leading eigenvectors of A) as an estimate of U (here the matrix of leading
eigenvectors of P ), the results in Section 3 immediately apply.

Spectral methods and related optimization problems for random graphs employ
the spectral decomposition of the adjacency matrix (or matrix-valued functions
thereof, such as the Laplacian matrix and its variants) [45, 47, 49, 54]. For exam-
ple, [30] presents a general spectral-based, dimension-reduction community detec-
tion framework which incorporates the spectral norm distance between the leading
eigenvectors of A and P . Taken in the context of [30] and indeed the wider statis-
tical network analysis literature, this paper complements existing work and paves
the way for expanding the toolkit of network analysts to include more Procrustean
considerations and two-to-infinity norm machinery.

Much of the existing literature for graphs and network models concerns the
popular stochastic block model (SBM) [24] and its variants. The related random
dot product graph model (RDPG model) [60] has recently been developed in a
series of papers as both a tractable and flexible random graph model amenable to
spectral methods [22, 37, 49–52, 54]. In the RDPG model, the graph’s eigenvalues
and eigenvectors are closely related to the model’s generative latent positions. In
particular, the leading eigenvectors of the adjacency matrix can be used to estimate
the latent positions when properly scaled by the leading eigenvalues.

In the context of the wider RDPG literature, this paper extends both the treat-
ment of the two-to-infinity norm in [37] and Procrustes matching for graphs in
[51]. Our bounds in Section 3 imply an eigenvector version of Lemma 5 in [37]
that does not require the matrix-valued model parameter P to have distinct eigen-
values. Our Procrustes analysis also suggests a refinement of the test statistic for-
mulation in the two-sample graph inference hypothesis testing framework of [51].

Our level of generality permits the consideration of random graph models that
allow edge dependence structure, such as the (C, c, γ ) property [41] (see below).
Indeed, moving beyond independent edge models represents an important direc-
tion for future work in the field of statistical network analysis.

DEFINITION 4.4 ((C, c, γ ) concentration [41]). A p1 × p2 random matrix E

is said to be (C, c, γ )-concentrated if, given a trio of positive constants (C, c, γ ),
for all unit vectors u ∈ R

p1 , v ∈ R
p2 , and for every t > 0,

(4.6) P
[∣∣〈Ev,u〉∣∣ > t

] ≤ C exp
(−ctγ

)
.
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REMARK 4.5 (Probabilistic concentration and the perturbation E). The
proofs of our main results demonstrate the importance of bounding ‖EV ‖2→∞
and ‖U�EV ‖2 in the perturbation framework of Section 2.4. When E satisfies
the (C, c, γ ) concentration property in Definition 4.4, these quantities can be eas-
ily controlled via standard Bernstein and Hoeffding-type probabilistic bounds en-
countered throughout statistics.

In the statistical network analysis literature, current active research directions
include the development of random graph models exhibiting edge correlation and
the development of inference methodology for multiple graphs. Here, we briefly
consider the ρ-correlated stochastic block model [36] and the omnibus embedding
matrix for multiple graphs [43] employed in [11, 32, 35]. The ρ-correlated stochas-
tic block model provides a simple yet easily interpretable and tractable model for
dependent random graphs [34], while the omnibus embedding matrix provides a
framework for performing spectral analysis on multiple graphs by leveraging graph
(dis)similarities [11, 35, 43].

DEFINITION 4.6 (ρ-correlated SBM graphs [34]). Let Gn denote the set
of labeled, n-vertex, simple, undirected graphs. Two n-vertex random graphs
(G1,G2) ∈ G1 ×G2 are said to be ρ-correlated SBM(κ,

→
n , b,�) graphs (abbrevi-

ated ρ-SBM) if:

1. G1 := (V,E(G1)) and G2 := (V,E(G2)) are marginally SBM(κ,
→
n , b,�) ran-

dom graphs; that is, for each i = 1,2,
(a) The vertex set V is the union of κ blocks V1,V2, . . . ,Vκ , which are disjoint

sets with respective cardinalities n1, n2, . . . , nκ ;
(b) The block membership function b : V �→ [κ] is such that for each v ∈ V ,

b(v) denotes the block of v; that is, v ∈ Vb(v);
(c) The block adjacency probabilities are given by the symmetric matrix � ∈

[0,1]κ×κ ; that is, for each pair of vertices {j, l} ∈ (V
2

)
, the adjacency of j

and l is an independent Bernoulli trial with probability of success �b(j),b(l).
2. The random variables {

I
[{j, k} ∈ E

(
Gi)]}

i=1,2;{j,k}∈(V2)

are collectively independent except that for each {j, k} ∈ (V
2

)
, the correlation

between I[{j, k} ∈ E(G1)] and I[{j, k} ∈ E(G2)] is ρ ≥ 0.

The following theorem provides a guarantee for estimating the leading eigen-
vectors of a multiple graph omnibus matrix when the graphs are not independent.
Theorem 4.7 is among the first of its kind and complements the recent, concurrent
work on joint graph embedding in [32].
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THEOREM 4.7 (Application: multiple graph inference). Let (G1,G2) be a
pair of ρ-correlated SBM(κ,

→
n , b,�) graphs as in Definition 4.6 with n× n (sym-

metric, binary) adjacency matrices (A1,A2). Let the model omnibus matrix O and
adjacency omnibus matrix Ô be given by

O :=
[
1 1
1 1

]
⊗Z�Z� and Ô :=

⎡
⎢⎢⎣ A1 A1 + A2

2
A1 + A2

2
A2

⎤
⎥⎥⎦ ,

where ⊗ denotes the matrix Kronecker product and Z is the n×κ matrix of vertex-
to-block assignments such that P := Z�Z� ∈ [0,1]n×n denotes the edge prob-
ability matrix. Let rank(�) = r , and hence rank(O) = r . For i = 1,2, suppose
that the maximum expected degree of Gi , �, satisfies � � log4(n), along with
σr(O) ≥ c� for some c > 0. Let U, Û ∈ O2n,r denote the matrices whose columns
are the normalized eigenvectors corresponding to the largest eigenvalues of O and
Ô given by the diagonal matrices � and �̂, respectively. For WU ∈ Or as in Sec-
tion 2.3, with probability 1 − o(1) as n → ∞,

‖Û − UWU‖2→∞ = Or

(
logn

�

)
.

In contrast, spectral norm analysis implies the weaker two-to-infinity norm bound
‖Û − UWU‖2→∞ =Or (

1√
�

).

REMARK 4.8 (Edge correlation). The implicit dependence upon the correla-
tion factor ρ in Theorem 4.7 can be made explicit by a more careful analysis of
constant factors and the probability statement. This is not our present concern.

