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GENERALIZED CLUSTER TREES AND SINGULAR MEASURES

BY YEN-CHI CHEN

University of Washington

In this paper we study the α-cluster tree (α-tree) under both singular
and nonsingular measures. The α-tree uses probability contents within a set
created by the ordering of points to construct a cluster tree so that it is well
defined even for singular measures. We first derive the convergence rate for
a density level set around critical points, which leads to the convergence rate
for estimating an α-tree under nonsingular measures. For singular measures,
we study how the kernel density estimator (KDE) behaves and prove that the
KDE is not uniformly consistent but pointwise consistent after rescaling. We
further prove that the estimated α-tree fails to converge in the L∞ metric
but is still consistent under the integrated distance. We also observe a new
type of critical points—the dimensional critical points (DCPs)—of a singular
measure. DCPs are points that contribute to cluster tree topology but cannot
be defined using density gradient. Building on the analysis of the KDE and
DCPs, we prove the topological consistency of an estimated α-tree.

1. Introduction. Given a function f defined on a smooth manifold M, the
cluster tree of f is a tree structure representing the creation and merging of con-
nected components of a level set {x : f (x)≥ f0} when we move down the level f0
[Klemela̋ (2004), Stuetzle (2003)]. Because cluster trees keep track of the con-
nected components of level sets, the shape of a cluster tree contains topologi-
cal information about the underlying function f . Moreover, a cluster tree can be
displayed on a two-dimensional plane regardless of the dimension of M, which
makes it an attractive approach for visualizing f . Figure 1 provides an example il-
lustrating the construction of a cluster tree in a 1D Euclidean space. In this paper,
we focus on the case where f ≡ fP is some function of the underlying distribu-
tion P . In this context, the cluster tree of f reveals information about P .

Most of cluster trees being studied in the literature are the λ-tree of a distribu-
tion [Balakrishnan et al. (2012), Chaudhuri and Dasgupta (2010), Chaudhuri et al.
(2014), Chen et al. (2016), Kpotufe and Luxburg (2011), Stuetzle (2003)]. The
λ-tree of a distribution is the cluster tree of the density function p of that distri-
bution. In this case, the tree structure contains the topological information of p

and we can use the λ-tree to visualize a multivariate density function. When we
use an λ-tree for visualization purposes, it is also called a density tree [Klemela̋
(2004, 2006, 2009)].
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FIG. 1. An example of constructing a cluster tree in d = 1 case. The purple horizontal lines in-
dicates the level f0 we are using in each panel. The blue region at the bottom indicates the corre-
sponding level set {x : f (x)≥ f0}. From left to right, we gradually decrease the level f0 and use red
lines to indicate how the connected components evolve. The resulting red tree in the right panel is a
cluster tree.

Kent (2013) proposed a new type of cluster tree of a distribution—the α-tree.
The α-tree uses the function α(x) = P({y : p(y) ≤ p(x)}) to construct a cluster
tree. Note that such a function is also called density ranking in our following paper
[Chen and Dobra (2017)] and it shows great potential in analyzing GPS datasets.
When the distribution is nonsingular and smooth, the α-tree and the λ-tree are
topologically equivalent (Lemma 1), so they both provide similar topological in-
formation for the underlying distribution. To estimate an α-tree, we use the cluster
tree of the function estimator α̂n(x) = P̂n({y : p̂n(y) ≤ p̂n(x)}) where P̂n is the
empirical measure and p̂n is the kernel density estimator (KDE). Namely, we first
use the KDE to estimate the density of each data point and count the number of
data points with a density below the density of that given point.

When a distribution is singular, the λ-tree is ill-defined because of the lack of
a probability density function, but the α-tree is still well defined under a mild
modification. For an illustrating example, see Figure 2. These are random samples
from a distribution mixed with a point mass at x = 2 with a probability of 0.3
and a standard normal distribution with a probability of 0.7. Thus, these samples
are from a singular distribution. We generate n= 5× 103 (left), 5× 105 (middle)
and 5× 107 (right) data points and estimate the density using the KDE with the
smoothing bandwidth selected by the default rule in R. The estimated density and
λ-trees (red trees) are displayed in the top row. It can be seen that when the sample
size increases, λ-trees become degenerated. This is because there is no population
λ-tree for this distribution. However, the α-trees are stable in all three panels (see
the bottom row of Figure 2).

Main results. The main results of this paper are summarized as follows:

• When the distribution is nonsingular:

1. We derive the convergence rate for the estimated level set when the level
equals the density value of a critical point (Theorem 3).
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FIG. 2. Example of the estimated λ-tree and α-tree of a singular distribution. This is a random
sample from a singular distribution where with a probability of 0.3, it puts a point mass at x = 2,
and with a probability of 0.7, we sample from a standard normal. The top panel shows the density
estimated by the KDE and the red tree structure corresponds to the estimated λ-tree. The bottom
panel displays the estimated α-tree. From left to right, we increase the sample size from 5 × 103,
5× 105, to 5× 107. Because the distribution is singular, there is no population λ-tree so when the
smoothing bandwidth decreases (when the sample size increases), the estimated λ-tree is getting
degenerated. On the other hand, the estimated α-trees remain stable regardless of the smoothing
bandwidth. Note that every level set in a λ-tree corresponds to a level set in the α-tree but the value
of the corresponding level (Y -axis) will be different. The function used in constructing a λ-tree may
have an unbounded range when the sample size goes to infinity, whereas the function for building an
α-tree always has a range of [0,1].

2. We derived the convergence rate of α̂n (Theorem 4).

• When the distribution is singular:

3. We propose a framework that generalizes α(x) to define the α-tree (Sec-
tion 4).

4. We show that after rescaling, the KDE is pointwise, but not uniformly, con-
sistent (Theorem 8).

5. We prove that α̂n is inconsistent under the L∞ metric (Corollary 7) but con-
sistent under the L1 and L1(P ) distance (Theorem 10).
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6. We identify a new type of critical points, the dimensional critical points
(DCPs), which also contribute to the change in cluster tree topology. We analyze
their properties in Lemma 11, 13 and 14.

7. We demonstrate that the estimated α-tree Tα̂n is topologically equivalent to
the population α-tree with probability exponentially converging to 1 (Theorem 15).

Related work. There is extensive literature on theoretical aspects of the λ-tree.
Notions of consistency are analyzed in Chaudhuri and Dasgupta (2010), Chaudhuri
et al. (2014), Eldridge, Belkin and Wang (2015), Hartigan (1981). The convergence
rate and the minimax theory are studied in Balakrishnan et al. (2012), Chaudhuri
and Dasgupta (2010), Chaudhuri et al. (2014). Chen et al. (2016) study how to per-
form statistical inference for a λ-tree. The cluster tree is also related to the topolog-
ical data analysis [Carlsson (2009), Edelsbrunner and Morozov (2013), Wasserman
(2018)]. In particular, a cluster tree contains information about the zeroth-order
homology groups [Bobrowski, Mukherjee and Taylor (2017), Bubenik (2015),
Cohen-Steiner, Edelsbrunner and Harer (2007), Fasy et al. (2014)]. In our anal-
ysis, we generalize the Morse theory to a nonsmooth and even discontinuous func-
tion. Baryshnikov, Bubenik and Kahle (2014) also generalizes the Morse theory
to a nonsmooth function using the concept of configuration space (the collection
of n points in a bounded area in Rd ). Note that their setting is different from us
because we are working on a probability density function whereas the function
in Baryshnikov, Bubenik and Kahle (2014) is related to pairwise distance between
points and distance to the boundary of certain area. The theory of estimating a clus-
ter tree is closely related to the theory of estimating a level set; an incomplete list
of literature is as follows: Mason and Polonik (2009), Polonik (1995), Rinaldo and
Wasserman (2010), Singh, Scott and Nowak (2009), Steinwart (2011), Tsybakov
(1997), Walther (1997).

