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PERTURBATION BOOTSTRAP IN ADAPTIVE LASSO

BY DEBRAJ DAS1, KARL GREGORY2 AND S. N. LAHIRI1

University of Wisconsin—Madison, University of South Carolina and
North Carolina State University

The Adaptive Lasso (Alasso) was proposed by Zou [J. Amer. Statist. As-
soc. 101 (2006) 1418–1429] as a modification of the Lasso for the purpose of
simultaneous variable selection and estimation of the parameters in a linear
regression model. Zou [J. Amer. Statist. Assoc. 101 (2006) 1418–1429] es-
tablished that the Alasso estimator is variable-selection consistent as well as
asymptotically Normal in the indices corresponding to the nonzero regression
coefficients in certain fixed-dimensional settings. In an influential paper, Min-
nier, Tian and Cai [J. Amer. Statist. Assoc. 106 (2011) 1371–1382] proposed
a perturbation bootstrap method and established its distributional consistency
for the Alasso estimator in the fixed-dimensional setting. In this paper, how-
ever, we show that this (naive) perturbation bootstrap fails to achieve second-
order correctness in approximating the distribution of the Alasso estimator.
We propose a modification to the perturbation bootstrap objective function
and show that a suitably Studentized version of our modified perturbation
bootstrap Alasso estimator achieves second-order correctness even when the
dimension of the model is allowed to grow to infinity with the sample size. As
a consequence, inferences based on the modified perturbation bootstrap will
be more accurate than the inferences based on the oracle Normal approxima-
tion. We give simulation studies demonstrating good finite-sample properties
of our modified perturbation bootstrap method as well as an illustration of
our method on a real data set.

1. Introduction. Consider the multiple linear regression model

(1.1) yi = x′
iβ + εi, i = 1, . . . , n,

where y1, . . . , yn are responses, ε1, . . . , εn are independent and identically dis-
tributed (i.i.d.) random variables, x1, . . . ,xn are known nonrandom design vectors
and β = (β1, . . . , βp) is the p-dimensional vector of regression parameters. When
the dimension p is large, it is common to approach regression model (1.1) with the
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assumption that the vector β is sparse, that is, that the set A = {j : βj �= 0} has car-
dinality p0 = |A| much smaller than p, meaning that only a few of the covariates
are “active.” The Lasso estimator introduced by Tibshirani (1996) is well suited to
the sparse setting because of its property that it sets some regression coefficients
exactly equal to 0. One disadvantage of the Lasso, however, is that it produces non-
trivial asymptotic bias for the nonzero regression parameters, primarily because it
shrinks all estimators toward zero [cf. Knight and Fu (2000)].

Building on the Lasso, Zou (2006) proposed the Adaptive Lasso (hereafter re-
ferred to as Alasso) estimator β̂n of β in the regression problem (1.1) as

(1.2) β̂n = arg min
t

[
n∑

i=1

(
yi − x′

it
)2 + λn

p∑
j=1

|β̃j,n|−γ |tj |
]
,

where β̃j,n is the j th component of a root-n-consistent estimator β̃n of β , such
as the ordinary least squares (OLS) estimator when p ≤ n or the Lasso or Ridge
regression estimator when p > n, λn > 0 is the penalty parameter, and γ > 0 is
a constant governing the influence of the preliminary estimator β̃n on the Alasso
fit. Zou (2006) showed in the fixed-p setting that under some regularity conditions
and with the right choice of λn, the Alasso estimator enjoys the so-called oracle
property [cf. Fan and Li (2001)]; that is, it is variable-selection consistent and it
estimates the nonzero regression parameters with the same precision as the OLS
estimator which one would compute if the set of active covariates were known.

In an important recent work, Minnier, Tian and Cai (2011) introduced the per-
turbation bootstrap in the Alasso setup. To state their main results, let β∗N

n =
(β∗N

1,n , . . . , β∗N
p,n)

′ be the naive perturbation bootstrap Alasso estimator prescribed

by Minnier, Tian and Cai (2011) and define Ân = {j : β̂j,n �= 0} and A∗N
n = {j :

β∗N
j,n �= 0}. These authors showed that under some regularity conditions and with p

fixed as n → ∞,

P∗
(
A∗N

n = Ân

)→ 1 and
√

n
(
β∗N(1)

n − β̂
(1)

n

)|ε 	d

√
n
(
β̂

(1)

n − β(1)),
where εn = (ε1, . . . , εn), z(1) denotes the subvector of z ∈ Rp corresponding to the
coordinates in A = {j : βj �= 0}, “	d” denotes asymptotic equivalence in distribu-
tion and P∗ denotes bootstrap probability conditional on the data. Thus Minnier,
Tian and Cai (2011) [hereafter referred to as MTC(11)] showed that, in the fixed-p
setting and conditionally on the data, the naive perturbation bootstrap version of
the Alasso estimator is variable-selection consistent in the sense that it recovers
the support of the Alasso estimator with probability tending to one and that its dis-
tribution conditional on the data converges at the same time to that of the Alasso
estimator for the nonzero regression parameters. But the accuracy of inference for
nonzero regression parameters relies on the rate of convergence of the bootstrap

distribution of
√

n(β∗N(1)
n − β̂

(1)

n )|ε to the distribution of
√

n(β̂
(1)

n − β(1)) after
proper Studentization. Furthermore, Chatterjee and Lahiri (2013) showed that the
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convergence of the Alasso estimators of the nonzero regression coefficients to their
oracle Normal distribution is quite slow, owing to the bias induced by the penalty
term in (1.2). Thus, it would be important for the accuracy of inference if second-
order correctness can be achieved in approximating the distribution of the Alasso
estimator by the perturbation bootstrap. Second-order correctness implies that the
distributional approximation has a uniform error rate of op(n−1/2). We show in this
paper, however, that the distribution of the naive perturbation bootstrap version of
the Alasso estimator, as defined by MTC(11), cannot be second-order correct even
in fixed dimension. For more details, see Section 4.

We introduce a modified perturbation bootstrap for the Alasso estimator for
which second-order correctness does hold, even when the number of regression
parameters p = pn is allowed to increase with the sample size n. We also show
in Proposition 2.1 that the modified perturbation bootstrap version of the Alasso
estimator (defined in Section 2) can be computed by minimizing simple criterion
functions. This makes our bootstrap procedure computationally simple and inex-
pensive.

In this paper, we consider some pivotal quantities based on Alasso estimators
and establish that the modified perturbation bootstrap estimates the distribution of
these pivotal quantities up to second order, that is, with an error that is of much
smaller magnitude than what we would obtain by using the Normal approxima-
tion under the knowledge of the true active set of covariates. We will refer to the
Normal approximation which uses knowledge of the true set of active covariates
as the oracle Normal approximation. Our main results show that the modified per-
turbation bootstrap method enables, for example, the construction of confidence
intervals for the nonzero regression coefficients with smaller coverage error than
those based on the oracle Normal approximation.

More precisely, we consider pivots which are Studentizations of the quantities
√

nDn(β̂n − β) and
√

nDn(β̂n − β) + b̆n,

where Dn is a q × p matrix (q fixed) producing q linear combinations of interest
of β̂n − β and where b̆n is a bias correction term which we will define in Sec-
tion 5. We find that in the p ≤ n case, the modified perturbation bootstrap can
estimate the distribution of the first pivot with an error of order op(n−1/2) (see
Theorem 5.1). This is much smaller than the error of the oracle Normal approxi-
mation, which was shown in Theorem 3.1 of Chatterjee and Lahiri (2013) to be of
the order Op(n−1/2 + ‖bn‖ + cn), where bn is the bias targeted by b̆n and cn > 0
is determined by the initial estimator β̃n and the tuning parameters λn and γ ; both
‖bn‖ and cn are typically greater in magnitude than n−1/2, and hence determine the
rate of the oracle Normal approximation. We also discover that the bias correction
in the second pivot improves the error rate so that the modified perturbation boot-
strap estimator achieves the rate Op(n−1) (see Theorem 5.2), which is a significant
improvement over the best possible rate of oracle Normal approximation, namely
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O(n−1/2). In the p > n case, we find that the modified perturbation bootstrap es-
timates the distributions of Studentized versions of both the bias-corrected and
unbias-corrected pivots with the rate op(n−1/2) (see Theorems 5.3, 5.4 and 5.5),
establishing the second-order correctness of our modified perturbation bootstrap in
the high-dimensional setting. We have explored the cases when the dimension p

is increasing polynomially with n and when p is increasing exponentially with n.
Our adding to the pivot a bias correction term may bring to mind the desparsi-
fied Lasso introduced independently by Zhang and Zhang (2014) and van de Geer
et al. (2014); these authors construct a nonsparse estimator of β by adding a Lasso-
based bias correction to a biased, nonsparse estimator of β which is linear in the
response values y1, . . . , yn. They consider first-order properties of this nonsparse
estimator, establishing asymptotic normality under sparsity conditions. In contrast,
we consider the sparse Alasso estimator of β and correct the bias of a pivot based
on the form of the Alasso estimator. We establish second-order results of our pro-
posed perturbation bootstrap method in both before and after bias correction. The
main motivation behind the bias correction is to achieve the error rate Op(n−1).

We show that the naive perturbation bootstrap of MTC(11) is not second-order
correct (see Theorem 4.1) by investigating the Karush–Kuhn–Tucker (KKT) con-
dition [cf. Boyd and Vandenberghe (2004)] corresponding to their minimization
problem. It is shown that second-order correctness is not attainable by the naive
version of the perturbation bootstrap, primarily due to lack of proper centering of
the naive bootstrapped Alasso criterion function. We derive the form of the center-
ing constant by analyzing the corresponding approximation errors using the theory
of Edgeworth expansion. To accommodate the centering correction, we modify the
perturbation bootstrap criterion function for the Alasso; see Section 2 for details.
In addition, we also find out that it is beneficial, from both theoretical and com-
putational perspectives, to modify the perturbation bootstrap version of the initial
estimators in a similar way. To prove second-order correctness of the modified per-
turbation bootstrap Alasso, the key steps are to find an Edgeworth expansion of the
bootstrap pivotal quantities based on the modified criterion function and to com-
pare it with the Edgeworth expansion of the sample pivots. We want to mention
that the dimension p of the regression parameter vector can grow polynomially in
the sample size n at a rate depending on the number of finite polynomial moments
of the error distribution. Extension to the case in which p grows exponentially with
n is possible under the assumption of finiteness of moment generating function of
the regression errors. In this regime, we have explored separately two important
special cases, namely when the errors are sub-Gaussian and subexponential.

We conclude this section with a brief literature review. The perturbation boot-
strap was introduced by Jin, Ying and Wei (2001) as a resampling procedure where
the objective function has a U-process structure. Work on the perturbation boot-
strap in the linear regression setup is limited. Some work has been carried out by
Chatterjee and Bose (2005), MTC(11), Zhou, Song and Thompson (2012) and Das
and Lahiri (2019). As a variable selection procedure, Tibshirani (1996) introduced
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the Lasso. Zou (2006) proposed the Alasso as an improvement over the Lasso. For
the Alasso and related popular penalized estimation and variable selection proce-
dures, the residual bootstrap has been investigated by Knight and Fu (2000), Hall
et al. (2009), Chatterjee and Lahiri (2010, 2011, 2013), Wang and Song (2011),
MTC(11), van de Geer et al. (2014) and Camponovo (2015), among others.

The rest of the paper is organized as follows. The modified perturbation boot-
strap for the Alasso is introduced and discussed in Section 2. Assumptions and ex-
planations of those are presented in Section 3. Negative results on the naive pertur-
bation bootstrap approximation proposed by MTC(11) are discussed in Section 4.
Main results concerning the estimation properties of the Studentized modified per-
turbation bootstrap pivotal quantities as well as intuitions and explanations behind
the modification of the modified perturbation bootstrap are given in Section 5. Sec-
tion 6 presents simulation results exploring the finite-sample performance of the
modified perturbation bootstrap in comparison with other methods for constructing
confidence intervals based on Alasso estimators. Additional simulation results are
relegated to the Supplementary Material [Das, Gregory and Lahiri (2019)]. Sec-
tion 7 gives an illustration on real data. An outline of the proofs are presented in
Section 8. Details are provided in the Supplementary Material [Das, Gregory and
Lahiri (2019)]. Section 9 states concluding remarks.

2. The modified perturbation bootstrap for Alasso. Let G∗
1, . . . ,G

∗
n be n

independent copies of a nondegenerate random variable G∗ ∈ [0,∞) having ex-
pectation μG∗ . These quantities will serve as perturbation quantities in the con-
struction of the perturbation bootstrap Alasso estimator. We define our bootstrap
version of the Alasso estimator as the minimizer of a carefully constructed pe-
nalized objective function which involves the Alasso predicted values ŷi = x′

i β̂n,
i = 1, . . . , n as well as the observed values yi, . . . , yn. These sets of values appear
in the objective function in two perturbed least-squares criteria. Similar modifica-
tion is also needed in defining the bootstrap versions of the Alasso initial estima-
tors; see (2.2). The motivation behind this construction is detailed in Section 4.
We point out in Section 5 why the naive perturbation bootstrap formulation of
MTC(11) fails to achieve second-order correctness.