5. Discussion and conclusion. This paper develops a flexible Procrustean
matrix decomposition and its variants together with machinery for the two-to-
infinity norm in order to study the perturbation of singular vectors and subspaces.
We have demonstrated both implicitly and explicitly the widespread applicability
of our framework and results to a host of popular matrix noise models, namely
matrices that have:

• independent and identically distributed entries (Section 4.2);
• independent and identically distributed rows (Section 1.4);
• independent but not identically distributed entries (Section 4.3);
• neither independent nor identically distributed entries (Section 4.1).

Each application presented in this paper requires model-specific analysis.
Namely, one must determine which formulation of the Procrustean matrix de-
composition to use, how to effectively transition between norms, and how to
analyze the resulting quantities. For example, in Section 4.1 the product term
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‖E‖∞‖U‖2→∞ is meaningful when coupled with the bounded coherence assump-
tion, whereas the term ‖EU‖2→∞ is analyzed directly in order to prove Theo-
rem 4.7. Similarly, with respect to covariance estimation (Theorems 1.1 and 4.2),
context-specific differences motivate idiosyncratic approaches when deriving the
stated bounds.

This paper focuses on decomposing the matrix Û − UWU and on establish-
ing the two-to-infinity norm as a useful tool for matrix perturbation analysis. In
the time since this work was first made publicly available, there has been a flurry
of activity within the statistics, computer science, and mathematics communities
devoted to obtaining precise perturbation bounds for singular vectors and eigen-
vectors [1, 10, 18, 38, 53]. Among the observations made earlier in this paper, it is
useful to keep in mind that

inf
W∈Or

‖Û − UW‖max ≤ ‖Û − UWU‖max ≤ ‖Û − UWU‖2→∞.

Ample open problems and applications exist for which it is and will be produc-
tive to utilize the two-to-infinity norm and matrix decompositions in the future. It
is our hope that the level of generality and flexibility presented in this paper will
facilitate the more widespread use of the two-to-infinity norm in statistics.

6. Proofs.

6.1. Technical tools for the two-to-infinity norm. For A ∈ R
p1×p2 , consider

the vector norm on matrices ‖ · ‖2→∞ defined by

‖A‖2→∞ := sup
‖x‖2=1

‖Ax‖∞.

Let ei denote the ith standard basis vector, and let Ai ∈ R
p2 denote the ith row

of A. The following proposition says that ‖A‖2→∞ corresponds to the maximum
row-wise Euclidean norm of A.

PROPOSITION 6.1. For A ∈ R
p1×p2 , then ‖A‖2→∞ = maxi∈[p1] ‖Ai‖2.

PROOF. The definition of ‖ · ‖2→∞ and the Cauchy–Schwarz inequality to-
gether yield that ‖A‖2→∞ ≤ maxi∈[p1] ‖Ai‖2, since

‖A‖2→∞ := sup
‖x‖2=1

‖Ax‖∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈Ax, ei〉
∣∣

≤ max
i∈[p1]

‖Ai‖2.

Barring the trivial case A ≡ 0, let e� denote the standard basis vector in R
p1 with

index given by argmaxi∈[p1] ‖Ai‖2 > 0, noting that for each i ∈ [p1], Ai = A�ei .
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For the unit Euclidean norm vector x� := ‖A�e�‖−1
2 (A�e�),

‖A‖2→∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈Ax, ei〉
∣∣ ≥ ∣∣〈Ax�, e�〉

∣∣ = ∥∥A�e�

∥∥
2

= max
i∈[p1]

‖Ai‖2.

This establishes the stated equivalence. �

REMARK 6.2. The two-to-infinity norm is subordinate with respect to the �2
and �∞ vector norms in the sense that for any x ∈ R

p2 , ‖Ax‖∞ ≤ ‖A‖2→∞‖x‖2.
However, ‖ · ‖2→∞ is not submultiplicative for matrices in general. For example,
‖AB‖2→∞ = √

5 >
√

4 = ‖A‖2→∞‖B‖2→∞ when

A ≡ B :=
[
1 1
0 1

]
and AB =

[
1 2
0 1

]
.

PROPOSITION 6.3. For A ∈R
p1×p2 , then

(6.1) ‖A‖2→∞ ≤ ‖A‖2 ≤ min
{√

p1‖A‖2→∞,
√

p2
∥∥A�∥∥

2→∞
}
.

PROOF. The first inequality is obvious since

‖A‖2→∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈Ax, ei〉
∣∣ ≤ sup

‖x‖2=1
sup

‖y‖2=1

∣∣〈Ax,y〉∣∣
= ‖A‖2.

The second inequality holds by an application of the Cauchy–Schwarz inequality
together with the vector norm relationship ‖Ax‖2 ≤ √

p1‖Ax‖∞ for Ax ∈ R
p1 . In

particular,

sup
‖x‖2=1

sup
‖y‖2=1

∣∣〈Ax,y〉∣∣ ≤ sup
‖x‖2=1

‖Ax‖2 ≤ √
p1 sup

‖x‖2=1
‖Ax‖∞

= √
p1‖A‖2→∞.

By the transpose-invariance of the spectral norm, similarly

‖A‖2 = ∥∥A�∥∥
2 ≤ √

p2
∥∥A�∥∥

2→∞. �

REMARK 6.4. Proposition 6.3 is sharp. Indeed, for the second inequality,
take A := {1/

√
p2}p1×p2 . Then ‖A‖2→∞ = 1 and ‖A�‖2→∞ = √

p1/p2 while
‖A‖2 = √

p1. For “tall, skinny” rectangular matrices, the two-to-infinity norm can
be much smaller than the spectral norm.

PROPOSITION 6.5. For A ∈R
p1×p2 , B ∈ R

p2×p3 and C ∈ R
p4×p1 , then

‖AB‖2→∞ ≤ ‖A‖2→∞‖B‖2;(6.2)

‖CA‖2→∞ ≤ ‖C‖∞‖A‖2→∞.(6.3)
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PROOF. The subordinate property of ‖ · ‖2→∞ yields that for all x ∈ R
p3 ,

‖ABx‖∞ ≤ ‖A‖2→∞‖Bx‖2, hence maximizing over all unit vectors x yields
equation (6.2). Equation (6.3) follows from Hölder’s inequality coupled with the
fact that the vector norms �1 and �∞ are dual to one another. Explicitly,

‖CA‖2→∞ = sup
‖x‖2=1

max
i∈[p1]

∣∣〈CAx, ei〉
∣∣

≤ sup
‖x‖2=1

max
i∈[p1]

∥∥C�ei

∥∥
1‖Ax‖∞

≤
(

sup
‖y‖1=1

∥∥C�y
∥∥

1

)(
sup

‖x‖2=1
‖Ax‖∞

)
= ∥∥C�∥∥

1‖A‖2→∞

= ‖C‖∞‖A‖2→∞. �

PROPOSITION 6.6. For A ∈ R
r×s , U ∈Op1,r and V ∈ Op2,s ,

‖A‖2 = ‖UA‖2 = ∥∥AV �∥∥
2 = ∥∥UAV �∥∥

2;(6.4)

‖A‖2→∞ = ∥∥AV �∥∥
2→∞.(6.5)

However, ‖UA‖2→∞ need not equal ‖A‖2→∞.