Outline. We begin with an introduction of cluster trees and the geometric con-
cepts used in this paper in Section 2. In Section 3, we derive the convergence rate
for the α-tree estimator under nonsingular measures. In Section 4, we study the
behavior of the KDE and the stability of the estimated α-tree under singular mea-
sures. In Section 5, we investigate critical points of singular measures and derive
the topological consistency of the estimated α-tree. We summarize this paper and
discuss possible future directions in Section 6. We leave all proofs in the supple-
mentary materials [Chen (2019)].

2. Backgrounds.

2.1. Cluster trees. Here we recall the definition of cluster trees in Chen et al.
(2016). Let K⊂R

d and f :K �→ [0,∞) be a function with support K. The cluster
tree of function f is defined as follows.
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DEFINITION 1 [Definition 1 in Chen et al. (2016)]. For any f :K �→ [0,∞),
we define Tf : R �→ 22K , where 2K denotes the set of all subsets of K, 22K de-
notes the collection of all sets of subsets of K, and Tf (λ) is the set of connected
components of the upper level set {x ∈ K : f (x) ≥ λ}. We define the collection
of connected components {Tf }, as {Tf } =⋃

λ Tf (λ). Thus, {Tf } is a collection of
subsets of K. We called {Tf } the cluster tree of f .

Clearly, the cluster tree {Tf } has a tree structure, because for each pair C1,C2 ∈
{Tf }, either C1 ⊂ C2, C2 ⊂C1, or C1 ∩C2 = φ holds.

To get a geometric understanding of the cluster tree in Definition 1, we identify
edges that constitute the cluster tree. Intuitively, edges correspond to either leaves
or internal branches. An edge is roughly defined as a set of clusters whose inclu-
sion relation with respect to clusters outside an edge is equivalent. So when the
collection of connected components is divided into edges, we observe the same
inclusion relation between representative clusters whenever any cluster is selected
as representative for each edge.

To formally define edges, we define an interval in the cluster tree, and the equiv-
alence relation in the cluster tree. For any two clusters A,B ∈ {Tf }, the interval
[A,B] ⊂ {Tf } is defined as a set clusters that contain A and are contained in B ,
that is,

[A,B] := {
C ∈ {Tf } : A⊂ C ⊂ B

}
.

We define the equivalence relation ∼ such that A∼ B if and only if

∀C ∈ {Tf } such that C /∈ [A,B] ∪ [B,A],
C ⊂A ⇔ C ⊂ B, A⊂ C ⇔ B ⊂ C.

It is easy to see that the relation ∼ is reflexive (A ∼ A), symmetric (A ∼ B im-
plies B ∼ A) and transitive (A ∼ B and B ∼ C implies A ∼ C). Hence the re-
lation ∼ is indeed an equivalence relation, and we can consider the set of equiv-
alence classes {Tf }/∼. We define the edge set (the collection of edges) E(Tf )

as E(Tf ) := {Tf }/∼. Each element in the edge set C ∈ E(Tf ) is called an edge,
which contains many nested connected components of the cluster tree {Tf } (i.e., if
C1,C2 ∈ C, then either C1 ⊂ C2 or C2 ⊂ C1). Note that every element in an edge
corresponds to a connected component of an upper level set of function f .

To associate the edge set E(Tf ) to a tree structure, we define a partial order on
the edge set as follows: let C1,C2 ∈E(Tf ) be two edges, we write C1 ≤C2 if and
only if A⊂ B for all A ∈C1 and B ∈C2. Then the topology of the cluster tree (the
shape of the cluster tree) is completely determined by the edge set E(Tf ) and the
partial order among the edge set. Figure 3 provides an example of the connected
components, edges and edge set of a cluster tree along with a tree representation.

Based on the above definitions, we define the topological equivalence between
two cluster trees.
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FIG. 3. Connected components, edges, and edge set of a cluster tree. Left: We display connected
components of level sets under five different levels (indicated by the colors: magenta, yellow, sea
green, sky blue and gray). The color of boundaries of each connected component denotes the edge
they correspond to. Right: The cluster tree. We color the three edges (vertical lines) red, blue and
black. The edge set E(Tf ) = {Cred,Cblue,Cblack} and we have the ordering Cred ≤ Cblack and
Cblue ≤Cblack. Note that the solid black horizontal line is not an edge set; it is a visual representation
of connecting the blue and red edges to the black edge. The horizontal dashed lines indicate the five
levels corresponding to the left panel. In the left panel, the three connected components with red
boundaries are elements of the edge Cred.

DEFINITION 2. For two functions f : K �→ [0,∞) and g : K �→ [0,∞), we

say Tf and Tg are topological equivalent, denoted as Tf

T≈ Tg , if there exists a
bijective mapping S :E(Tf ) �→E(Tg) such that for any C1,C2 ∈E(Tf ),

C1 ≤C2 ⇐⇒ S(C1)≤ S(C2).

For each C ∈E(Tf ), we define

U(C)= sup
{
λ : ∃C ∈ Tf (λ),C ∈C

}
to be the maximal level of an edge C. We define the critical tree-levels of function
f as

(1) Af = {
U(C) :C ∈E(Tf )

}
.

It is easy to see that Af is the collection of levels of f where the creation of a new
connected component or the merging of two connected components occurs.

In most of the cluster tree literature [Balakrishnan et al. (2012), Chaudhuri and
Dasgupta (2010), Chaudhuri et al. (2014), Chen et al. (2016), Eldridge, Belkin and
Wang (2015)], the cluster tree is referred to as the λ-tree, which uses the probability
density function p to build a cluster tree. Namely, the λ-tree is Tp .

In this paper, we focus on the α-tree [Kent (2013)] that uses the function

(2) α(x)= P
({

y : p(y)≤ p(x)
})= 1− P

({
y : p(y) > p(x)

})= 1− P(Lp(x))

to build the cluster tree Tα (Tα is called the α-tree). The function α(x) is also
called density ranking in Chen and Dobra (2017). The set Lλ = {x : p(x) ≥ λ} is
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the upper level set of p [note that P({y : p(y) > p(x)}) = P({y : p(y) ≥ p(x)})
when the density function p is bounded]. A feature of the α-tree is that the function
α(x) depends only on the ordering of points within K. Namely, any function that
assigns the same ordering of points within K as the density function p can be used
to construct the function α(x). Specifically, we write

x1 �p x2 ⇔ p(x1) > p(x2),

x1 ≺p x2 ⇔ p(x1) < p(x2),

x1 �p x2 ⇔ p(x1)= p(x2).

Then

(3) α(x)= P
({

y : p(y)≤ p(x)
})= P

({y : y �p x}),
where y �p x means either y ≺p x or y �p x. Note that if we replace the function
p(x) by 2p(x) or logp(x), the ordering remains the same (i.e., x �p y ⇔ x �2p

y ⇔ x �logp y). We will use this feature later to generalize equation (2) to singular
measures.

One feature of the α-tree is that it is topological equivalent to the λ-tree.

LEMMA 1. Assume the distribution P has a bounded density function p and
p is a Morse function with a compact support. Then the λ-tree and α-tree are
topological equivalent. Namely,

Tp

T≈ Tα.

The proof of this lemma follows from the argument at the beginning of Sec-
tion 4.1 of Cadre, Pelletier and Pudlo (2009) so we ignore the proof. The main
idea is that by equation (2) and the fact that p is Morse, α is a strictly monotonic
transformation of the density p so the topology is preserved.

When we use the α-tree, the induced upper level set

A� = {
x : α(x)≥�

}
is called an α-level set.

REMARK 1 (κ-tree). Kent (2013) also proposed another cluster tree—the κ-
tree—which uses the probability content within each edge set defined by an α-tree
(or a λ-tree) to compute the function κ(x). Because it is just a rescaling from the
α-tree, the theory of α-tree also works for the κ-tree. For simplicity, we only study
the theory of the α-tree in this paper.
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2.2. Singular measure. When the probability measure is singular, the λ-tree is
no longer well defined because there is no density function. However, the α-tree
can still be defined.