We formally define the modified perturbation bootstrap version β̂
∗
n of the Alasso

estimator β̂n as

β̂∗
n = arg min

t∗

[
n∑

i=1

(
yi − x′

it
∗)2(G∗

i − μG∗
)

+
n∑

i=1

(
ŷi − x′

it
∗)2(2μG∗ − G∗

i

)+ μG∗λn

p∑
j=1

∣∣β̃∗
j,n

∣∣−γ ∣∣t∗j ∣∣
]
,

(2.1)
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where β̃∗
j,n is the j th component of β̃

∗
n, the modified perturbation bootstrap version

of the Alasso initial estimator β̃n. We construct β̃
∗
n as

β̃
∗
n = arg min

t∗

[
n∑

i=1

(
yi − x′

it
∗)2(G∗

i − μG∗
)

+
n∑

i=1

(
ŷi − x′

it
∗)2(2μG∗ − G∗

i

)+ μG∗ λ̃n

p∑
j=1

∣∣t∗j ∣∣l
]
,

(2.2)

where λ̃n = 0 when β̃n is taken as the OLS, which we use when p ≤ n, and l = 1
or 2 according as the initial estimator β̃n is taken as the Lasso or Ridge regression
estimator when p > n. Note that λ̃n may be different from λn.

We point out that the modified perturbation bootstrap estimators can be com-
puted using existing algorithms. Define L1(t) = ∑n

i=1(yi − x′
it)

2(G∗
i − μG∗) +∑n

i=1(ŷi − x′
it)

2(2μG∗ − G∗
i ) + μG∗ λ̃n

∑p
j=1 cj |tj |l for some nonnegative con-

stants cj , j = 1, . . . , p. Now set zi = ŷi + ε̂iμ
−1
G∗(G∗

i − μG∗), where ε̂i = yi − ŷi

for i = 1, . . . , n and let L2(t) =∑n
i=1(zi −x′

it)
2 + λ̃n

∑p
j=1 cj |tj |l . Then we have

the following proposition.

PROPOSITION 2.1. arg mint L1(t) = arg mint L2(t).

This proposition allows us to compute β̃
∗
n as well as β̂

∗
n by minimizing standard

objective functions on some pseudo-values. Note that the modified perturbation
bootstrap versions of the Alasso estimator as well as of the Alasso initial estimator
can be obtained simply by properly perturbing the Alasso residuals in the decom-
position yi = ŷi + ε̂i , i = 1, . . . , n.

3. Assumptions. We first introduce some notation required for stating our
assumptions and useful for the proofs later. We denote the true parameter vector
as βn = (β1,n, . . . , βp,n)

′, where the subscript n emphasizes that the dimension
p := pn may grow with the sample size n. Set An = {j : βj,n �= 0} and p0 :=
p0,n = |An|. For simplicity, we shall suppress the subscript n in the notation pn

and p0n. Without loss of generality, we shall assume that An = {1, . . . , p0}. Let
Cn = n−1∑n

i=1 xix
′
i and partition it according to An = {1, . . . , p0} as

Cn =
[
C11,n C12,n

C21,n C22,n

]
,

where C11,n is of dimension p0 × p0. Define x̃i = C−1
n xi (when p ≤ n) and

sgn(x) = −1,0,1 according as x < 0, x = 0, x > 0, respectively. Suppose Dn

is a known q × p matrix with tr(DnD
′
n) = O(1) and q is not dependent on n. Let
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D(1)
n contain the first p0 columns of Dn. Define

Sn =
⎡
⎣D(1)

n C−1
11,nD

(1)′
n .σ 2 D(1)

n C−1
11,nx̄

(1)
n .μ3

x̄(1)′
n C−1

11,nD
(1)′
n .μ3

(
μ4 − σ 4)

⎤
⎦ ,

where x̄n = n−1∑n
i=1 xi = (x̄(1)′

n , x̄(2)′
n )′, σ 2 = Var(ε1) = E(ε2

1), and where μ3
and μ4 are, respectively, the third and fourth central moments of ε1. Define in addi-

tion the q × p0 matrix Ď
(1)

n = D(1)
n C

−1/2
11,n and the p0 × 1 vector x̌

(1)
i = C

−1/2
11,n x

(1)
i .

Let K be a positive constant and r be a positive integer ≥ 3 unless otherwise
specified. ‖ · ‖ and ‖ · ‖∞, respectively, denote the Euclidean norm and the Sup
norm. c ∧ d denotes min{c, d} for two real numbers c and d . P and E, respec-
tively, denote the usual probability and expectation, where as by P∗ and E∗ we
denote, respectively, probability and expectation with respect to the distribution of
G∗ conditional upon the observed data.

We now introduce our assumptions.

(A.1) Let η11,n denote the smallest eigenvalue of the matrix C11,n:

(i) η11,n > Kn−a for some a ∈ [0,1).
(ii) max{n−1∑n

i=1 |xi,j |2r : 1 ≤ j ≤ p} + {n−1∑n
i=1 |(C−1

11,n)j.x
(1)
i |2r :

1 ≤ j ≤ p0} = O(1).
(iii) max{n−1∑n

i=1 |x̃i,j |2r : 1 ≤ j ≤ p} = O(1), where x̃i,j is the j th
element of x̃i . (when p ≤ n)

(iii)′ max{cj,j
11,n : 1 ≤ j ≤ p0} = O(1), where c

j,j
11,n is the (j, j)th element

of C−1
11,n (when p > n).

(A.2) There exists a δ ∈ (0,1) such that for all n > δ−1:

(i) sup{x′Ď(1)

n Ď
(1)′
n x : x ∈ Rq,‖x‖ = 1} < δ−1.

(ii) n−1∑n
i=1 ‖Ď(1)

n x̌
(1)
i x̌

(1)′
i Ď

(1)′
n ‖r = O(1).

(iii) inf{x′Snx : x ∈ Rq+1,‖x‖ = 1} > δ.

(A.3) max{|βj,n| : j ∈ An} = O(1) and min{|βj,n| : j ∈ An} ≥ Kn−b for some
b ≥ 0 such that 4b < 1 and a + 2b ≤ 1, where a is defined as in (A.1)(i).

(A.4) (i) E|ε1|r < ∞. Eε1 = 0.
(ii) (ε1, ε

2
1) satisfies Cramér’s condition:

lim sup
‖(t1,t2)‖→∞

∣∣E(exp
(
i
(
t1ε1 + t2ε

2
1
)))∣∣< 1.

(A.5) (i) E∗(G∗
1)

r < ∞. Var(G∗
1) = σ 2

G∗ = μ2
G∗ , E∗(G∗

1 − μG∗)3 = μ3
G∗ .

(ii) G∗
i and εi are independent for all 1 ≤ i ≤ n.

(iii) ((G∗
1 − μG∗), (G∗

1 − μG∗)2) satisfies Cramér’s condition:

lim sup
‖(t1,t2)‖→∞

∣∣E∗
(
exp

(
i
(
t1
(
G∗

1 − μG∗
)+ t2

(
G∗

1 − μG∗
)2)))∣∣< 1.
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(A.6) There exists δ1 ∈ (0,1) such that for all n > δ−1
1 :

(i) λn√
n

≤ δ−1
1 n−δ1 min{n−bγ

p0
, n−bγ−a/2√

p0
}.

(ii) λn√
n
nγ/2 ≥ δ1n

δ1p0.

(iii) p0 = o(n1/2(logn)−3/2).

(A.7) There exists C ∈ (0,∞) and δ2 ∈ (0, γ −1δ1), δ1 being defined in the as-
sumption (A.6), such that

P
(
max

{∣∣√n(β̃j,n − βj,n)
∣∣ : 1 ≤ j ≤ p

}
> C.nδ2

)= o
(
n−1/2),

P∗
(
max

{∣∣√n
(
β̃∗

j,n − β̂j,n

)∣∣ : 1 ≤ j ≤ p
}
> C.nδ2

)= op

(
n−1/2).

Now we explain the assumptions briefly. Assumption (A.1) describes the regu-
larity conditions needed on the growth of the design vectors. Assumption (A.1)(i)
is a restriction on the smallest eigenvalue of C11,n. Assumption (A.1)(i) is a weaker
condition than assuming that C11,n converges to a positive definite matrix. (A.1)(ii)
and (iii) are needed to bound the weighted sums of types [∑n

i=1 xiεi], [∑n
i=1 x̃iεi],

[C−1
11,n

∑n
i=1 x

(1)
i εi] (second one only when p ≤ n). For r = 2, (A.1)(iii) is equiv-

alent to the condition that the diagonal elements of the matrix C−1
n are uniformly

bounded. Also for general value of r , (A.1)(ii) and (iii) are much weaker than con-
ditioning on lr -norms of the design vectors. Here, the value of r is specified by
the underlying Edgeworth expansion. Assumption (A.1)(iii) requires p ≤ n, and
hence is not defined when p > n. Note that the condition (A.1)(iii)′ needs p0 ≤ n

which is true in our setup due to assumption (A.6)(iii).
Assumptions (A.2)(i) bounds the eigenvalues of the matrix D(1)

n C−1
11,nD

(1)′
n

away from infinity. It is necessary to obtain bounds needed in the Studentized
setup. Assumption (A.2)(ii) is a condition similar to the conditions in (A.1)(ii)
and (iii); but involving the q × p matrix Dn. This condition is needed for show-
ing necessary closeness of the covariance matrix estimators �̆n, �̃n (defined in
Section 5) to their population counterparts (for details see Lemma 8.5). Assump-
tion (A.2)(iii) bounds the minimum eigenvalue of the matrix Sn away from 0. This
condition along with the Cramér conditions given in (A.4) and (A.5) enable certain
Edgeworth expansions.

Assumption (A.3) separates the relevant covariates from the nonrelevant ones.
The condition on the minimum is needed to ensure that the nonzero regression
coefficients cannot converge to zero faster than the error rate, that is, not faster
than O(n−1/2). We mention that one can assume b < 1/2 instead of assuming
b < 1/4, but with the price of putting another restriction on the penalty parameter
λn. We do not consider such a setting here. We also want to point out that it is not
possible to relax this minimal signal condition by the bias correction, considered
in Section 5. With further relaxation, the bias of the Alasso estimator will be larger
than the estimation error which is of order Op(n−1/2), and hence second-order
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correctness cannot be achieved by perturbation bootstrap in more relaxed minimal
signal condition.

Assumption (A.4)(i) is a moment condition on the error term needed for valid
Edgeworth expansion. Assumption (A.4)(ii) is Cramér’s condition on the errors,
which is very common in the literature of Edgeworth expansions; it is satisfied
when the distribution of (ε1, ε

2
1) has a nondegenerate component which is abso-

lutely continuous with respect to the Lebesgue measure [cf. Hall (1992)]. Assump-
tion (A.4)(ii) is only needed to get a valid Edgeworth expansion for the original
Alasso estimator in the Studentized setup. Assumptions (A.5)(i) and (iii) are the
analogous conditions that are needed on the perturbing random quantities to get
a valid Edgeworth expansion in the bootstrap setting. Assumption (A.5)(ii) is nat-
ural, since the εi are present already in the data generating process, whereas G∗

i

are introduced by the user. One can look for Generalized Beta and Generalized
Gamma families for suitable choices of the distribution of G∗. The p.d.f. of Gen-
eralized Beta family of distributions is

GB(y;f,g,h,ω,ρ)

=
⎧⎪⎨
⎪⎩

|f |yf ω−1(1 − (1 − c)(y/g)f )ρ−1

gf ωB(ω,ρ)(1 + c(y/g)f )ω+ρ
for 0 < yf <

gf

1 − h
,

0 otherwise,

where 0 ≤ h ≤ 1 and other parameters are all positive. We interpret 1/0 as ∞. The
function B(ω,ρ) is the beta function. Choices of the distribution of G∗ can be
obtained by finding solution of (f, g,h,ω,ρ) from the following two equations:

B(ω + 2/f,ρ)

B(ω,ρ)
2F1[ω + 2/f,2/f ;h;ω + ρ + 2/f ]

= 2
[
B(ω + 1/f,ρ)

B(ω,ρ)
2F1[ω + 1/f,1/f ;h;ω + ρ + 1/f ]

]2

and

B(ω + 3/f,ρ)

B(ω,ρ)
2F1[ω + 3/f,3/f ;h;ω + ρ + 3/f ]

= 5
[
B(ω + 1/f,ρ)

B(ω,ρ)
2F1[ω + 1/f,1/f ;h;ω + ρ + 1/f ]

]3
,

where 2F1 denotes hypergeometric series. The p.d.f. of Generalized Gamma fam-
ily of distributions is given by

GG(y;ω,ρ, ν) =
⎧⎪⎨
⎪⎩

(ν/ωρ)yρ−1e(y/ω)ν

�(ρ/ν)
for y > 0,

0 otherwise,
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where all the parameters are positive and �(·) denotes the gamma function. For this
family, the suitable choices of the distribution of G∗ can be obtained by consider-
ing any positive value of the parameter ω and solving the following two equations
for (ρ, ν): [

�
(
(ρ + 2)/ν

)] ∗ �(ρ/ν) = 2
[
�
(
(ρ + 1)/ν

)]2
and [

�
(
(ρ + 3)/ν

)] ∗ [�(ρ/ν)
]2 = 5

[
�
(
(ρ + 1)/ν

)]3
.

