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The increased availability of massive data sets provides a unique op-
portunity to discover subtle patterns in their distributions, but also imposes
overwhelming computational challenges. To fully utilize the information con-
tained in big data, we propose a two-step procedure: (i) estimate conditional
quantile functions at different levels in a parallel computing environment;
(ii) construct a conditional quantile regression process through projection
based on these estimated quantile curves. Our general quantile regression
framework covers both linear models with fixed or growing dimension and
series approximation models. We prove that the proposed procedure does not
sacrifice any statistical inferential accuracy provided that the number of dis-
tributed computing units and quantile levels are chosen properly. In particu-
lar, a sharp upper bound for the former and a sharp lower bound for the latter
are derived to capture the minimal computational cost from a statistical per-
spective. As an important application, the statistical inference on conditional
distribution functions is considered. Moreover, we propose computationally
efficient approaches to conducting inference in the distributed estimation set-
ting described above. Those approaches directly utilize the availability of
estimators from subsamples and can be carried out at almost no additional
computational cost. Simulations confirm our statistical inferential theory.

1. Introduction. The advance of technology in applications such as meteoro-
logical and environmental surveillance or e-commerce has led to extremely large
data sets which cannot be processed with stand alone computers due to processor,
memory or disk bottlenecks. Dividing data and computing among many machines
is a common way to alleviate such bottlenecks, and can be implemented by parallel
computing systems like Hadoop [White (2012)] with the aid of communication-
efficient algorithms.

In statistics, this approach to estimation has recently been adopted under the
name divide-and-conquer; see Jordan (2013), Li, Lin and Li (2013). Pioneering
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contributions on theoretical analysis of divide-and-conquer algorithms focus on
mean squared error rates; see Zhang, Duchi and Wainwright (2013, 2015). The
analysis therein does not take into account a core question in statistics—inferential
procedures. In the last two years, such procedures have been developed for various
non and semiparametric estimation approaches that focus on the mean or other
notions of central tendency, this line of work includes Banerjee, Durot and Sen
(2019), Shang and Cheng (2017), Shi, Lu and Song (2017), Zhao, Cheng and Liu
(2016), among others. Focusing on the mean tendency illuminates one important
aspect of the dependence between predictors and response, but ignores all other
aspects of the conditional distribution of the response which can be equally im-
portant. Additionally, most of the work cited above assumes homoskedastic errors
or sub-Gaussian tails. Both assumptions are easily violated in modern messy and
large-scale data sets, and this limits the applicability of approaches that are avail-
able to date.

We propose to use quantile regression in order to extract features of the con-
ditional distribution of the response while avoiding tail conditions and taking
heteroskedasticity into account. This approach focuses on estimating the condi-
tional quantile function x �→ Q(x; τ) := F−1

Y |X(τ |x) where FY |X denotes the con-
ditional distribution of response given predictor. A flexible class of models for
conditional quantile functions can be obtained by basis expansions of the form
Q(x; τ) ≈ Z(x)�β(τ ). This includes linear models of fixed or increasing dimen-
sion where the approximation is replaced by an equality, as well as a rich set of
non and semiparametric procedures such as tensor product B-splines or additive
models.

Given data {(Xi, Yi)}Ni=1, quantile regression for such models is classically for-
mulated through the following minimization problem:

β̂or (τ ) := arg min
b∈Rm

N∑
i=1

ρτ

{
Yi − b�Z(Xi)

}
,(1.1)

where ρτ (u) := {τ − 1(u ≤ 0)}u and 1(·) is the indicator function. However, solv-
ing this minimization problem by classical algorithms requires that the complete
data set can be processed on a single computer. For large samples, this might not
be feasible. This motivates us to utilize the divide-and-conquer approach where the
full sample is randomly split across several computers into S smaller subsamples
of size n, the minimization in (1.1) is solved on each subsample, and results are
averaged in the end to obtain the final estimator β(τ ) [see (2.3) in Section 2 for a
formal definition]. While this approach is easy to implement, the resulting estima-
tor β(τ ) is typically not a solution to the original minimization problem (1.1). As
illustrated in Figure 1, this can be problematic for inference procedures. More pre-
cisely, the left panel of Figure 1 depicts the coverage probabilities (on the y-axis)
against number of subsamples (on the x-axis) for asymptotic confidence inter-
vals that are based on asymptotic distributions of β̂or (τ ) but computed using β(τ )
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FIG. 1. Left penal: coverage probabilities (y-axis) of confidence intervals for estimators computed
from divide-and-conquer; x-axis: number of subsamples S in log-scale. Different colors correspond
to linear models with different m = dim(Z(X)). Right panel: necessary and sufficient conditions on
(S,K) for the oracle rule in linear models with fixed dimension (blue) and B-spline nonparametric
models (green). The dotted region is the discrepancy between the sufficient and necessary conditions.

for three data generating processes (linear models with different dimension) and a
fixed quantile τ = 0.1. This indicates that choosing S too large results in invalid in-
ference, as reflected by a rapid drop in coverage after a certain threshold is reached.
For different models, this threshold is different and it intrinsically depends on var-
ious properties of the underlying model such as dimension of predictors. These
observations indicate that developing valid statistical inference procedures based
on β(τ ) requires a careful theoretical analysis of divide-and-conquer procedures.
The first major contribution of the present paper is to provide statistical inferential
theory for this framework.

The approach described so far provides a way to estimate the conditional quan-
tile function for a single quantile. To obtain a picture of the entire conditional
distribution of response given predictors, estimation of the conditional quantile
function at several quantile levels is required. Performing such an estimation for
a dense grid of quantiles can be computationally costly as estimation at each new
quantile requires running the above algorithm anew. To relax this computational
burden, we introduce the two-step quantile projection algorithm. In the first step,
the divide-and-conquer algorithm is used to compute β(τ1), . . . ,β(τK) for a grid
of quantile values τ1, . . . , τK . In the second step, a matrix �̂ is computed from
β(τ1), . . . ,β(τK) [see (2.7) for a formal definition]. Given this matrix �̂, the quan-
tile projection estimator β̂(τ ) can be computed for any τ by performing a multi-
plication of this matrix with a known vector (depending on τ ) without access to
the original dataset. Based on β̂(τ ), we can estimate the conditional distribution
function; see (2.8) and (2.9).

The computational cost of our procedure is determined by the number of sub-
samples S and the number of quantile levels K . To minimize the computational
burden, K should be chosen as small as possible. Choosing S large will allow us
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to maintain a small sample size n on each local machine, thus enabling us to pro-
cess larger data sets. At the same time, classical inference procedures for β̂or (e.g.,
procedures based on asymptotic normality of β̂or ) should remain valid for β(τ ),
β̂(τ ).