A key feature for constructing the α-tree is the ordering. Here we will use a
generalized density function, the Hausdorff density [Mattila (1995), Preiss (1987)],
to define the α-tree under singular measures. Given a probability measure P , the
s-density (s dimensional Hausdorff density) is

Hs(x)= lim
r→0

P(B(x, r))

Cs · rs

provided the limit exists. Note that B(x, r) = {y : ‖y − x‖ ≤ r} and Cs is the s-
dimensional volume of an s-dimensional unit ball for s ≥ 1 and C0 = 1.

For a given point x, we define the notion of generalized density using two quan-
tities τ(x) and ρ(x):

τ(x)=max
{
s ≤ d :Hs(x) <∞}

,

ρ(x)=Hτ(x)(x).

Namely, τ(x) is the “dimension” of the probability measure at x and ρ(x) is the
corresponding Hausdorff density at that dimension. Note that the function ρ(x) is
well defined for every x. For any two points x1, x2 ∈K, we define an ordering such
that x1 �τ,ρ x2 if

τ(x1) < τ(x2) or τ(x1)= τ(x2), ρ(x1) > ρ(x2).

That is, for any pair of points, we first compare their dimensions τ(x). The point
with the lower dimensional value τ will be ranked higher than the other point. If
two points have the same dimension, then we compare their corresponding Haus-
dorff density. When the distribution is nonsingular, τ(x)= d for every x ∈K and
ρ(x)= p(x) is the usual density function. Thus, the ordering is determined by the
density function p(x).

To define the α-tree, we use equation (3):

(4) α(x)= P
({y : y �τ,ρ x}).

Namely, α(x) is the probability content of regions of points whose ordering is
lower than or equal to x. As shown in equation (3), equation (4) is the same as
equation (2) when P is nonsingular. Note that by equation (4), the α-level set
A� = {x : α(x)≥� } is well defined in a singular measure.

2.3. Geometric concepts. We first define some notation for sets. For a set A,
define A to be the closure of A, Å to be the interior of A, ∂A to be the boundary of
set A, and AC =K\A to be the complement of set A restricted to the support K.
When A is a manifold, ∂A and Å will be the boundary and interior of the manifold,
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FIG. 4. The supports K2, K1, and K0 for the bivariate random variable in Example 1. The
yellow region is K2 = [−1,1]2\R0.5, where R0.5 = {(x, y) : x2 + y2 = 0.52}. The red ring is
K1 =R0.5\{(0.5,0)}. The blue dot is the location of (0.5,0).

respectively. We define A�B = (A\B)∪ (B\A) to be the symmetric difference for
sets A and B

Based on the definition of τ(x), we decompose the support K into

(5) K=Kd ∪Kd−1 ∪ · · · ∪K0,

where Ks = {x : τ(x)= s}. Thus, {K0, . . . ,Kd} forms a partition of the entire sup-
port K. We call each Ks an s-dimensional support. When we analyze the support
Ks , any Ks′ with s′ > s is called a higher dimensional support (with respect to Ks)
and s′ < s will be called a lower dimensional support.

EXAMPLE 1. Let X be a bivariate random variable such that (i) with a proba-
bility of 0.7, it is from a uniform distribution on [−1,1]2, (ii) with a probability of
0.25, it is from a uniform distribution on the ring R0.5 = {(x, y) : x2 + y2 = 0.52},
(iii) with a probability of 0.05, it is equal to (0.5,0). Apparently, the distribution
of X is singular and the support K = [−1,1]2. In this case, K2 = [−1,1]2\R0.5,
K1 = R0.5\{(0.5,0)}, and K0 = {(0.5,0)}. Figure 4 shows these supports under
different colors. The yellow rectangular region is K2, the red ring area is K1 and
the blue dot denotes the location of K0.

To regularize the behavior of ρ(x) on each support Ks , we assume that the
closure of the support, Ks , is an s-dimensional smooth manifold [properties of a
smooth manifold can be found in Lee (2013), Tu (2008)].

For an s-dimensional smooth manifold M, the tangent space on each point
of M changes smoothly [Tu (2008), Lee (2013)]. Namely, for x ∈M, we can
find an orthonormal basis {v1(x), . . . , vs(x) : v
(x) ∈ R

d, 
 = 1, . . . , s} such that
{v1(x), . . . , vs(x)} spans the tangent space of M at x and each v
(x) is a smooth
(multivalued) function on Ms . For simplicity, for x ∈Ks , we denote Ts(x) as the
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tangent space of Ks at x, Ns(x) as the normal space of Ks at x, and ∇Ts(x) to be
taking the derivative in the tangent space.

For a function f :M �→ R defined on a smooth manifold M, the function f

is a Morse function [Milnor (1963), Morsel (1925, 1930)] if all its critical points
are nondegenerate. Namely, the eigenvalues of the Hessian matrix of f at each
critical point are nonzero. When the function f is a Morse function, its λ-tree is
stable [Chazal et al. (2017), Chen et al. (2016)] in the L∞ metric under a small
perturbation of f .

To link the concept of the Morse function to the Hausdorff density ρ(x), we
introduce a generalized density

ρ†
s :Ks �→ [0,∞)

such that ρ†
s (x)= limxn∈Ks :xn→x ρ(xn) provided the limit exists and does not de-

pend on the choice of the sequence xn. It is easy to see that ρ†
s (x) = ρ(x) when

x ∈Ks but now it is defined on a smooth manifold Ks . We say ρ(x) is a generalized
Morse function if the corresponding ρ†

s (x) is a Morse function for s = 1, . . . , d .
Later we will show that this generalization leads to a stable α-tree for a singular
measure.

For Ks , let Cs = {x ∈ Ks : ∇Ts(x)ρ
†
s (x) = 0} be the collection of its critical

points. Then the fact that ρ†
s (x) is a Morse function implies that the eigenval-

ues of the Hessian matrix ∇Ts(c)∇Ts(c)ρ
†
s (c) are nonzero for every c ∈ Cs . We call

gs(x)= ∇Ts(x)ρ
†
s (x) the generalized gradient and Hs(x)= ∇Ts(x)∇Ts(x)ρ

†
s (x) the

generalized Hessian. For the case s = 0 (point mass), we define C0 =K0. The col-
lection C = ⋃

s=1,...,d Cs is called the collection of generalized critical points of
ρ(x). Each element c ∈ C is called a generalized critical point.

Finally, we introduce the concept of reach [Chen, Genovese and Wasserman
(2017), Federer (1959)] for a smooth manifold M. The reach of M is defined as

reach(M)= sup{r ≥ 0 : every point in M⊕ r has a unique projection onto M},
where A⊕ r = {x : d(x,A) ≤ r}. One can view reach as the radius of the largest
ball that can roll freely outside M. More details about reach can be found in Chen,
Genovese and Wasserman (2017), Federer (1959). Reach plays a key role in the
stability of a level set; see Chen, Genovese and Wasserman (2017) for more details.

REMARK 2. If we further assume that the supports satisfy

(6) K⊃Kd ⊃Kd−1 ⊃ · · · ⊃K0,

then the support K forms a stratified space [Goresky and MacPherson (1980,
1988)]. Roughly speaking, a stratified space is a topological space W such
that there exists a decomposition (called stratification) W0, . . . ,Wd of W with
the properties that (i) each Wk is a k-dimensional smooth manifold, (ii) W =⋃d

ω=0 Wω, and (iii) for any k ≤ 
,

Wk ∩W
 �=∅ ⇔ Wk ⊂W
.
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From the properties of a stratified space, one can see how equation (6) is related to
a stratified space. Note that for a stratified space, if we consider a probability mea-
sure that is a mixture of probability measures defined on each stratum (Wk), this
defines a singular measure as the one being considered in this paper. The topology
of a stratified space can be defined using the intersection homology [Edelsbrunner
and Harer (2008), Friedman (2014), Goresky and MacPherson (1980)]. The notion
of intersection homology and stratified space will be particularly useful if we want
to work on higher-order homology groups.