One immediate choice of the distribution of G∗ from Generalized Beta family is
the Beta(α,β) distribution with 3α = β = 3/2. We have utilized this distribution
as the distribution of the perturbing quantities G∗

i ’s in our simulations, presented
in Section 6. Outside these two generalized family of distributions, one possible
choice is the distribution of (M1 + M2) where M1 and M2 are independent and
M1 is a Gamma random variable with shape and scale parameters 0.008652 and 2,
respectively, and M2 is a Beta random variable with both the parameters 0.036490.
Another possible choice is the distribution of (M3 +M4) where M3 and M4 are in-
dependent and M3 is an Exponential random variable with mean (79−15

√
33)/16

and M4 is an Inverse Gamma random variable with both shape and scale parame-
ters (4 + √

11/3).
Assumptions (A.6)(i) and (ii) can be compared with the condition (c) λn/

√
n →

0 and nγ/2λn/
√

n → ∞ [cf. Zou (2006), Caner and Fan (2010)]. Whereas (c) is
ensuring the oracle normal approximation, (A.6)(i) and (ii) are required for ob-
taining Edgeworth expansions. Lastly, (A.6)(iii) limits how quickly the number of
nonzero regression coefficients may grow. Though it would seem that p0 = O(n)

with p0 ≤ n should be a sufficient restriction on the growth rate of p0 for ap-
proximating the distribution of the Alasso estimator, a careful analysis reveals that
further reduction in the growth rate of p0 is necessary for accommodating the Stu-
dentization. Clearly, it is difficult to comprehend what possible choices of p0, λn,
γ , a, b would satisfy the assumptions presented in (A.6). Thus it is better to present
some possible choices of those parameters.

First, consider a = 0 and b = 0, that is assume that the smallest eigenvalue of
C11,n and the smallest nonzero regression coefficients are bounded away from 0.
In that case, it is easy to check that one set of possible choices are p0 = O(nγ/5)

and λn = C.n1/2−γ /4 for some constant C > 0, provided γ ∈ (0,2). In particular,
if γ = 1 then the choices of p0 and λn maybe respectively p0 = O(n1/5) and λn =
C.n1/4 when a = b = 0. Again p0 can grow with n at the rate o(n1/2(logn)−3/2),
when γ > 2 and λn = C.n(2−γ )/6 for some constant C > 0 whenever a = b = 0.

In general, if a ∈ [0,1/2) and b < 1/4, then it can be shown that the possible
choices of γ , p0 and λn are respectively 4a/(1 − 2b) < γ < 2/(1 + 2b), p0 =
O(n[(1−2b)γ ]/5) and λn = C.n1/2−γ /4−bγ /2 for some constant C > 0. On the other
hand, if a ∈ [1/2,1) and a + 2b < 1, one set of possible choices would be γ ≥
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2, p0 = O(n2/3−(a+2bγ+4c)/3) and λn = C.n1/6−(a+2bγ+c)/3 for some constants
c,C > 0. With a = 1/2 and b = 0, clearly the choices of p0 and λn reduce to
p0 = O(n1/2−δ) and λn = C.n−δ/4 for some δ,C > 0.

Assumption (A.7) places deviation bounds on both the sample and bootstrap
initial estimators which are needed to get valid Edgeworth expansions. These
conditions are satisfied by OLS estimator in p ≤ n case (cf. Lemma 8.2). Note
that nonbootstrap part of (A.7) is satisfied if there exists a linear approximation
of the type

∑n
i=1 ai,j εi of

√
n(β̃j,n − βj,n), where max{∑n

i=1 |ai,j |r : 1 ≤ j ≤
p} = o(p−1n−1/2+rδ2) and E(|ε1|r ) < ∞ for some r ≥ 3. The bootstrap devia-
tion bound corresponding to (A.7) holds provided similar approximation exists
with (G∗

1 −μG∗) in place of ε1. More precisely, for the Ridge estimator and for its
perturbation bootstrap version defined in Section 2, if for some r ≥ 4, the condi-
tions

(a) E|ε1|r + E∗(G∗
1)

r < ∞,
(b) max{n−1∑n

i=1(|xi |2r + |x̆i |2r ) : 1 ≤ j ≤ p} = O(nδ2/2) for all i ∈ {1,

. . . , n},
(c) max{e′

j (Cn + λ̃nn
−1Ip)−1βn : 1 ≤ j ≤ p} = O(n(1+δ2)/2λ̃−1

n ),

(d) sup{e′
j (Cn + λ̃nn

−1Ip)−1zn : ‖zn‖ ≤ 1} = O(n(1+δ2)/2λ̃−1
n ) for all j ∈

{1, . . . , p}
are satisfied, then the assumption (A.7) holds. Here, {e1, . . . , ep} is the standard
basis of Rp , x̆i = (Cn + λ̃nn

−1Ip)−1xi and λ̃n is the penalty parameter cor-
responding to the Ridge estimator (cf. Section 2). This follows analogously to
Proposition 8.4 of Chatterjee and Lahiri (2013) after applying Lemma 8.1, stated
in Section 8.

4. Impossibility of second-order correctness of the naive perturbation
bootstrap. In this section, we describe the naive perturbation bootstrap as de-
fined by MTC(11) for the Alasso and show that second-order correctness can not
be achievable by their naive perturbation bootstrap method. When the objective
function is the usual least squares criterion function, the naive perturbation boot-
strap Alasso estimator β∗N

n is defined in MTC(11) as

β∗N
n = arg min

v∗
n

[
n∑

i=1

(
yi − x′

iv
∗
n

)2
G∗

i + λ∗
n

p∑
j=1

∣∣β̃∗N
j,n

∣∣−γ ∣∣v∗
j,n

∣∣],(4.1)

where:

(i) λ∗
n > 0 is such that λ∗

nn
−1/2 → 0 and λ∗

n → ∞ as n → ∞;
(ii) the initial naive bootstrap estimator is defined as

β̃
∗N

n = arg min
v∗

n

[
n∑

i=1

(
yi − x′

iv
∗
n

)2
G∗

i

]

and β̃∗N
j,n is the j th component of β̃

∗N

n ;
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(iii) {G∗
1, . . . ,G

∗
n} is a set of i.i.d. nonnegative random quantities with mean

and variance both equal to 1.

Note that the initial estimator β̃
∗N

n is unique only when p is less than or equal
to n. We now consider the quantity u∗N

n = √
n(β∗N

n − β̂n), which we can show
from (4.1) to be the minimizer

u∗N
n = arg min

w∗
n

[
w∗′

n C∗
nw

∗
n − 2w∗

nW
∗
n

+ λ∗
n

p∑
j=1

∣∣β̃∗N
j,n

∣∣−γ
(∣∣∣∣β̂j,n + w∗

j,n√
n

∣∣∣∣− |β̂j,n|
)]

,

(4.2)

where β̂j,n is the j th component of the Alasso estimator β̂n, C∗
n = n−1∑n

i=1 xi ×
x′

iG
∗
i , and W ∗

n = n−1/2∑n
i=1 ε̂ixiG

∗
i . To describe the solution of MTC(11), as-

sume A = {j : βj �= 0} = {1, . . . , p0}. MTC(11) claimed that when γ = 1 and p is
fixed, ((u∗N

n1 )′,0)′ is a solution of (4.2) for sufficiently large n, where

u∗N
n1 = C−1

11,nn
−1/2

n∑
i=1

εix
(1)
i

(
G∗

i − 1
)

and
∥∥u∗N

n − ((
u∗N

n1
)′
,0
)′∥∥∞ = op∗(1).

However, to achieve second-order correctness, we need to obtain a solution
((u∗N

n2 )′,0)′ of (4.2) such that ‖u∗N
n − ((u∗N

n2 )′,0)′‖∞ = op∗(n
−1/2). We show that

such an u∗N
n2 has the form

u∗N
n2 = C∗−1

11,n

[
W ∗(1)

n − λ∗
n√
n
s̃∗(1)
n

]

for sufficiently large n, where W ∗(1)
n is the first p0 components of W ∗

n and the
j th component of s̃∗(1)

n equals to sgn(β̂j,n)‖β̃∗N
jn |−γ , j ∈ A (here, we drop the

subscript n from the notation of true parameter values since we are considering p

to be fixed in this section). We establish this fact by exploring the KKT condition
corresponding to (4.2), which is given by

2C∗
nw

∗
n − 2W ∗

n + λ∗
n√
n
�∗

nln = 0,(4.3)

for some ln = (l1n, . . . , lpn)
′ with lj,n ∈ [−1,1] for j = 1, . . . , p and �∗

n =
diag(|β̃∗N

1n |−γ , . . . , |β̃∗N
pn |−γ ). Since C∗

n is a nonnegative definite matrix, (4.2) is
a convex optimization problem; hence (4.3) is both necessary and sufficient in
solving (4.2).

Note that W ∗
n is not centered and hence we need to adjust the solution

((u∗N
n2 )′,0)′ for centering before investigating if the naive perturbation boot-

strap can asymptotically correct the distribution of Alasso up to second order.
Clearly, the centering adjustment term is Ad∗

n = (Ad∗(1)′
n ,0′)′ where Ad∗(1)

n =
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C∗−1
11,nn

−1/2∑n
i=1 ε̂ix

(1)
i . It follows from the steps of the proofs of the results of

Section 5 that we need ‖Ad∗
n‖ = op∗(n

−1/2) to achieve second-order correctness.
We show that this is indeed not the case even in the fixed p setting.

More precisely, we negate the second-order correctness of the naive perturba-
tion bootstrap of MTC(11) by first showing that ((u∗N

n2 )′,0′)′ satisfies the KKT
condition (4.3) exactly with bootstrap probability converging to 1. Then we show
that

√
n‖Ad∗

n‖ diverges in bootstrap probability to ∞, which in turn implies that
the conditional c.d.f. of F ∗N

n = √
n(β∗N

n − β̂n) can not approximate the c.d.f. of
F n = √

n(β̂n − β) with the uniform accuracy Op(n−1/2), needed for the valid-
ity of second-order correctness. We formalize these arguments in the following
theorem.

THEOREM 4.1. Let p be fixed and Cn → C, a positive definite matrix. Define
Z∗−1

n = √
n‖Ad∗

n‖. Suppose, (logn/n)1/2.max{λn,λ
∗
n} → 0 and (logn)−(γ+1)/2.

min{λn,λ
∗
n}.min{1, n(γ−1)/2} → ∞ as n → ∞. Also assume that (A.1)(i), (ii) and

(A.4)(i) hold with r = 4. Then there exists a sequence of Borel sets {An}n≥1 with
P(εn ∈ An) → 1 and given εn = (ε1, . . . , εn)

′ ∈ An, the following conclusions
hold:

(a) P∗
(
u∗N

n = ((
u∗N

n2
)′
,0′)′)= 1 − o

(
n−1/2).

(b) P∗
(
Z∗

n > ε
)= o

(
n−1/2) for any ε > 0.

(c) sup
x∈Rp

∣∣P∗
(
F ∗N

n ≤ x
)− P(F n ≤ x)

∣∣≥ K.
λn√
n

for some K > 0.

REMARK 1. Theorem 4.1(a), (b) state that the naive perturbation bootstrap is
incompetent in approximating the distribution of Alasso up to second order. The
fundamental reason behind second-order incorrectness is the inadequate center-
ing in the form of

√
n(β∗N

n − β̂n). Although the adjustment term necessary for
centering is op∗(1), which essentially helps to establish distributional consistency
in MTC(11), the term is coarser than n−1/2, leading to second-order incorrect-
ness. Additionally, it is worth mentioning that Studentization will also not help in
achieving second-order correctness by naive perturbation bootstrap of MTC(11),
since the necessary centering correction cannot be accomplished by any sort of
Studentization. Part (c) conveys uniformly how far the naive bootstrap c.d.f. is
from the original c.d.f.

5. Modified perturbation bootstrap and its higher order properties. This
section is divided into two subsections. The first one describes briefly the moti-
vation behind considering the perturbation bootstrap modification in Alasso. The
second subsection describes higher order asymptotic properties of our modified
perturbation bootstrap method.
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5.1. Motivation for the modified perturbation bootstrap. Theorem 4.1 estab-
lishes that the naive perturbation bootstrap of MTC(11) does not provide a solution
for approximating the distribution of

√
n(β̂n−βn) up to second order. As it is men-

tioned earlier, the problem occurs because W ∗
n is not centered. Let W̆

∗
n denotes the

centered version of W ∗
n, that is W̆

∗
n = n−1/2∑n

i=1 ε̂ixi (G
∗
i − μG∗), and consider

the vector equation

2C∗
nw

∗
n − 2W̆

∗
n + λ∗

n√
n
�∗

nln = 0,(5.1)

which is same as (4.3) after replacing W ∗
n with W̆

∗
n. Note that the solution to (5.1)

is of the form ((u
∗(1)
n3 )′,0′)′, where u

∗(1)
n3 = C∗−1

11,n[W̆
∗(1)

n − λ∗
n√
n
s̃∗(1)
n ]. Although this

form is adequate for achieving second-order correctness in fixed dimension, there
are some computational and higher-dimensional issues that we now address.