A detailed analysis of conditions which ensure this “oracle rule” is conducted
in Section 3. There we derive sufficient conditions for both S and K , which are
also proved to be necessary in some cases up to logN terms. Sufficient conditions
of S take the form S = o(N1/2aN,m) where aN,m → 0. The specific form of aN,m

depends on the precise form of the model, with more complex models leading to
aN,m converging to zero faster, thus placing more restrictions on S. Necessary and
sufficient conditions on K take the form K 	 N1/(2η)‖Z(x)‖−1/η, where η > 0
is the degree of Hölder continuity [see (1.2)] of τ �→ Q(x; τ). In particular, this
lower bound is completely independent of S. An interesting insight which will be
explained in more detail in Section 3.2 is that for large values of ‖Z‖, which typi-
cally corresponds to more complex models, the restriction on K becomes weaker;
see the paragraph right after Corollary 3.10 for a more detailed explanation.

A graphical summary of the necessary and sufficient conditions on K and S

derived in Sections 3.1 and 3.2 is provided in the right panel of Figure 1.
Deriving such necessary conditions on S, K is a crucial step in understanding

the limitations of divide-and-conquer procedures, as it shows that the interplay
between S, K and model complexity is indeed a feature of the underlying problem
and not an artifact of the proof; see also Shang and Cheng (2017).

While the oracle rules described above provide justification for using the asymp-
totic distribution of β̂or for inference, this distribution is typically not pivotal.
We discuss several ways to overcome this problem. First, we propose simple and
computationally efficient approaches which directly make use of the fact that β̄
is formed by averaging results from independent subsamples. Those approaches
are based on normal and t-approximations as well as a novel bootstrap procedure.
Second, we comment on extensions of traditional approaches to inference which
rely on estimating the asymptotic variance of β̂or by using kernel smoothing tech-
niques. Simulations demonstrate finite sample properties of the proposed inference
strategies.

The rest of this paper is organized as follows. In Section 2, we provide a formal
description of all algorithms and estimation procedures discussed in this paper.
Section 3 contains the main theoretical results, with additional results presented
in the Appendix. In Section 4, we propose several practical approaches to infer-
ence. In Section 5, we validate the finite sample relevance of our theoretical re-
sults through extensive Monte Carlo experiments. Proofs of all theoretical results
are deferred to the Supplementary Material [Volgushev, Chao and Cheng (2019)].
Throughout the manuscript, sections and other results in this Supplementary Mate-
rial will be referenced by S.Number. The following notation will be used through-
out the paper.
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Notation. Let X := supp(X). Let Z = Z(X) and Zi = Z(Xi) and assume T =
[τL, τU ] for some 0 < τL < τU < 1. Define the true underlying measure of (Yi,Xi)

by P and denote the corresponding expectation as E. Denote by ‖b‖ the L2-norm
of a vector b. λmin(A) and λmax(A) are the smallest and largest eigenvalue of a
matrix A. Let �η� denote the integer part of a real number η, and |j | = j1 +· · ·+jd

for d-tuple j = (j1, . . . , jd). Sm−1 ⊂ R
m is the unit sphere. an � bn means that

(|an/bn|)n∈N and (|bn/an|)n∈N are bounded, and an 	 bn means an/bn → ∞.
Define the class of functions

�η
c(T ) :=

{
f ∈ C�η�(T ) : sup

j≤�η�
sup
τ∈T

∣∣Djf (τ)
∣∣ ≤ c,

sup
j=�η�

sup
τ �=τ ′

|Djf (τ) − Djf (τ ′)|
‖τ − τ ′‖η−�η� ≤ c

}
,

(1.2)

where η is called the “degree of Hölder continuity” and Cα(X ) denotes the class
of α-continuously differentiable functions on a set X .

2. A two-step procedure for computing quantile process. In this section,
we formally introduce two algorithms studied throughout the paper —divide-and-
conquer and quantile projection. The former is used to estimate quantile functions
at fixed quantile levels, based on which the latter constructs an estimator for the
quantile process. We also note that algorithms presented below can be applied for
processing data that are locally stored for any reason and not necessarily large. As
an important application, the estimation of conditional distribution functions will
be presented.

We consider a general approximately linear model:

(2.1) Q(x; τ) ≈ Z(x)�βN(τ),

where Q(x; τ) is the τ th quantile of the distribution of Y conditional on X = x ∈
R

d , and Z(x) ∈ R
m is a vector of transformation of x. This framework (2.1) incor-

porates various estimation procedures, for instance, series approximation models;
see Belloni et al. (2017) for more discussion. In this paper, we will focus on three
classes of transformation Z(x) ∈ R

m which include many models as special cases:
fixed and finite m, diverging m with local support structure (e.g., B-splines) and
diverging m without local support structure.

The divide-and-conquer algorithm for estimating βN(τ) at a fixed τ ∈ (0,1) is
described below:

1. Divide the data {(Xi, Yi)}Ni=1 into S subsamples of size n.4 Denote the sth
subsample as {(Xis, Yis)}ni=1 where s = 1, . . . , S.

4The equal subsample size is assumed for ease of presentation, and can be certainly relaxed.
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2. For each s and fixed τ , estimate the subsample based quantile regression
coefficient as follows:

(2.2) β̂
s
(τ ) := arg min

β∈Rm

n∑
i=1

ρτ

{
Yis − β�Z(Xis)

}
.

3. Each local machine sends β̂
s
(τ ) ∈ R

m to the master that outputs a pooled
estimator

β(τ ) := S−1
S∑

s=1

β̂
s
(τ ).(2.3)

REMARK 2.1. The minimization problem in (2.2) is in general not strictly
convex. Thus, several minimizers could exist. In the rest of this paper, we will
only focus on the minimizer with the smallest 	2 norm. This is assumed for pre-
sentational convenience, and a close look at the proofs reveals that all statements
remain unchanged if any other minimizer is chosen instead.