2.4. Estimating the α function and the α-tree. In this paper, we focus on esti-
mating α-trees via the KDE:

p̂n(x)= 1

nhd

n∑
i=1

K

(‖x −Xi‖
h

)
.

Specifically, we first estimate the density by p̂n and then construct the estima-
tor α̂n:

(7) α̂n(x)= P̂n

({
y : p̂n(y)≤ p̂n(x)

})
,

where P̂n is the empirical measure and L̂λ = {x : p̂n(x) ≥ λ}. Note that when x

does not contain any point mass of P , α̂n(x)= 1− P̂n(L̂p̂n(x)).
To quantify the uncertainty in the estimator α̂n, we consider three error mea-

surements. The first error measurement is the L∞ error, which is defined as

‖α̂n − α‖∞ = sup
x

∣∣α̂n(x)− α(x)
∣∣.

The L∞ error has been used in several cluster tree literature; see, for example,
Chen et al. (2016), Eldridge, Belkin and Wang (2015). An appealing feature of
the L∞ error is that this quantity is the same (up to some constant) as some other
tree error metrics such as the merge distortion metric [Eldridge, Belkin and Wang
(2015)]. Convergence in the merge distortion metric implies the Hartigan consis-
tency [Eldridge, Belkin and Wang (2015)], a notion of consistency of a cluster tree
estimator described in Chaudhuri and Dasgupta (2010), Chaudhuri et al. (2014),
Hartigan (1981). Thus, because of the equivalence between the L∞ error and the
merge distortion metric, convergence in L∞ implies the Hartigan consistency of
an estimated cluster tree.

The other two errors are the integrated error and the probability error (proba-
bility-weighted integrated error). Both are common error measurements for eval-
uating the quality of a function estimator [Scott (2015), Wasserman (2006)]. The
integrated error is

‖α̂n − α‖μ =
∫ ∣∣α̂n(x)− α(x)

∣∣dx,
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which is also known as the integrated distance or L1 distance. The probability
error (probability-weighted integrated error) is

‖α̂n − α‖P =
∫ ∣∣α̂n(x)− α(x)

∣∣dP (x),

which is the integrated distance weighted by the probability measure, which is also
known as L1(P ) distance. The integrated error and the probability error are more
robust than the L∞ error–a large difference in a small region will not affect on
these errors much.

To quantify the uncertainty in the topology of α-tree, we introduce the notion
of topological error, which is defined as

P(Tα̂n �
T≈ Tα)= 1− P(Tα̂n

T≈ Tα).

Namely, the topological error is the probability that the estimated α-tree is not
topological equivalent to the population α-tree.

Finally, we define the following notation. For a smooth function p, we define
‖p‖
,∞ as the supremum maximal norm of 
th derivative of p. For instance,

‖p‖0,∞ = sup
x∈K

p(x),

‖p‖1,∞ = sup
x∈K

∥∥g(x)
∥∥

max,

‖p‖2,∞ = sup
x∈K

∥∥H(x)
∥∥

max,

where g(x)=∇p(x) and H(x)=∇∇p(x) are the gradient and Hessian matrix of
p(x), respectively. A vector β = (β1, . . . , βd) of nonnegative integers is called a
multiindex with |β| = β1+β2+· · ·+βd and the corresponding derivative operator
is

(8) Dβ = ∂β1

∂x
β1
1

· · · ∂βd

∂x
βd

d

,

where Dβf is often written as f (β).

3. Theory for nonsingular measures. To study the theory for nonsingular
measures, we make the following assumptions.

ASSUMPTIONS. (P1) p has a compact support K and is a Morse function and
is four times differentiable with ‖p‖
,∞ <∞ for 
= 0, . . . ,4.

(K1) K(x) has compact support and is nonincreasing on [0,1], and has at least
fourth-order bounded derivative and∫

‖x‖2K(β)(‖x‖)dx <∞,

∫ (
K(β)(‖x‖))2

dx <∞
for |β| ≤ 2 and K(2)(0) < 0.
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(K2) Let

Kr =
{
y �→K(β)

(‖x − y‖
h

)
: x ∈R

d, |β| = r, h̄ > h > 0
}
,

where K(β) is defined in equation (8) and K∗l =
⋃l

r=0 Kr and h̄ is some positive
number. We assume that K∗2 is a VC-type class, that is, there exist constants A,v

and a constant envelope b0 such that

(9) sup
Q

N
(
K∗2,L2(Q), b0ε

)≤ (
A

ε

)v

,

where N(T ,dT , ε) is the ε-covering number for a semi-metric set T with metric
dT and L2(Q) is the L2 norm with respect to the probability measure Q.

Assumption (P1) is a common condition to guarantee that critical points are well
separated and will not move too far away under a small perturbation on the gradi-
ent and Hessian of the density function [Chazal et al. (2017), Chen et al. (2016)].
We need the fourth-order derivative to ensure the estimated density Hessian matrix
converges to the population density Hessian matrix (the bias in estimating the Hes-
sian matrix depends on fourth-order derivatives). Assumption (K1) is a standard
condition on kernel function [Scott (2015), Wasserman (2006)]. Assumption (K2)
regularizes the complexity of kernel functions so we have uniform bounds on den-
sity, gradient, and Hessian estimation. It was first proposed by Giné and Guillou
(2002) and Einmahl and Mason (2005) and was later used in various studies such
as Chen, Genovese and Wasserman (2015), Genovese et al. (2009, 2014).

We first study the error rates under nonsingular measures. In the case of the λ-
tree, error rates are well studied, and we summarize them in the following theorem.

THEOREM 2. Assume (P1), (K1)–(K2). Then, when h→ 0, nhd+4

logn
→∞,

‖p̂n − p‖∞ =O
(
h2)+OP

(√
logn

nhd

)
,

‖p̂n − p‖μ =O
(
h2)+OP

(√
1

nhd

)
,

‖p̂n − p‖P =O
(
h2)+OP

(√
1

nhd

)
,

P (Tp̂n

T≈ Tp)≥ 1− c0 · e−c1·nhd+4
,

for some c0, c1 > 0.
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The rate of consistency under the L∞ error can be found in Chen, Genovese and
Wasserman (2017), Einmahl and Mason (2005), Giné and Guillou (2002). The in-
tegrated error and probability error can be seen in Scott (2015). And the topological
error bound follows Lemma 2 in Chen et al. (2016) and the concentration of L∞
metric for the estimated Hessian matrix.

The requirement of h in Theorem 2 enforces the uniform convergence of the
KDE as well as its first and second derivative. Uniform convergence of derivatives
of the KDE implies the convergence of some geometric structures of the density
function, such as the ridges [Chen, Genovese and Wasserman (2015), Genovese
et al. (2014)], critical points [Chazal et al. (2017), Chen, Genovese and Wasserman
(2016)] and persistent diagrams [Chen (2017), Cohen-Steiner, Edelsbrunner and
Harer (2007), Fasy et al. (2014)].

Now we turn to the consistency for α-tree. To derive the rate for the α-tree,
we need to study the convergence rate of an estimated level set when the level is
the density value of a critical point (also known as a critical level). The reason is
that the quantity α(x)= 1− P(Lp(x)) is the probability content of upper level set
Lp(x) = {y : p(y) ≥ p(x)}. When p(x)= p(c) for some critical point c of p, we
face the problem of analyzing the stability of level sets at a critical level.

THEOREM 3 (Level set error at a critical value). Assume (P1) and (K1)–(K2)
and d ≥ 2. Let λ be a density level corresponding to the density of a critical point.
When h→ 0,

logn

nhd+4 → 0,

μ(L̂λ�Lλ)=OP

(‖p̂n − p‖
d

d+1∞
)
.

The rate in Theorem 3 is slower than the usual density estimation rate. This is
because the boundary of Lλ hits a critical point when λ equals the density of a
critical point. The regions around a critical point have a very low gradient, which
leads to a slower convergence rate. It is well known [Einmahl and Mason (2005),
Genovese et al. (2014), Giné and Guillou (2002)] that under assumption (P) and
(K1)–(K2),

‖p̂n − p‖∞ =O
(
h2)+OP

(√
logn

nhd

)
.