Note that C∗
11,n is a matrix involving random quantities {G∗

1, . . . ,G
∗
n}. Thus

C∗
11,n will not remain same for each bootstrap iteration, and hence each bootstrap

iteration will require computing the inverse of C∗
11,n afresh. This is computation-

ally expensive and the expense increases as the number of nonzero regression pa-
rameters increases. Therefore, it will be computationally advantageous if we can
replace C∗

11,n by C11,n in the form of u
∗(1)
n3 .

Now define, u
∗(1)
n4 = C−1

11,n[W̆
∗(1)

n − λ∗
n√
n
s̃∗(1)
n ]. If we look closely at the bias term

− λ∗
n√
n
C−1

11,ns̃
∗(1)
n , then it is clear that the primary contribution of the bias toward

u
∗(1)
n4 is − λ∗

n√
n
C−1

11,ns̃
(1)
n , where j th component of s̃(1)

n is equal to sgn(β̂j,n)‖β̃jn|−γ ,

j ∈ A, where β̃j,n is the j th component of the OLS estimator β̃n. By Taylor’s
expansion, (s̃∗(1)

n − s̃(1)
n ) depends on the OLS residuals. The OLS residuals again

depend on all p estimated regression parameters, unlike Alasso residuals which
depend only on the estimates of the p0 nonzero components. Since it is needed to
bound ‖s̃∗(1)

n − s̃(1)
n ‖∞ for achieving valid edgeworth expansion, we will come up

with an implicit bound on the dimension p, which we do not want to impose. On
the other hand, if the difference depends on Alasso residuals instead of OLS ones,
then the implicit condition will be on p0 and this is reasonable as p0 can be much

smaller than p. Additionally, β̃
∗N

n involves inversion of the random matrix C∗
n and

hence it is computationally expensive. Thus if C∗
n can be replaced by some fixed

matrix, say Cn, then the bootstrap will be computationally advantageous.
However, if we implement the modification described in Section 2, then both the

theoretical and computational shortcomings of the perturbation bootstrap method
become resolved and the second-order correctness is achieved even in increasing
dimension under some mild regularity conditions. Additionally, we also have the
nice structure due to the modification, which enables us to employ existing com-
putational algorithms, as pointed out in Proposition 2.1.
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5.2. Higher order results. Define T n = √
nDn(β̂n − βn). Without loss of

generality, we assume that An = {j : βj,n �= 0} = {1, . . . , p0}. Hence, by Tay-
lor’s expansion it is immediate from the form of Alasso estimator that �n =
n−1∑n

i=1(ξ
(0)
i + η

(0)
i )(ξ

(0)
i + η

(0)
i )′ or �̄n = n−1∑n

i=1 ξ
(0)
i ξ

′(0)
i can be considered

as the asymptotic variance of T n/σ at sample size n. Here, ξi
(0) = D(1)

n C−1
11,nx

(1)
i ,

η
(0)
i = D(1)

n C−1
11,nηi . For each i ∈ {1, . . . , n}, ηi is a p0 × 1 vector with j th element

(λn

2n
x̃i,j

γ

|βj,n|γ+1 sgn(βj,n)) where x̃i = C−1
n xi (when p ≤ n) and sgn(x) = −1,0,1

according as x < 0, x = 0, x > 0, respectively, as defined earlier. The bias corre-
sponding to T n is −bn = −D(1)

n C−1
11,ns

(1)
n

λn

2
√

n
, where D(1)

n and C11,n are as defined

earlier and s
(1)
n is a p0 × 1 vector with j th element sgn(βj,n)|βj,n|−γ . Although

�̄n is defined for all p, �n is only defined when p ≤ n. �̄n is also the asymptotic
variance of [T n + bn]/σ .

Define the set Ân = {j : β̂j,n �= 0} and p̂0,n = |Ân|, supposing, without
loss of generality, that Ân = {1, . . . , p̂0,n}. We then partition the matrix Cn =
n−1∑n

i=1 xix
′
i as

Cn =
[
Ĉ11,n Ĉ12,n

Ĉ21,n Ĉ22,n

]
,

where Ĉ11,n is of dimension p̂0,n × p̂0,n. Similarly, we define D̂
(1)

n as the matrix
containing the first p̂0,n columns of Dn and we define x̂

(1)
i as the vector containing

the first p̂0,n entries of xi . Hence, the bias-correction term b̆n corresponding to T n

can be defined as

b̆n = D̂
(1)

n Ĉ
−1
11,nŝ

(1)
n

λn

2
√

n
,

where ŝ(1)
n is the p̂0,n ×1 vector with j th entry equal to sgn(β̂j,n)|β̃j,n|−γ , j ∈ Ân.

Therefore, the Studentized pivots can be constructed as

Rn =
⎧⎨
⎩

σ̂−1
n �̂

−1/2
n T n for p ≤ n,

σ̂−1
n �̌

−1/2
n T n for p > n,

and Řn = σ̌−1
n �̌

−1/2
n [T n + b̆n],

where the matrices �̂n and �̌n have the form

(5.2) �̂n = n−1
n∑

i=1

(
ξ̂

(0)

i + η̂
(0)
i

)(
ξ̂

(0)

i + η̂
(0)
i

)′ and �̌n = n−1
n∑

i=1

ξ̂
(0)

i ξ̂
(0)′
i

and

σ̂ 2
n = n−1

n∑
i=1

ε̂2
i and σ̌ 2

n = n−1
n∑

i=1

ε̃2
i ,
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where ε̂i = yi − x′
i β̂n, ε̃i = yi −∑

j∈Ân
xij β̃j,n, ξ̂ i

(0) = D̂
(1)

n Ĉ
−1
11,nx̂

(1)
i and η̂

(0)
i =

D̂
(1)

n Ĉ
−1
11,nη̂i , with

η̂i =
(

λn

2n
x̃i,j

γ

|β̂j,n|γ+1
sgn(β̂j,n)

)
j∈Ân

.

We construct perturbation bootstrap versions R∗
n and Ř

∗
n of Rn and Řn first by

replacing T n with T ∗
n = √

nDn(β̂
∗
n − β̂n). We then replace �̂n and �̌n with �̆n

and �̃n, respectively, which we define by replacing ξ̂
(0)

i with ξ̆
(0)

i = ξ̂
(0)

i ε̂i and η̂
(0)
i

with η̆
(0)
i = η̂

(0)
i ε̂i in (5.2). We replace b̆n with b̆

∗
n = D̂

∗(1)

n Ĉ
∗−1
11,nŝ

∗(1)
n λn/(2

√
n),

where ŝ∗(1)
n is the |Â∗

n| × 1 vector with j th entry equal to sgn(β̂∗
j,n)|β̃∗

j,n|−γ , j ∈
Â∗

n = {j : β̂
∗
j,n �= 0}. The matrix Ĉ

∗
11,n is the |Â∗

n| × |Â∗
n| submatrix of Cn with

rows and columns in Â∗
n and D̂

∗(1)

n is the q × |Â∗
n| submatrix of Dn with columns

in Â∗
n. Lastly, we need

σ̂ ∗2
n = n−1μ−2

G∗
n∑

i=1

ε̂∗2
i

(
G∗

i − μG∗
)2 and σ̌ ∗2

n = n−1μ−2
G∗

n∑
i=1

ε̃∗2
i

(
G∗

i − μG∗
)2

,

where ε̂∗
i = yi − x′

i β̂
∗
n, ε̃∗

i = yi −∑
j∈Â∗

n
xij β̃

∗
j,n. With these, we construct R∗

n and

Ř∗
n as

R∗
n =

⎧⎨
⎩

σ̂ ∗−1
n σ̂n�̆

−1/2
n T ∗

n for p ≤ n,

σ̂ ∗−1
n σ̂n�̃

−1/2
n T ∗

n for p > n,
and Ř∗

n = σ̌ ∗−1
n σ̌n�̃

−1/2
n

[
T ∗

n + b̆
∗
n

]
.

We are motivated to look at these Studentized or pivot quantities by the fact that
studentization improves the rate of convergence of bootstrap estimators in many
settings [cf. Hall (1992)].

5.2.1. Results for p ≤ n.

THEOREM 5.1. Let (A.1)–(A.6) hold with r = 6. Then

sup
B∈Cq

∣∣P∗
(
R∗

n ∈ B
)− P(Rn ∈ B)

∣∣= op

(
n−1/2).

Theorem 5.1 shows that after proper Studentization the modified perturbation
bootstrap approximation of the distribution of the Alasso estimator is second-order
correct. The error rate reduces to op(n−1/2) from O(n−1/2), the best possible rate
obtained by the oracle Normal approximation. This is a significant improvement
from the perspective of inference. As a consequence, the precision of the percentile
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confidence intervals based on R∗
n will be greater than that of confidence intervals

based on the oracle Normal approximation.
We point out that the error rate in Theorem 5.1 cannot be reduced to the optimal

rate of Op(n−1), unlike in the fixed-dimension case. To achieve this optimal rate
by our modified bootstrap method, we now consider a bias corrected pivot Řn and
its modified perturbation bootstrap version Ř∗

n. The following theorem states that
it achieves the optimal rate.

THEOREM 5.2. Let (A.1)–(A.6) hold with r = 8. Then

sup
B∈Cq

∣∣P∗
(
Ř∗

n ∈ B
)− P(Řn ∈ B)

∣∣= Op

(
n−1).

Theorem 5.2 suggests that the modified perturbation bootstrap achieves notable
improvement in the error rate over the oracle Normal approximation irrespective of
the order of the bias term. Thus Theorem 5.2 establishes the perturbation bootstrap
method as an effective method for approximating the distribution of the Alasso
estimator when p ≤ n.

5.2.2. Results for p > n. We now present results for the quality of perturba-
tion bootstrap approximation when the dimension p of the regression parameter
can be much larger than the sample size n. We consider the initial estimator β̃n to
be some bridge estimator, for example, Lasso or Ridge estimator, in defining the
Alasso estimator by (1.2). The bootstrap version of Lasso or Ridge is defined by
(2.2). Higher order results are presented separately for two cases based on growth
of p with sample size n. First, we consider the case when p can grow polynomially
and then we move to the situation when p can grow exponentially.

5.2.2.1. p grows polynomially.

THEOREM 5.3. Let (A.1)(i), (ii), (iii)′ and (A.2)–(A.6) and (A.7) hold and
p = O(n(r−3)/2) for some positive integer r ≥ 3. Now if b = 0 [cf. condition (A.3)
in Section 3] and r ≥ 8, then we have

sup
B∈Cq

∣∣P∗
(
R∗

n ∈ B
)− P(Rn ∈ B)

∣∣= op

(
n−1/2),

sup
B∈Cq

∣∣P∗
(
Ř∗

n ∈ B
)− P(Řn ∈ B)

∣∣= op

(
n−1/2).

Theorem 5.3 states that our proposed modified perturbation bootstrap approxi-
mation is second-order correct, even when p grows polynomially with n. The error
rate obtained by our proposed method is significantly better than O(n−1/2), which
is the best-attainable rate of the oracle Normal approximation. When p can grow
at a polynomial rate with n, the validity of our method depends on the existence
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of some polynomial moment of the error distribution. To see why, note that it is
essential to have

P
(

max
1≤j≤p

|W̆j,n| > K.
√

logn
)

= o
(
n−1/2) and

P∗
(

max
1≤j≤p

∣∣W̆ ∗
j,n

∣∣> K.
√

logn
)

= op

(
n−1/2)(5.3)

to obtain second-order correctness, as presented in Theorem 5.3. Here, K ∈ (1,∞)

is a constant, W̆j,n = n−1/2∑n
i=1 εixi,j and W̆ ∗

j,n = n−1/2∑n
i=1 ε̂ixi,j (G

∗
i −μG∗).

In view of Lemma 8.1, the following bound is needed to conclude (5.3):

p.

(
max

1≤j≤p

[
n∑

i=1

|xi,j |2r

])(
E|ε1|r)2 = o

(
n(r−1)/2(logn)r/2).

Clearly, under the assumption max{n−1∑n
i=1 |xi,j |2r : 1 ≤ j ≤ p} = O(1) [cf.

condition (A.1) (ii)], we must have p = o(n(r−3)/2(logn)r/2) provided E|ε1|r <

∞. Therefore, in view of condition (A.1)(ii), p can grow like (an.n
l.(logn)l+3/2)

where an → 0 as n → ∞, provided E|ε1|2l+3 < ∞. This implies that p can grow
polynomially with n under the assumption that some polynomial moment of the
error distribution exists.

5.2.2.2. p grows exponentially. When p grows exponentially with some frac-
tional power of n, existence of polynomial moment of some order of regression
errors εi ’s [cf. condition (A.4)(i)] is not enough to achieve higher order accuracy.
Indeed, we need to have some control over the moment generating function of the
error variable. Following two important cases are considered in this setting.

