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NONPARAMETRIC SCREENING UNDER CONDITIONAL
STRICTLY CONVEX LOSS FOR ULTRAHIGH

DIMENSIONAL SPARSE DATA

BY XU HAN

Temple University

Sure screening technique has been considered as a powerful tool to
handle the ultrahigh dimensional variable selection problems, where the di-
mensionality p and the sample size n can satisfy the NP dimensionality
logp = O(na) for some a > 0 [J. R. Stat. Soc. Ser. B. Stat. Methodol. 70
(2008) 849–911]. The current paper aims to simultaneously tackle the “uni-
versality” and “effectiveness” of sure screening procedures. For the “uni-
versality,” we develop a general and unified framework for nonparametric
screening methods from a loss function perspective. Consider a loss func-
tion to measure the divergence of the response variable and the underlying
nonparametric function of covariates. We newly propose a class of loss func-
tions called conditional strictly convex loss, which contains, but is not lim-
ited to, negative log likelihood loss from one-parameter exponential families,
exponential loss for binary classification and quantile regression loss. The
sure screening property and model selection size control will be established
within this class of loss functions. For the “effectiveness,” we focus on a
goodness-of-fit nonparametric screening (Goffins) method under conditional
strictly convex loss. Interestingly, we can achieve a better convergence prob-
ability of containing the true model compared with related literature. The
superior performance of our proposed method has been further demonstrated
by extensive simulation studies and some real scientific data example.

1. Introduction. Ultrahigh-dimensional variable selection has become an im-
portant problem in modern statistical research due to the big data collection in a
variety of scientific areas, such as genomics, bioinformatics, functional magnetic
resonance imaging, high frequency finance, etc. In all of these problems, statisti-
cians want to select the important covariates associated with the response variable
from p covariates. However, the dimensionality p can grow much faster than the
sample size n. More specifically, logp = O(na) for some a > 0, which is denoted
as nonpolynomial order (NP) [Fan and Lv (2008)]. As Fan, Samworth and Wu
(2009) has pointed out: existing variable selection methods based on penalized
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pseudo likelihood estimation [e.g., Tibshirani (1996), Fan and Li (2001), Zou and
Hastie (2005), Zou (2006), Candès and Tao (2007), Zou and Li (2008), Zhang
(2010)] can suffer from the simultaneous challenges to computational expediency,
statistical accuracy and algorithmic stability in ultrahigh dimensional problems.

To handle the challenges in the ultrahigh-dimensional problems, Fan and Lv
(2008) introduced a new statistical framework, sure independence screening. Their
original method focused on the Gaussian linear regression models, and the impor-
tant predictors were selected via the marginal correlation ranking. Formally, let M�

be the set of true important variables, and M̂n be the selected variables based on
some procedure, then

(1) P(M� ⊂ M̂n) ≥ 1 − εn,

where εn > 0 and εn → 0 as n → ∞. This is called the “sure screening prop-
erty.” Furthermore, the model selection size can be controlled at a polynomial
rate of sample size with probability approaching 1. Because of its powerful per-
formance and computational convenience in ultrahigh dimensional problems, the
sure screening framework has received increasing attention in the past few years.
Existing literature in this framework have mainly focused on the “universality”
of the screening procedures, that is, developing procedures for various scenar-
ios which possess the “sure screening property,” for example, generalized lin-
ear model by Fan and Song (2010), nonparametric additive model by Fan, Feng
and Song (2011), rank based model-free feature screening by Zhu et al. (2011),
Cox model by Zhao and Li (2012), robust rank correlation screening by Li et al.
(2012), varying coefficient model by Fan, Ma and Dai (2014), empirical likeli-
hood based screening by Chang, Tang and Wu (2013), quantile-adaptive screening
by He, Wang and Hong (2013), censored rank independence screening by Song
et al. (2014), fused Kolmogorov filter by Mai and Zou (2015). On the other hand,
formal pursuit of “effectiveness” of sure screening procedures have been largely
ignored. Intuitively, for the convergence probability 1 − εn in (1), if εn converges
to 0 slower, the corresponding screening procedure will have larger possibility
of not selecting the true important variables. More specifically, existing literature
commonly show that

(2) P(M� ⊂ M̂n) ≥ 1 − sn
{
b exp

(−cna)}
,

where a, b, c are positive values and sn is the size of true model. The rate a controls
how high dimensionality the screening procedure can handle. It will be illustrated
in detail in later sections. For a larger a, the probability of containing true model
converges to 1 faster. The effect of c can be negligible for a larger a and a sufficient
large n. The constant b is not crucial in the asymptotic sense, but it is important for
finite sample situations. With the same value of a, a larger value of b indicates that
important variables can be mis-selected with higher probability. For some existing
results, b can even grow as n increases. Therefore, the constant b and the conver-
gence rate a can be viewed as a measure of effectiveness of a screening method.
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Correspondingly, a sure screening procedure will be considered more effective
with a larger a and a smaller b in the convergence probability of (2). Although
the existing screening procedures have been proved to possess the “sure screening
property,” the established convergence of containing the true model can be slow
subject to various specific model settings and conditions.

Our first goal in the current paper is to develop a general and unified framework
for sure screening methods from a loss function perspective. Consider a response
variable Y which distribution depends on parameter θ . Suppose θ is a function of
p-dimensional covariate vector X = (X1, . . . ,Xp)T . We are interested in selecting
the covariates Xj ’s which are associated with the response variable Y through a
nonparametric function θ = f (X1, . . . ,Xp). For notational convenience, we will
write as θ(X) to denote its dependence on the covariates X. In later presentation,
we sometimes simply write it as θ for the true function, and the readers should be
reminded that the θ is a function on X. This setting includes a variety of commonly
used regression models:

EXAMPLE 1 (Gaussian regression). Assume that Y |X = x is from N(θ(x), σ 2)

for some constant σ > 0.

EXAMPLE 2 (Logistic regression). Assume that Y |X = x is from Bernoulli
distribution and lnP(Y = 1|X = x) − lnP(Y = 0|X = x) = θ(x).

EXAMPLE 3 (Poisson regression). Assume that Y |X = x is from Poisson dis-
tribution and lnE(Y |X = x) = θ(x).

EXAMPLE 4 (Quantile regression). Let Qα(Y |X = x) be the αth quantile of
the distribution for Y |X = x, then assume Qα(Y |X = x) = θ(x).

The above Examples 1–3 fall within the general framework of mean regression:

(3) E(Y |X = x) = h
(
θ(x)

) = g−1(
f (x1, . . . , xp)

)
,

where h is some known function, f is a nonparametric function and g is called the
link function. When g is the canonical link, that is, g = (h)−1, we have θ(X) =
f (X1, . . . ,Xp). However, Example 4 is different from the mean regression.

The above regression models are equivalent to considering a loss function
l(ω,Y ) for measuring the divergence between a generic variable ω and the re-
sponse variable Y where ω is a function of X, and assuming that the true model of
θ will minimize E[l(ω,Y )|X = x] with respect to ω. For instance, in the above Ex-
amples 1–3, we can choose l(ω,Y ) as the negative of the log-likelihood of Y |X =
x; In the above Example 4, we can choose l(ω,Y ) = (Y − ω)[α − I(Y − ω < 0)],
where I is an indicator function. Therefore, we will select the important covariates
Xj ’s associated with Y based on such a loss function.
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In the current paper, we newly propose a definition of loss function called con-
ditional strictly convex loss, which contains, but is not limited to, negative log-
likelihood loss for one-parameter exponential families, exponential loss for binary
classification and quantile regression loss for robust estimation. Our sure screen-
ing property is established within such a wide class of loss functions. Therefore,
several existing screening methods automatically fall within our framework, in-
cluding Fan, Feng and Song (2011) for nonparametric additive models and He,
Wang and Hong (2013) for quantile regression, although their proposed screening
procedures can be different from ours. In addition, many more screening methods
are suggested by our framework, for example, generalized additive models, binary
classification by exponential loss and so on.

Our second goal of the current paper is to develop screening methods under
conditional strictly convex loss with better convergence probability of containing
the true model. We treat the marginal regression as fitting the response variable
with componentwise covariates via the loss function. We impose an additive model
structure for the unknown nonparametric function approximated by B-spline basis.
Interestingly, if we consider the goodness-of-fit statistics as the marginal utility
to rank the importance of each covariate to the joint model, we can achieve a
much better convergence probability of containing the true model compared with
other related literature. Detailed comparison between our results with other related
literature will be presented in Section 3. Furthermore, our selected model size can
be controlled at the level of sample size n rather than the dimensionality pn with
high probability.