In Theorem 3, we see that when d is large, the quantity d
d+1 → 1 so the error

rate is similar to ‖p̂n − p‖∞. This is because the regions that slow down the error
rate are areas around the critical points. These areas occupy a small volume when
d is large, which decreases the difference in the rate.

REMARK 3. Theorem 3 complements many existing level set estimation the-
ories. To our knowledge, no literature has worked on the situation where λ equals
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the density of a critical point. Level set theories mostly focus on one of the follow-
ing three cases: (i) the gradient on the level set boundary ∂Lλ = {x : p(x)= λ} is
bounded away from 0 [Cadre (2006), Chen, Genovese and Wasserman (2017),
Laloe and Servien (2013), Mammen and Polonik (2013), Molchanov (1990),
Tsybakov (1997), Walther (1997)], (ii) a lower bound on the density changing
rate around level λ [Singh, Scott and Nowak (2009), Rinaldo et al. (2012)], (iii)
an (ε, σ ) condition for density [Chaudhuri and Dasgupta (2010), Chaudhuri et al.
(2014)]. When λ equals a critical level, none of these assumptions hold.

Based on Theorem 3, we derive the convergence rate of α̂n.

THEOREM 4. Assume (P1) and (K1)–(K2) and d ≥ 2 and the smoothing
bandwidth satisfies h → 0,

logn

nhd+4 → 0. Let C = {x : ∇p(x) = 0} be the collec-
tion of critical points and let an be a sequence of n such that ‖p̂n−p‖∞ = o(an).
Then, uniformly for all x,

α̂n(x)− α(x)=
⎧⎨⎩OP

(‖p̂n − p‖∞)
if

∣∣p(x)− p(c)
∣∣ > an for all c ∈ C,

OP

(‖p̂n − p‖
d

d+1∞
)

otherwise.

Theorem 4 shows uniform error rates for α̂n. When the density of a given point
is away from critical levels, the rate follows the usual density estimation rate. When
the given point has a density value close to some critical points, the rate is slowed
down by the low gradient areas around critical points. Note that the sequence an

is to make the bound uniform for all x. To obtain an integrated error rate (and the

probability error rate) of α̂n, we can choose an = 1
logn

(O(h2)+OP (
√

1
nhd )) which

leads to the following result.

COROLLARY 5. Assume (P1) and (K1)–(K2) and d ≥ 2. Then, when h →
0, nhd+4

logn
→∞,

‖α̂n − α‖∞ =O
(
h

2d
d+1

)+OP

((
logn

nhd

) d
2(d+1)

)
,

‖α̂n − α‖μ =O
(
h2)+OP

(√
logn

nhd

)
,

‖α̂n − α‖P =O
(
h2)+OP

(√
logn

nhd

)
,

P (Tα̂n

T≈ Tα)≥ 1− c0 · e−c1·nhd+4
,

for some c0, c1 > 0.
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Comparing Corollary 5 to Theorem 2, we see that only the L∞ error rate has
a major difference and the other two errors differ by a

√
logn factor. This is be-

cause Theorem 4 proves that, only at the level of a critical point, we will have a
slower convergence rate. Thus, the L∞ error will be slowed down by these points.
However, the collection of points {x : p(x)= p(c) for some c ∈ C} has Lebesgue
measure zero so the slow convergence rate does not translate to the integrated er-
ror and the probability error. The topological error follows from Theorem 2 and

Lemma 1: T (p̂n)
T≈ Tα̂n, T (p)

T≈ Tα .

4. Singular measures: Error rates. Now we study error rates under singular
measures. When a measure is singular, the usual (Radon–Nikodym) density can-
not be defined. Thus, we cannot define the λ-tree. However, as we discussed in
Section 4, we are still able to define the α-tree. Thus, in this section, we will focus
on error rates for the α-tree.

4.1. Analysis of the KDE under singular measures. To study the convergence
rate, we first investigate the bias of smoothing in the singular measure. Let ph(x)=
E(p̂n), which is also known as the smoothed density.

ASSUMPTIONS. (S) For all s < d , Ks is a smooth manifold with positive
reach and K is a compact set.

(P2) ρ(x) is a generalized Morse function and there exists some ρmin, ρmax > 0
such that 0 < ρmin ≤ ρ(x) ≤ ρmax <∞ for all x. Moreover, for any s > 0, ρ†

s is
unique and has bounded continuous derivatives up to the fourth order.

Assumption (S) ensures that Ks is smooth and every connected component of
Ks is separated for each s. Assumption (P2) is a generalization of (P1) to singular
distributions.

LEMMA 6 (Bias of the smoothed density). Assume (S), (P2). Let x ∈ K̊s and
define m(x)=min{
 > s : x ∈K
} − s. Let C

†

 = (

∫
B


K(‖y‖) dy)−1, where B
 =
{y : ‖y‖ ≤ 1, y
+1 = y
+2 = · · · = yd = 0} for 
= 1, . . . , d and dy is integrating
with respect to 
-dimensional area and C

†
0 = 1/K(0). Then for a fixed x, when

h→ 0 and m(x) > 0,

C
†
τ(x)h

d−τ(x) · ph(x)= ρ(x)+
{
O

(
h2)+O

(
hm(x)), if m(x) > 0,

O
(
h2)

, if m(x)= 0.

Moreover, if K
 ∩Ks �= φ, for some s < 
, then there exists ε > 0 such that

lim
h→0

sup
x∈K

∣∣Cτ(x)h
d−τ(x) · ph(x)− ρ(x)

∣∣ > ε > 0.
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Lemma 6 describes the bias of the KDE. The scaling factor C
†
τ(x)h

d−τ(x)

rescales the smoothed density to make it comparable to the generalized density.
The first assertion is a pointwise convergence of smoothed density. In the case of
m(x) > 0, the bias contains two components: O(h2), the usual smoothing bias, and
O(hm(x)), the bias from a higher dimensional support. This is because the KDE
is isotropic, so the probability content outside Ks will also be included, which
causes additional bias. The second assertion states that the smoothed density does
not uniformly converge to the generalized density ρ(x), so together with the first
assertion, we conclude that the smoothing bias converges pointwisely but not uni-
formly. Next, we provide an example showing the failure of uniform convergence
of a singular measure.

EXAMPLE 2 (Failure of uniform convergence). We consider X from the same
distribution as in Figure 2: with a probability of 0.3, X = 2, and with a probability
of 0.7, X follows a standard normal. For simplicity, we assume that the kernel
function is the spherical kernel K(x)= 1

2I (0≤ x ≤ 1) and consider the smoothing

bandwidth h→ 0. This choice of kernel yields C
†
1 = 1. Now consider a sequence

of points xh = 2+ h
2 . Then the smoothed density at each xh is

ph(xh)= 1

h
P (xh − h < X < xh + h)

= 1

h
P

(
2− h

2
< X < 2+ 3h

2

)
≥ 1

h
P (X = 2)= 3

10h
,

which diverges when h→ 0. However, it is easy to see that τ(xh)= 1 and ρ(xh)=
7

10φ(xh)→ 7
10φ(1) which is a finite number. Thus, |E(ph(xh)− ρ(xh))| does not

converge.

REMARK 4. The scaling factor in Lemma 6 C
†
τ(x)h

d−τ(x) depends on the sup-
port Ks where x resides. In practice, we do not know τ(x) so we cannot properly
rescale p̂n(x) to estimate ρ(x). However, we are still able to rank pairs of data
points based on Lemma 6. To see this, let x1 and x2 be the two points that we
want to compare their orderings (i.e., we want to know x1 ≺τ,ρ x2 or x1 �τ,ρ x2
or x1 �τ,ρ x2). When x1 and x2 are both in Ks for some s, the scaling does not
affect the ranking between them so the sign of ρ(x1)−ρ(x2) is the same as that of
ph(x1)−ph(x2). When x1 and x2 are in different supports (i.e., x1 ∈Ks1, x2 ∈Ks2 ,
where s1 �= s2), ph(x1) and ph(x2) diverge at different rates, meaning that we can
eventually distinguish them. Thus, ordering for most points can still be recovered
under singular measures. This is an important property that leads to the consistency
of α̂n under other error measurements.
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Due to the failure of uniform convergence in the bias, the L∞ error of α̂n does
not converge under singular measures.