PROOF. The first statement follows from Proposition 6.5, the fact that the
spectral norm is submultiplicative, and since U�U and V �V are both the iden-
tity matrix. As for the final claim, consider the matrices

(6.6) U :=
[

1/
√

2 1/
√

2
1/

√
2 −1/

√
2

]
, A :=

[
1 1
0 1

]
, UA =

[
1/

√
2

√
2

1/
√

2 0

]
,

for which ‖UA‖2→∞ = √
5/2 >

√
2 = ‖A‖2→∞. �

6.2. Singular subspace geometric bounds. Let U, Û ∈ Op×r and WU ∈ Or

denote the Frobenius-optimal Procrustes transformation. We shall use the fact that
‖ sin
(Û,U)‖2 = ‖U�⊥ Û‖2 = ‖(I − UU�)Û Û�‖2 ([5], Chapter 7).

LEMMA 6.7. Let T ∈ R
r×r be arbitrary. Then∥∥sin
(Û,U)
∥∥

2 = ∥∥Û − UU�Û
∥∥

2 ≤ ‖Û − UT ‖2,(6.7)

1

2

∥∥sin
(Û,U)
∥∥2

2 ≤ ∥∥U�Û − WU

∥∥
2 ≤ ∥∥sin
(Û,U)

∥∥2
2.(6.8)

PROOF. The matrix difference (Û − UU�Û ) ∈ R
p×r represents the residual

of Û after orthogonally projecting onto the subspace spanned by the columns of U .
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Note that ‖A‖2
2 = ‖A�A‖2 = sup‖x‖2=1 |〈A�Ax,x〉|, and so several intermediate

steps of computation yield that, for any T ∈ R
r×r ,∥∥Û − UU�Û

∥∥2
2 = sup

‖x‖2=1

∣∣〈(Û − UU�Û
)�(

Û − UU�Û
)
x, x

〉∣∣
= sup

‖x‖2=1

∣∣〈(I − Û�UU�Û
)
x, x

〉∣∣
≤ sup

‖x‖2=1

(∣∣〈(I − Û�UU�Û
)
x, x

〉∣∣ + ∥∥(
T − U�Û

)
x

∥∥2
2

)

= sup
‖x‖2=1

∣∣〈(Û − UT )�(Û − UT )x, x
〉∣∣

= ‖Û − UT ‖2
2.

On the other hand, by Proposition 6.6 and the above observation,∥∥Û − UU�Û
∥∥

2 = ∥∥Û Û� − UU�Û Û�∥∥
2 = ∥∥(

I − UU�)
Û Û�∥∥

2

= ∥∥sin
(Û,U)
∥∥

2.

The matrix difference (U�Û − WU) ∈ R
r×r represents the extent to which U�Û

with singular value decomposition W1�UW�
2 is “almost” the Frobenius-optimal

Procrustes transformation WU ≡ W1W
�
2 . The orthogonal invariance of the spec-

tral norm together with the interpretation of canonical angles between Û and U ,
denoted by {θi} with cos(θi) = σi(U

�Û ) ∈ [0,1], yields∥∥U�Û − WU

∥∥
2 = ∥∥W1�UW�

2 − W1W
�
2

∥∥
2 = ‖�U − Ir‖2 = 1 − min

i
cos(θi).

Thus, both∥∥U�Û − WU

∥∥
2 ≤ 1 − min

i
cos2(θi) = max

i
sin2(θi) = ∥∥sin
(Û,U)

∥∥2
2

and ∥∥U�Û − WU

∥∥
2 ≥ 1

2

(
1 − min

i
cos2(θi)

) = 1

2
max

i
sin2(θi)

= 1

2

∥∥sin
(Û,U)
∥∥2

2. �

LEMMA 6.8. The quantity ‖Û − UWU‖2 satisfies the lower bound

(6.9)
∥∥sin
(Û,U)

∥∥
2 ≤ ∥∥Û − UW�

2
∥∥

2 ≤ ‖Û − UWU‖2

and satisfies the upper bound

(6.10) ‖Û − UWU‖2 ≤ ∥∥sin
(Û,U)
∥∥

2 + ∥∥sin
(Û,U)
∥∥2

2.

Taken together with Lemma 1 in [8], an improved upper bound is given by

(6.11) ‖Û − UWU‖2 ≤ min
{
1 + ∥∥sin
(Û,U)

∥∥
2,

√
2

}∥∥sin
(Û,U)
∥∥

2.
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PROOF. The lower bound follows from setting T = W�
2 in Lemma 6.7 together

with the definition of W�
2 . Again by Lemma 6.7 and, together with the triangle

inequality,

‖Û − UWU‖2 ≤ ∥∥Û − UU�Û
∥∥

2 + ∥∥U
(
U�Û − WU

)∥∥
2

≤ ∥∥sin
(Û,U)
∥∥

2 + ∥∥sin
(Û,U)
∥∥2

2.

The proof of Lemma 1 in [8] establishes that

inf
W∈Or

‖Û − UW‖2 ≤ ‖Û − UWU‖2 ≤ √
2

∥∥sin
(Û,U)
∥∥

2,

which completes the proof. �

For ease of reference and notation, Theorem 6.9 below states a version of the
Davis–Kahan sin
 theorem [13] in the language of [61]. This amounts to a recast-
ing of Theorem VII.3.2 in [5], and so we omit the proof.

THEOREM 6.9. Let X, X̂ ∈ R
p×p be symmetric matrices with eigenvalues

λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p , respectively. Write E := X̂ − X and fix 1 ≤
r ≤ s ≤ p. Assume that δgap := min(λr−1 − λr, λs − λs+1) > 0 where λ0 := ∞
and λp+1 := −∞. Let d = s − r + 1 and let V := [vr |vr+1| . . . |vs] ∈ R

p×d and
V̂ := [v̂r |v̂r+1| . . . |v̂s] ∈ R

p×d have orthonormal columns satisfying Xvj = λjvj

and X̂v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Then

(6.12)
∥∥sin
(V̂ ,V )

∥∥
2 ≤

(
2‖E‖2

δgap

)
.