The major contribution of the current paper is to simultaneously tackle the is-
sues of “universality” and “effectiveness.” For the “universality,” we establish the
sure screening property within a unified framework through the introduction of
a new class of loss functions: conditional strictly convex loss; For the “effec-
tiveness,” within this framework, we show that the goodness-of-fit nonparametric
screening methods can achieve a better convergence probability of containing the
true model compared with related literature.

Theoretical pursuit of “universality” and “effectiveness” for screening proce-
dures in the current paper has shed new light on the choice of sure screening meth-
ods and greatly benefited the applications of screening methods in practice. For
example, the superior performance of our proposed method compared with other
existing screening procedures will be further demonstrated by extensive simulation
studies and some real scientific data example. Our method is called goodness-of-fit
nonparametric screening (Goffins). To stabilize the computation performance, we
also provide an iterative screening procedure and an improved variant to handle
the situations where covariates are possibly correlated.

The rest of this paper will be organized as follows: Section 2 introduces the
conditional strictly convex loss, the B-spline approximation and the goodness of
fit nonparametric screening; Section 3 establishes the exponential bound, the sure
screening properties and the control of model selection size; Section 4 proposes
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an iterative screening procedure and an improved variant; Section 5 provides sim-
ulation studies and real data analysis. All the technical proofs and some numerical
results are relegated to the Supplementary Material [Han (2019)].

2. Nonparametric screening under convex loss.

2.1. Conditional strictly convex loss. Let l(x, y) : R × R → R be a func-
tion and assume the partial derivative ∂l(x, y)/∂x exists almost everywhere for
x throughout the paper. We consider l(ω,Y ) as a loss function to measure the
divergence between a generic variable ω and the response variable Y . We as-
sume the convexity of l(ω,Y ) in the ω position, that is, l(t1ω1 + t2ω2, Y ) ≥
t1l(ω1, Y ) + t2l(ω2, Y ) for any real values t1 + t2 = 1 and t1, t2 > 0. Here, ω is
a function of covariates X, and can be written as ω(X) to denote its dependence
on X. For notational convenience, we sometimes simply write it as ω. Suppose
the distribution of Y depends on some parameter θ where θ is a nonparametric
function of the covariates X. Assume the true model of θ minimizes E[l(ω,Y )|X]
with respect to ω.

In the current paper, we will newly propose a definition of loss function called
conditional strictly convex loss. Our sure screening method will be established
within such a wide class of convex loss functions.

DEFINITION 1. If ∂E[l(ω,Y )|X]/∂ω is continuously differentiable in ω and
∂2E[l(ω,Y )|X]/∂ω2 > 0, then l(ω,Y ) is called a conditional strictly convex loss
function.

The conditional strictly convex loss includes, but is not limited to, the following
three major types of loss functions:

Type 1: Negative log-likelihood loss for exponential families. Suppose that the
random variable Y is from a one-parameter exponential family with density func-
tion

(4) fY |X(y; θ) = exp
(
yθ − b(θ) + c(y)

)
for some known functions b(·) and c(·) where b′′(·) exists. Consider the negative
log-likelihood loss:

(5) l(ω,Y ) = −[
ωY − b(ω) + c(Y )

]
.

Minimization of E[l(ω,Y )|X] with respect to ω and letting θ be the minimizer
leads to E[Y |X] = b′(θ), which naturally belongs to the mean regression (3). This
is the setting of generalized additive model in Stone (1986). Note that the second
derivative of l(ω,Y ) with respect to ω is b′′(ω), and b′′(θ) is the variance of Y

from the exponential families.
The loss function (5) can be better understood by some popular regression mod-

els:
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EXAMPLE 1 (Gaussian regression). b(θ) = θ2/2, c(y) = −y2/2 and l(ω,

Y ) = (Y − ω)2/2.

EXAMPLE 2 (Logistic regression). b(θ) = ln(1 + exp(θ)), c(y) = 0 and
l(ω,Y ) = −ωY + ln(1 + exp(ω)).

EXAMPLE 3 (Poisson regression). b(θ) = exp(θ), c(y) = − ln(y!) and l(ω,

Y ) = −Yω + exp(ω) + ln(Y !).
Type 2: Exponential loss for classification. In classification problems, suppose

Y ∈ {−1,1} and P(Y = 1|X = x) = p(x). The goal is to construct a classifier θ(x).
When new covariates X are available, predict the corresponding class type Y as 1
if θ(X) > c and as −1 if θ(X) < c where c is some threshold. The exponential loss
is defined as

(6) l(ω,Y ) = exp(−Yω),

which has been considered as a smooth approximation to the misclassification loss
[Freund and Schapire (1997)]. Minimization of E[l(ω,Y )|X] with respect to ω

and letting θ be the minimizer leads to

ln
P(Y = 1|X)

P (Y = −1|X)
= 2θ.

Type 3: Quantile regression loss. For many practical problems, the distribution
information of response variable Y is usually not available or complicated. Instead
of imposing a full distribution, quantile regression framework assumes that the
αth quantile of Y given X, Qα(Y |X), is some function of X, thus the distribu-
tion assumption can be substantially relaxed [Koenker (2005)]. Correspondingly,
consider the loss function

(7) l(ω,Y ) = (Y − ω)
{
α − I(Y − ω < 0)

}
for 0 < α < 1 where I is an indicator function. When α = 1/2, this is proportional
to the least absolute deviation loss |Y − ω|, which is popularly used for robust
regression. The loss function l(ω,Y ) is not differentiable in ω. This is a key differ-
ence from the aforementioned loss functions. Minimization of E[l(ω,Y )|X] with
respect to ω yields Qα(Y |X) = θ where θ is the minimizer.

The following Proposition 2.1 shows that with mild conditions, Types 1–3 be-
long to the conditional strictly convex loss.

PROPOSITION 2.1. For Type 1, if b′′ is strictly positive and is a continuous
function, then (5) belongs to the conditional strictly convex loss; for Type 2, (6)
belongs to the conditional strictly convex loss; for Type 3, if the conditional dis-
tribution of Y |X has a continuous density function fY |X and fY |X > 0 on any
bounded domain, then (7) belongs to the conditional strictly convex loss.
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Without any further investigation, one might simply group Types 1 and 2 in
Proposition 2.1 as one class since the corresponding loss functions are second
differentiable in ω. However, we will show in Section 3.4 that even for Types 1
and 2, the loss functions possess some fundamental differences in the underlying
structures, which raises challenges for proving the model selection size control in
Section 3.4.

The name of conditional strictly convex loss is borrowed from “strictly convex
function.” However, there are some major differences between the two concepts. If
l(x, y) is a strictly convex function in x and l′(x, y) is continuously differentiable
in x, then l is also a conditional strictly convex loss, but a conditional strictly
convex loss might not be a strictly convex function; see Type 3 quantile regression
loss as such a counterexample.

A class of convex loss, Bregman divergence, can also be considered here.
For a given convex function q(·) with derivative q ′(·), the Bregman divergence
[Brègman (1967)] is defined as

(8) l(ω,Y ) = q(ω) − q(Y ) + (Y − ω)q ′(Y ).

Note that l(ω,Y ) is not generally a symmetric function in ω and Y . Suppose q ′(·)
is continuously differentiable and q ′′(·) > 0, it is easy to show that such Bregman
divergence belongs to the conditional strictly convex loss. It is impossible for us to
list all the possibilities here, thus we will not go any further in this direction. It is
worth mentioning that the quantile regression loss (7) does not belong to Bregman
divergence. More detailed discussions about Bregman divergence are referred to
Zhang, Jiang and Shang (2009).

2.2. Goodness-of-fit nonparametric screening. To capture the nonparametric
structure of θ(X), a powerful model for dimensionality reduction is the additive
model:

(9) θ(X) = m1(X1) + · · · + mp(Xp) + μ,

where mj(·) are the square integrable functions and μ is an unknown constant.
For identifiability, we assume E[mj(Xj )] = 0 for j = 1, . . . , p. Let M� = {j :
E[mj(Xj )]2 > 0} be the true sparse model with nonsparsity size sn = |M�|. Sup-
pose we have observed data {(Xi , Yi)} for i = 1, . . . , n, which are independent
copies of {(X, Y )}. The dimensionality p is ultrahigh and satisfies logp = O(na)

for some a > 0. Based on the sample data, we aim to select a subset of covariates
which contains M� with moderate size. We allow p to grow with n, and denote the
dimensionality as pn.