COROLLARY 7 (L∞ error for singular measures). Assume (S), (P2). When
Kd ∩Ks �= φ, for some s < d , ‖α̂n − α‖∞ does not converge to 0. Namely, there
exists ε > 0 such that

lim inf
n,h

P
(‖α̂n − α‖∞ > ε

)
> 0.

The proof of Corollary 7 is a direct application of the failure of uniform con-
vergence in smoothing bias shown in Lemma 6. This corollary shows that for a
singular measure, the L∞ error of the estimator α̂n does not converge in general.
Thus, there is no guarantee for the Hartigan consistency of the estimated α-tree.

4.2. Error measurements. Although Corollary 7 presents a negative result on
estimating the α-tree, in this section, we show that the estimator α̂n is still con-
sistent under other error measurements. A key observation is that there is a good
region where the scaled KDE converges uniformly.

Let Ks(h) = K̊s\(⋃
<s K
 ⊕ h) be the set that is in the interior of Ks and is
away from lower dimensional supports for s > 0; in the case of s = 0, we define
K0(h) = K0. We define K(h) = ⋃

s≤d Ks(h), which is the union of each Ks(h).
Figure 5 shows the good region of support Ks(h) and the original support Ks in
Example 1. Later we will show that the set K(h) is the good region.

In Lemma 6, the quantity

m(x)=min
{

≥ τ(x) : x ∈K


}− τ(x)

plays a key role in determining the rate of smoothing bias. Only when m(x)= 1,
do we have a slower rate for the bias. Thus, to obtain a uniform rate on the bias,

FIG. 5. Good regions Ks (h) for Example 1. Left: the original K2,K1, and K0. Right: the corre-
sponding K2(h),K1(h), and K0(h). The yellow area is the set K2(h), which are regions in K2 away
from lower-dimensional supports K1 and K0. The red area is the set K1(h), which are regions in
K1 where regions close to K0 have been removed. The blue dot is K0(h), which is the same as K0
because there is no lower dimensional support. Note that K(h) is the union of the three color regions
in the right panel.
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we introduce the quantity

(10) mmin = inf
x∈K,m(x)>0

m(x).

If m(x)= 0 for all x ∈K, we define mmin = 2.

THEOREM 8 (Consistency of the KDE under singular measures). Assume (S),
(P2), (K1)–(K2). Let C

†

 be the constant in Lemma 6. Define

δn,h,s = sup
x∈Ks (h)

∥∥C†
s hd−s p̂n(x)− ρ(x)

∥∥,
δ
(1)
n,h,s = sup

x∈Ks (h)

∥∥C†
s hd−s∇Ts(x)p̂n(x)−∇Ts(x)ρ(x)

∥∥
max,

δ
(2)
n,h,s = sup

x∈Ks (h)

∥∥C†
s hd−s∇Ts(x)∇Ts(x)p̂n(x)−∇Ts(x)∇Ts(x)ρ(x)

∥∥
max,

where ∇Ts(x) is taking gradient with respect to the tangent space of Ks at x. Then,

when h→ 0, nhd+4

logn
→∞,

(11)

δn,h,s =O
(
h2∧mmin

)+OP

(√
logn

nhs

)
,

δ
(1)
n,h,s =O

(
h2∧mmin

)+OP

(√
logn

nhs+2

)
,

δ
(2)
n,h,s =O

(
h2∧mmin

)+OP

(√
logn

nhs+4

)
,

where a ∧ b=min{a, b}.
Theorem 8 shows that after rescaling, the KDE is uniformly consistent within

the good region Ks(h) for density, gradient and Hessian estimation. A more in-
teresting result is that, after rescaling, the error rate is the same as the usual L∞
error rate in the s-dimensional case with a modified bias term (bias is affected by
a higher dimensional support).

REMARK 5 (Nonconvergence of the integrated distance of the KDE). One
may wonder if the scaled KDE [C†

τ(x)h
d−τ(x) · p̂n(x)] converges to the general-

ized density ρ(x) under the integrated distance. There is no guarantee for such a
convergence because∫ ∥∥C†

τ(x)h
d−τ(x) · p̂n(x)− ρ(x)

∥∥dx =OP (1).

To see this, consider a point x ∈Ks and let K
 be a higher-order support (
 > s)
with x ∈ K
. Then the region B(x,h) ∩ K
 has 
-dimensional volume at rate
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O(h
−s). For any point y ∈ B(x,h) ∩K
, τ(y)= 
 but the KDE p̂n(y) is at rate
OP (hs−d). Thus, the difference between the scaled KDE and the generalized den-
sity is

C
†

hd−
 · p̂n(y)− ρ(y)=OP

(
hs−
).

Such y has 
-dimensional volume at rate O(h
−s), so the integrated error is at rate
OP (hs−
)×O(h
−s)=OP (1).

Based on Theorem 8, we can derive a nearly uniform convergence rate of α̂n.

THEOREM 9 (Nearly uniform consistency of α-trees). Assume (S), (P2),
(K1)–(K2). Let Cs be the collection of generalized critical points of Ks . Let δn,h,s

be defined in equation (11) and rn,h,s be a quantity such that δn,h,s

rn,h,s
= oP (1). Then,

when h→ 0, nhd+2

logn
→∞, uniformly for every x ∈Ks(h),

α̂n(x)− α(x)=
⎧⎨⎩O(δn,h,s) if inf

c∈Cs

∣∣ρ(x)− ρ(c)
∣∣ > rn,h,s,

O
(
(δn,h,s)

s
s+1

)
otherwise.

The convergence rate in Theorem 9 is similar to that in Theorem 8: for a given
point x when α(x) is away from the α value of a generalized critical point (a
critical α level), we have the usual convergence rate. When α(x) is close to a
critical α level, the convergence rate is slower. The quantity rn,h,s behaves like
the quantity �n in Theorem 4, which was introduced to guarantee the uniform
convergence. To derive the consistency of α̂n under the integrated error and the
probability error, we choose rn,h,s = δn,h,s

logn
, which leads to the following theorem.

THEOREM 10 (Consistency of α-trees). Assume (S), (P2), (K1)–(K2). Then

‖α̂n − α‖P =O(δn,h,d),

‖α̂n − α‖μ =O(δn,h,d).

Theorem 9 shows that the quantity α(x) can be consistently estimated by α̂n(x)

for the majority points. This implies that the ordering of points using p̂n is consis-
tent with the ordering from τ, ρ in most areas of K.

5. Singular measures: Critical points and topology. Recall from Sec-
tion 2.1 that the topology of an α-tree Tα is determined by its edge set E(Tα)

and the relation among edges C ∈E(Tα). The set Aα (critical tree-levels) contains
the levels where the upper level set A� = {x : α(x) ≥� } changes its shape. For
nonsingular measures, Aα corresponds to the density value of some critical points.
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FIG. 6. Example of DCPs. This is a d = 2 case; there is a 2D spherical distribution mixed with a
1D distribution on a line segment. Left: the blue contours are density contours of the 2D spherical
distribution and the red line segment is K1, the support of the 1D singular distribution. The two
crosses are the density maxima at the 2D distribution and the 1D singular distribution. The black
square indicates a DCP. To see how DCPs merge two connected components, we consider the middle
and the right panel, which are level sets of α(x) at two different levels. Middle: the level set A�

where the level � is high; we can see that there are two connected components (left gray-black
disk and the right line segment). Right: we move down the level a little bit; now the two connected
components merge so there is only one connected component. The merging point is the square point,
which is defined as a DCP.

For singular measures, this is not true even when ρ(x) is a generalized Morse
function.