While β(τ ) defined in (2.3) gives an estimator at a fixed τ ∈ T , a complete
picture of the conditional distribution is often desirable. To achieve this, we pro-
pose a two-step procedure. First, compute β(τk) ∈ R

m for each τk ∈ TK , where
TK ⊂ T = [τL, τU ] is grid of quantile values in T with |TK | = K ∈ N. Second
project each component of the vectors {β(τ1), . . . ,β(τK)} on a space of spline
functions in τ . More precisely, let

α̂j := arg min
α∈Rq

K∑
k=1

(
βj (τk) − α�B(τk)

)2
, j = 1, . . . ,m,(2.4)

where B := (B1, . . . ,Bq)
� is a B-spline basis defined on G equidistant knots τL =

t1 < · · · < tG = τU with degree rτ ∈N [we use the normalized version of B-splines
as given in Definition 4.19 on page 124 in Schumaker (1981)]. Here, uniformity of
knots is assumed for simplicity, all theoretical results can be extended to knots with
quasi uniform partitions. Using α̂j , we define the quantile projection estimator
β̂(·) : T →R

m:

(2.5) β̂(τ ) := �̂�B(τ ),

where �̂ is defined below. The j th element β̂j (τ ) = α̂�
j B(τ ) can be viewed as

projection, with respect to ‖f ‖K := (
∑K

k=1 f 2(τk))
1/2, of βj onto the polynomial

spline space with basis B1, . . . ,Bq . In what follows, this projection is denoted
by �K . Although we focus on B-splines in this paper, other basis functions are
certainly possible.

The algorithm for computing the quantile projection matrix �̂ is summarized
below, here the divide-and-conquer algorithm is applied as a subroutine:
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1. Define a grid of quantile levels τk = τL + (k/K)(τU − τL) for k = 1, . . . ,K .
For each τk , compute β(τk) as (2.3).

2. For each j = 1, . . . ,m, compute

α̂j =
(

K∑
k=1

B(τk)B(τk)
�

)−1(
K∑

k=1

B(τk)βj (τk)

)
,(2.6)

which is a closed form solution of (2.4).
3. Set the matrix

�̂ := [α̂1 α̂2 · · · α̂m].(2.7)

A direct application of the above algorithm is to estimate the quantile func-
tion for any τ ∈ T . A more important application of β̂(τ ) is the estimation of the
conditional distribution function FY |X(y|x) for any fixed x. More precisely, we
consider

F̂Y |X(y|x) := τL +
∫ τU

τL

1
{
Z(x)�β̂(τ ) < y

}
dτ,(2.8)

where τL and τU are chosen close to 0 and 1. The intuition behind this approach is
the observation that

τL +
∫ τU

τL

1
{
Q(x; τ) < y

}
dτ

=

⎧⎪⎪⎨⎪⎪⎩
τL if FY |X(y|x) < τL;
FY |X(y|x) if τL ≤ FY |X(y|x) ≤ τU ;
τU if FY |X(y|x) > τU ;

(2.9)

see Chernozhukov, Fernández-Val and Galichon (2010), Volgushev (2013). The
estimator F̂Y |X is a smooth functional of the map τ �→ Z(x)�β̂(τ ) [Chernozhukov,
Fernández-Val and Galichon (2010)]. Hence, properties of F̂Y |X depend on the
behavior of Z(x)�β̂(τ ) as a process in τ , which we will study in detail in Section 3.

3. Theoretical analysis. The following regularity conditions are needed
throughout this paper:

(A1) Assume that ‖Zi‖ ≤ ξm < ∞, where ξm is allowed to diverge, and that
1/M ≤ λmin(E[ZZ�]) ≤ λmax(E[ZZ�]) ≤ M holds uniformly in N for some fixed
constant M .

(A2) The conditional distribution FY |X(y|x) is twice differentiable w.r.t. y,
with the corresponding derivatives fY |X(y|x) and f ′

Y |X(y|x). Assume f̄ :=
supy∈R,x∈X |fY |X(y|x)| < ∞, f ′ := supy∈R,x∈X |f ′

Y |X(y|x)| < ∞ uniformly
in N .

(A3) Assume that uniformly in N , there exists a constant fmin < f such that

0 < fmin ≤ inf
τ∈T inf

x∈X fY |X
(
Q(x; τ)|x)

.
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In these assumptions, we explicitly work with triangular array asymptotics for
{(Xi, Yi)}Ni=1, where d = dim(Xi) is allowed to grow as well.

Assumptions (A1)–(A3) are fairly standard in the quantile regression literature;
see Belloni et al. (2017). The eigenvalue condition in (A1) is imposed for the
purpose of normalization, which in turn determines the value of ξm. For basis
expansions with local support such as B-splines, the right scaling to ensure the
eigenvalue condition results is ξm � √

m.

3.1. Fixed dimensional linear models. In this section, we assume for all τ ∈ T
and x ∈X
(3.1) Q(x; τ) = Z(x)�β(τ ),

where Z(x) has fixed dimension m. This simple model setup allows us to derive
a simple and clean bound on the difference between β , β̂ and the oracle estimator
β̂or and leading to a better understanding of resulting oracle rules. Our first main
result is as follows.

THEOREM 3.1. Suppose that (3.1) and assumptions (A1)–(A3) hold and that
K � N2, S = o(N(logN)−1). Then

(3.2) sup
τ∈TK

∥∥β(τ ) − β̂or(τ )
∥∥ = OP

(
S logN

N
+ S1/4(logN)7/4

N3/4

)
+ oP

(
N−1/2)

.

If additionally K 	 G 	 1, we also have

sup
τ∈T

∣∣Z(x0)
�(

β̂(τ ) − β̂or (τ )
)∣∣ ≤ OP

(
S logN

N
+ S1/2(logN)2

N

)
+ oP

(
N−1/2)

+ sup
τ∈T

∣∣(�KQ(x0; ·))(τ ) − Q(x0; τ)
∣∣,

where the projection operator �K was defined right after (2.5).

The proof of Theorem 3.1 is given in Section S.3.1. To obtain this result, we
develop a new Bahadur representation for each local estimator β̂

s
(τ ); see Sec-

tion S.2.1. The main novelty compared to existing results is a sharp bound on the
expectation of the remainder term. This is crucial to obtain the bound in (3.2). In
contrast, relying on previously available versions of the Bahadur representation
would result in a bound of the form (S/N)3/4(logN)3/4, which is somewhat more
restrictive. See Remark S.2.3 for additional details. Theorem 3.1 can be general-
ized to potentially miss-specified linear models with dimension that depends on
the sample size. Technical details are provided in the Appendix.

The bound in (3.2) quantifies the difference between β and β̂or in terms of
the number of subsamples S and can be equivalently formulated in terms of the
subsample size n = N/S provided that logN ∼ logn. When considering the pro-
jection estimator, an additional bias term �KQ(x0; ·) − Q(x0; ·) is introduced.
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Provided that for a given x0 ∈ X one has τ �→ Q(x0; τ) ∈ �
η
c(T ), this bias term

can be further bounded by O(G−η). Note that in the setting of Theorem 3.1 the
oracle estimator converges to β(τ ) at rate OP (N−1/2), uniformly in τ ∈ T . By
combining the results in Theorem 3.1 with this bound, upper bounds on conver-
gence rates for β(τ )−β(τ ) and supτ∈T |Z(x0)

�(β̂(τ )−Q(x0; τ)| follow as direct
corollaries.