Errors are sub-Gaussian: Suppose error ε1 is sub-Gaussian. This means that
there exists d > 0 such that

E
[
eκε1

]≤ eκ2d2/2 for all κ ∈ R.(5.4)

When the regression errors have sub-Gaussian tails, we need to choose the per-
turbing quantities G∗

i ’s effectively to have sub-Gaussian tails, that is, there exists
d∗ > 0 such that

E∗
[
eκ(G∗

1−μG∗ )]≤ eκ2d∗2/2 for all κ ∈ R.(5.5)

THEOREM 5.4. Let (A.1)(i), (ii), (iii)′ and (A.2)–(A.6) and (A.7) hold with
r = 8 and b = 0. Also assume that (5.4) and (5.5) hold and p = O(exp(n(δ1−γ δ2)))

where δ1 and δ2 are defined in assumptions (A.6) and (A.7) in Section 3. Then the
conclusions of Theorem 5.3 hold.

Errors are subexponential: Consider the regression errors to be sub-exponential,
that is there exist positive parameters d , h such that

E
[
eκε1

]≤ eκ2d2/2 for all |κ| < 1/h.(5.6)
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Similar to sub-Gaussian case, we need to choose the perturbing quantities G∗
i ’s

to be subexponential besides the errors being subexponential, that is, there exist
positive parameters d∗, h∗ such that

E∗
[
eκ(G∗

1−μG∗ )]≤ eκ2d∗2/2 for all |κ| < 1/h∗.(5.7)

THEOREM 5.5. Let (A.1)(i), (ii), (iii)′ and (A.2)–(A.5), (A.6)(i), (ii) and (A.7)
hold with r = 8 and b = 0. Also assume that (5.6) and (5.7) hold.

(a) If p = O(exp(n(δ1−γ δ2))) and p0 = O(n(1−δ1+γ δ2)/2) are satisfied where δ1
and δ2 are defined in assumptions (A.6) and (A.7) in Section 3, then the conclu-
sions of Theorem 5.3 hold.

(b) If p = O(exp(n)), n(−δ1+γ δ2) = o(p2
0/n) and p0/

√
n = o((logn)−3/2) are

satisfied where δ1 and δ2 are defined in assumptions (A.6) and (A.7) in Section 3,
then the conclusions of Theorem 5.3 hold.

Theorem 5.4 and 5.5 show that our perturbation bootstrap method remains valid
as a second-order correct method even when the dimension p grows exponentially
with some fractional power of n. Moreover, we can achieve exponential growth of
p in some situations when errors are sub-exponential, as stated in part (b) of The-
orem 5.5. To obtain higher order results stated in Theorem 5.4 and Theorem 5.5,
we need to relax (5.3) a bit for j = p0 + 1, . . . , p. It follows from the proofs and
condition (A.6)(ii) that we can relax (5.3) for j = p0 + 1, . . . , p, to the following:

P
(

max
p0+1≤j≤p

|W̆j,n| > K.n(δ1−γ δ2).p0

)
= o

(
n−1/2) and

P∗
(

max
p0+1≤j≤p

∣∣W̆ ∗
j,n

∣∣> K.n(δ1−γ δ2).p0

)
= op

(
n−1/2),(5.8)

keeping higher order results valid. Now consider using Hoeffding’s inequality in
the sub-Gaussian case and Bernstein’s inequality in the subexponential case. As
a result, the following two bounds are needed respectively in sub-Gaussian and
subexponential case to conclude (5.8)

p. exp
(
− C1.n

1+2(δ1−γ δ2).p2
0

2.max1≤j≤p[∑n
i=1(|xi,j |2 + |xi,j |4)]

)
= o

(
n−1/2) and

p. exp
(
− C2.n

1+2(δ1−γ δ2).p2
0

2(max1≤j≤p[∑n
i=1(|xi,j |2 + |xi,j |4)] + C3.n1/2+(δ1−γ δ2).p0)

)

= o
(
n−1/2).

C1, C2, C3 are some positive constants. In view of the assumption max{n−1 ×∑n
i=1 |xi,j |2r : 1 ≤ j ≤ p} = O(1) [cf. condition (A.1)(ii)], the first bound is im-

plied by p = o(exp(C.n2(δ1−γ δ2).p2
0).n

−1/2), whereas p = o(exp((C.n2(δ1−γ δ2).

p2
0)/(1+p0.n

−1/2+(δ1−γ δ2))).n−1/2) is required to obtain the second bound. Here,
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C is some positive constant. These requirements on the growth of p are implying
the growth conditions stated in Theorem 5.4 and Theorem 5.5.

REMARK 2. Note that the matrices �̆n and �̃n used in defining the bootstrap
pivots do not depend on G∗

1, . . . ,G
∗
n. Hence it is not required to compute the nega-

tive square roots of these matrices for each Monte Carlo bootstrap iteration; these
must only be computed once. This is a notable feature of our modified perturbation
bootstrap method from the perspective of computational complexity.

REMARK 3. When the dimension p is increasing exponentially, then it is im-
portant to choose the distribution of G∗

i ’s appropriately depending on whether the
regression errors are sub-Gaussian or subexponential. Note that if a random vari-
able W1 has distribution Beta(a1, b1), then by Hoeffding’s inequality,

E
[
eκ(W1−EW1)

]≤ eκ2/8 for all κ ∈R

and hence W1 is sub-Gaussian with parameter value 1/4, for any choice of (a1, b1).
On the other hand, if W2 has Gamma distribution with shape parameter a2 and
scale parameter b2 then

log E
[
eκ(W2−EW2)

]= −a2b2κ − a2 log(1 − b2κ) for |κ| < 1/b2

≤ a2b
2
2κ

2

2(1 − b2κ)
for |κ| < 1/b2

≤ a2b
2
2κ

2 for |κ| < 1/2b2,

where the first inequality follows from the fact that − log(1 − u) ≤ u + u2

2(1−u)
for

0 ≤ u < 1. Therefore, W2 is subexponential with parameters (b2
√

2a2,2b2), and

hence W1 +W2 is also subexponential with parameters (
√

1/4 + 2a2b
2
2,2b2) when

W1 and W2 are independent. These observations imply that Beta(1/2, 3/2) is an
appropriate choice for the distribution of G∗

i ’s when the errors are sub-Gaussian
and the distribution of (M1 + M2) is an appropriate choice for the distribution of
G∗

i ’s when the errors are sub-exponential where M1 and M2 are independent and
M1 is a Gamma random variable with shape and scale parameters 0.008652 and 2,
respectively, and M2 is a Beta random variable with both the parameters 0.036490.

REMARK 4. Let us consider the problem of simultaneous inference. Suppose
we want to make inference simultaneously for the parameters θj,n for all j in the
index set Jn, where θj,n = d ′

j,nβn with dj,n being a p × 1 vector satisfying all the
conditions of Dn assumed in Section 3.

First, suppose that |Jn|, the cardinality of Jn, is fixed. Then assuming without
loss of generality that |Jn| = {1, . . . , l} and taking Dn = (d1,n,d2,n, . . . ,d l,n)

′,
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we can use Theorems 5.1, 5.2, 5.3, 5.4, 5.5 to make simultaneous inference. Ob-
viously, we need to utilize the fact that the perturbation bootstrap approximation
holds uniformly over all convex sets of Rl .

Now suppose that |Jn| is increasing with n. In this scenario, simultaneous infer-
ence is not possible with a mere choice of the matrix Dn. There are two possible
ways out. One way out is to establish the validity of the bootstrap in approximat-
ing the distribution of max{√n|β̂j,n − βj,n| : j ∈ Jn}. The Edgeworth expansion
theory used in this paper is a well-developed technique in fixed-dimensional set-
tings; however, its validity in increasing dimension, more precisely how the error
rate depends on the dimension, is still unknown, and hence future investigation is
necessary. The second way out is to use componentwise bootstrap approximations
dictated by Theorems 5.1, 5.2, 5.3, 5.4, 5.5 and then combine them using the well-
known Bonferroni correction procedure. For example, suppose we want to con-
struct a 100(1 − α)% confidence region for (θ1,n, . . . , θln,n) where θj,n = d ′

j,nβn

with dj,n being a p × 1 vector satisfying all the conditions of Dn assumed in
Section 3, for all j ∈ {1, . . . , ln}. Now, |Jn| = ln is increasing with n and α is
the family wise error rate (FWER) of the region. FWER of a confidence region
�n (⊆ Rln) of (θ1,n, . . . , θln,n) is defined as P(θj,n /∈ �n for at least one j). De-

fine Řj,n = Řn and Ř∗
j,n = Ř∗

n when Dn = d ′
j,n, j ∈ {1, . . . , ln}. Define û

j
� as the

(1 − �)th quantile of the bootstrap distribution of |Ř∗
j,n| for j ∈ {1, . . . , ln} for

� ∈ (0,1). Also, for I ⊆ {1, . . . , p}, define dI
j,n as the |I | × 1 subvector of dj,n

with the entries in the index set I , for all j ∈ {1, . . . , ln}. Similarly, define CI,I
n

as the submatrix of Cn with row and column indices in I . Then one can have the
following corollary.

COROLLARY 5.1. Define, Ân = {j : β̂j,n �= 0}. Assume that [dÂn

j,n]′CÂn,Ân
n ×

[dÂn

j,n] ≥ c for some constant c > 0, all j ∈ {1, . . . , ln} and that ln = O(n1/2). If

� < α/ln, then {(θ1,n, . . . , θln,n) : |Řj,n| ≤ û
j
�, j = 1, . . . , ln} is a confidence re-

gion for (θ1,n, . . . , θln,n) with FWER ≤ α for sufficiently large n.

Proof of this corollary is presented in Section 8. The confidence region of Corol-
lary 5.1 can be utilized for testing θj,n = 0 simultaneously for j ∈ {1, . . . , ln} with
FWER ≤ α. Construction of confidence regions and multiple testing can similarly
be carried out with Rj,n and R∗

j,n instead of Řj,n and Ř∗
j,n for j ∈ {1, . . . , ln}.

We want to point out that the condition [dÂn

j,n]′CÂn,Ân
n [dÂn

j,n] ≥ c for all j ∈
{1, . . . , ln} along with the variable selection consistency of Alasso ensure condi-
tion (A.2)(iii) of Section 3. (A.2)(iii) is essential to obtain valid Edgeworth expan-
sions in the original and bootstrap settings. In particular, this condition is implying
that we can construct a valid confidence region for (θ1,n, . . . , θln,n) utilizing the
perturbation bootstrap only when θj,n involves some nonzero component of the
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regression parameter vector βn for all j ∈ {1, . . . , ln}. To check if this condition
can be dropped or not, future investigation is required. For simultaneous inference
regarding βn using the de-biased Lasso, one can also consider the recent work of
Dezeure, Bühlmann and Zhang (2017).

6. Simulation results. We study through simulation the coverage of one-
sided and two-sided 95% confidence intervals for individual nonzero regression
coefficients constructed via the pivot quantities Rn and Řn as well as via their
modified perturbation bootstrap versions R∗

n and Ř
∗
n. To make further compar-

isons, we also construct confidence intervals based on a Normal approxima-
tion to the distribution of a local quadratic approximation pivot RLQA

n , which
uses the estimator of Cov((βj , j ∈ Ân)

′) proposed in the original Alasso paper
by Zou (2006). We also consider the confidence interval from the oracle Nor-
mal approximation, which is based on the closeness in distribution of T n to a
Normal(0, σ 2D(1)C−1

11,nD
(1)) random variable, where we use the true active set of

covariates An to compute C−1
11,n. We denote this by Roracle

n . For the sake of com-
parison, we also consider the confidence intervals based on the naive perturbation
bootstrap from MTC(11) which in that paper are denoted by CN∗Q and CN∗N .

Under the settings

(n,p,p0) ∈ {
(200,80,4), (150,250,6), (200,500,8)

}
[more settings are treated in the Supplementary Material (Das, Gregory and Lahiri
(2019))], we generate n independent copies (X1, Y1), . . . , (Xn,Yn) of (X,Y ) ∈
R

p ×R from the model Y = X′β + ε, where ε is a standard normal random vari-
able, X = (X1, . . . ,Xp)′ is a mean-zero multivariate normal random vector such
that

Cov(Xj ,Xk) = 1(j = k) + 0.3|j−k|1(j ≤ p0)1(k ≤ p0)1(j �= k)

for 1 ≤ j, k ≤ p, and β = (β1, . . . , βp)′ with βj defined as βj = (1/2)j (−1)j ×
1(j ≤ p0) for j = 1, . . . , p.