Consider the example in Figure 6. The solid box in the left panel indicates a new
type of critical points, where merges between elements in different edge sets occur
(change in the topology of level sets occurs). By the definition of Aα , this corre-
sponds to an element in Aα , but it is clearly not a generalized critical point. We
call this type of critical points the dimensional critical points (DCPs). In Figure 6,
the dimension d = 2 and we have a 2D spherical distribution mixed with a 1D

singular measure that is distributed on the red curves K1. The bluish contours are
density contours of the 2D spherical distribution, the crosses are locations of local
modes, and the solid box is the location of a DCP. To see how the solid box changes
the topology of level sets, we display two level sets in the middle and right panels.
In the middle panel, the level is high and there are two connected components (the
gray area and the solid curve). In the right panel, we lower the level, and now, the
two connected components merge at the location of the solid box. Although the
location of the solid box does not belong to the collection of generalized critical
points C, this point does correspond to the merging of connected components in
the level sets. Thus, this point corresponds to an element in Aα .

Here is the formal definition of the DCP. Recall that C is the collection of gener-
alized critical points of ρ(x) and from equation (1), Aα is the collection of levels
of function α(x) such that the creation of a new connected component or merging
of connected components occurs. For simplicity, we denote A=Aα . For any level
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� ∈A, we define

(12) ξ(�)=
{

max{w ≥ 0 :Kw ⊂A� } if K0 ⊂A�,

−1 if K0 �⊂A� .

Namely, ξ(�) is the highest dimensional structure that is covered by the level set
A� .

DEFINITION 3. For � ∈A, we say x is a DCP if the following hold:

(1) x ∈K
 for some 
≤ ξ(�).
(2) There exists an edge C ∈E(Tα) such that:

(i) x /∈ C for all C ∈C,
(ii) d(x,Cε)→ 0 when ε→ 0, where Cε =C∩ Tα(� + ε).

Note that x may not exist. In such a case, there is no DCPs for level � .

The first requirement is to ensure that x is on a lower dimensional support [K
 :

 < ξ(�)]. The second requirement is to show that the DCP x is not in the same
edge C, but its distance to the elements (connected components) of the edge is
shrinking to 0. By the definition of α(x), the first requirement implies that x is
contained in A�+ε for a sufficiently small ε. Therefore, we can find C

′ ∈ E(Tα)

such that every element C ∈C
′ contains x. Because x is (i) in the elements of edge

C
′, and (ii) not in any element of edge C, and because (iii) the distance from x to

the element of C converges to 0 when the level decreases to the level � , x is a
merging point of edges C′ and C and the level � is their merging level.

Note that since DCPs occur when different dimensional regions intersect each
other, the topological structure of such an intersection may be related to the inter-
section homology and stratified space [Edelsbrunner and Harer (2008), Goresky
and MacPherson (1980, 1988)].

Let CD be the collection of DCPs. For a point c ∈ CD , we denote α†(c) as the
level of α function corresponding to the DCP at c. Note that α†(c) �= α(c) when c

is a DCP. Since a DCP is generally in a lower dimensional support than the support
that the merging happens, α(c) > α†(c). Remark 7 provides an example of how α

and α† differs.

REMARK 6 (Relation to the usual critical points). The definition of DCPs is
similar to that of saddle points or local minima, who contribute to the merging of
level sets. Saddle points (or local minima) that contribute to a merging of level sets
can be defined as a point x with the following properties:

(1) x ∈Kξ(�)+1.
(2) There exist two different edges C1,C2 ∈E(Tα) such that

(i) x /∈ C1, x /∈ C2 for all C1 ∈C1 and C2 ∈C2,
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(ii) d(x,C1,ε)→ 0 when ε→ 0, where C1,ε =C1 ∩ Tα(� + ε),
(iii) d(x,C2,ε)→ 0 when ε→ 0, where C2,ε =C2 ∩ Tα(� + ε).

It is easy to see that for a Morse function, a point x with the above properties must
be a saddle point or a local minimum. The main difference between this definition
and that of DCPs is the support where x lives—if x lives in a lower dimensional
support K
, 
≤ ξ(�), then it is a DCP, and if x lives in the support Kξ(�)+1, then
it is a saddle point or a local minimum.

REMARK 7. Note that a DCP might be at the same position as a critical point.
Consider the example in Figure 2 and Example 2. In this case,

α(x)=
{

0.7 · 2 ·�0
(−|x|) if x �= 2,

1 if x = 2,

where �0(x) is the cumulative distribution of a standard normal. Moreover,
Aα = {1,0.7,0.0319}; the first element {1} is the level of the point mass located
at x = 2, the second element {0.7} is the level of the mode of the standard normal
distribution, the last element is the level where the connected components created
at levels 1 and 0.7 merged so it comes from a DCP. This DCP also located at x = 2,
which coincides with a local mode. Note that the number 0.0319= 0.7 ·2 ·�0(−2),
which is the level where the merging occurred. At the critical point x = 2, α(2)= 1
and α†(2)= 0.0319.

To analyze the properties of DCPs and their estimators, we consider the follow-
ing assumptions.

ASSUMPTIONS. (A) The elements in the collection A are distinct and each
element corresponds to one critical point or one DCP, but not both. And all DCPs
are distinct.

(B) For every x ∈ ∂Ks (s > 0) and r > 0, there is y ∈ B(x, r) ∩Ks such that
ρ(y) > ρ(x).

(C) There exists η0 > 0 such that

inf
c∈Cs

d(c,K
)≥ η0,

for all 
 < s and s = 1,2, . . . , d .

Assumption (A) is to ensure that no multiple topological changes will occur
at the same level so each level corresponds to only a merging or a creation. As-
sumption (B) is to guarantee that no new connected component at the boundary of
a lower dimensional manifold will be created. Thus, any creation of a new con-
nected component of the level set A� occurs only at a (generalized) local mode.
Assumption (C) is to regularize (generalized) critical points so that they are away
from lower dimensional supports. This implies that when h is sufficiently small,
all critical points will be in the good region K(h).
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LEMMA 11 (Properties of DCPs). Assume (S), (P2), (B). The DCPs have the
following properties:

• If a new connected component of A� is created at � ∈A, then there is a local
mode c of ρ or an element in K0 such that � = α(c). Namely, DCPs only merge
connected components.

• For any value � ∈A, either � = α(c) for some c ∈ C or there is a DCP asso-
ciated with � .

Lemma 11 provides two basic properties of DCPs. First, DCPs only merge con-
nected components. Moreover, when the topology of connected components of
α-level sets changes (when we decrease the level), either a critical point or a DCP
must be responsible for this. Therefore, as long as we control the stability of gen-
eralized critical points and DCPs, we control the topology of an α-tree. Thus, in
what follows, we will study the stability of generalized critical points and DCPs.

LEMMA 12 (Stability of generalized critical points). Assume (S), (P2), (K1)–
(K2), (C). Let c ∈Ks be a generalized critical point with n(c) negative eigenvalues
of its generalized Hessian matrix. Let Ĉ be the collection of critical points of p̂n.
Then, when h→ 0, nhd+4

logn
→∞, there exists a point ĉ ∈ Ĉ such that

‖ĉ− c‖ =O(h)+OP

(√
1

nhs+2

)
,

∥∥α̂n(ĉ)− α(c)
∥∥=OP

(
(δn,h,s)

s
s+1

)
and the estimated Hessian matrix at ĉ has n(c)+ d − s negative eigenvalues. The
quantity δn,h,s is defined in equation (11).

Lemma 12 is a generalization of the stability theorem of critical points given in
Lemma 16 of Chazal et al. (2017). Note that the bias is now of the order O(h); this
is due to the smoothing effect from a higher dimensional support.