Theorem 3.1 only provides upper bounds on the differences between β , β̂ and
β̂or . While a more detailed expression for this difference is derived in the proof
of Theorem S.2.1, this expression is very unwieldy and does not lead to useful
explicit formulas. However, it is possible to prove that the bounds given in The-
orem 3.1 are sharp up to logN factors, which is the main result of the next the-
orem. Before stating this result, we need to introduce some additional notation.
Denote by P1(ξm,M, f̄ , f ′, fmin) all pairs (P,Z) of distributions P and transfor-
mations Z satisfying (3.1) and (A1)–(A3) with constants 0 < ξm,M, f̄ , f ′ < ∞,
fmin > 0. Since m, ξm are constant in this section, we use the shortened notation
P1(ξ,M, f̄ , f ′, fmin).

THEOREM 3.2. For any τ in T there exists (P,Z) ∈ P1(ξ,M, f̄ , f ′, fmin)

and a C > 0 such that

(3.3) lim sup
N→∞

P

(∥∥β(τ ) − β̂or (τ )
∥∥ ≥ CS

N

)
> 0.

Moreover, for any c, η > 0 there exist (P,Z) ∈ P1(ξ,M, f̄ , f ′, fmin) such that
τ �→ βj (τ ) ∈ �

η
c(T ), j = 1, . . . , d and

(3.4) lim sup
N→∞

P

(
sup
τ∈T

∥∥β̂(τ ) − β̂or (τ )
∥∥ ≥ CS

N
+ CG−η

)
> 0.

The proof of Theorem 3.2 is given in Section S.3.1. The result provided in (3.3)
has an interesting implication: the best possible precision of estimating Q in a
divide-and-conquer framework is restricted by n = N/S, the sample size that can
be processed on a single machine, regardless of the total sample size N . A related
observation was made in Example 1 of Zhang, Duchi and Wainwright (2013) who
construct a data-generating process where the MSE rate of a divide-and-conquer
estimator is limited by the sample size that can be processed on a single computer.

As corollaries to the above results, we derive sufficient and necessary condi-
tions on S under which β and Z(x)�β̂ satisfy the oracle rule. Note that the asymp-
totic distribution of the oracle estimator β̂or (τ ) under various conditions has been
known for a long time; see for instance Theorem 4.1 of Koenker (2005). Under
(A1)–(A3), it was developed in Belloni et al. (2017) and Chao, Volgushev and
Cheng (2017) who show that

√
N

(
β̂or(·) − β(·)) �G(·) in

(
	∞(T )

)d
,(3.5)
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where G is a centered Gaussian process with covariance structure

(3.6)
H

(
τ, τ ′) := E

[
G(τ )G

(
τ ′)�]

= Jm(τ)−1
E

[
Z(X)Z(X)�

]
Jm

(
τ ′)−1(

τ ∧ τ ′ − ττ ′),
where Jm(τ) := E[ZZ�fY |X(Q(X; τ)|X)].

COROLLARY 3.3 (Oracle rules for β). A sufficient condition for
√

N(β̄(τ ) −
β(τ )) � N (0,H(τ, τ )) for any (P,Z) ∈ P1(ξ,M, f̄ , f ′, fmin) is that S =
o(N1/2/ logN). A necessary condition for the same result is that S = o(N1/2).

The necessary and sufficient conditions above match up to a factor of logN . In
order to guarantee the oracle rule for the process, we need to impose additional
conditions on the smoothness of τ �→ β(τ ) and on the number of grid points G.

COROLLARY 3.4 (Oracle rules for β̂). Assume that τ �→ βj (τ ) ∈ �
η
c(T ) for

j = 1, . . . , d and given c, η > 0, that N2 	 K 	 G and rτ ≥ η. A sufficient con-
dition for

√
N(β̂(·) − β(·)) � G(·) for any (P,Z) ∈ P1(ξ,M, f̄ , f ′, fmin) sat-

isfying above conditions is S = o(N1/2(logN)−1) and G 	 N1/(2η). A necessary
condition for the same result is S = o(N1/2) and G 	 N1/(2η).

Corollary 3.4 characterizes the choice for parameters (S,K) which determine
computational cost. The conditions on S remain the same as in Corollary 3.3.
The process oracle rule requires restrictions on K based on the smoothness of
τ �→ Q(x0; τ), denoted as η. Note that, compared to the results in Belloni et al.
(2017), smoothness of τ �→ Q(x0; τ) is the only additional condition of the data
that is needed to ensure process convergence of

√
N(β̂(·)−β(·)). Specifically, the

lower bound on K in terms of N becomes smaller as η increases, which implies
that smoother τ �→ Q(x0; τ) allow for larger computational savings. Corollary 3.4
implies that the condition on K is necessary for the oracle rule, no matter how S

is chosen.
Next, we apply Corollary 3.4 to the estimation of conditional distribution func-

tions. Define

F̂ or
Y |X(·|x0) := τL +

∫ τU

τL

1
{
Z(x)�β̂or (τ ) < y

}
dτ.(3.7)

The asymptotic distribution of F̂ or
Y |X(·|x0) was derived in Chao, Volgushev and

Cheng (2017).

COROLLARY 3.5. Under the same conditions as Corollary 3.4, we have, for
any x0 ∈ X ,√

N
(
F̂Y |X(·|x0) − FY |X(·|x0)

)
�−fY |X(·|x0)Z(x0)

�
G

(
FY |X(·|x0)

)
in 	∞((

Q(x0; τL),Q(x0; τU)
))

,
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where F̂Y |X(·|x0) is defined in (2.8) and G is a centered Gaussian process with co-
variance given in (3.6). The same process convergence result holds with F̂ or

Y |X(·|x0)

replacing F̂Y |X(·|x0).

The proof of Corollary 3.5 uses the fact that y �→ F̂Y |X(y|x) is a Hadamard
differentiable functional of τ �→ Z(x)�β̂(τ ) for any fixed x. The result of this
corollary can be extended to other functionals with this property.

3.2. Approximate linear models with local basis structure. In this section, we
consider models with Q(x; τ) ≈ Z(x)�β(τ ) with m = dim(Z) → ∞ as N → ∞
where the transformation Z corresponds to a basis expansion. The analysis in this
section focuses on transformations Z with a specific local support structure, which
will be defined more formally in Condition (L). Examples of such transformations
include polynomial splines or wavelets.