6.3. Theorem 3.1.

PROOF OF THEOREM 3.1. The matrices X and X̂ have rank at least r , so Û ≡
X̂V̂ �̂−1 and UWU ≡ XV �−1WU by the block matrix formulation in Section 2.4.
The explicit correspondence between WU and U�Û along with subsequent left-
multiplication by the matrix U motivates the introduction of the projected quantity
±UU�Û and leads to

Û − UWU = (
Û − UU�Û

) + (
UU�Û − UWU

)
= (

I − UU�)
X̂V̂ �̂−1 + U

(
U�Û − WU

)
.

The matrix U(U�Û −WU) can be meaningfully bounded in both spectral and two-
to-infinity norm by Lemma 6.8 and Proposition 6.5. Ignoring U for the moment,
the difference U�Û − WU represents the geometric approximation error between
U�Û and the orthogonal matrix WU .
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It is not immediately clear how to control (I − UU�)X̂V̂ �̂−1 given the de-
pendence on the perturbed quantity X̂. If instead we replace X̂ with X and con-
sider the matrix (I − UU�)XV̂ �̂−1, then by the block matrix form in Sec-
tion 2.4 one can check that (I − UU�)X = X(I − V V �). Since (I − UU�)

is an orthogonal projection, and hence is idempotent, then (I − UU�)XV̂ �̂−1 =
(I − UU�)X(V̂ − V V �V̂ )�̂−1. Therefore,(

I − UU�)
X̂V̂ �̂−1 = (

I − UU�)
EV̂ �̂−1 + (

I − UU�)
X

(
V̂ − V V �V̂

)
�̂−1.

By Lemma 6.7 and Proposition 6.5, the terms comprising the matrix product (I −
UU�)X(V̂ − V V �V̂ )�̂−1 can be suitably controlled in norm. At times, it shall
be useful to further decompose (I − UU�)X(V̂ − V V �V̂ )�̂−1 as((

I − UU�)
X(V̂ − V WV )�̂−1) + ((

I − UU�)
XV

(
WV − V �V̂

)
�̂−1)

,

where the second term vanishes since (I − UU�)XV vanishes.
As for the matrix (I − UU�)EV̂ �̂−1, we do not assume explicit control of V̂ ,

so we rewrite the above matrix product in terms of V and a corresponding residual
quantity. A natural choice is to incorporate the orthogonal factor WV . Specifically,
introducing ±(I − UU�)EV WV �̂−1 yields(
I − UU�)

EV̂ �̂−1 = (
I − UU�)

E(V̂ − V WV )�̂−1 + (
I − UU�)

EV WV �̂−1.

Gathering right-hand sides of the above equations yields Theorem 3.1. Corollaries
3.3 and 3.5 are evident given that U�U and V �V are both simply the identity
matrix. Corollary 3.6 is obtained from Corollary 3.5 by additional straightforward
algebraic manipulations. In applications, (I − UU�)EV WV �̂−1 ≈ EV WV �̂−1

can be shown to function as the leading order term. �

6.4. Theorem 3.7.

PROOF OF THEOREM 3.7. The assumption σr(X) ≥ 2‖E‖2 implies that
σr(X̂) ≥ 1

2σr(X) since by Weyl’s inequality for singular values, σr(X̂) ≥ σr(X) −
‖E‖2 ≥ 1

2σr(X). The result then follows from Corollary 3.6 together with Propo-
sition 6.5 and Lemma 6.7. �

6.5. Theorem 3.8.

PROOF OF THEOREM 3.8. By Corollary 3.5, consider the decomposition

Û − UWU = (
I − UU�)

E
(
V V �)

V WV �̂−1

+ (
I − UU�)

(E + X)(V̂ − V WV )�̂−1

+ U
(
U�Û − WU

)
.
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Applying Proposition 6.5 and Lemma 6.7 yields

‖Û − UWU‖2→∞ ≤ ∥∥(
U⊥U�⊥

)
E

(
V V �)∥∥

2→∞/σr(X̂)

+ (CE,U + CX,U)‖V̂ − V WV ‖2→∞/σr(X̂)

+ ∥∥sin
(Û,U)
∥∥2

2‖U‖2→∞
and similarly

‖V̂ − V WV ‖2→∞ ≤ ∥∥(
V⊥V �⊥

)
E�(

UU�)∥∥
2→∞/σr(X̂)

+ (CE,V + CX,V )‖Û − UWU‖2→∞/σr(X̂)

+ ∥∥sin
(V̂ ,V )
∥∥2

2‖V ‖2→∞.

By assumption,

σr(X) ≥ max
{
2‖E‖2, (2/α)CE,U ,

(
2/α′)CE,V , (2/β)CX,U ,

(
2/β ′)CX,V

}
for some constants 0 < α,α′, β,β ′ < 1 such that δ := (α + β)(α′ + β ′) < 1. The
assumption σr(X) ≥ 2‖E‖2 implies that σr(X̂) ≥ σr(X) − ‖E‖2 ≥ 1

2σr(X) by
Weyl’s inequality for singular values. Combining the above observations and rear-
ranging terms yields

(1 − δ)‖Û − UWU‖2→∞ ≤ 2
∥∥(

U⊥U�⊥
)
E

(
V V �)∥∥

2→∞/σr(X)

+ 2(α + β)
∥∥(

V⊥V �⊥
)
E�(

UU�)∥∥
2→∞/σr(X)

+ ∥∥sin
(Û,U)
∥∥2

2‖U‖2→∞

+ (α + β)
∥∥sin
(V̂ ,V )

∥∥2
2‖V ‖2→∞.

The first claim follows since (α + β) < 1. When rank(X) = r , then U⊥U�⊥ X van-
ishes. Corollary 3.3 then yields the simpler form

Û − UWU = (
I − UU�)

E
(
V V �)

V WV �̂−1

+ (
I − UU�)

E(V̂ − V WV )�̂−1

+ U
(
U�Û − WU

)
,

and similarly for V̂ − V WV . In this case, the bound holds without needing to
consider either CX,U or CX,V . �

6.6. Corollary 3.9.

PROOF OF COROLLARY 3.9. By Theorem 3.8,

(1 − δ)‖Û − UWU‖2→∞ ≤ 2
∥∥(

U⊥U�⊥
)
E

(
V V �)∥∥

2→∞/σr(X)
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+ 2
∥∥(

V⊥V �⊥
)
E�(

UU�)∥∥
2→∞/σr(X)

+ ∥∥sin
(Û,U)
∥∥2

2‖U‖2→∞

+ ∥∥sin
(V̂ ,V )
∥∥2

2‖V ‖2→∞.

Applying Wedin’s sin
 theorem together with the general matrix fact that ‖E‖2 ≤
max{‖E‖∞,‖E‖1} and the assumption σr(X) ≥ 2‖E‖2 yields

max
Z∈{U,V }

{∥∥sin
(Ẑ,Z)
∥∥

2

} ≤ min
{(

2 × max{‖E‖∞,‖E‖1}
σr(X)

)
,1

}
.