In this paper, we refer to marginal regression as fitting models with component-
wise covariates through the loss function l(ω,Y ). We define the population version
of the minimizer of the componentwise regression as

(10) f M
j (Xj ) ≡ arg min

fj∈L2(P )

E
[
l
(
fj (Xj ), Y

)]
,
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where P denotes the joint distribution of (X, Y ) and L2(P ) is the class of square
integrable functions under measure P . We use B-spline basis to approximate the
marginal nonparametric regression function. Let Sn be the space of polynomial
splines of degree l ≥ 1. Stone (1986) has shown that under some smoothness con-
ditions, the nonparametric functions can be well approximated by functions in Sn.
Correspondingly, we define

(11) f M
nj (Xj ) ≡ arg min

fj∈Sn

E
[
l
(
fj (Xj ), Y

)]
.

We also define the marginal minimum divergence estimator as

(12) f̂ M
nj (Xj ) ≡ arg min

fj∈Sn

Pnl
(
fj (Xj ), Y

)
,

where Png(X, Y ) = n−1 ∑n
i=1 g(Xi , Yi) is the empirical expectation for generic

function g(·). Let {	k}dn

k=1 denote a normalized B-spline basis with ‖	k‖∞ ≤ 1,
where ‖ · ‖∞ is the sup norm. For any fnj ∈ Sn, we have

(13) fnj (x) =
dn∑

k=1

	k(x)βjk, 1 ≤ j ≤ p

for some coefficients {βjk}dn

k=1. The construction of the B spline basis can be
found in the well-known books, for example, de Boor (1978). Let �j ≡ �j (Xj ) =
(	1(Xj ), . . . ,	dn(Xj ))

T , therefore, we can express

(14) f M
nj (Xj ) = �T

j βM
j , f̂ M

nj (Xj ) = �T
j β̂

M

j ,

where βM
j and β̂

M

j are the dn dimensional coefficient vector for the minimizers of
(11) and (12).

We will consider a sure screening procedure based on goodness-of-fit statistics.
Formally, let

Gn,j = Pn

{
l
(
β̂M

0 , Y
) − l

(
�T

j β̂
M

j ,Y
)}

, j = 1, . . . , pn,

where β̂M
0 ≡ arg minβ0∈R Pnl(β0, Y ). Correspondingly, for the population level,

G�
j = E

{
l
(
βM

0 , Y
) − l

(
�T

j βM
j ,Y

)}
, j = 1, . . . , pn,

where βM
0 ≡ arg minβ0∈R El(β0, Y ). The goodness-of-fit statistics compare the

marginal regression model with the null model (no variables included in the
model). Intuitively, if the marginal contribution of an individual variable is sig-
nificant to the response variable, the goodness-of-fit measure should be rela-
tively large. We select model by M̂νn = {1 ≤ j ≤ pn : Gn,j ≥ νn} for a predeter-
mined threshold νn. Our screening method is called goodness-of-fit nonparametric
screening (Goffins). We intentionally use the letter “G” in Gn,j and G�

j to denote
the goodness-of-fit statistics.
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When l is the squared error loss, since the term Pnl(β̂
M
0 , Y ) in Gn,j is not

affected by the index j , Goffins is equivalent to screening based on the sum of

squared residuals, that is, select the model by {1 ≤ j ≤ pn : Pn(Y − �T
j β̂

M

j1)
2 ≤

μn} for some threshold μn > 0. Note that, Pn(Y − �T
j β̂

M

j )2 can be further ex-

pressed as PnY
2 − Pn(�

T
j β̂

M

j )2. Therefore, Goffins under the squared error loss

is equivalent to selecting the model by {1 ≤ j ≤ pn : Pn(�
T
j β̂

M

j )2 ≥ γn} for some
threshold γn > 0. More generally, when l is the negative log-likelihood loss for
exponential families, Goffins is equivalent to screening based on the likelihood ra-
tio statistics. For parametric model based likelihood ratio screening; see Fan and
Song (2010).

3. Sure screening properties.

3.1. Preliminaries. In this paper, we will show that our goodness-of-fit non-
parametric screening (Goffins) has the sure screening property, and the number of
the selected variables has moderate size. Let [a, b] be the support of covariates Xj .
The following conditions are needed:

(A) The nonparametric marginal functions {f M
j }pj=1 belong to a class of func-

tions F whose r th derivative f (r) exists and is Lipschitz of order α:

(15) F = {
f (·) : ∣∣f (r)(s) − f (r)(t)

∣∣ ≤ K|s − t |α, for s, t ∈ [a, b]}
for some positive constant K , where r is a nonnegative integer and α ∈ (0,1] such
that d = r + α > 0.5.

(B) The marginal density functions gj of Xj satisfies 0 < K1 ≤ gj (Xj ) ≤
K2 < ∞ on [a, b] for 1 ≤ j ≤ p for some constants K1 and K2.

(C) The unknown nonparametric function θ(X) satisfies that
supX∈Rpn |θ(X)| < M from some positive constant M .

Conditions A, B and C are standard regularity assumptions for nonparametric re-
gression in Stone (1986), Fan, Feng and Song (2011), He, Wang and Hong (2013),
etc.

The following Lemma 3.1 shows that the approximation error of marginal re-
gression f M

nj in (11) to marginal nonparametric projection f M
j in (10) is negligible.

LEMMA 3.1. If l is a conditional strictly convex loss, under Conditions A–
C, assume that f M

j is uniformly bounded for j = 1, . . . , p, then there exists a

positive constant C1 such that E(f M
j − f M

nj )2 ≤ C1d
−2d
n , where d is defined in

Condition A.

To show that for j ∈ M�, G�
j has a nonvanishing signal, we also need the fol-

lowing conditions:
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(D) minj∈M� E[f M
j (Xj ) − Ef M

j (Xj )]2 ≥ c1dnn
−2κ , for some 0 < κ < d/

(2d + 1) and c1 > 0.
(E) d−2

n ≤ c1(1 − ξ)2n−2κ/4C1 for some ξ ∈ (0,1).

Condition D requires that the marginal nonparametric projections are at a certain
strength level separate from the noise. Therefore, we can select the significant
covariates based on a threshold. Similar conditions also appear in related literature
on nonparametric screening, for example, Fan, Feng and Song (2011) and He,
Wang and Hong (2013). See detailed discussion in Section 2 of Supplementary
Material [Han (2019)].

LEMMA 3.2. Under conditions in Lemma 3.1, in addition, Condition D and
E are also satisfied, then minj∈M� G�

j ≥ b�

2 c1ξdnn
−2κ for some positive constant

b�.

As we will show in later sections, the sure screening property depends on the
characteristics of a generalized definition for partial derivative of loss function
l(x, y) : R × R → R with respect to x. More specifically, let l̃(x, y) : R × R →
R be a Riemann integrable function with respect to x such that for any x1 > x2
and any y, l(x1, y) − l(x2, y) = ∫ x1

x2
l̃(s, y) ds. Since l(x, y) is differentiable in

x almost everywhere, such l̃ exists and is unique almost everywhere in x. For
notational convenience, we simply use l′(x, y) to denote one such l̃(x, y). When
l(x, y) is differentiable in x, l′(x, y) is uniquely determined. When we consider
the quantile regression loss l(x, y) = (y − x){α − I(y − x < 0)}, if x > y, then
l(x, y) = (y − x)(α − 1); if x < y, then l(x, y) = (y − x)α. Except at x = y,
∂l(x, y)/∂x = I(y − x < 0) − α. Hence, for quantile regression loss, for any x1 >

x2 and any y, we have l(x1, y) − l(x2, y) = ∫ x1
x2

[I(y − s < 0) − α]ds. Therefore,
we will use l′(x, y) = I(y − x < 0)−α for the quantile regression loss throughout
the paper. The above argument motivates the following Definition 2.

DEFINITION 2. The notation l′(ω,Y ) is defined as follows: for Type 1 and 2,
l′(ω,Y ) = ∂l(ω,Y )

∂ω
; for Type 3, l′(ω,Y ) = I(Y − ω < 0) − α.

To simplify the discussion, for the loss function l(x, y) which is not differ-
entiable in x but is differentiable in x almost everywhere, we only focus on the
quantile regression loss here. However, similar argument also applies to other loss
functions beyond quantile regression loss.

To characterize l′(ω,Y ) for the exponential tail bound in Section 3.2, we also
need the following definition for sub-Gaussian random variables.

DEFINITION 3. A random variable X with mean μ = EX is called σ -sub-
Gaussian if there is a positive number σ such that

E exp
(
λ(X − μ)

) ≤ exp
(

λ2σ 2

2

)
∀λ ∈ R.
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Note that if X ∼ N(μ,σ 2), then X is σ -sub-Gaussian. If random variable X is
bounded such that a ≤ X ≤ b, then X is sub-Gaussian with σ = (b − a)/2; see
Buldygin and Kozachenko (2000) for more details.