Since the model Q(x; τ) ≈ Z(x)�β(τ ) holds only approximately, there is no
unique “true” value for β(τ ). Theoretical results for such models are often stated
in terms of the following vector:

(3.8) γ N(τ) := arg min
γ∈Rm

E
[(

Z�γ − Q(X; τ)
)2

f
(
Q(X; τ)|X)];

see Chao, Volgushev and Cheng (2017) and Remark A.6. Note that Z�γ N(τ) can
be viewed as the (weighted L2) projection of Q(X; τ) onto the approximation
space. The resulting L∞ approximation error is defined as

cm(γ N) := sup
x∈X ,τ∈T

∣∣Q(x; τ) − γ N(τ)�Z(x)
∣∣.(3.9)

For any v ∈ R
m, define the matrix J̃m(v) := E[ZZ�f (Z�v|X)]. For any a ∈

R
m, b(·) : T → R

m, define Ẽ(a,b) := supτ∈T E[|a�J̃−1
m (b(τ ))Z|]. Throughout

the rest of this subsection, we assume the following condition:

(L) For each x ∈X , the vector Z(x) has zeroes in all but at most r consecutive
entries, where r is fixed. Furthermore, supx∈X Ẽ(Z(x),γ N) = O(1).

Condition (L) ensures that the matrix J̃m(v) has a band structure for any v ∈ R
m

such that the off-diagonal entries of J̃−1
m (v) decay exponentially fast [Lemma 6.3

in Zhou, Shen and Wolfe (1998)]. Next, we discuss an example of Z which satisfies
(L).

EXAMPLE 3.6 (Univariate polynomial spline). Suppose that (A2)–(A3) hold
and that X has a density on X = [0,1] uniformly bounded away from zero
and infinity. Let B̃(x) = (B̃1(x), . . . , B̃J−p−1(x))� be a polynomial spline basis
of degree p defined on J uniformly spaced knots 0 = t1 < · · · < tJ = 1, such
that the support of each B̃j is contained in the interval [tj , tj+p+1) and nor-
malization is as given in Definition 4.19 on page 124 in Schumaker (1981). Let
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Z(x) := m1/2(B̃1(x), . . . , B̃J−p−1(x))�, then there exists a constant M > 1 such
that M−1 < E[ZZ�] < M [by Lemma 6.2 of Zhou, Shen and Wolfe (1998)]. With
this scaling, we have ξm � √

m. Moreover, the first part of assumption (L) holds
with r = p + 1, while the second part, that is, supx∈X Ẽ(Z(x),γ N) = O(1), is
verified in Lemma S.2.6.

THEOREM 3.7. Suppose that assumptions (A1)–(A3) and (L) hold, that K �
N2 and Sξ4

m logN = o(N), cm(γ N) = o(ξ−1
m ∧ (logN)−2). Then

sup
τ∈TK

∣∣Z(x0)
�(

β(τ ) − β̂or(τ )
)∣∣

= oP

(∥∥Z(x0)
∥∥N−1/2)

+ OP

((
1 + logN

S1/2

)(
c2
m(γ N) + Sξ2

m(logN)2

N

))

+ OP

(‖Z(x0)‖ξmS logN

N
+ ‖Z(x0)‖

N1/2

(
Sξ2

m(logN)10

N

)1/4)
.

(3.10)

If additionally K 	 G 	 1 and c2
m(γ N) = o(N−1/2), we also have

sup
τ∈T

∣∣Z(x0)
�(

β̂(τ ) − β̂or(τ )
)∣∣

≤ ∥∥Z(x0)
∥∥ sup

τ∈TK

∥∥β(τ ) − β̂or(τ )
∥∥ + oP

(∥∥Z(x0)
∥∥N−1/2)

+ sup
τ∈T

{∣∣(�KQ(x0; ·))(τ ) − Q(x0; τ)
∣∣ + ∣∣Z(x0)

�γ N(τ) − Q(x0; τ)
∣∣},

where the projection operator �K was defined right after (2.5).

The strategy for proving Theorem 3.7 is similar to that for Theorem 3.1, the
difference is that we now apply an aggregated Bahadur representation which makes
explicit use of the local basis structure of Z (Section S.2.2).

Similar to Theorem 3.1, Theorem 3.7 only provides upper bounds on the differ-
ences between β , β̂ and β̂or . As in the setting of fixed-dimensional linear models,
this result can be complemented by a corresponding lower bound which we state
next.

THEOREM 3.8. For any τ in T , there exists a sequence of distributions of
(Y,X) and sequence of transformations Z such that assumptions (A1)–(A3) and
(L) hold, that Sξ4

m(logN)10 = o(N), c2
m(γ N) = o(N−1/2) and there exists a C > 0

with

(3.11) lim sup
N→∞

P

(∣∣Z(x0)
�β(τ ) − Z(x0)

�β̂or (τ )
∣∣ ≥ CSξm

N

)
> 0.
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Moreover, for any c, η > 0 there exists a sequence of distributions of (Y,X) and
sequence of transformations Z satisfying the above conditions and a x0 ∈ X with
τ �→ Q(x0; τ) ∈ �

η
c(T ) such that

(3.12) lim sup
N→∞

P

(
sup
τ∈T

∣∣Z(x0)
�β̂(τ ) − Z(x0)

�β̂or(τ )
∣∣ ≥ CSξm

N
+ CG−η

)
> 0.

Compared to Section 3.1, we obtain an interesting insight. The sufficient and
necessary conditions on S explicitly depend on m (note that under (A1)–(A3) we
have ξm � m) and become more restrictive as m increases. This shows that there
is a fundamental limitation on possible computational savings that depends on the
model complexity. In other words, more complex models (as measured by m) allow
for less splitting and require larger subsamples, resulting in a larger computational
burden.

We conclude this section by providing sufficient and necessary conditions for
oracle rules in the local basis expansion setting. To state those results, denote
by PL(M, f̄ , f ′, fmin,R) the collection of all sequences PN of distributions of
(X,Y ) on R

d+1 and fixed Z with the following properties: (A1)–(A3) hold with
constants M, f̄ , f ′ < ∞, fmin > 0, (L) holds for some r < R, ξ4

m(logN)6 = o(N),
c2
m(γ N) = o(N−1/2). The conditions in PL(M, f̄ , f ′, fmin,R) ensure the weak

convergence of the oracle estimator β̂or(τ ); see Chao, Volgushev and Cheng
(2017).

The following condition characterizes the upper bound on S which is sufficient
to ensure the oracle rule for β(τ ).

(L1) Assume that

S = o

(
N

mξ2
m logN

∧ N

ξ2
m(logN)10 ∧ N1/2

ξm logN
∧ N1/2‖Z(x0)‖

ξ2
m(logN)2

)
.