We compute the empirical coverage over 500 simulated data sets of one- and
two-sided confidence intervals for each nonzero regression coefficient under cross
validation-selected values of λ̃n and λn, where λ̃n is the value of the tuning param-
eter used to obtain the preliminary Lasso estimate β̃n and λn is the value of the
tuning parameter used to obtain the Alasso estimate β̂n. We use γ = 1 throughout.
For each of the 500 simulated data sets, 1000 Monte Carlo draws of the indepen-
dent random variables G∗

1, . . . ,G
∗
n ∼ Beta(1/2,3/2) were drawn in order to create

1000 Monte Carlo draws of the bootstrap pivots.
When p ≤ n, we set λ̃n = 0, whereby we use the ordinary least squares estimate

for the preliminary estimator β̃n. When p > n, the value of λ̃n is chosen via 10-fold
cross validation and β̃n is computed under the selected value of λ̃n. Once β̃n is ob-
tained, 10-fold cross validation is used to select λn. The values λ̃n and λn are there-
after held fixed for all bootstrap computations on the same dataset. In each cross
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FIG. 1. Coverage of β1, β2, β3 and β4 over 500 simulation runs of the confidence intervals based

on RLQA
n , Roracle

n , Rn, Řn (dashed curves), R∗
n, and Ř∗

n (dotted curves) along with the frequency
of correct model selection (solid curve) over a grid of fifty λn values in the (n,p,p0) = (200,80,4)

case. Vertical lines show median choices of λn over 500 simulation runs when selected by minimizing
the cross validation estimate of prediction error (λcv

min) or under the 1-standard error rule (λcv+1se).

validation procedure, the largest value of the tuning parameter for which the cross
validation prediction error lies within one standard error of its minimum is used so
that greater penalization is preferred; see Friedman, Hastie and Tibshirani (2010).

We begin our discussion of the simulation results with Figure 1, which presents
for the case (n,p,p0) = (200,80,4) a study of how the coverages of the confi-
dence intervals based on the various pivots are affected by the choice of λn and by
the magnitude of the regression coefficients. Each panel of Figure 1 corresponds
to one of the p0 = 4 nonzero regression coefficients, where the magnitude of the
coefficients increases from left to right. Each panel shows the coverage over 500
simulated data sets of the confidence intervals based on the pivots RLQA

n , Roracle
n ,

Rn, Řn (dashed curves), R∗
n and Ř∗

n (dotted curves) plotted against 50 choices
of the tuning parameter λn, increasing from left to right. Also appearing in each
panel is a solid curve tracing the proportion of times the true model was selected
by the Alasso estimator. The two vertical lines in each panel are positioned at the
median choices of λn when it is selected as the minimizer of the cross validation
estimate of the prediction error and when the one-standard-error rule is used. We
do not show curves for the CN∗Q and CN∗N intervals in Figure 1, as they exhibited
poorer performance and gave the plots a cluttered appearance.

We see that for small values of λn the confidence intervals based on all the
pivots achieve close-to-nominal coverage. For such small values of λn, however,
model selection scarcely occurs. As larger values of λn are chosen, the coverage
of the confidence intervals tends to drop, the drop being more gradual the larger in
magnitude the regression coefficient. The confidence intervals based on the pertur-
bation bootstrap pivots R∗

n and Ř∗
n, however, are able to sustain nominal coverage

for much larger values of λn than the others, such that they are able to achieve
close-to-nominal coverage for the model-selection-optimal choice of λn for all but
the smallest regression coefficient.
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TABLE 1
Empirical coverage of 95% confidence intervals for nonzero regression coefficients by Alasso under
(n,p,p0) = (200,80,4) using λ̃n = 0 and cross validation choice of λn. The median λn choice was

0.987 · n1/4. One-sided intervals are bounded in the sgn(βj ) direction

βj RLQA
n Roracle

n CN∗Q CN∗N Rn Řn R∗
n Ř∗

n

Coverage and (avg. width) of two-sided 95% CIs: (n,p,p0) = (200,80,4)

−0.50 0.42 0.31 0.10 0.45 0.31 0.42 0.61 0.68
(0.44) (0.30) (0.28) (0.31) (0.30) (0.29) (0.26) (0.31)

1.00 0.54 0.49 0.16 0.77 0.49 0.57 0.95 0.96
(0.37) (0.31) (0.47) (0.48) (0.31) (0.30) (0.39) (0.44)

−1.50 0.75 0.73 0.36 0.89 0.74 0.76 0.93 0.93
(0.34) (0.31) (0.46) (0.47) (0.32) (0.30) (0.37) (0.41)

2.00 0.86 0.86 0.59 0.93 0.86 0.87 0.92 0.92
(0.32) (0.30) (0.39) (0.39) (0.31) (0.29) (0.31) (0.34)

Coverage of one-sided 95% CIs
−0.50 0.29 0.23 0.08 0.36 0.23 0.36 0.63 0.70

1.00 0.44 0.41 0.12 0.65 0.41 0.50 0.96 0.98
−1.50 0.64 0.61 0.29 0.82 0.62 0.68 0.95 0.96

2.00 0.79 0.78 0.48 0.88 0.78 0.80 0.95 0.96

Table 1 displays the coverage results for the n > p case (n,p,p0) = (200,80,4)

under the cross validation choice of λn using the one-standard-error rule and Ta-
bles 2 and 3 for the n ≤ p cases (n,p,p0) ∈ {(150,250,6), (200,500,8)} un-
der cross validation choices of λ̃n and λn, where both are chosen using the one-
standard-error rule. The median values of the cross validation selections of λ̃n and
λn under each setting are provided in the table captions in the forms c1 · n1/2 and
c2 · n1/4 where c1 and c2 are constants. These correspond to the forms of the theo-
retical choices of λ̃n and λn under the choice of γ = 1.

In Table 1, we see that under (n,p,p0) = (200,80,4) the modified perturba-
tion bootstrap intervals based on R∗

n and Ř∗
n achieve the closest-to-nominal cov-

erage. The two-sided Ř∗
n interval achieves subnominal coverage for the smallest

regression coefficient βj = −0.50, as this coefficient was occasionally estimated
to be zero, but achieves close-to-nominal coverage for the larger regression coeffi-
cients. The coverage of the other intervals is much more dramatically effected by
the magnitude of the regression coefficient βj , a phenomenon which is even more
pronounced in the one-sided coverages; for example, the coverage of the Řn inter-
val rises from 0.36 for β1 = −0.50 to 0.80 for β4 = 2.00. Given that the modified
perturbation bootstrap distributions of R∗

n and Ř∗
n result in much closer-to-nominal

coverages than the Normal approximations to the distributions of Rn and Řn, we
may conclude that the sample size is too small for the asymptotically-Normal piv-
ots to have sufficiently approached their limiting distribution; the second-order
correctness of the modified perturbation bootstrap is thus apparent.



2104 D. DAS, K. GREGORY AND S. N. LAHIRI

TABLE 2
Empirical coverage of 95% confidence intervals for nonzero regression coefficients by Alasso under

(n,p,p0) = (150,250,6) using cross validation choices of λ̃n and λn. The median λ̃n and λn

choices were 0.014 ·n1/2 and 0.119 ·n1/4. One-sided intervals are bounded in the sgn(βj ) direction

βj RLQA
n Roracle

n CN∗Q CN∗N Rn Řn R∗
n Ř∗

n

Coverage and (avg. width) of two-sided 95% CIs: (n,p,p0) = (150,250,6)

−0.50 0.76 0.67 0.52 0.78 0.67 0.80 0.81 0.83
(0.71) (0.31) (0.41) (0.45) (0.32) (0.38) (0.39) (0.50)

1.00 0.82 0.75 0.62 0.87 0.76 0.86 0.90 0.93
(0.52) (0.32) (0.42) (0.43) (0.33) (0.40) (0.42) (0.56)

−1.50 0.89 0.86 0.78 0.90 0.87 0.92 0.91 0.95
(0.53) (0.32) (0.40) (0.40) (0.33) (0.40) (0.40) (0.53)

2.00 0.88 0.84 0.82 0.87 0.85 0.91 0.87 0.94
(0.46) (0.33) (0.38) (0.39) (0.33) (0.40) (0.38) (0.50)

−2.50 0.90 0.86 0.85 0.88 0.87 0.91 0.88 0.94
(0.42) (0.32) (0.37) (0.37) (0.33) (0.40) (0.36) (0.48)

3.00 0.89 0.85 0.85 0.87 0.86 0.92 0.87 0.93
(0.45) (0.31) (0.34) (0.34) (0.32) (0.38) (0.33) (0.43)

Coverage of one−sided 95% CIs
−0.50 0.71 0.63 0.45 0.75 0.64 0.73 0.84 0.88

1.00 0.76 0.69 0.53 0.81 0.69 0.81 0.91 0.95
−1.50 0.84 0.81 0.72 0.86 0.82 0.88 0.90 0.94

2.00 0.85 0.82 0.76 0.84 0.83 0.86 0.89 0.92
−2.50 0.87 0.83 0.82 0.86 0.84 0.88 0.89 0.92

3.00 0.86 0.83 0.82 0.84 0.84 0.88 0.87 0.92

In the p > n settings, the modified perturbation bootstrap interval based on Ř∗
n

continues to perform well. Under the (n,p,p0) = (150,250,6) setting, for which
Table 2 shows the results, the Ř∗

n interval achieves the nominal coverage across
all regression coefficients except for the smallest in magnitude for both two- and
one-sided intervals. Here, also we see a difference between the performance of the
confidence intervals based on R∗

n and Ř∗
n, owing to the bias correction; the cover-

age of the R∗
n interval tends to be subnominal for both one- and two-sided inter-

vals. The confidence intervals based on the asymptotic normality of the respective
pivot all have subnominal coverage for most of the regression coefficients, and
their coverages are dramatically affected by the magnitude of the true regression
coefficient.

The results are similar for the (n,p,p0) = (200,500,8) case, for which Table 3
shows the results. The only confidence interval which reliably achieves close-to-
nominal coverage is the modified perturbation bootstrap interval based on Ř∗

n. We
note that the width of the Ř∗

n interval seems to adapt more to the magnitude of
the regression coefficient than the widths of the Normal-based confidence inter-
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TABLE 3
Empirical coverage of 95% confidence intervals for nonzero regression coefficients by Alasso under

(n,p,p0) = (200,500,8) using cross validation choices of λ̃n and λn. The median λ̃n and λn

choices were 0.01 · n1/2 and 0.30 · n1/4. One-sided intervals are bounded in the sgn(βj ) direction

βj RLQA
n Roracle

n CN∗Q CN∗N Rn Řn R∗
n Ř∗

n

Coverage and (avg. width) of two-sided 95% CIs: (n,p,p0) = (200,500,8)

−0.50 0.79 0.68 0.56 0.86 0.70 0.81 0.87 0.92
(0.69) (0.26) (0.38) (0.42) (0.27) (0.33) (0.36) (0.46)

1.00 0.84 0.75 0.65 0.86 0.77 0.87 0.88 0.94
(0.54) (0.27) (0.34) (0.35) (0.28) (0.35) (0.34) (0.44)

−1.50 0.90 0.85 0.83 0.88 0.85 0.91 0.86 0.94
(0.45) (0.27) (0.31) (0.31) (0.28) (0.35) (0.31) (0.41)

2.00 0.89 0.84 0.86 0.85 0.85 0.92 0.86 0.95
(0.44) (0.28) (0.30) (0.30) (0.28) (0.35) (0.30) (0.40)

−2.50 0.93 0.89 0.87 0.88 0.89 0.91 0.89 0.93
(0.46) (0.28) (0.30) (0.30) (0.28) (0.35) (0.30) (0.39)

3.00 0.91 0.85 0.87 0.86 0.86 0.91 0.86 0.92
(0.46) (0.27) (0.30) (0.30) (0.28) (0.35) (0.29) (0.39)

−3.50 0.91 0.86 0.87 0.87 0.87 0.92 0.87 0.95
(0.48) (0.27) (0.30) (0.30) (0.28) (0.35) (0.29) (0.39)

4.00 0.89 0.86 0.87 0.87 0.86 0.90 0.84 0.92
(0.45) (0.26) (0.28) (0.28) (0.27) (0.33) (0.28) (0.36)

Coverage of one−sided 95% CIs
−0.50 0.72 0.62 0.48 0.82 0.63 0.75 0.89 0.94

1.00 0.79 0.70 0.59 0.80 0.71 0.81 0.87 0.94
−1.50 0.87 0.79 0.79 0.82 0.80 0.87 0.87 0.92

2.00 0.85 0.80 0.81 0.82 0.82 0.86 0.85 0.91
−2.50 0.89 0.84 0.84 0.86 0.85 0.88 0.86 0.91

3.00 0.86 0.79 0.83 0.82 0.81 0.86 0.84 0.90
−3.50 0.88 0.82 0.85 0.85 0.83 0.88 0.85 0.91

4.00 0.89 0.83 0.84 0.84 0.85 0.87 0.84 0.90

vals, which remain, with the exception of the RLQA
n interval, fairly constant across

all magnitudes of βj , resulting in poorer coverage for smaller regression coeffi-
cients. In contrast, the Ř∗

n interval is able to achieve nominal coverage even for the
smallest values of βj by producing suitably wider confidence intervals.

We see that the modified perturbation bootstrap is able to produce reliable con-
fidence intervals for regression coefficients in the high-dimensional setting under
data-based choices of the tuning parameter, and importantly, under levels of penal-
ization large enough for model selection to occur.