By invoking properties of the two-to-infinity norm, it follows that∥∥(
U⊥U�⊥

)
E

(
V V �)∥∥

2→∞ ≤ ∥∥E
(
V V �)∥∥

2→∞ + ∥∥(
UU�)

E
(
V V �)∥∥

2→∞
≤ ‖EV ‖2→∞ + ‖U‖2→∞

∥∥U�EV
∥∥

2

≤ ‖E‖∞‖V ‖2→∞ + ‖U‖2→∞ max
{‖E‖∞,‖E‖1

}
≤ 2 × max

η∈{1,∞}
{‖E‖η

} × max
Z∈{U,V }

{‖Z‖2→∞
}
.

Similarly, ∥∥(
V⊥V �⊥

)
E�(

UU�)∥∥
2→∞

≤ ‖E‖1‖U‖2→∞ + ‖V ‖2→∞ max
{‖E‖∞,‖E‖1

}
≤ 2 × max

η∈{1,∞}
{‖E‖η

} × max
Z∈{U,V }

{‖Z‖2→∞
}
.

Hence

(1 − δ)‖Û − UWU‖2→∞ ≤ 12 × max
η∈{1,∞}

{ ‖E‖η

σr(X)

}
× max

Z∈{U,V }
{‖Z‖2→∞

}
,

as claimed. �

6.7. Theorem 1.1.

PROOF OF THEOREM 1.1. For ease of presentation, we use C > 0 to denote
various constants that are allowed to depend on one another. Both n and d are
taken to be large.

By hypothesis max{r(�), logd} = o(n), where r(�) := trace(�)/σ1(�) denotes
the effective rank of �. In the present multivariate Gaussian covariance matrix
setting, it follows from [28, 29] that there exists some constant C > 0 such that
with probability at least 1 − 1

3d−2,

‖En‖2 ≤ Cσ1(�)

√
max{r(�), logd}

n
.
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By hypothesis σ1(�)/σr(�) ≤ C, and so together with the above observations,
then σr(�) ≥ 2‖En‖2 with high probability. Theorem 3.7 thus yields

‖Û − UWU‖2→∞ ≤ C
∥∥(

U⊥U�⊥
)
En

(
UU�)∥∥

2→∞/σr(�)

+ C
∥∥(

U⊥U�⊥
)
En

(
U⊥U�⊥

)∥∥
2→∞

∥∥sin
(Û,U)
∥∥

2/σr(�)

+ C
∥∥(

U⊥U�⊥
)
�

(
U⊥U�⊥

)∥∥
2→∞

∥∥sin
(Û,U)
∥∥

2/σr(�)

+ ∥∥sin
(Û,U)
∥∥2

2‖U‖2→∞.

Moving forward, we record several important observations:

• By Proposition 6.5, ‖(U⊥U�⊥ )En(UU�)‖2→∞ ≤ ‖U⊥U�⊥ ‖∞‖EnU‖2→∞.
• By the (bounded coherence) assumption that ‖U‖2→∞ ≤ C

√
r/d , then∥∥U⊥U�⊥

∥∥∞ = ∥∥I − UU�∥∥∞ ≤ 1 + √
d

∥∥UU�∥∥
2→∞ ≤ (1 + C)

√
r.

• The random (Gaussian) vector U�⊥ Y has covariance matrix U⊥�⊥U�⊥ , so by
[28, 29] there exists some constant C > 0 such that with probability at least
1 − 1

3d−2,

∥∥(
U⊥U�⊥

)
En

(
U⊥U�⊥

)∥∥
2 ≤ Cσr+1(�)

√
max{r(�⊥), logd}

n

≤ C
√

σr+1(�)
√

σ1(�)

√
max{r(�), logd}

n
,

where the final inequality holds since

r(�⊥) =
(

σ1(�)

σr+1(�)

)(
r(�) − tr(�)

σ1(�)

)
≤

(
σ1(�)

σr+1(�)

)
r(�).

• Note that ‖(U⊥U�⊥ )�(U⊥U�⊥ )‖2→∞ = ‖U⊥�⊥U�⊥ ‖2→∞ ≤ σr+1(�).
• Theorem 6.9 yields the bound ‖ sin
(Û,U)‖2 ≤ C‖En‖2/δr(�) with popula-

tion gap given by δr(�) := σr(�) − σr+1(�) ≥ c2σr(�) > 0.

Together these observations yield

‖Û − UWU‖2→∞ ≤ C
√

r‖EnU‖2→∞/σr(�)

+ C

(
max{r(�), logd}

n

)√
σr+1(�)/σr(�)

+ C

√
max{r(�), logd}

n

(
σr+1(�)/σr(�)

)

+ C

(
max{r(�), logd}

n

)√
r/d.
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Now let ei denote the ith standard basis vector in R
d and uj denote the j th column

of U . The matrix En is symmetric, and EnU ∈ R
d×r can be bounded in two-to-

infinity norm in the manner

‖EnU‖2→∞ ≤ √
r‖EnU‖max = √

r maxi∈[d],j∈[r]
∣∣〈Enei, uj 〉

∣∣.
For each (i, j) ∈ [d] × [r], the scalar 〈Enei, uj 〉 can be expanded as

〈Enei, uj 〉 = 1

n

n∑
k=1

((
u�

j Yk

)(
Y�

k ei

) − u�
j �ei

) = 1

n

n∑
k=1

(〈Yk,uj 〉Y (i)
k − 〈�ei, uj 〉).

The product of (sub-)Gaussian random variables is subexponential, so for i and j

fixed, (〈Yk,uj 〉Y (i)
k − 〈�ei, uj 〉) with 1 ≤ k ≤ n is a collection of independent and

identically distributed, centered subexponential random variables [55]. To this end,
the (univariate) subexponential norm, the (univariate) sub-Gaussian norm, and the
vector sub-Gaussian norm are, respectively,∥∥(

Y (i))2∥∥
ψ1

:= sup
p≥1

p−1(
E

[∣∣(Y (i))2∣∣p])1/p;
∥∥Y (i)

∥∥
ψ2

:= sup
p≥1

p−1/2(
E

[∣∣Y (i)
∣∣p])1/p;

‖Y‖ψ2 := sup
‖x‖2=1

∥∥〈Y,x〉∥∥ψ2
.

By properties of these (Orlicz) norms [55], there exists some constant C > 0 such
that the above subexponential random variables satisfy the bound∥∥〈Yk,uj 〉Y (i)

k − 〈�ei, uj 〉
∥∥
ψ1

≤ 2
∥∥〈Yk,uj 〉Y (i)

k

∥∥
ψ1

≤ C
∥∥〈Y,uj 〉

∥∥
ψ2

∥∥Y (i)
∥∥
ψ2

.