3.2. Exponential bound for marginal minimum divergence estimator. Since
both f̂ M

nj and f M
nj can be expressed in terms of B-spline basis functions, it is cru-

cial to establish an exponential bound for the tail probability of ‖β̂M

j − βM
j ‖. The

sharpness of this exponential bound directly affect the convergence probability of
the screening method.

The following Theorem 3.1 provides an exponential bound for the tail proba-
bility of marginal minimum divergence estimator for the B-spline coefficients. It
will serve as the cornerstone for our later derivations of the other theorems. The
following conditions are required for Theorem 3.1:

(F) dn = o(n1/3) and dn = O(n2κ).
(G) E[l′(ω,Y )|X] is bounded for any bounded ω.

PROPOSITION 3.1. For Types 1–3, under the conditions in Proposition 2.1,
condition G is satisfied.

The tail probability of ‖β̂M

j − βM
j ‖ depends on the properties of l′(ω,Y ). More

specifically, we will consider the following set of conditions:

(H1) l′(ω,Y ) is bounded for any bounded ω;
(H2) l′(ω,Y ) conditional on X is a σ -sub-Gaussian random variable where σ

does not depend on X;
(H3) For any bounded ω, E[exp(λl′(ω,Y ))|X] < ∞ for all |λ| ≤ c0 with some

constant c0 > 0.

The notation l′(ω,Y ) in Condition G and H1–H3 is based on Definition 2. By
Definition 3, if Condition H1 is satisfied, then Condition H2 is also satisfied; if
Condition H2 is satisfied, then Condition H3 is also satisfied. In the following
Theorem 3.1, we will show that with stronger assumption a better tail probability
can be correspondingly achieved.

To better understand the wide applicability of Conditions H1–H3, let us con-
sider some examples from Types 1–3 which satisfy these conditions. Some popular
regression models can be summarized in the following Proposition 3.2.

PROPOSITION 3.2. Types 2 and 3 satisfy Condition H1. For Type 1, if Y |X fol-
lows Bernoulli distribution, then (5) satisfies Condition H1; if Y |X follows Normal
distribution, then (5) satisfies Condition H2; if Y |X follows Poisson distribution,
then (5) satisfies Condition H3.
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Furthermore, if Y |X follows some other distributions in the exponential family,
under some regularity conditions, it is possible that the corresponding loss function
(5) also satisfy Condition H3. For example, if Y |X ∼ Laplace(μ(X), b) with a
known parameter b, then Condition H3 is satisfied. If Y |X ∼ Exponential(λ(X)),
and if there exists a positive constant c such that λ(X) ≥ c, then Condition H3 is
satisfied. Similar arguments for verifying Condition H3 also apply to Chi-square
distribution, negative binomial distribution, inverse-Gaussian distribution with a
known shape parameter, Gamma distribution with a known scale parameter. To
save space, we will not discuss in detail for these examples.

THEOREM 3.1. For a convex loss l(ω,Y ), if it is also a conditional strictly
convex loss, for any constant c3 > 0, under Conditions C, F, G, there exist positive
constants c4 and c5 such that for sufficiently large n:

if Condition H1 is satisfied and dn = o(n1−2κ), then

(16) P
(∥∥β̂M

j − βM
j

∥∥2 ≥ c3dnn
−2κ) ≤ exp

(−c4n
1−2κd−1

n

);
if Condition H2 is satisfied and dn = o(n(1−2κ)/2), then

(17) P
(∥∥β̂M

j −βM
j

∥∥2 ≥ c3dnn
−2κ) ≤ exp

(−c4n
1−2κd−1

n

) + exp
(−c5n

1−2κd−2
n

);
if Condition H3 is satisfied and dn = o(n(1−2κ)/3), then

(18)
P

(∥∥β̂M

j − βM
j

∥∥2 ≥ c3dnn
−2κ) ≤ exp

(−c4n
1−2κd−1

n

)
+ 2 exp

(−c5n
1/2−κd−3/2

n

)
.

In (16), when dn = o(n1−2κ), n1−2κd−1
n in the tail probability diverges to infin-

ity as n increases, which implies that the tail probability converges to zero. Similar
arguments also apply to (17) and (18). It is worth mentioning that Theorem 3.1
is proved based on a unified argument with some modifications according to each
situation of Conditions H1–H3. The proof is different from the related literature
and can be of independent research interest.

3.3. Sure screening. Based on Theorem 3.1 for estimation of B-spline coeffi-
cients, we are now ready to establish the sure screening property for our Goffins
method. Different properties of loss functions can lead to different convergence
probabilities of containing the true model.

THEOREM 3.2. Under the conditions in Theorem 3.1 and Lemma 3.2:

(i) for Types 1 and 2, there exists a positive constant ζ , then by taking νn =
νdnn

−2κ with 0 < ν ≤ ζ , there exists positive constants c4, c5 and c6 such that if
Condition H1 is satisfied and dn = o(n1−2κ), then

(19) P(M� ⊂ M̂νn) ≥ 1 − sn
[
exp

(−c4n
1−2κd−1

n

) + 6 exp
(−c5n

1−2κ)];
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if Condition H2 is satisfied and dn = o(n(1−2κ)/2), then

P(M� ⊂ M̂νn) ≥ 1 − sn
[
exp

(−c4n
1−2κd−1

n

)
(20)

+ exp
(−c5n

1−2κd−2
n

) + 6 exp
(−c6n

1−2κ)];
if Condition H3 is satisfied and dn = o(n(1−2κ)/3), then

P(M� ⊂ M̂νn) ≥ 1 − sn
[
exp

(−c4n
1−2κd−1

n

)
(21)

+ 2 exp
(−c5n

1/2−κd−3/2
n

) + 6 exp
(−c6n

1−2κ)];
(ii) for Type 3, if dn = o(n1−2κ), take νn = νdnn

−2κ with ν ≤ b�c1ξ/4 where
b� is defined in Lemma 3.2, there exist positive constants c4 and c5 such that

(22) P(M� ⊂ M̂νn) ≥ 1 − sn
[
exp

(−c4n
1−2κd−1

n

) + 12 exp
(−c5n

1−2κ)]
.

Theorem 3.2 shows that our Goffins method corresponding to conditional
strictly convex loss possesses the sure screening property. It follows from The-
orem 3.2 that in (19) and (22) we can handle the NP-dimensionality: logpn =
o(n1−2κd−1

n ). Under this condition, P(M� ⊂ M̂νn) → 1 to achieve the sure
screening property. For (20), the NP-dimensionality will be changed to logpn =
o(n1−2κd−2

n ) and for (21) we can handle logpn = o(n1/2−κd
−3/2
n ).

The proof of Theorem 3.2 in the Supplementary Material [Han (2019)] is not
limited to Types 1–3. For example, let Class A be the loss functions such that
l′′(ω,Y ) ≡ ∂2l(ω,Y )/∂ω2 exists, l′′(ω,Y ) is continuous in ω, l′′(ω,Y ) > 0 and
l′′(ω,Y ) is bounded when ω is bounded, then the results corresponding to Types
1–2 in Theorem 3.2 are also valid for the loss functions in Class A. It is not difficult
to verify that Types 1–2 are only special examples in Class A. When l(ω,Y ) is not
differentiable in ω, the discussion is more complicated. Let l̃(x, y) : R × R → R

be a Riemann integrable function with respect to x such that for any x1 > x2 and
any y, l(x1, y) − l(x2, y) = ∫ x1

x2
l̃(s, y) ds. Since we assume that the loss function

l(x, y) is differentiable in x almost everywhere, such l̃ exists and is unique almost
everywhere in x. Let Class B be the loss functions such that there exists a corre-
sponding l̃ where l̃(ω,Y ) is bounded and l̃(ω,Y ) is nondecreasing in ω, then the
results corresponding to Type 3 is also valid for the loss functions in Class B. Our
definition of l′(ω,Y ) for quantile regression loss clearly satisfies the conditions in
Class B.

3.4. Controlling selection size. The sure screening methods will not be infor-
mative unless the model selection size can be controlled at a reasonable level. The
following Theorem 3.3 shows that our Goffins method can control the size of the
selected variables at the level of the sample size n rather than the dimension pn.
However, for controlling the model size, our definition of conditional strictly con-
vex loss is not sufficient for the discussion. We need a finer class of loss functions
which possesses certain structures. This is the motivation of our following Defini-
tion 4.
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DEFINITION 4. If a convex loss l(ω,Y ) satisfies that

∂E
[
l(ω,Y )|X]

/∂ω = G(ω) − H(X)K(ω)

for some functions G(·), H(·) and K(·), then l(ω,Y ) is called conditional deriva-
tive separable loss.