7. Data analysis. To illustrate the construction of confidence intervals for re-
gression coefficients in the high-dimensional linear regression model using the
modified perturbation bootstrap, we present an analysis of the riboflavin data
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FIG. 2. Confidence intervals based on RLQA
n (straight), Řn (wavy), CN∗N (jagged) and Ř∗

n (wig-
gly) for each of the Alasso selected genes from the riboflavin data set.

set considered in Bühlmann, Kalisch and Meier (2014), which those authors make
publicly available in their Supplementary Material. The data contains n = 71 in-
dependent records consisting of a response variable which is the logarithm of the
riboflavin production rate and of 4088 gene expression levels in batches of Bacil-
lis subtilis bacteria. Of the 4088, we preselect 200 genes by sorting them in order
of decreasing empirical variance and keeping the first 200. We then fit the linear
regression model to the data set with n = 71 and p = 200 and compute confidence
intervals for the regression coefficients selected by the Alasso procedure. The vari-
ables selected by our methods were different from those discovered in Bühlmann,
Kalisch and Meier (2014). We choose λ̃n and λn using 10-fold crossvalidation.
Figure 2 displays the confidence intervals for the Alasso-selected covariates ob-
tained from the RLQA

n , Řn, CN∗N , and Ř∗
n pivots, where 1000 bootstrap replicates

were used for the bootstrap-based intervals.
The interval based on the RLQA

n pivot (straight line) and the CN∗N interval
(jagged), are symmetric around the estimated value of the regression coefficient
(the CN∗N interval is formed by adding and subtracting an upper quantile of a
Normal distribution with a bootstrap-estimated variance). The intervals based on
Řn are asymmetric owing to the bias correction (which is quite small in this ex-
ample) and, in the case of the Ř∗

n interval, owing to the bias correction and to the
asymmetry of the bootstrap distribution of Ř∗

n. For some of the coefficients, the Ř∗
n
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interval is highly asymmetric, suggesting that the distribution of the pivot Řn may
still be far from Normal.

8. Proofs. Only an outline of the proofs are presented in this section. Details
are in the Supplementary Material [Das, Gregory and Lahiri (2019)]. First, we de-
fine some additional notation and recall some notation that are defined earlier. De-
fine W̆

∗
n = n−1/2∑n

i=1 ε̂ixi (G
∗
i − μG∗). Write W̆

∗(0)

n = W̆
∗
n, p(0) = p, p(1) = p0,

and p(2) = p − p0. Define b̃n = σ−1�
−1/2
n bn when p ≤ n and b̃n = σ−1�̄

−1/2
n bn

when p > n. Recall that bn = D(1)
n C−1

11,ns
(1)
n

λn

2
√

n
, where D(1)

n and C11,n are as de-

fined earlier and s
(1)
n is a p0 × 1 vector with j th element sgn(βj,n)|βj,n|−γ . Note

that under conditions (A.2)(i), (A.3) and (A.6)(i), ‖�n‖ = O(1), ‖�̄n‖ = O(1),

‖D(1)
n C

−1/2
11,n ‖ = O(1) and ‖s(1)

n ‖ ≤ K
√

p0.n
bγ . Hence, ‖b̃n‖ = O(n−δ1). Also de-

fine b̌n = �̆
−1/2
n D(1)

n C−1
11,nš

(1)
n

λn

2
√

n
when p ≤ n and b̌n = �̃

−1/2
n D(1)

n C−1
11,nš

(1)
n

λn

2
√

n

when p > n, where š(1)
n = (š1n, . . . , šp0n)

′ and šj,n = sgn(β̂j,n)|β̂j,n|−γ .
We denote by ‖ · ‖ and ‖ · ‖∞, respectively, the L2 and L∞ norm. For

a nonnegative integer-valued vector α = (α1, α2, . . . , αl)
′ and a function f =

(f1, f2, . . . , fl) : Rl → Rl , l ≥ 1, write |α| = α1 + · · · + αl , α! = α1! · · ·αl!,
f α = (f

α1
1 ) · · · (f αl

l ) and Dαf1 = D
α1
1 · · ·Dαl

l f1, where Djf1 denotes the partial
derivative of f1 with respect to the j th component of the argument, 1 ≤ j ≤ l.
For t = (t1, . . . , tl)

′ ∈ Rl and α as above, define tα = t
α1
1 · · · tαl

l . Let 	V denote
the multivariate Normal distribution with mean 0 and dispersion matrix V having
j th row V j. and let φV denote the density of 	V . We write 	V = 	 and φV = φ

when V is the identity matrix.

Define A1n = {{‖W̆ (1)

n ‖∞ ≤ K
√

logn} ∩ {‖W̆ (2)

n ‖∞ ≤ K
√

logn} ∩ {‖√n(β̃n −
βn)‖∞ ≤ K

√
logn}} for p ≤ n and A1n = {{‖W̆ (1)

n ‖∞ ≤ K
√

logn}∩{‖W̆ (2)

n ‖∞ ≤
K

√
logn} ∩ {‖√n(β̃n − βn)‖∞ ≤ C.nδ2}} for p > n. We have assumed An =

{1, . . . , p0}. W̆
(1)

n and W̆
(2)

n are respectively first p0 and last (p − p0) compo-
nents of W̆ n. Note that P(A1n) ≥ 1 − O(p.n−(r−2)/2) for p ≤ n and P(A1n) ≥
1 − o(n−1/2) for p > n [cf. Lemma 8.1 of Chatterjee and Lahiri (2013)].

Note that, b̌n = Op(n−δ1), by Lemma 8.4 and 8.5, described below. Suppose,
r1 = min{a ∈ N : ‖b̌n‖a+1 = op(n−1/2)}, N being the set of natural numbers.
Define the conditional Lebesgue density of two-term Edgeworth expansion of R∗

n

as

ξ∗
n (x) =φ(x)

[
1 +

r1∑
k=1

1

k!
{ ∑

|α|=k

b̌
α

nHα(x)

}
+ 1√

n

[
1

6

∑
|α|=3

tαξ̄
∗(1)

n (α)Hα(x)

− 1

2σ̂ 2
n

{ ∑
|α|=1

tαξ̄
∗(3)

n (α)Hα(x)
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+ ∑
|α|=1

∑
|ζ |=2

tα+ζ ξ̄
∗(3)

n (α)ξ̄
∗(1)

n (ζ )Hα+ζ (x)

}]]
,

where x ∈ Rq , ξ̄
∗(j)

n (α) = n−1∑n
i=1(ξ̌

(0)

i ε̂
j
i )α , j = 0,1, . . . and Hα(x) =

(−D)αφ(x), where φ(·) is the standard normal density on Rq .

LEMMA 8.1. Suppose Y1, . . . , Yn are zero mean independent r.v.s and
E(|Yi |t ) < ∞ for i = 1, . . . , n and

∑n
i=1 E(|Yi |t ) = σt ; Sn = ∑n

i=1 Yi . Then, for
any t ≥ 2 and x > 0

P
[|Sn| > x

]≤ C
[
σtx

−t + exp
(−x2/σ2

)]
.

Proof of Lemma 8.1. This inequality was proved in Fuk and Nagaev (1971).

LEMMA 8.2. Under assumptions (A.1), (A.3), (A.4)(i) and (A.5)(i), (ii) with
r = 3:

(i) P∗(‖W̆ ∗(1)

n ‖ > K
√

p0 logn) = Op(p0.n
−(r−2)/2).

(ii) P∗(‖W̆ ∗(l)

n ‖∞ > K
√

logn) = Op(p(l).n−(r−2)/2), for l = 0,1,2.

(iii) P∗(‖√n(β̃
∗
n − β̂n)‖∞ > K

√
logn) = Op(p.n−(r−2)/2), when p ≤ n.

PROOF. This lemma follows through the same line of Lemma 8.1 of Chatter-
jee and Lahiri (2013) and employing Lemma 8.1, stated above. �

LEMMA 8.3. Suppose p is fixed. Then under condition (A.1)(ii) and (A.4)(i)
with r=2,

P∗
(∥∥β̃∗N

n − β̃n

∥∥= o
(
n−1/2(logn)1/2))≥ 1 − op

(
n−1/2).

PROOF. This lemma is proved in Proposition 4.1 of Das and Lahiri (2019).
�

LEMMA 8.4. Suppose assumptions (A.1)–(A.3), (A.4)(i), (A.5)(i), (ii) and
(A.6) hold with r = 4. Then

‖β̂n − βn‖∞ = Op

(
n−1/2) and

on the set A1n,
∥∥β̂∗

n − β̂n

∥∥∞ = Op∗
(
n−1/2).

PROOF. See the Supplementary Material [Das, Gregory and Lahiri (2019)].
�
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LEMMA 8.5. Under the assumptions (A.1)–(A.3), (A.4)(i) and (A.6)(i) and
(iii) with r = 6, we have

‖�̂n − �n‖ = op

(
n−(1+δ1)/2), ‖�̌n − �̄n‖ = op

(
n−1)

∥∥�̆n − σ 2�n

∥∥,∥∥�̃n − σ 2�̄n

∥∥= Op

(
n−1/2),

where δ1 is as defined in assumption (A.6).

PROOF. See the Supplementary Material [Das, Gregory and Lahiri (2019)].
�

LEMMA 8.6. Let p ≤ n and suppose that (A.1)–(A.6) hold with r = 6. Then
on a set A2n with P(ε ∈ A2n) → 1, when ε ∈ A2n, we have:

(a) if p ≤ n, then

sup
B∈Cq

∣∣∣∣P∗
(
R∗

n ∈ B
)−

∫
B

ξ∗
n (x) dx

∣∣∣∣= o
(
n−1/2);

(b) if p > n, b = 0 and additionally conditions (A.7) and (A.1)(iii)′ [in place
of (A.1)(iii)] hold, then

sup
B∈Cq

∣∣∣∣P∗
(
R∗

n ∈ B
)−

∫
B

ξ∗
n (x) dx

∣∣∣∣= o
(
n−1/2).

PROOF. See the Supplementary Material [Das, Gregory and Lahiri (2019)].
�

PROOF OF PROPOSITION 2.1. Note that for any t ∈ Rp and for each i ∈
{1, . . . , n},

n∑
i=1

(
yi − x′

it
∗)2(G∗

i − μG∗
)=

n∑
i=1

[
x′

i (β̂n − t)
]2(

G∗
i − μG∗

)− 2(t − β̂n)
′W̆ ∗

n

+
n∑

i=1

ε̂2
i

(
G∗

i − μG∗
)2

and
n∑

i=1

(
zi − x′

it
)2 =

n∑
i=1

[
x′

i (β̂n − t)
]2 − 2μ−1

G∗(t − β̂n)
′W̆ ∗

n

+ μ−2
G∗

n∑
i=1

[
ε̂i

(
G∗

i − μG∗
)]2

.

Therefore, Proposition 2.1 follows. For details, see the Supplementary Material
[Das, Gregory and Lahiri (2019)]. �

PROOF OF THEOREM 4.1. The KKT condition (4.3) corresponding to the
Alasso criterion function, defined in MTC(11), can be rewritten through the vector
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w∗ = (w
∗(1)′
n ,w

∗(2)′
n )′ as

2C∗
11,nw

∗(1)
n + 2C∗

12,nw
∗(2)
n − 2W ∗(1)

n + λ∗
n√
n
�∗(1)

n l(1)
n = 0(8.1)

and for each j ∈ {p0 + 1, . . . , p}
− λ∗

n

2
√

n

∣∣β̃∗N
j,n

∣∣−γ ≤ [(
C∗

21,n

)
j.w

∗(1)
n + (

C∗
22,n

)
j.w

∗(2)
n − W ∗

j,n

]

≤ λ∗
n

2
√

n

∣∣β̃∗N
j,n

∣∣−γ
.

(8.2)

Here, W ∗
n = n−1/2∑n

i=1 ε̂ixiG
∗
i , W ∗(1)

n is the vector of the first p0 components
of W ∗

n, W ∗
j,n is the j th component of W ∗

n for j ∈ {1, . . . , p}, l(1)
n = (l1n, . . . , lp0n)

′

with lk,n ∈ [−1,1] for k = 1, . . . , p0 and �∗(1)
n = diag(|β̃∗N

1n |−γ , . . . , |β̃∗N
p0n

|−γ ) and

C∗
n = n−1

n∑
i=1

xix
′
iG

∗
i =

[
C∗

11,n C∗
12,n

C∗
21,n C∗

22,n

]
,

where C∗
11,n is of dimension p0 × p0. (C∗

21,n)j · is the j th row of C∗
21,n, j ∈ {p0 +

1, . . . , p}.
Now, to prove part (a) of Theorem 4.1, it is enough to show that (u∗N ′

n2 ,0′)′ satis-
fies (8.1) and (8.2) separately with bootstrap probability 1−op(n−1/2). The vector

u∗N
n2 is defined as u∗N

n2 = C∗−1
11,n[W ∗(1)

n − λ∗
n√
n
s̃∗N(1)
n ], where the j th component of

s̃∗N(1)
n is equal to sgn(β̂j,n)|β̃∗N

jn |−γ , j ∈ {1, . . . , p0}.
Note that (u∗N ′

n2 ,0′)′ exactly satisfies (8.1) if l(1)
n = (sgn(β̂1,n), . . . , β̂p0,n)).