For specific examples, Condition (L1) can be simplified. For instance, in the
setting of Example 3.6, we can reduce (L1) to the form

S = o
(
N1/2(logN)−2m−1/2 ∧ N(logN)−10m−2)

.

We now present the sufficient and necessary conditions for the oracle rule of
β(τ ) under the Condition (L) for Z.

COROLLARY 3.9 [Oracle rule for β(τ )]. Assume that (L1) holds and data
are generated from PN with (PN,Z) ∈ PL(M, f̄ , f ′, fmin,R). Then the pooled
estimator β(τ ) defined in (2.3) satisfies for any fixed τ ∈ T , x0 ∈ X ,√

NZ(x0)
�(β(τ ) − γ N(τ))

(Z(x0)�Jm(τ)−1E[ZZ�]Jm(τ)−1Z(x0))1/2 �N
(
0, τ (1 − τ)

)
,(3.13)

where Jm(τ) is defined in Corollary 3.3. This matches the limiting behavior of
β̂or . If S � N1/2ξ−1

m , the weak convergence result (3.13) fails for some (PN,Z) ∈
PL(1, f̄ , f ′, fmin,R), x0 ∈ X .
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To compare the necessary and sufficient conditions in Corollary 3.9, assume for
simplicity that m 	 Nα for some α > 0 and ‖Z(x0)‖ � ξm (this is, for instance, the
case for univariate splines as discussed in Example 3.6). Since under (A1)–(A3) we
have m1/2 � ξm, it follows that (L1) holds provided that S = o(N1/2ξ−1

m (logN)−2)

and the necessary and sufficient conditions match up to a factor of (logN)2.
Next, we discuss sufficient conditions for the process oracle rule.

COROLLARY 3.10. Consider an arbitrary vector x0 ∈ X . Assume that
data are generated from PN with (PN,Z) ∈ PL(M, f̄ , f ′, fmin,R), that (L1)
holds, that τ �→ Q(x0; τ) ∈ �

η
c(T ), rτ ≥ η, supτ∈T |Z(x0)

�γ N(τ) − Q(x0;
τ)| = o(‖Z(x0)‖N−1/2), that N2 	 K 	 G 	 N1/(2η)‖Z(x0)‖−1/η, c2

m(γ N) =
o(N−1/2) and that the limit

Hx0(τ1, τ2)

:= lim
N→∞

Z(x0)
�J−1

m (τ1)E[ZZ�]J−1
m (τ2)Z(x0)(τ1 ∧ τ2 − τ1τ2)

‖Z(x0)‖2

(3.14)

exists and is nonzero for any τ1, τ2 ∈ T , where Jm(τ) is defined in the statement of
Corollary 3.3.

1. The projection estimator β̂(τ ) defined in (2.5) satisfies
√

N

‖Z(x0)‖
(
Z(x0)

�β̂(·) − Q(x0; ·)) �Gx0(·) in 	∞(T ),(3.15)

where Gx0 is a centered Gaussian process with E[Gx0(τ )Gx0(τ
′)] = Hx0(τ, τ

′).
The same holds for the oracle estimator β̂or(τ ).

If G � N1/(2η)‖Z(x0)‖−1/η or S � N1/2ξ−1
m , the weak convergence in (3.15)

fails for some (PN,Z) which satisfies the above conditions.
2. For F̂Y |X(·|x0) defined in (2.8) and G defined above, we have

√
N

‖Z(x0)‖
(
F̂Y |X(·|x0) − FY |X(·|x0)

)
�−fY |X(·|x0)Gx0

(
FY |X(·|x0)

)
in 	∞((

Q(x0; τL),Q(x0; τU)
))

.

This matches the process convergence for F̂ or
Y |X(·|x0).

The proof of the sufficient conditions in Corollary 3.10 is presented in Sec-
tion S.3.2.3, and the collapse of the weak convergence (3.15) is shown in Sec-
tion S.3.3. Similar to the discussion after Corollary 3.4, the process oracle rule does
not place additional restrictions on the number of subsamples S besides (L1). How-
ever, the process oracle rule requires additional assumptions on the quantile grid
TK . An interesting observation is that G 	 (N/‖Z(x0)‖2)1/(2η) in Theorem 3.14
can be weaker than G 	 N1/(2η) from Corollary 3.4. For instance, this is true in the
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setting of Example 3.6 where ‖Z(x0)‖ � m1/2. Consequently, the computational
burden is reduced since K can be chosen smaller. The intuition behind this sur-
prising phenomenon is that the convergence rate for the estimator Z(x0)

�β̂or (τ )

in nonparametric models is typically slower. Thus, less stringent assumptions are
needed to ensure that the bias induced by quantile projection is negligible com-
pared to the convergence rate of β̂or (τ ).

The sufficient conditions in this section can be extended to cover approximately
linear models with increasing dimension that do not satisfy condition (L). Techni-
cal details are provided in the Appendix.

REMARK 3.11. To the best of our knowledge, the only paper that also studies
the sharpness of upper bounds for S that guarantee valid inference in a divide-
and-conquer setting with nonparametric regression is Shang and Cheng (2017).
However, Shang and Cheng (2017) only consider nonparametric mean regression
in the smoothing spline setup.

4. Practical aspects of inference. In the previous section, we derived con-
ditions which guarantee that the divide-and-conquer estimator β and the quantile
projection estimator β̂ share the same asymptotic distribution as the “oracle” esti-
mator β̂or , so that inference based on the asymptotic distribution of β̂or remains
valid. In practice, this result can not be directly utilized since the asymptotic vari-
ance of the oracle estimator β̂or is in general not pivotal. Classical approaches to
inference for this estimator are typically based on estimating its asymptotic vari-
ance from the data directly, or conducting bootstrap to approximate the asymptotic
distribution.

Estimating the limiting variance requires the choice of a bandwidth parameter,
and existing research indicates that classical rules for bandwidth selection need
to be adjusted in a divide-and-conquer setting [see, e.g., Banerjee, Durot and Sen
(2019), Xu, Shang and Cheng (2016)]. We discuss related issues for variance esti-
mation in Section 4.2.

Conducting bootstrap substantially increases the computational burden of any
procedure, which is problematic in a massive data setting we are considering here.
While recent proposals by Kleiner et al. (2014), Sengupta, Volgushev and Shao
(2016) provide a way to reduce the computational cost of bootstrap in a big data
setting, the approaches described in those papers are not easily combined with the
divide-and-conquer setting which we consider here.