PROPOSITION 3.3. Types 1–3 are conditional derivative separable loss func-
tions.

For Type 1, ∂E[l(ω,Y )|X]/∂ω = b′(ω)−μ(X) where μ(X) = E(Y |X). There-
fore, G(ω) = b′(ω), H(X) = μ(X) and K(ω) = 1.

For Type 2, ∂E[l(ω,Y )|X]/∂ω = exp(ω) − [exp(ω) + exp(−ω)]p(X) where
p(X) = E(Y |X). Therefore, G(ω) = exp(ω), H(X) = p(X) and K(ω) =
exp(ω) + exp(−ω).

For Type 3, ∂E[l(ω,Y )|X]/∂ω = FY |X(ω) − α where FY |X is the conditional
cumulative distribution function of Y |X. Therefore, G(ω) = FY |X(ω), H(X) = α

and K(ω) = 1.
Detailed discussions reveal different structures of loss functions. For example,

Types 1 and 3 both have a constant K(ω) = 1 while Type 2 does not have such
property. Furthermore, Types 1 and 2 are second differentiable in ω but Type 3
is not differentiable in ω. Fortunately, we can propose a unified proof to bound∑pn

j=1 E(f M
nj − Ef M

nj )2 when the loss function l(ω,Y ) is conditional derivative
separable loss and conditional strictly convex loss, which will serve as a major
step for controlling the model selection size.

THEOREM 3.3. Let � = (�1, . . . ,�pn)
T , β� be the coefficient vector of basis

functions for the joint regression model of θ(X) on X, β�
0 be the intercept term in

the joint regression model and � = E��T . If l is a conditional derivative sepa-
rable loss and conditional strictly convex loss, under conditions in Theorem 3.2,
in addition, E(�T β�)2 = O(1) and K(β�

0) = 0, then we have:

(i)
∑pn

j=1 E(f M
nj − Ef M

nj )2 = O(dnλmax(�));
(ii) with νn described in Theorem 3.2, there exist constants c4, c5, c6 such that
Types 1 and 2: if Condition H1 is satisfied and dn = o(n1−2κ), then

P
(|M̂νn | ≤ O

(
n2κλmax(�)

)) ≥ 1 − pn

[
exp

(−c4n
1−2κd−1

n

) + 6 exp
(−c5n

1−2κ)];
if Condition H2 is satisfied and dn = o(n(1−2κ)/2), then

P
(|M̂νn | ≤ O

(
n2κλmax(�)

)) ≥ 1 − pn

[
exp

(−c4n
1−2κd−1

n

)
+ exp

(−c5n
1−2κd−2

n

) + 6 exp
(−c6n

1−2κ)];
if Condition H3 is satisfied and dn = o(n(1−2κ)/3), then

P
(|M̂νn | ≤ O

(
n2κλmax(�)

)) ≥ 1 − pn

[
exp

(−c4n
1−2κd−1

n

)
+ 2 exp

(−c5n
1/2−κd−3/2

n

) + 6 exp
(−c6n

1−2κ)];
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Type 3: if dn = o(n1−2κ), then

P
(|M̂νn | ≤ O

(
n2κλmax(�)

)) ≥ 1 − pn

[
exp

(−c4n
1−2κd−1

n

) + 12 exp
(−c5n

1−2κ)]
.

The tail probabilities directly follow from Theorem 3.2 and have been explained
in Section 3.3. The selected model size depends on the matrix � which involves
the dependence structure of the covariates. As discussed in Fan, Feng and Song
(2011), it can be assumed that λmax(�) = nτ for some τ > 0. Correspondingly,
the model size will be controlled at a reasonable rate of n. With iterative Goffins
method described in the next Section 4, we will show in the simulation studies that
the number of false positives can be very small while the true important variables
are all selected even when the covariates are correlated.

3.5. Connection and comparison with related literature. When l is the
squared error loss, Fan, Feng and Song’s (2011) screening for nonparametric ad-
ditive models is based on n−1 ∑n

i=1(f̂
M
nj (Xi,j ))

2. They presented a similar result
to Theorem 3.2 here but with a different convergence probability as

P(M� ⊂ M̂νn) ≥ 1 − sndn

{
(8 + 2dn) exp

(−c∗
4n

1−4κd−3
n

) + 6dn exp
(−c∗

5nd−3
n

)}
,

and they can handle the NP dimensionality logpn = o(n1−4κd−3
n ). Compared with

their result, our convergence probability in (20) for Gaussian regression not only
improve on the convergence rate, but also improve significantly on those coeffi-
cient terms. We can achieve NP-dimensionality logpn = o(n1−2κd−2

n ). It should
be noted that Fan, Feng and Song (2011) established the result under a weaker
assumption than our Condition H2. More specifically, they assume Y = θ(X) + ε,
E(ε|X) = 0 and for any B1 > 0, E[exp(B1|ε|)|X] ≤ B2 for some constant B2. On
the other hand, this condition is stronger than our Condition H3. If we use (21) for
the comparison here in favor of Fan, Feng and Song’s (2011) result, then we can
handle the NP-dimensionality logpn = o(n1/2−κd

−3/2
n ). When n1/3−2κ = O(dn),

we can handle a higher dimensionality. Otherwise, their result is better.
When l is the quantile regression loss, He, Wang and Hong’s (2013) screening

is based on n−1 ∑n
i=1(f̂

M
nj (Xi,j ))

2. They have shown that for positive constants
c∗

6, c∗
7 and c∗

8,

P
(∥∥β̂M

j − βM
j

∥∥2 ≥ c∗
6dnn

−4κ) ≤ 2 exp
(−c∗

7n
1−8κ) + exp

(−c∗
8n

1−4κd−2
n

)
.

Correspondingly, they presented a convergence probability as

P(M� ⊂ M̂νn) ≥ 1 − sn
{
11 exp

(−c∗
9n

1−8κ) + 12d2
n exp

(−c∗
10n

1−4κd−3
n

)}
.

Note that He, Wang and Hong (2013) consider a signal strength in Condition D
as c1n

−2κ , and the parameter τ in Theorem 3.3 of He, Wang and Hong (2013)
is equivalent to 2κ in our paper here. If we reset the minimum signal strength
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in Condition D the same as that of He, Wang and Hong (2013), our result for
Theorem 3.1 will be modified as

P
(∥∥β̂M

j − βM
j

∥∥2 ≥ c3dnn
−4κ) ≤ exp

(−c4n
1−4κd−1

n

)
under the conditions of He, Wang and Hong (2013). Correspondingly, our result
for Theorem 3.2 will be modified as

P(M� ⊂ M̂νn) ≥ 1 − sn
[
exp

(−c4n
1−4κd−1

n

) + 12 exp
(−c5n

1−4κ)]
.

Therefore, He, Wang and Hong’s (2013) convergence probability also indicates
larger possibility of not selecting important covariates for a nonasymptotic setting.

When l is the negative log-likelihood loss for one-parameter exponential fami-
lies, Fan and Song (2010) constructed sure screening for generalized linear models.
If the B-spline approximation is treated as a type of group variable selection, then
our Theorem 3.1 has some connections with Fan and Song’s (2010) result. Com-
pared with Fan and Song (2010), the tail probability in our Theorem 3.1 does not
have the extra term nP (�c

n) in their paper where n is the sample size and �n is the
region such that the loss function satisfies some Lipschitz condition. In Fan and
Song (2010), their exponential bound also involves a Lipschitz constant. When
the response variable is not bounded (e.g., most of the exponential families), this
Lipschitz constant diverges to infinity, which results in a slower convergence rate
for the tail bound, in contrast with our result. For example, when considering the
squared error loss, Fan and Song (2010) Theorem 4 will have

P
(∥∥β̂M

j − βM
j

∥∥ ≥ c3n
−κ) ≤ exp

(−c4n
(1−2κ)/3) + nm1 exp

(−c4n
(1−2κ)/3)

for bounded covariates. For our Theorem 3.1 (under Condition H2), let dn = 2 for
a fair comparison, then we have

P
(∥∥β̂M

j − βM
j

∥∥ ≥ c3n
−κ) ≤ 2 exp

(−c4n
1−2κ)

.