The random vector Y is mean zero multivariate Gaussian, hence for each 1 ≤ i ≤ d ,
the norm of the ith component satisfies the variance-based bound∥∥Y (i)

∥∥
ψ2

≤ C max
1≤i≤d

√
Var

(
Y (i)

) ≡ Cν(Y ).

For each j ∈ [r], Var(〈Y,uj 〉) = u�
j �uj = σj (�), where 〈Y,uj 〉 is univariate

Gaussian, so we have the spectral-based bound ‖〈Y,uj 〉‖ψ2 ≤ C
√

σ1(�). Taken
together, these observations establish a uniform bound over all i, j, k of the form∥∥〈Yk,uj 〉Y (i)

k − 〈�ei, uj 〉
∥∥
ψ1

≤ Cν(Y )
√

σ1(�).

By combining a union bound with Bernstein’s inequality for subexponential ran-
dom variables [55], it follows that there exists a constant C > 0 such that with
probability at least 1 − 1

3d−2,

‖EnU‖2→∞ ≤ Cν(Y )
√

σ1(�)
√

r

√
max{r(�), logd}

n
.
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The r largest singular values of � bound each other up to absolute multiplicative
constants for all values of d by assumption. Moreover, δr(�) ≥ c2σr(�) by as-
sumption. Aggregating the above observations yields that with probability at least
1 − d−2,

‖Û − UWU‖2→∞ ≤ C

√
max{r(�), logd}

n

(
ν(Y )r√
σr(�)

+ σr+1(�)

σr(�)

)

+ C

(
max{r(�), logd}

n

)(√
σr+1(�)

σr(�)
+

√
r

d

)
,

which completes the proof. �

6.8. Theorem 4.2.

PROOF OF THEOREM 4.2. Specializing Corollary 3.5 to the case when X is
symmetric with rank(X) = r yields the decomposition

Û − UWU = E(Û − UWU)�̂−1 − (
UU�)

E(Û − UWU)�̂−1 + EUWU�̂−1

− (
UU�)

EUWU�̂−1 + U
(
U�Û − WU

)
.

Applying the technical results in Sections 6.1 and 6.2 yields the termwise bounds∥∥E(Û − UWU)�̂−1∥∥
2→∞ ≤ ‖E‖∞‖Û − UWU‖2→∞|λ̂r |−1,∥∥(

UU�)
E(Û − UWU)�̂−1∥∥

2→∞ ≤ ‖U‖2→∞‖E‖2‖Û − UWU‖2|λ̂r |−1,∥∥EUWU�̂−1∥∥
2→∞ ≤ ‖E‖∞‖U‖2→∞|λ̂r |−1,∥∥(

UU�)
EUWU�̂−1∥∥

2→∞ ≤ ‖U‖2→∞‖E‖2||λ̂r |−1,∥∥U
(
U�Û − WU

)∥∥
2→∞ ≤ ‖U‖2→∞

∥∥U�Û − WU

∥∥
2.

The matrix E is symmetric by assumption, therefore, ‖E‖2 ≤ ‖E‖∞. Furthermore,
‖Û − UWU‖2 ≤ √

2‖ sin
(Û,U)‖2 by Lemma 6.8, and Theorem 6.9 guarantees
that ‖ sin
(Û,U)‖2 ≤ 2‖E‖2|λr |−1. Therefore,∥∥E(Û − UWU)�̂−1∥∥

2→∞ ≤ ‖E‖∞‖Û − UWU‖2→∞|λ̂r |−1,∥∥(
UU�)

E(Û − UWU)�̂−1∥∥
2→∞ ≤ 4‖E‖2∞‖U‖2→∞|λ̂r |−1|λr |−1,∥∥EUWU�̂−1∥∥
2→∞ ≤ ‖E‖∞‖U‖2→∞|λ̂r |−1,∥∥(

UU�)
EUWU�̂−1∥∥

2→∞ ≤ ‖E‖∞‖U‖2→∞|λ̂r |−1,∥∥U
(
U�Û − WU

)∥∥
2→∞ ≤ 4‖E‖2∞‖U‖2→∞|λr |−2.
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By assumption |λr | ≥ 4‖E‖∞, so |λ̂r | ≥ 1
2 |λr |. As a consequence, it follows that

‖E‖∞|λ̂r |−1 ≤ 2‖E‖∞|λr |−1 ≤ 1
2 . Thus,

∥∥E(Û − UWU)�̂−1∥∥
2→∞ ≤ 1

2
‖Û − UWU‖2→∞,

∥∥(
UU�)

E(Û − UWU)�̂−1∥∥
2→∞ ≤ 2‖E‖∞‖U‖2→∞|λr |−1,∥∥EUWU�̂−1∥∥
2→∞ ≤ 2‖E‖∞‖U‖2→∞|λr |−1,∥∥(

UU�)
EUWU�̂−1∥∥

2→∞ ≤ 2‖E‖∞‖U‖2→∞|λr |−1,∥∥U
(
U�Û − WU

)∥∥
2→∞ ≤ ‖E‖∞‖U‖2→∞|λr |−1.

Hence, ‖Û − UWU‖max ≤ ‖Û − UWU‖2→∞ ≤ 14
(‖E‖∞|λr |

)‖U‖2→∞. �

6.9. Theorem 4.3.

PROOF OF THEOREM 4.3. Rewriting Corollary 3.5 in terms of the matrix
V̂ − V WV as described in Theorem 3.1 yields the decomposition

V̂ − V WV = (
V⊥V �⊥

)
E�(

UU�)
UWU�̂−1

+ (
V⊥V �⊥

)(
E� + X�)

(Û − UWU)�̂−1

+ V
(
V �V̂ − WV

)
.

Observe that (UU�)U ≡ U , while the assumption rank(X) = r implies that
(V⊥V �⊥ )X� vanishes. Applying Proposition 6.5, Lemma 6.7, and Lemma 6.8 to
the remaining terms therefore yields∥∥(

V⊥V �⊥
)
E�UWU�̂−1∥∥

2→∞ ≤ ∥∥(
V⊥V �⊥

)
E�U

∥∥
2→∞/σr(X̂),∥∥(

V⊥V �⊥
)
E�(Û − UWU)�̂−1∥∥

2→∞
≤ C

∥∥(
V⊥V �⊥

)
E�∥∥

2→∞
∥∥sin
(Û,U)

∥∥
2/σr(X̂),∥∥V

(
V �V̂ − WV

)∥∥
2→∞ ≤ ∥∥sin
(V̂ ,V )

∥∥2
2‖V ‖2→∞.