As an alternative to variance estimation or classical bootstrap approaches, we
propose several simple inference procedures which directly utilize the fact that
in a divide-and-conquer setting estimators from subsamples are available. Those
procedures are very easy to implement, and require only a very small amount of
computation on the central computer without additional communication costs. De-
tails are provided in Section 4.1.
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4.1. Inference utilizing results from subsamples. We begin by discussing in-
ference at a fixed quantile level τ . The key idea in this section is to make direct
use of the fact that S estimators β̂s(τ ) from subsamples are available. Observe that
the estimator β(τ ) is simply an average of β̂1(τ ), . . . , β̂S(τ ) which can be seen as
i.i.d. realizations (provided groups are homogeneous) of a random variable with
approximately normal distribution. This suggests two simple options:

1. Use the sample covariance matrix, say ̂D , of β̂1(τ ), . . . , β̂S(τ ) in order
to conduct inference on β(τ ) or linear functionals thereof such as Q(x; τ) :=
Z(x)�β(τ ). For example, a simple asymptotic level α confidence interval for
Q(x; τ) is given by

(4.1)
[
Z(x0)

�β(τ ) ± S−1/2(
Z(x0)

�̂DZ(x0)
)1/2

�−1(1 − α/2)
]
.

2. A refined version of the previous approach is to additionally exploit the fact
that a suitably scaled version of u�

N β̂s(τ ) should be approximately normal since
each β̂s(τ ) is itself an estimator based on sample of i.i.d. data. Hence for small S

(say S ≤ 30) more precise confidence intervals can be obtained by using quantiles
of the student t distribution (if uN is a vector) or F distribution (if uN is a fixed-
dimensional matrix). For example, a modification of the confidence interval in
(4.1) would take the form

(4.2)
[
Z(x0)

�β(τ ) ± S−1/2(
Z(x0)

�̂DZ(x0)
)1/2

tS−1,1−α/2
]
,

where tS−1,1−α/2 denotes the 1 − α/2-quantile of the t-distribution with S − 1
degrees of freedom. The asymptotic validity of both intervals discussed above is
provided in the following theorem.

THEOREM 4.1. Assume that the conditions of either Corollary 3.3, Corol-
lary 3.9 or Corollary A.2 hold, that cm(γ N) = o(‖Z(x0)‖N−1/2) and that S ≥ 2
(S can be fixed). Then the confidence interval (4.2) has asymptotic (for N → ∞)
coverage probability 1 − α.

If additionally S → ∞, the confidence interval given in (4.1) also has asymp-
totic coverage probability 1 − α.

See Section S.4.1 for a proof of Theorem 4.1. The main advantage of the two
approaches discussed above lies in their simplicity as they do not require any costly
computation or communication between machines. There are two main limitations.

First, for small values of S (say S ≤ 30) the confidence intervals in (4.1) will
not have the correct coverage while the interval in (4.2) can be substantially wider
than the one based on the exact asymptotic distribution since quantiles of the t-
distribution with few degrees of freedom can be substantially larger than corre-
sponding normal quantiles. Moreover, the approach is not applicable if S is smaller
than the dimension of the parameter of interest. Second, the approaches are not
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straightforward to generalize to inference on nonlinear functionals of β(τ ) such as
F̂Y |X(y|x) or inference which is uniform over a continuum of quantiles τ .

The first limitation is not likely to become relevant in a big data setting since
here we typically expect that S is large due to computational bottlenecks and
memory constraints. For the sake of completeness, we discuss this case in the
next section. To deal with the second limitation, we propose to use a boot-
strap procedure that can be conducted by solely using the subsample estimators
{β̂s(τk)}s=1,..,S,k=1,...,K which are stored on the central machine. Details are pro-
vided below:

1. Sample i.i.d. random weights {ωs,b}s=1,...,S,b=1,...,B from taking value 1 −
1/

√
2 with probability 2/3 and 1+√

2 with probability 1/3 (i.e., weights are chosen
such that ωs,b ≥ 0, E[ωs,b] = V ar(ωs,b) = 1) and let ω̄·,b := S−1 ∑S

s=1 ωs,b.
2. For b = 1, . . . ,B , k = 1, . . . ,K , compute the bootstrap estimators

(4.3) β
(b)

(τk) := 1

S

S∑
s=1

ωs,b

ω̄·,b
β̂

s
(τk)

and define the matrix �̂(b) from (2.7) with β
(b)

(τk) replacing β(τk).

3. Similarly, as in (2.5) compute β̂
(b)

(·) from the matrix �̂(b) defined above. For
a functional of interest � approximate quantiles of the distribution of �(β̂(·)) −
�(β(·)) by the empirical quantiles of {�(β̂

(b)
(·)) − �(β̂(·))}b=1,...,B .

A formal justification for this bootstrap approach is provided by the following
result.

THEOREM 4.2. Let the assumptions of either Corollary 3.4, Corollary 3.10
or Corollary A.5 hold and assume that additionally S → ∞. Then we have condi-
tionally on the data (Xi, Yi)i=1,...,N ,

√
N

‖Z(x0)‖
(
Z(x0)

�β̂
(1)

(·) − Z(x0)
�β̂(·)) �Gx0(·) in 	∞(T ),

where the limit Gx0 denotes the centered Gaussian process from Corollary 3.10 or
Corollary A.5 under their respective assumptions and Gx0 = Z(x0)

�
G under the

assumptions of Corollary 3.4.

The proof of Theorem 4.2 is given in Section S.4.2. We conclude this section
by remarking that the bootstrap proposed differ from the cluster-robust bootstrap
of Hagemann (2017). The main difference is that we propose to directly utilize
the subsample estimators β̂

s
while the approach of Hagemann (2017) requires

repeated estimation on the complete sample.

4.2. Inference based on estimating the asymptotic covariance matrix. As sug-
gested by a referee, an alternative way to conduct inference is to compute, for
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each subsample, not only the estimator β̂s but also a variance estimator and pool
those estimators. Here, we provide some details on this approach. For the sake of
simplicity, we only discuss the case where m is fixed and the model is specified
correctly, that is, the setting of Section 3.1.

It is well known that the asymptotic variance–covariance matrix of the differ-
ence

√
n(β̂or (τ ) − β(τ )) (for fixed m) takes the “sandwich” form

(τ) = τ(1 − τ)Jm(τ)−1
E

[
ZZ�]

Jm(τ)−1,

Jm(τ) = E
[
ZZ�fY |X

(
Q(X; τ)|X)]

.

The middle part E[ZZ�] is easily estimated by 1
nS

∑
i

∑
s ZisZ�

is . Since this is a
simple mean of the subsample-based quantities 1

n

∑
i ZisZ�

is , implementing this in
a distributed computing setting is straightforward.