It is clear that we have a much better result here. When considering the Poisson
regression loss, the corresponding convergence rate in the tail probability bound
can be much slower than (1 − 2κ)/3. For our Theorem 3.1 (under Condition H3),
let dn = 2 for a fair comparison, we have

P
(∥∥β̂M

j − βM
j

∥∥ ≥ c3n
−κ) ≤ exp

(−c4n
1−2κ) + 2 exp

(−c5n
1/2−κ)

.

It is still a better result than Fan and Song (2010).

4. Iterative Goffins method and improved variant. In practice, unimpor-
tant variables can be correlated with the important variables, therefore, such vari-
ables can have significant marginal effects even though they are not significant in
the joint true model. To improve the performance of our screening method, we
consider an iterative version of Goffins. Given the data {(Xi , Yi)}, i = 1, . . . , n, we
choose the same truncation term dn = O(n1/5). In Theorem 3.2, the threshold νn
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is chosen at the level dnn
−2κ . In practice, the parameter κ is unknown, but we can

determine a data-driven threshold. To achieve this, we extend the random permu-
tation idea of Fan, Feng and Song (2011) and Zhao and Li (2012). Let X be the
matrix with the ith row as Xi . The algorithm works as follows:

Step 1. For every j ∈ {1, . . . , p}, compute

f̂nj = arg min
fnj∈Sn

Pnl
(
fnj (Xj ), Y

)
1 ≤ j ≤ p.

Randomly permute the rows of X and we have X̃ = (X̃1, . . . , X̃p). Let ω(q) be the
qth quantile of {G∗

n,j , j = 1, . . . , p}, where f̂ ∗
nj = arg minfnj∈Sn

Pnl(fnj (X̃j ), Y ).
Then our method selects the following variables: A1 = {j : Gn,j ≥ ω(q)}. In our
numerical studies, we choose q = 1, the maximum value of the empirical norm of
the permuted estimates.

Step 2. Apply penalized regression on the set A1 to select a subset M1. Specif-
ically, when l is the negative log-likelihood loss, apply the penalized generalized
additive model regression [e.g., penGAM in Meier, van de Geer and Bühlmann
(2009)].

Step 3. For every j ∈ Mc
1 = {1, . . . , p}/M1, minimize Pnl(f0 +∑

i∈M1
fni(Xi) + fnj (Xj ), Y ) with respect to f0 ∈ R, fni ∈ Sn for all i ∈ M1

and fnj ∈ Sn. For identifiability, we apply the B spline basis without the intercept
for j ∈ Mc

1 and for i ∈ M1. Apply the screening procedure with adaptive thresh-
old determined by the new random permutation. Choose a set of indices A2. Then
penalized regression is applied on the set M1 ∪A2 to select a subset M2.

Step 4. Iterate the process until |Ml| ≥ s0 or Ml = Ml−1.

This iterative version of Goffins will be denoted as “I-Goffins” in our simula-
tion studies. To further stabilize the performance, we can apply a “cap” to control
the number of selected variables in each iteration. For example, in our simulation
studies, we restrict to select 1 variable at each step. Since the chance of selecting
unimportant variables in each step has been reduced, the probability of selecting
important variables in the subsequent steps has been improved. This is the idea
behind the greedy INIS method proposed by Fan, Feng and Song (2011) for ad-
ditive modeling. To be consistent with Fan, Feng and Song (2011), we name this
improved variant of our method as greedy iterative goodness-of-fit nonparametric
screening (GI-Goffins).

5. Simulation studies. Similar to Fan, Feng and Song (2011), we set n = 400
but we consider p = 1000,2000,5000 for all examples to investigate the impact of
high dimensionality on screening methods. Following Fan, Feng and Song (2011),
we consider the number of spline basis functions as dn = �n1/5�+2 = 6. Note that
in this paper we consider the full B spline basis, and Fan, Feng and Song (2011)
considered the B spline basis without the intercept. The goodness-of-fit screening
methods under the two sets of basis are equivalent. Eight simulation examples
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will be constructed according to the four major types of regressions: Gaussian
regression, Logistic regression, Poisson regression and quantile regression. Define

f1(x) = x, f2(x) = (2x − 1)2, f3(x) = sin(2πx)/
(
2 − sin(2πx)

)
,

f4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin(2πx)2

+ 0.4 cos(2πx)3 + 0.5 sin(2πx)3,

f5(x) = exp(x − 0.5), f6(x) = 0.1 sin(2πx)2 + 0.4 cos(2πx)3,

f7(x) = sin(x − 1), f8(x) = (x − 1.5)2, f9(x) = 2 cos(x)/
(
2 − sin(x)

)
.

• Model 1 (Linear regression): Y |X = 5f1(X1)+3f2(X2)+4f3(X3)+6f4(X4)+√
1.74ε. Each Xi ∼ Uniform(0,1) i.i.d. and ε ∼ N(0,1).

• Model 2 (Linear regression): The model is the same as Model 1 but the covari-
ates X = (X1, . . . ,Xp)T are simulated according to the random effects model
Xj = (Wj + tU)/(1 + t), j = 1, . . . , p where W1, . . . ,Wp and U are i.i.d.
Uniform(0,1) and t = 0.4.

• Model 3 (Logistic regression): ln(P (Y = 1|X)/P (Y = 0|X)) = 2f1(X1) +
3f7(X2) + 2f8(X3) + 3.5f9(X4). Each Xi ∼ Uniform(−2.5,2.5) i.i.d.

• Model 4 (Logistic regression): The model is the same as Model 3 but the
covariates X = (X1, . . . ,Xp)T are simulated according to the random effects
model Xj = (Wj + tU)/(1 + t), j = 1, . . . , p where W1, . . . ,Wp are i.i.d. from
Uniform(−2.5,2.5), independent of U ∼ Uniform(0,1) and t = 0.4.

• Model 5 (Poisson regression): Y |X ∼ Poisson(exp{f1(X1)+f3(X2)+f5(X3)+
f6(X4)}). Each Xi ∼ Uniform(0,1) i.i.d.

• Model 6 (Poisson regression): The model is the same as Model 5 and the covari-
ates X = (X1, . . . ,Xp)T are simulated according to the same structure as Model
2.

• Model 7 (Heteroscedastic regression): Y |X = 5f1(X1) + 3f2(X2) + 4f3(X3) +
4f5(X4) + 0.5 exp(f6(X20) + f7(X21) + f8(X22))ε, where X ∼ Np(0,�) in-
dependent of ε ∼ N(0,1) and the (i, j)th element of covariance matrix � is
0.8|i−j |.

• Model 8 (Heteroscedastic regression): The model is the same as Model 7 except
that the random error ε ∼ Laplace(0,2).

Models 1 and 2 have been similarly considered in Meier, van de Geer and
Bühlmann (2009) and Fan, Feng and Song (2011), while Models 3–8 are newly
proposed in the current paper. The covariates are independent in Models 1, 3, 5 but
correlated in Models 2, 4, 6, 7, 8. Note that Model 8 is different from Model 7 be-
cause the Laplace(0,2) distribution for random error will emphasize more on the
covariates X20, X21, X22, thus making the heteroscedatic regression model more
challenging.

Minimum model size. Following Fan and Song (2010), Fan, Feng and Song
(2011) as well as later literature in sure screening field, we use the minimum model
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size required to contain the true model M� as a measure of the effectiveness of a
screening method. The simulation round is 500 for all the examples. We compare
our Goffins method with six other successful screening methods in the existing
literature, including some recent model-free screening methods. More specifically,
we consider fused Kolmogorov filter (Kfilter) by Mai and Zou (2015), quantile
adaptive screening (QaSIS) by He, Wang and Hong (2013), SIS for generalized
linear model by Fan and Song (2010), sure independent ranking and screening
(SIRS) by Zhu, Li, Li and Zhu (2012), distance correlation learning (DC) by Li,
Zhong and Zhu (2012) and empirical likelihood screening (EL) by Chang, Tang
and Wu (2013). Note that when considering squared error loss, our Goffins is
equivalent to NIS by Fan, Feng and Song (2011). Therefore, we will treat NIS
as a special example of Goffins, and will not present NIS as a separate method for
comparison here. However, when considering quantile regression loss, our Goffins
method is different from QaSIS in He, Wang and Hong (2013), because Goffins
is based on goodness-of-fit statistics while QaSIS is based on squared norm of
fitted nonparametric function. We choose quantile 75% whenever a quantile re-
gression loss is considered. The implementations of QaSIS and SIRS are based
on http://users.stat.umn.edu/~wangx346/research/example1b.txt. The implemen-
tations of Kfilter, DC and EL are based on the R codes from the authors of related
literature. The implementation of SIS is based on the R package “SIS.”