LEMMA 13 (Properties of estimated critical points). Assume (S), (P2), (K1)–
(K2), (A), (B). Assume there are k DCPs. Let Ĉ be the critical points of p̂n. Define
Ĝ ⊂ Ĉ as the collection of estimated critical points corresponding to the general-
ized critical points. Let D̂ = Ĉ\Ĝ be the remaining estimated critical points. Then,
when h→ 0, nhd+4

logn
→∞:

• D̂ ⊂K
C(h),

• |D̂| ≥ k, where |A| for a set A is the cardinality,
• D̂ contains no local mode of p̂n.
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Lemma 13 provides several useful properties of the estimated critical points
(critical points of p̂n). First, the estimated critical points are all in the bad re-
gion K

C(h), except for those converging to generalized critical points. Second,
the number of estimated critical points will (asymptotically) not be less than the
total number of DCPs. Third, all estimated local modes are estimators of general-
ized critical points.

LEMMA 14 (Stability of critical tree-levels from DCPs). Assume (S), (P2),
(K1)–(K2), (A), (B). Let c be a DCP and α†(c) ∈ A be the associated level. Let
D̂ be defined as Lemma 13. Then, when h→ 0, nhd+2

logn
→∞, there exists a point

ĉ ∈ D̂ such that ∥∥α̂n(ĉ)− α†(c)
∥∥=O(δn,h,ξ(α0(c))+1),

where δn,h,s is defined in (11). Moreover, the Âα̂n(ĉ)+ε and Âα̂n(ĉ) are not topolog-
ical equivalent.

Lemma 14 illustrates the stability of critical tree-levels from DCPs: for every
DCP, there will be an estimated critical point that corresponds to this DCP and this
estimated critical point also represents a merging of the estimated level sets.

In Lemma 12, we derived the convergence rate of the estimated (generalized)
critical points versus the population critical points, but here we only derive the
rate for the critical tree-levels. The reason is that critical points are solutions to a
certain function (gradient equals to 0), so we can perform a Taylor expansion to
obtain the convergence rate. However, for the DCPs, they are not solutions to some
functions, so it is unclear how to derive the convergence rate for their locations.

EXAMPLE 3 (A DCP and its estimator). Consider again the example in Fig-
ure 2 and Example 2. We have a singular distribution mixed with a point mass
at x = 2 with a probability of 0.3 and a standard normal with a probability of
0.7. In this case, as indicated, a DCP is located at x = 2 with level 0.0319 (see Re-
mark 7). In every panel of the top row of Figure 2, there is a local minimum located
in the region x ∈ [1.5,2]. Moreover, when we increase the sample size (from left
to right), this local minimum is moving toward x = 2. This local minimum is an
estimated critical point ĉ ∈ D̂, as described in Lemma 14, whose estimated α-level
is approaching the α-level of the DCP at x = 2.

THEOREM 15 (Topological error of α-trees). Assume (S), (P2), (K1)–(K2),
(A), (B), (C). Then, when h→ 0, nhd+4

logn
→∞,

P(Tα̂n

T≈ Tα)≥ 1− c0 · e−c1·nhd+4
,

for some c0, c1 > 0.
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Theorem 15 quantifies the topological error of the estimated α-tree under sin-
gular measures. The error rate is the same as that in the nonsingular measures
(Theorem 5). The topological error bound is similar to that in Corollary 5. Both
have exponential concentration bounds with a factor of nhd+4, which is the Hes-
sian estimation error rate. The two concentration bounds are similar, because as
shown in Theorem 8, the main difference between singular and nonsingular mea-
sures lies in the bias part, which will not contribute to the concentration inequality
as long as h→ 0. The Hessian error rate is because we need to make sure the signs
of eigenvalues of Hessian matrices around critical points remain unchanged.

REMARK 8. Theorem 15 also implies that, under singular measures, the clus-
ter tree of the KDE p̂n (estimated λ-tree) converges topologically to a population
cluster tree defined by the function α(x). To see this, recall that by Lemma 1,

Tp̂n

T≈ Tα̂n . This, together with Theorem 15, implies

P(Tp̂n

T≈ Tα)≥ 1− c0 · e−c1·nhd+4 → 1

under a suitable choice of h. This shows that even when the population distribution
is singular, the estimated λ-tree still converges topologically to the population α-
tree.

6. Discussion. In this paper, we study how the α-tree behaves under singular
and nonsingular measures. In the nonsingular case, the error rate under the L∞
metric is slower than other metrics because of the slow rate of level set estimation
around saddle points. However, other error rates are the same as estimating the
λ-tree.

When a distribution is singular, we obtain many fruitful results for both the KDE
and the estimated α-tree. In terms of the KDE, we prove that:

1. the KDE is a pointwise consistent estimator after rescaling;
2. the KDE is a uniformly consistent estimator after rescaling for the majority

of the support; and
3. the cluster tree from the KDE (estimated λ-tree) converges topologically to

a population cluster tree defined by α.

For the estimator α̂n(x) and the estimated α-tree, we show that:

1. α̂n is a pointwise consistent estimator of α;
2. α̂n is a uniformly consistent estimator for the majority of the support;
3. α̂n is a consistent estimator of α under the integrated distance and probability

distance; and
4. the estimated α-tree converges topologically to the population α-tree.

Moreover, we observe a new type of critical points—the DCPs—that also con-
tribute to the merging of level sets for singular measures. We study the properties
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of DCPs and show that the estimated critical points from the KDE approximate
these DCPs.

Finally, we point out some possible future directions.

• Persistence homology. The cluster tree is closely related to the persistent homol-
ogy of level sets [Bobrowski, Mukherjee and Taylor (2017), Fasy et al. (2014)].
In the persistent homology, a common metric for evaluating the quality of an
estimator is the bottleneck distance [Cohen-Steiner, Edelsbrunner and Harer
(2007), Edelsbrunner and Morozov (2013)]. Because the bottleneck distance
is bounded by the L∞ metric [Cohen-Steiner, Edelsbrunner and Harer (2007),
Edelsbrunner and Morozov (2013)], many bounds on the bottleneck distance are
derived via bounding the L∞ metric [Bobrowski, Mukherjee and Taylor (2017),
Fasy et al. (2014)]. However, for α-trees under singular measures, the L∞ metric
does not converge (Corollary 7) but we do have topological consistency (Theo-
rem 15), which implies convergence in the bottleneck distance. This provides an
example where we have consistency under the bottleneck distance and inconsis-
tency in the L∞ metric. How this phenomenon affects the persistence homology
is unclear and we leave that line of study for future work.

• Higher-order homology groups and stratified space. Our definition of DCPs is
for connected components, which are zeroth-order homology groups [Bubenik
(2015), Cohen-Steiner, Edelsbrunner and Harer (2007), Fasy et al. (2014)] and
sufficient for analyzing cluster trees. However, critical points also contribute to
the creation and elimination of higher-order homology groups such as loops
and voids, which are not covered in this paper. Thus, a future direction is to
study whether the KDE is also consistent in recovering higher-order homology
groups under singular measures. Moreover, as is mentioned in Remark 2, the
supports we are analyzing are related to the stratified space [Friedman (2014),
Goresky and MacPherson (1980)] and the DCPs might be related to the inter-
section homology [Edelsbrunner and Harer (2008), Friedman (2014), Goresky
and MacPherson (1980)]. The intersection homology extends the definition of
homology group to a stratified space so it provides a tool to analyze higher-order
homology groups in our setting. Thus, finding the connection between theories
of stratified space and the higher-order homology groups in our settings will be
another future research direction.

• Minimax theory. Chaudhuri and Dasgupta (2010), Chaudhuri et al. (2014) de-
rived the minimax theory for estimating the λ-tree under nonsingular measures
and proved that the the k-nearest neighbor estimator is minimax. When the dis-
tribution is nonsingular, the α-tree and λ-tree are very similar so we expect the
minimax theory to be the same. However, for singular measures, it is unclear
how to derive the minimax theory so we plan to investigate this in the future.
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SUPPLEMENTARY MATERIAL

Supplementary proofs: Generalized cluster trees and singular measures
(DOI: 10.1214/18-AOS1744SUPP; .pdf). This document contains all proofs to the
theorems and lemmas in this paper.
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