The columns of (V⊥V �⊥ )E� ∈ R
p2×p1 are centered independent multivariate

normal random vectors with covariance matrix (V⊥V �⊥ ), so row i of (V⊥V �⊥ )E�
is a centered multivariate normal random vector with covariance matrix σ 2

i I ,
where σ 2

i := (V⊥V �⊥ )i,i ≤ 1 and I ∈ R
p1×p1 denotes the identity matrix. By

Gaussian concentration and applying a union bound with p2 � p1, then
‖(V⊥V �⊥ )E�‖2→∞ ≤ Cr

√
p1 log(p2) with high probability.

As for (V⊥V �⊥ )E�U ∈ R
p2×r , the above argument implies that entry (i, j) is

N (0, σ 2
i ). Hence by the same approach, ‖(V⊥V �⊥ )E�U‖2→∞ ≤ Cr log(p2) with

high probability.
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By hypothesis r 
 p1 
 p2 and σr(X) ≥ Cp2/
√

p1, where ‖E‖2 ≤ C
√

p2
with high probability. In this setting, via [8],∥∥sin
(Û,U)

∥∥
2 ≤ C

( √
p1

σr(X)

)
and

∥∥sin
(V̂ ,V )
∥∥

2 ≤ C

( √
p2

σr(X)

)
.

Combining these observations yield(‖(V⊥V �⊥ )E�U‖2→∞
σr(X̂)

)
≤ Cr

(
log(p2)

σr(X)

)
;

(‖(V⊥V �⊥ )E�‖2→∞
σr(X̂)

)∥∥sin
(Û,U)
∥∥

2 ≤ Cr

(
log(p2)

σr(X)

)(
p1

σr(X)

)
;

∥∥sin
(V̂ ,V )
∥∥2

2‖V ‖2→∞ ≤ Cr

(
log(p2)

σr(X)

)( √
p1

log(p2)

)
‖V ‖2→∞.

Hence, with high probability

‖V̂ − V WV ‖2→∞ ≤ Cr

(
log(p2)

σr(X)

)(
1 +

(
p1

σr(X)

)
+

( √
p1

log(p2)

)
‖V ‖2→∞

)
.

If in addition σr(X) ≥ cp1 and ‖V ‖2→∞ ≤ cr/
√

p2 for some c, cr > 0, then the
above bound simplifies to the form

‖V̂ − V WV ‖2→∞ ≤ Cr

(
log(p2)

σr(X)

)
,

which completes the proof. �

6.10. Theorem 4.7.

PROOF OF THEOREM 4.7. We seek to bound ‖Û − UWU‖2→∞ and allow
the constant C > 0 to change from line to line. Our analysis considers appropriate
groupings of matrix elements in order to handle the graph correlation structure.

By assumption rank(O) = r which implies that the matrix (I − UU�)O van-
ishes. Via Corollary 3.3, this yields the bound

‖Û − UWU‖2→∞ ≤ ∥∥(
I − UU�)

(Ô−O)UWU�̂−1∥∥
2→∞

+ ∥∥(
I − UU�)

(Ô−O)(Û − UWU)�̂−1∥∥
2→∞

+ ‖U‖2→∞
∥∥U�Û − WU

∥∥
2,

which can be further weakened to the form

‖Û − UWU‖2→∞ ≤ ∥∥(Ô−O)U
∥∥

2→∞
∥∥�̂−1∥∥

2

+ ‖U‖2→∞
∥∥U�(Ô−O)U

∥∥
2

∥∥�̂−1∥∥
2

+ ‖Ô−O‖2‖Û − UWU‖2
∥∥�̂−1∥∥

2

+ ‖U‖2→∞
∥∥U�Û − WU

∥∥
2.
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Applying the triangle inequality to the block matrix Ô−O yields a spectral norm
bound of the form

‖Ô−O‖2 ≤ C × max
{∥∥A1 − P

∥∥
2,

∥∥A2 − P
∥∥

2

}
.

By assumption, for i = 1,2, the maximum expected degree of Gi , �, satisfies
� � log4(n), hence ‖Ai − P‖2 = O(

√
�) with probability 1 − o(1) by [33]. The

assumption σr(O) ≥ c� implies that σr(Ô) ≥ C� with probability 1 − o(1) by
Weyl’s inequality, so ‖�̂−1‖2 = O(1/�). Combining these observations with The-
orem 6.9 and the proof of Lemma 6.8 produces

‖Û − UWU‖2 ≤ C
∥∥sin
(Û,U)

∥∥
2 ≤ C‖Ô−O‖2/σr(O) = O(1/

√
�),

which we note simultaneously provides a naïve bound for ‖Û − UWU‖2→∞. As
for the matrix, (Ô−O)U ∈ R

2n×r ,∥∥(Ô−O)U
∥∥

2→∞ ≤ √
r max

i∈[2n],j∈[r]
∣∣〈(Ô−O)uj , ei

〉∣∣.
For all 1 ≤ k ≤ n, U(k+n),j = Uk,j , and for each 1 ≤ i ≤ n and 1 ≤ j ≤ r ,

〈
(Ô−O)uj , ei

〉 = e�
i (Ô−O)uj =

n∑
k=1

(
3

2
A1

i,k + 1

2
A2

i,k − 2Pi,k

)
Uk,j .

Above, the roles of A1 and A2 are interchanged for n + 1 ≤ i ≤ 2n.
For any 1 ≤ i ≤ n, the above expansion is a sum of independent (in k), bounded,

mean zero random variables taking values in [−2Uk,j ,2Uk,j ].
Hence by Hoeffding’s inequality, with probability 1 − o(1) in n,∥∥(Ô−O)U

∥∥
2→∞ =Or (logn).

Similarly, for the matrix U�(Ô−O)U ∈ R
r×r ,∥∥U�(Ô−O)U

∥∥
2 ≤ r max

i∈[r],j∈[r]
∣∣〈(Ô−O)uj , ui

〉∣∣,
so for 1 ≤ i, j ≤ r , then〈

(Ô−O)uj , ui

〉 = u�
i (Ô−O)uj = ∑

1≤l<k≤n

4
(
A1

l,k + A2
l,k − 2Pl,k

)
Uk,jUl,i .

This sum decomposes as a sum of independent, mean zero, bounded random vari-
ables taking values in [−8Uk,jUl,i ,8Uk,jUl,i]. By another application of Hoeffd-
ing’s inequality, with probability 1 − o(1),∥∥U�(Ô−O)U

∥∥
2 = Or (logn).

Lemma 6.7 bounds ‖U�Û −WU‖2 by ‖ sin
(Û,U)‖2
2 which is O(1/�). Cumu-

latively, this demonstrates that ‖Û − UWU‖2→∞ = Or ((logn)/�) with probabil-
ity 1 − o(1) as n → ∞. �



2436 J. CAPE, M. TANG AND C. E. PRIEBE

Acknowledgments. The authors thank the Editors, the Associate Editor and
the referees for their helpful comments and suggestions which have improved the
exposition and presentation of this paper.