In Tables 1–2 along with the Tables S1–S2 in the Supplementary Material [Han
(2019)], we present the median, the interquartile range (IQR) and different quan-
tiles of minimum model size. Following existing literature, if the median is closer
to the true model size and the IQR is smaller, the corresponding screening method
is considered as more effective. Overall, our Goffins method performs best among
the seven screening methods. For Models 1, 3, 4, 5, 6, our medians of minimum
model size are close to the true model size 4 and IQRs are the smallest. Our medi-
ans and IQRs will not increase significantly when the dimensionality p increases
from 1000 to 5000. For comparison, other methods tend to select a much larger
model to contain the true model, and the performance can deteriorate dramatically
when p increases. Furthermore, 5%, 25%, 75% and 95% quantiles of our min-
imum model size are significantly smaller than the other methods. Models 7–8
are very challenging heteroscedastic regression models, but our method still per-
forms better than the other methods, including Kfilter and QaSIS. Table S2 in the
Supplementary Material [Han (2019)] also suggests that even when we consider
quantile regression loss, Goffins is different from QaSIS. Model 2 turns out to
be a difficult example for all the methods. However, our simulation in tables S3–
S5 of Supplementary Material [Han (2019)] will show that an iterative version of
Goffins (GI-Goffins or I-Goffins) can substantially reduce the false positives while
selecting the true important variables.

http://users.stat.umn.edu/~wangx346/research/example1b.txt
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TABLE 1
The median (IQR) and 5%, 25%, 75%, 95% quantiles of minimum model size

Model p Methods Median (IQR) 5% 25% 75% 95%

Model 3 1000 Goffins 5 (7.25) 4 4 11.25 67.05
Size = 4 Kfilter 14 (28) 4 6 34 115.05

QaSIS NA NA NA NA NA
SIS 393.5 (537) 38.9 158 695 941.05
SIRS 393 (537) 38.95 158 695 941.05
DC 16 (25) 4 9 34 112.05
EL 451 (524.25) 55.75 211 725.25 948.05

2000 Goffins 5 (6) 4 4 10 64.05
Kfilter 13 (28.25) 4 7 35.25 119.65
QaSIS NA NA NA NA NA
SIS 376.5 (521) 29.85 168.50 689.5 954.05
SIRS 376 (521.5) 29.85 168 689.5 954.05
DC 16 (24.25) 4 8 32.25 105.20
EL 441 (508.25) 38.95 215.50 723.75 961.05

5000 Goffins 9 (36.25) 4 4 40.25 301.20
Kfilter 59 (151.5) 5 20 171.5 597
QaSIS NA NA NA NA NA
SIS 2164 (2819.5) 165.1 887.5 3707.0 4814.4
SIRS 2163.5 (2817.5) 164.20 888.75 3706.25 4814.40
DC 67 (130.5) 8 27.75 158.25 504.15
EL 2465.5 (2705.75) 229.85 1136.25 3842.00 4846.05

Model 4 1000 Goffins 5 (6) 4 4 10 55.1
Size = 4 Kfilter 16 (36) 4 6 42 163.1

QaSIS NA NA NA NA NA
SIS 418.5 (566) 20.9 148.75 714.75 920.3
SIRS 418.5 (566.25) 19.95 148.50 714.75 920.3
DC 17 (33) 4 8 41 137.05
EL 495 (543.75) 42 211.75 755.50 933.15

2000 Goffins 6 (17) 4 4 21 131.1
Kfilter 32.5 (72.25) 4 10 82.25 243.35
QaSIS NA NA NA NA NA
SIS 858 (1079.25) 36.85 312.25 1391.50 1892
SIRS 858 (1077) 36.9 314.5 1391.5 1892
DC 34 (70) 5 14 84 240.15
EL 1008 (1037.25) 83.85 446.75 1484 1911.05

5000 Goffins 9 (32) 4 4 36 332.4
Kfilter 59.5 (174) 5 16 190 770.75
QaSIS NA NA NA NA NA
SIS 1857.5 (2778.5) 84.95 749.50 3528.00 4675.10
SIRS 1855.5 (2781.5) 84.95 746.50 3528.00 4675.10
DC 70 (160.5) 8 26 186.5 661.0
EL 2261.5 (2701) 196.8 1054.5 3755.5 4726.5
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TABLE 2
The median (IQR) and 5%, 25%, 75%, 95% quantiles of minimum model size

Model p Methods Median (IQR) 5% 25% 75% 95%

Model 5 1000 Goffins 4 (0) 4 4 4 12.1
Size = 4 Kfilter 28 (63) 4 11 74 265.05

QaSIS NA NA NA NA NA
SIS 447 (525.75) 22.95 174.25 700 944.15
SIRS 491 (501) 46 242.5 743.5 951.05
DC 11 (18) 4 6 24 71.05
EL 461.5 (510) 32.9 194.75 704.75 949

2000 Goffins 4 (1) 4 4 5 17
Kfilter 60 (144) 5 17 161 504.1
QaSIS NA NA NA NA NA
SIS 980 (1154.25) 48.95 371.75 1526 1924.05
SIRS 1031 (1028) 112.75 516 1544 1904.30
DC 21 (36) 4 9 45 132
EL 1013 (1166.75) 54.9 393.75 1560.5 1923.05

5000 Goffins 4 (2) 4 4 6 42
Kfilter 147.5 (377) 7 41.75 418.75 1340.00
QaSIS NA NA NA NA NA
SIS 2237.5 (2662.75) 163.80 978.25 3641.00 4748.45
SIRS 2619.5 (2518.75) 266.80 1468.75 3987.50 4723.20
DC 44 (98.25) 6 17 115.25 360.70
EL 2320 (2701) 183.85 988.00 3689.00 4773.15

Model 6 1000 Goffins 4 (1.25) 4 4 5.25 19.05
Size = 4 Kfilter 35.5 (95) 4.95 12 107 345.05

QaSIS NA NA NA NA NA
SIS 400.5 (571.75) 28 150.25 722 940.05
SIRS 510.5 (514) 49.95 244.5 758.5 952.15
DC 17 (36) 4 7 43 129
EL 425 (567) 30.95 163 730 940.05

2000 Goffins 4 (2) 4 4 6 31
Kfilter 66.5 (159) 5 22 181 552.7
QaSIS NA NA NA NA NA
SIS 930.5 (1067.25) 41.95 356 1423.25 1905.10
SIRS 1027.5 (1051.75) 94.80 488.50 1540.25 1911.05
DC 23 (47) 5 10 57 240.05
EL 972.5 (1059.5) 50.80 383.25 1442.75 1912

5000 Goffins 5 (7) 4 4 11 74.4
Kfilter 182 (483.25) 6 52 535.25 1614.10
QaSIS NA NA NA NA NA
SIS 2072.5 (2690.75) 198 825 3515.75 4709.70
SIRS 2442 (2528.25) 231.70 1324 3852.25 4778.45
DC 74 (173.5) 6 23.75 197.25 593.15
EL 2130 (2627.5) 214.6 926.5 3554.0 4710.3
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6. Data analysis. Classification between the malignant pleural mesothelioma
(MPM) and the lung cancer adenocarcinoma (ADCA) has received increasing at-
tention in both clinical studies and high dimensional statistical research. Gordon et
al. (2002) studied the data from 181 tissue samples (31 MPM and 151 ADCA) with
12,533 gene expression levels for each sample. Among these 181 sample data, 16
MPM and 16 ADCA have been combined as the training set while the other 149
samples (15 MPM and 134 ADCA) are considered as the testing set. The goal of
research is in two-fold as explained in Gordon et al. (2002): 1. Find the minimum
number of predictor genes that are most importantly associated with the disease
type; 2. Construct a classifier rule which can predict the future patients’ disease
type based on their gene expression levels with high statistical accuracy. Aspect 1
can substantially reduce the medical cost of obtaining patients’ relevant gene data
and the cost of potential scientific experiments on such genes. The performance of
the classifier is usually evaluated based on the testing data.