Thus we can conclude that (u∗N ′
n2 ,0′)′ satisfies (8.1) with bootstrap probability

1 − op(n−1/2), if we can show that ‖C∗−1
11,n[W ∗(1)

n − λ∗
n√
n
�∗(1)

n l(1)
n ]‖ = o(n1/2) with

bootstrap probability 1 − op(n−1/2). This follows from the facts that

P∗
(∥∥C∗

11,n − C11,nμG∗
∥∥> K.p0.n

−1/2.(logn)1/2)= op

(
n−1/2),(8.3)

on the set A1n, |β̃j,n|−γ is bounded for all j ∈ {1, . . . , p0} and n−1/2λn → 0. Now,
note that

P∗
(
max

j

{∥∥(C∗
21,n

)
j · − (C21,n)j ·μG∗

∥∥ : j ∈ {p0 + 1, . . . , p}}

> K.p
1/2
0 .n−1/2.(logn)1/2

)

≤
p0∑

k=1

p∑
j=p0+1

P∗
(∣∣∣∣∣

n∑
i=1

xij xik

(
G∗

i − μG∗
)∣∣∣∣∣> K.n−1/2.(logn)1/2

)

= op

(
n−1/2).
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This fact, Lemma 8.3 and P∗(|W ∗
jn| > K.(logn)1/2) = 1 − op(n−1/2) imply that

P∗
((

u∗N ′
n2 ,0′)′ satisfies (8.2)

)= 1 − op

(
n−1/2),

due to max{λn,λ
∗
n}.(logn/n)1/2 → 0. Therefore, part (a) of Theorem 4.1 follows.

Now for part (b), note that due to (8.3) and the fact that n−1/2.(logn)1/2.λn → 0,
it follows that on the set A1n,

P∗
(√

n

∥∥∥∥∥(C∗−1
11,n − C−1

11,nμ
−1
G∗
)
n−1/2

n∑
i=1

x
(1)
i ε̂i

∥∥∥∥∥∞
= o(1)

)

= 1 − o
(
n−1/2).

(8.4)

Since Cn → C for some p × p positive definite matrix C and P(‖β̃n − β‖ =
O(n−1/2(logn)1/2)) ≥ 1 − o(n−1/2), so part (b) follows due to (8.4).

To prove part (c), it is enough to show

sup
x∈Rp0

∣∣P∗
(
F ∗(1)

n ≤ x
)− P

(
F (1)

n ≤ x
)∣∣≥ K.

λn√
n

for some K > 0,(8.5)

where F ∗(1)
n and F (1)

n are subvectors of F ∗
n and F n, respectively, comprising of

first p0 components. Note that

F ∗(1)
n = C∗−1

11,n

[
W ∗(1)

n − λ∗
n√
n
s̃∗N(1)
n

]

= C−1
11,nμ

−1
G∗
[
W ∗(1)

n − λ∗
n√
n
s̃∗N(1)
n

]

+ (
C∗−1

11,n − C−1
11,nμ

−1
G∗
)[

W ∗(1)
n − λ∗

n√
n
s̃∗N(1)
n

]

= F̆ ∗(1)
n + R̆

∗
1n (say)

= F̃
∗(1)

n + Ãd
(1)

n + R̆
∗
1n,

where Ãd
(1)

n = C−1
11,nn

−1/2∑n
i=1 ε̂ix

(1)
i and it follows from Lemma 8.1 that

P∗
(∥∥R̆∗

1n

∥∥≤ cn.n
−1/2)= 1 − op(1),

where {cn} is a sequence of positive constants increasing to ∞ with cn =
o(

√
logn).

Again for sufficiently large n,

F (1)
n = n−1/2

n∑
i=1

(
ξ̃

(0)

i + η̃
(0)
i

)
εi + R̃2n,

F̃
∗(1)

n = μ−1
G∗n−1/2

n∑
i=1

(
ξ̃

(0)

i ε̂i + η̃
(0)
i ε̄i

)(
G∗

i − μG∗
)+ R̃

∗
2n,
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where P(‖R̃2n‖ = o(n−1/2)) = 1 − o(1) and P∗(‖R̃∗
2n‖ = o(n−1/2)) = 1 − op(1).

Here, ξ̃
(0)

i = C−1
11,nx

(1)
i , η̃

(0)
i = C−1

11,nη̃i with j th component (j ∈ A = {k : βj �= 0})
of η̃i is (λn

2n
x̃i,j

γ

|β̃j,n|γ+1 sgn(β̂j,n)). Here, we have assumed without loss of general-

ity that A = {1, . . . , p0}. and ε̂i and ε̄i are respectively Alasso and OLS residuals.
Then by the Berry–Essen theorem and Lemma 3.1 of Bhattacharya and Ranga Rao
(1986), we have

sup
x∈Rp0

∣∣P(F (1)
n ≤ x

)− 	V n(x)
∣∣= O

(
n−1/2)

and sup
x∈Rp0

∣∣P∗
(
F̃

∗(1)

n + R̆
∗
1n ≤ x

)− 	Ṽ n
(x)

∣∣= Op

(
cn.n

−1/2),(8.6)

where V n = n−1∑n
i=1(ξ̃

(0)

i + η̃
(0)
i )′(ξ̃ (0)

i + η̃
(0)
i )σ 2 and Ṽ n = n−1∑n

i=1(ξ̃
(0)

i ε̂i +
η̃

(0)
i ε̄i)

′(ξ̃ (0)

i ε̂i + η̃
(0)
i ε̄i) and ‖Ṽ n−V n‖ = op(cn.n

−1/2). Hence by Turnbull (1930)
and noting (14.66) of Lemma 14.6 of Bhattacharya and Ranga Rao (1986) and the
facts that Ṽ n = Op(1) & V n = O(1), we have

sup
x∈Rp0

∣∣	Ṽ n
(x) − 	V n(x))

∣∣≤ ‖Ṽ n − V n‖ = op

(
cn.n

−1/2).(8.7)

Therefore, by (8.6) and (8.7) and noting that cn = o(
√

logn), we have

sup
x∈Rp0

∣∣P∗
(
F̃

∗(1)

n + R̆
∗
1n ≤ x

)− P
(
F (1)

n ≤ x
)∣∣= op

(
λn.n

−1/2).(8.8)

Now by (8.6), (8.8) and Taylor’s expansion, it can be shown that for any x ∈
Rp0 ,

P∗
(
F ∗(1)

n ≤ x
)= P

(
F (1)

n ≤ x
)− λn

2
√

n

[
s̃(1)′
n C−1

11,n(D1, . . . ,Dp)′�V n(x̃)
]

+ op(λn/
√

n)

for some x̃ with ‖x̃ − x‖ ≤ ‖Ad(1)
n ‖ where Ad(1)

n = C−1
11,n

λn

2
√

n
s
(1)
n .

Therefore, (8.5) follows from the triangle inequality and the fact that
supx∈Rp0 [f (x) + g(x)] ≤ supx∈Rp0 f (x) + supx∈Rp0 g(x). For details, see the
Supplementary Material [Das, Gregory and Lahiri (2019)]. �

PROOF OF THEOREM 5.1. By Lemma 8.6, we have

sup
B∈Cq

∣∣∣∣P∗
(
R∗

n ∈ B
)−

∫
B

ξ∗
n (x) dx

∣∣∣∣= op

(
n−1/2).

Now, retracting the steps of Lemma 8.6 and using the fact that ‖�̂n − �n‖ =
op(n−(1+δ1)/2) (cf. Lemma 8.5), it can be shown that

sup
B∈Cq

∣∣∣∣P(Rn ∈ B) −
∫
B

ξn(x) dx

∣∣∣∣= o
(
n−1/2),
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where

ξn(x) = φ(x)

[
1 +

r∑
k=1

1

k!
{∑

α=k

b̃
α

nHα(x)

}
+ 1√

n

[
− μ3

2σ 3

∑
|α|=1

tαξ̄n(α)Hα(x)

+ μ3

6σ 3

{ ∑
|α|=3

tαξ̄n(α)Hα(x)

− 3
∑

|α|=3

∑
|ζ |=1

tα+ζ ξ̄n(α)ξ̄n(ζ )Hα+ζ (x)

}]]
,

where x ∈ Rq , ξ̄n(α) = n−1∑n
i=1(�

−1/2
n ξ

(0)
i )α . For details, see the proof of

Theorem 8.2 of Chatterjee and Lahiri (2013). Now due to assumption (A.6)(i),
Lemma 8.4 and Lemma 8.5 and the facts that ‖bn‖ = O(n−δ1) and ‖b̌n‖ =
Op(n−δ1), the coefficients of n−1/2 in ξ∗

n (x) converge to those of ξn(x) in prob-

ability and ‖b̃α

n − b̌
α

n‖ = o(n−1/2), for all α such that |α| ≤ r1. Therefore, Theo-
rem 5.1 follows. �

PROOF OF THEOREM 5.2. By Lemma 8.6, on the set A1n, we have for large n

T ∗
n + b̆

∗
n = μ−1

G∗D(1)
n C−1

11,nW̆
∗(1)

n + Q∗
4n,

where P∗(‖Q∗
4n‖ �= 0) = o(n−1). Therefore, we have

Ř
∗
n = μ−1

G∗�̃
−1/2
n D(1)

n C−1
11,nW̆

∗(1)

n

[
1 − 1

2σ̂ 2
n

(
σ̂ ∗

n − σ̂n

)+ 3

4σ̂ 4
n

(σ̂ ∗
n − σ̂n)

2

2

]
+ Q∗

5,n

= R∗
3n + Q∗

5n (say),

where P∗(‖Q∗
5n‖ = o(n−1)) = op(n−1).

Thus by Corollary 2.6 of Bhattacharya and Ranga Rao (1986), the Edgeworth
expansions of R∗

3n and Ř
∗
n agree up to order o(n−1). Now, similar to Lemma 8.6,

using the transformation technique of Bhattacharya and Ghosh (1978), one can
obtain the three-term Edgeworth expansion of R∗

3n, say π∗
n (x). Similarly, one can

obtain the three-term Edgeworth expansion of Řn, say πn(x). Theorem 5.2 now
follows by comparing terms of πn(x) and π∗

n (x), similar to as in Theorem 5.1. For
details, see the Supplementary Material [Das, Gregory and Lahiri (2019)]. �

PROOF OF THEOREM 5.3. The first part follows by Lemma 8.6(b) and retrac-
ing the proof of Theorem 5.1. The second part follows analogously to the proof of
Theorem 5.2. �

PROOFS OF THEOREMS 5.4 AND 5.5. The first part follows by Lemma 8.6(b)
with the use of Hoeffding’s and Bernstein’s inequality in place of Lemma 8.1 and
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retracing the proof of Theorem 5.1. The second part follows analogously to the
proof of Theorem 5.2. �

PROOF OF COROLLARY 5.1. We need to show P(|Řj,n| > û
j
� for at least one

j) ≤ α. Define the set An = {j : βj,n �= 0}. Now note that

P
(|Řj,n| > û

j
� for at least one j

)

≤
ln∑

j=1

P
(|Řj,n| > û

j
�

)

≤
ln∑

j=1

E
[
P∗
(∣∣Ř∗

j,n

∣∣> û
j
�

)]+ ln∑
j=1

E
[∣∣P∗

(∣∣Ř∗
j,n

∣∣> û
j
�

)− P
(|Řj,n| > û

j
�

)∣∣].
Now note that P∗(|Ř∗

j,n| > û
j
�) is a nonnegative random variable that is bounded

above by �, and hence E[P∗(|Ř∗
j,n| > û

j
�)] ≤ �, for every j ∈ {1, . . . , ln}. In case

of the second term, for any j ∈ {1, . . . , ln} we have

E
[∣∣P∗

(∣∣Ř∗
j,n

∣∣> û
j
�

)− P
(|Řj,n| > û

j
�

)∣∣]
= E

[(∣∣P∗
(∣∣Ř∗

j,n

∣∣> û
j
�

)− P
(|Řj,n| > û

j
�

)∣∣)1(A1n)
]

+ E
[(∣∣P∗

(∣∣Ř∗
j,n

∣∣> û
j
�

)− P
(|Řj,n| > û

j
�

)∣∣)1(Ac
1n

)]
= L

(1)
j + L

(2)
j (say),

where the set A1n is as defined at the beginning of this section. Since P(A1n) ≥
1−o(n−1/2) and ln = O(n1/2),

∑ln
j=1 L

(2)
j = o(1). Now

∑ln
j=1 L

(1)
j = o(1) follows

from theorems 5.2, 5.3, 5.4 and 5.5 and due to the fact that Ân = An on the set
A1n for sufficiently large n. Therefore, Corollary 5.1 follows. �

9. Conclusion. Second-order results of the perturbation bootstrap method in
Alasso are established. It is shown that the naive perturbation bootstrap of Minnier,
Tian and Cai (2011) is not sufficient for correcting the distribution of the Alasso
estimator up to second order. Novel modification is proposed in the bootstrap ob-
jective function to achieve second-order correctness even in high dimension. The
modification is also shown to be computationally efficient. Thus, in a way the
results in this paper establish the perturbation bootstrap method as a significant re-
finement of the approximation of the exact distribution of the Alasso estimator over
oracle normal approximation. This is an important finding from the perspective of
valid inferences regarding the regression parameters based on adaptive Lasso esti-
mator.
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SUPPLEMENTARY MATERIAL

Supplement to “Perturbation bootstrap in adaptive Lasso” (DOI: 10.1214/
18-AOS1741SUPP; .pdf). Details of the proofs and additional simulation studies
are provided.
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