REFERENCES

[1] ABBE, E., FAN, J., WANG, K. and ZHONG, Y. (2017). Entrywise eigenvector analysis of
random matrices with low expected rank. Preprint. Available at arXiv:1709.09565.

[2] BAI, Z. and SILVERSTEIN, J. W. (2010). Spectral Analysis of Large Dimensional Random
Matrices, 2nd ed. Springer Series in Statistics. Springer, New York. MR2567175

[3] BENAYCH-GEORGES, F. and NADAKUDITI, R. R. (2011). The eigenvalues and eigenvec-
tors of finite, low rank perturbations of large random matrices. Adv. Math. 227 494–521.
MR2782201

[4] BENIDIS, K., SUN, Y., BABU, P. and PALOMAR, D. P. (2016). Orthogonal sparse eigenvec-
tors: A Procrustes problem. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) 4683–4686.

[5] BHATIA, R. (1997). Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York.
MR1477662

[6] BOJANCZYK, A. W. and LUTOBORSKI, A. (1999). The Procrustes problem for orthogonal
Stiefel matrices. SIAM J. Sci. Comput. 21 1291–1304. MR1740396

[7] CAI, T. T., MA, Z. and WU, Y. (2013). Sparse PCA: Optimal rates and adaptive estimation.
Ann. Statist. 41 3074–3110. MR3161458

[8] CAI, T. T. and ZHANG, A. (2018). Rate-optimal perturbation bounds for singular subspaces
with applications to high-dimensional statistics. Ann. Statist. 46 60–89. MR3766946

[9] CANDÈS, E. J. and RECHT, B. (2009). Exact matrix completion via convex optimization.
Found. Comput. Math. 9 717–772. MR2565240

[10] CAPE, J., TANG, M. and PRIEBE, C. E. (2018). Signal-plus-noise matrix models: Eigenvector
deviations and fluctuations. Biometrika. To appear. Available at arXiv:1802.00381.

[11] CHEN, L., VOGELSTEIN, J. T., LYZINSKI, V. and PRIEBE, C. E. (2016). A joint graph infer-
ence case study: The C. elegans chemical and electrical connectome. Worm 5 1–8.

[12] CHIKUSE, Y. (2003). Statistics on Special Manifolds. Lecture Notes in Statistics 174. Springer,
New York. MR1960435

[13] DAVIS, C. and KAHAN, W. M. (1970). The rotation of eigenvectors by a perturbation. III.
SIAM J. Numer. Anal. 7 1–46. MR0264450

[14] DRYDEN, I. L., KOLOYDENKO, A. and ZHOU, D. (2009). Non-Euclidean statistics for co-
variance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3 1102–
1123. MR2750388

[15] DRYDEN, I. L. and MARDIA, K. V. (2016). Statistical Shape Analysis with Applications in R,
2nd ed. Wiley Series in Probability and Statistics. Wiley, Chichester. MR3559734

[16] EDELMAN, A., ARIAS, T. A. and SMITH, S. T. (1999). The geometry of algorithms with
orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 303–353. MR1646856

[17] ELDAR, Y. C. and KUTYNIOK, G. (2012). Compressed Sensing: Theory and Applications.
Cambridge Univ. Press, Cambridge. MR2961961

[18] ELDRIDGE, J., BELKIN, M. and WANG, Y. (2018). Unperturbed: Spectral analysis beyond
Davis-Kahan. In: Proceedings of Algorithmic Learning Theory. Proceedings of Machine
Learning Research 83, PMLR 321–358.

[19] FAN, J., LIAO, Y. and MINCHEVA, M. (2013). Large covariance estimation by thresholding
principal orthogonal complements. J. R. Stat. Soc. Ser. B. Stat. Methodol. 75 603–680.
MR3091653

http://arxiv.org/abs/arXiv:1709.09565
http://www.ams.org/mathscinet-getitem?mr=2567175
http://www.ams.org/mathscinet-getitem?mr=2782201
http://www.ams.org/mathscinet-getitem?mr=1477662
http://www.ams.org/mathscinet-getitem?mr=1740396
http://www.ams.org/mathscinet-getitem?mr=3161458
http://www.ams.org/mathscinet-getitem?mr=3766946
http://www.ams.org/mathscinet-getitem?mr=2565240
http://arxiv.org/abs/arXiv:1802.00381
http://www.ams.org/mathscinet-getitem?mr=1960435
http://www.ams.org/mathscinet-getitem?mr=0264450
http://www.ams.org/mathscinet-getitem?mr=2750388
http://www.ams.org/mathscinet-getitem?mr=3559734
http://www.ams.org/mathscinet-getitem?mr=1646856
http://www.ams.org/mathscinet-getitem?mr=2961961
http://www.ams.org/mathscinet-getitem?mr=3091653


THE TWO-TO-INFINITY NORM AND SINGULAR SUBSPACE GEOMETRY 2437

[20] FAN, J., RIGOLLET, P. and WANG, W. (2015). Estimation of functionals of sparse covariance
matrices. Ann. Statist. 43 2706–2737. MR3405609

[21] FAN, J., WANG, W. and ZHONG, Y. (2017). An �∞ eigenvector perturbation bound and its
application to robust covariance estimation. J. Mach. Learn. Res. 18 1–42. MR3827095

[22] FISHKIND, D. E., SUSSMAN, D. L., TANG, M., VOGELSTEIN, J. T. and PRIEBE, C. E.
(2013). Consistent adjacency-spectral partitioning for the stochastic block model when
the model parameters are unknown. SIAM J. Matrix Anal. Appl. 34 23–39. MR3032990

[23] GOWER, J. C. and DIJKSTERHUIS, G. B. (2004). Procrustes Problems. Oxford Statistical
Science Series 30. Oxford Univ. Press, Oxford. MR2051013

[24] HOLLAND, P. W., LASKEY, K. B. and LEINHARDT, S. (1983). Stochastic blockmodels: First
steps. Soc. Netw. 5 109–137. MR0718088

[25] HORN, R. A. and JOHNSON, C. R. (2012). Matrix Analysis. Cambridge Univ. Press, Cam-
bridge. MR2978290

[26] JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal compo-
nents analysis. Ann. Statist. 29 295–327. MR1863961

[27] JOLLIFFE, I. T. (1986). Principal Component Analysis. Springer Series in Statistics. Springer,
New York. MR0841268

[28] KOLTCHINSKII, V. and LOUNICI, K. (2017). Concentration inequalities and moment bounds
for sample covariance operators. Bernoulli 23 110–133. MR3556768

[29] KOLTCHINSKII, V. and LOUNICI, K. (2017). New asymptotic results in principal component
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