Since the disease type is a categorical data, and the number of genes is extremely
high (p = 12,533) compared with the small sample size (n = 32), we will apply
our GI-Goffins method with respect to the logistic regression for the training data.
We first standardize the gene expression data for each gene over the training sam-
ples such that the sample mean is 0 and the sample standard deviation is 1. Our
method selects five genes that are importantly associated with the disease type:
“31575-f-at,” “37716-at,” “39795-at,” “41286-at” and “41402-at.” We construct a
generalized additive model (B spline basis without the intercept and the number of
spline basis functions as dn = �n1/5� + 1 = 3) based on such five genes and apply
the model to the training data. The fitted nonparametric functions corresponding to
those five genes have also been plotted in Figure S1 in the Supplementary Material
[Han (2019)]. Then we apply our constructed model to the test data. Among the
149 samples for the testing data, we make 144 correct predictions. For the 5 sam-
ples that we misclassified, one MPM sample has been predicted as ADCA while
four ADCA samples has been predicted as MPM. ISIS for the generalized linear
model has also been considered to select important variables. To be fair, we also
apply a generalized additive model based on the selected genes for the training
data and further use this fitted model for classification on the test data. However,
this method will select fewer and different genes and the performance is much in-
ferior to our method. I-EL is an iterative version of EL and penalized empirical
likelihood regression described in Chang, Tang and Wu (2013). Its performance is
even worse than ISIS.

This lung cancer data has also been analyzed by various statistical methods in
the past literature. It is impossible and unnecessary for us to list all the relevant
results here, and we only compare our method with some representative methods
which have been shown superior performance. In Table 3, we will compare our GI-
Goffins method with linear discriminant methods such as ROAD in Fan, Feng and
Tong (2012) and FAIR in Fan and Fan (2008). Our GI-Goffins is a good balance
between the testing error and the number of selected genes compared with other
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TABLE 3
Performance of methods on lung cancer data. p = 12,533

Method Training error Testing error Number of selected genes

GI-Goffins 0/32 5/149 5
ISIS 0/32 18/149 2
I-EL 0/32 40/149 5

ROAD 1/32 1/149 52
FAIR 0/32 7/149 31

methods. More selected genes will cause substantial cost in future diagnosis and
experiments. Therefore, GI-Goffins is the method that we recommend for practice.

7. Further discussions.

7.1. Optimality. An interesting question is whether the convergence rate in the
upper bound of the tail probability that we established in Theorem 3.1 is optimal.
More specifically, if we have

b1 exp
(−c2n

a) ≤ P
(∥∥β̂M

j − βM
j

∥∥2 ≥ c1dnn
−2κ) ≤ b2 exp

(−c3n
a)

for some constants a, b1, b2, c1, c2 and c3, then we can say that the convergence
rate a in the upper bound of the tail probability is optimal, because the convergence
rate a cannot be improved further.

When the loss function l is the negative log likelihood loss of one-parameter
exponential families, under general regularity conditions, the maximum likelihood
estimator has the asymptotic normality [Heyde (1997), Gao et al. (2008)], that is,[

Ij

(
βM

j

)]1/2(
β̂

M

j − βM
j

) − N(0, Idn) → 0 in distribution,

where Ij is the information matrix of the j th covariate. Plugging in the negative
log likelihood loss and the B-spline basis functions, we have
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Since �T
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j is bounded based on the argument in the Supplementary Material

[Han (2019)] and b′′(·) is a continuous function, b′′(�T
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j ) is upper bounded by
a positive constant. Furthermore, due to Lemma 3 in the Supplementary Material
[Han (2019)],(
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Therefore, asymptotically, we have
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Thus, we need to find a lower bound for the tail probability of χ2
dn

distribution.
When dn = 1, it is well known that for any positive y,

P
(
χ2

1 ≥ y
) ≥ 1 −

√
1 − exp

(
−2y

π

)
= exp(−2y

π
)

1 +
√

1 − exp(−2y
π

)
≥ 1

2
exp

(
−2y

π

)
.

Let y = D2c1n
1−2κ , comparing with our Theorem 3.1 under Condition H1 or

H2, we have achieved the optimal convergence rate n1−2κ asymptotically. When
dn = 2, for any positive y, P(χ2

2 ≥ y) = exp(−y
2 ). Comparing with our Theo-

rem 3.1 under Condition H1 or H2, we have also achieved the optimal conver-
gence rate n1−2κ asymptotically. For more general dn, we do not have a sharp
lower bound of the tail probability of Chi-square distribution. Therefore, we will
not discuss further here.

7.2. Adaptive threshold. Theorem 3.2 is established based on a threshold νn

at the level of dnn
−2κ . In practice, the parameter κ is unknown. Therefore, we

need an adaptive threshold for the real data. Consider a threshold ν̂n which is
constructed based on the sample data, it will be interesting to derive a lower bound
for P(M� ⊆ M̂ν̂n). We have

P(M� ⊆ M̂ν̂n) ≥ 1 − ∑
j∈M�

P (Gn,j < ν̂n).

Note that

P(Gn,j < ν̂n) ≤ P(Gn,j < νn) + P (̂νn > νn).

We have derived the upper bound of P(Gn,j < νn) is the proof of Theorem 3.2.
Therefore, we need to derive an upper bound for the second term here.

Consider a permutation of the sample covariates {Xi}ni=1. We can obtain the
estimates of marginal regression based on the permuted data:(

β̂
M

j

)π = arg min
βj∈Rdn
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j

)
βj , Y

)
,

where π = (π1, . . . , πn) is a permutation of the index {1,2, . . . , n}. Note that
(Gn,j )

π is a statistical estimate of 0. We will derive an upper bound for P (̂νn > ν)

for a special case where the loss function l(·) is the squared error loss. Note that
the least squares estimate follows
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By Anderson and Robinson (2001) Theorem 3.2, after some algebra, we have the
asymptotic normality√

nβ̂
π

j − N(0, �̃) → 0 in distribution,

where �̃ = (E��T )−1[E(� − E�)(� − E�)T ](E��T )−1.
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If we let ν̂n,j = 1
n

∑n
i=1(�

T (X
πi

j )β̂
π

j )2, different thresholds for the marginal
utilities of different covariates. As we have discussed in the Section 2.2, this
screening based on Pn(�

T
j β̂

M

j )2 is equivalent to our goodness-of-fit screening
when the loss function is the squared error loss. We can show that asymptotically

P
(̂
νn,j ≥ c1dnn

−2κ) ≤ P
(
χ2

dn
≥ c2dnn

−2κ) ≤ exp
(−c3dnn

1−2κ)
for some constants c1, c2 and c3. The second inequality is by Laurent and Massart
(2000) Lemma 3.1. Correspondingly, we have a lower bound for the convergence
probability of containing the true model. In practice, the threshold ν̂n will be cho-
sen as the maximum value of {̂νn,j }pn

j=1 under a number of permutations, and the
loss function can be general. We do not have a theoretical result for such more
complicated situations.

7.3. Choice of loss function. The framework of goodness-of-fit nonparamet-
ric screening includes many screening methods based on the choice of loss func-
tions. An important question is how to choose loss function for practical data.
When the response variable Y takes values {0,1}, we suggest to consider the lo-
gistic regression loss: l(ω,Y ) = −ωY + ln(1 + exp(ω)); when Y takes nonnega-
tive integer values, we suggest to consider the Poisson regression loss: l(ω,Y ) =
−Yω+exp(ω)+ ln(Y !); When the distribution of Y is expected to be complicated,
the quantile regression loss can be considered; when Y is a continuous variable,
we suggest to start with the Gaussian regression loss: l(ω,Y ) = (Y − ω)2/2. This
brief guideline could raise misspecification issue of loss functions.

7.4. Iterative screening procedure. The idea of iterative screening and penal-
ization has been proposed since Fan and Lv (2008), and has achieved numerical
success in practice. However, formal theoretical justification is still an open prob-
lem in the field. The first step is a marginal screening. To simplify the discussion,
assume a fixed threshold γn is applied the selected variables A1 = {j : Gn,j ≥ γn}
satisfies M� ⊆ A1 with high probability (sure screening property). For the second
step, based on the set A1, we apply some penalized regression and select a subset
M1. Ideally, we want to show sign consistency for M1 under some regularity condi-
tions. The difficulty is that the set A1 is random, which is different from a conven-
tional penalization regression. Fortunately, we can borrow the technique in Weng,
Feng and Qiao (2017), which considers a two-step procedure for linear regression
model (similar to screening + penalization). For the third step, it is a conditional
marginal screening after penalization. Barut, Fan and Verhasselt (2016) has shown
the sure screening property based on the conditional screening for generalized lin-
ear model. Therefore, if the sign consistency is achieved in step 2, then under some
regularity conditions, sure screening property can be achieved in step 3. By mathe-
matical induction, the iterative procedure can achieve sign consistency. We would
like to explore the technical details as our future studies.
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric screening under conditional strictly convex
loss for ultrahigh dimensional sparse data” (DOI: 10.1214/18-AOS1738SUPP;
.pdf). Due to the space limit, all the technical proofs as well as some numerical
results are relegated to the Supplementary Material [Han (2019)].
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