The matrix Jm(τ) involves the conditional density fY |X(Q(X; τ)|X) and is
more difficult to estimate. A popular approach is based on Powell’s estimator
[Powell (1986)]

(4.4) Ĵ P
ms(τ ) := 1

2nhn

n∑
i=1

ZisZ�
is1

{∣∣Yis − Z�
is β̂

s
(τ )

∣∣ ≤ hn

}
.

Here, hn denotes a bandwidth parameter that needs to be chosen carefully in order
to balance the resulting bias and variance.

There are several possible approaches to estimate JP
m (τ) in a parallel computing

environment. If an additional round of communication is acceptable, it is possible
to construct estimators with the same convergence rate and asymptotic distribution
as the estimator based on the full sample. Details are provided in Section S.1 in
the Supplementary Material [Volgushev, Chao and Cheng (2019)]. If only a single
round of communication is allowed, the following algorithm can be used instead:

1. For s = 1, . . . , S, in the same round as computing β̂
s
(τ ), compute Ĵ P

ms(τ )

from (4.4) and ̂1s := 1
n

∑
i ZisZ�

is .
2. Along with (β̂

s
(τ ))s=1,...,S , send (Ĵ P

ms(τ ), ̂1s)s=1,...,S to the master ma-

chine and compute J
P

m(τ) := 1
S

∑S
s=1 Ĵ P

ms(τ ), 1 := 1
S

∑S
s=1 ̂1s .

3. The final variance estimator is given by ̄(τ ) = τ(1 − τ)J
P

m(τ)−11 ×
J

P

m(τ)−1.

REMARK 4.3. Note that in the above algorithm we first take averages
over the subsampled estimators Ĵ P

ms(τ ) and only invert the aggregated matrix
J

P

m(τ). An alternative approach would have been to compute the estimator
Ĵ P

ms(τ )−1̂s Ĵ
P
ms(τ )−1 for each subsample and average in the end. However, given

that A �→ A−1 is nonlinear, this might result in additional bias since in general for
random matrices (E[A])−1 �= E[A−1].

An important question for implementing the above algorithm is the choice of the
bandwidth parameter hn. To gain some intuition about the optimal choice of hn,
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we will formally discuss the case of a linear model fixed dimension. First, observe
that by a Taylor expansion we have almost surely

J
P

m(τ)−11J
P

m(τ)−1 − Jm(τ)−11Jm(τ)−1

= −Jm(τ)−1(
J

P

m(τ) − Jm(τ)
)
Jm(τ)−11Jm(τ)−1

− Jm(τ)−11Jm(τ)−1(
J

P

m(τ) − Jm(τ)
)
Jm(τ)−1

+ Jm(τ)−1(1 − 1)Jm(τ)−1

+ O
(∥∥JP

m(τ) − Jm(τ)
∥∥2 + ‖1 − 1‖

∥∥JP

m(τ) − Jm(τ)
∥∥)

.

Ignoring higher-order terms and terms that do not depend on hn it suffices to ana-

lyze the properties of J
P

m(τ) − Jm(τ).

THEOREM 4.4. Under assumptions (A1)–(A3), assume that additionally y �→
f ′

Y |X(y|x) is continuously differentiable with first derivative being jointly contin-

uous and uniformly bounded as a function of x, y and that nhn(logn)−1 → ∞.
Then

J
P

m(τ) − Jm(τ) = An(τ) + Op

(
logn

nhn

)
,

where the exact form of An(τ) is given in the proof. Moreover,

E
[
An(τ)

] = h2
n

6
E

[
ZZ�f ′′

Y |X
(
Z�β(τ )|X)] + O

(
logn

n

)
+ o

(
h2

n

)
and for AN,(j,k) denoting the entry of AN in row j and column k

Cov
(
AN,(j,k)(τ ),AN,(u,v)(τ )

) = 1

Nhn

E
[
fY |X

(
Z�β(τ )|X)

ZjZkZuZv

]
+ o

(
1

Nhn

)
.

The proof of Theorem 4.4 is given in Section S.4.3. Theorem 4.4 has several
interesting implications. First, note that the asymptotic MSE of AN(τ) is of the
order h4

n + (Nhn)
−1, which is minimized for hN ∼ N−1/5 (note that the term

logn/n is negligible). Under the additional condition S = o(N2/5(logN)−1), we
have logn/(nhn) = o(N−2/5), and in this setting the MSE of the first-order ex-

pansion of J
P

m(τ) matches that of the Powell “oracle” estimator as derived in Kato
(2012). This shows that, despite using estimators from subsamples, the same rate
for estimating JP

m (τ) as from the full sample can be achieved. That requires a
stronger condition on S than the oracle rate for the estimator β̂ . It is not clear if
the latter condition is sharp, and we leave an investigation of this issue to future
research.
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Second, the choice hn ∼ n−1/5 which would have been optimal for estimating
Jm(τ) based on a subsample of size n does not lead to the optimal error rate for

the averaged estimator J
P

m(τ). In fact, the optimal bandwidth for J
P

m(τ) is always
smaller, which corresponds to undersmoothing. Similar effects were observed in
various settings by Zhang, Duchi and Wainwright (2015), Banerjee, Durot and Sen
(2019) (see their Appendix A.13) and Shang and Cheng (2017).

5. Monte Carlo experiments. In this section, we demonstrate our theory
with simulation experiments. Due to space limitations, we restrict our attention
to correctly specified linear models with different dimensions of predictors. More
precisely, we consider data generated from

Yi = 0.21 + β�
m−1Xi + εi, i = 1, . . . ,N,(5.1)

where εi ∼ N (0,0.01) i.i.d. and m ∈ {4,16,32}. For each m, the covariate Xi

follows a multivariate uniform distribution U([0,1]m−1) with Cov(Xij ,Xik) =
0.120.7|j−k| for j, k = 1, . . . ,m − 1, and the vector βm−1 takes the form

β3 = (0.21,−0.89,0.38)�;
β15 = (

β�
3 ,0.63,0.11,1.01,−1.79,−1.39,0.52,−1.62,

1.26,−0.72,0.43,−0.41,−0.02
)�;

β31 = (
β�

15,0.21,β�
15

)�
.

(5.2)

Throughout this section, we fix T = [0.05,0.95]. Section 5.1 contains results
for the estimator β(τ ), while results for F̂Y |X(y|x) are collected in Section 5.2.
Additional simulations (including models with heteroskedastic errors) are pre-
sented in Section S.9 of the Supplementary Material [Volgushev, Chao and Cheng
(2019)].

5.1. Results for the divide-and-conquer estimator β(τ ). We fix the subsample
size n and consider the impact of the number of subsamples S on the coverage
probabilities of different 95% confidence intervals. To benchmark our results, we
use the infeasible asymptotic confidence interval[

x�
0 β(τ ) ± N−1/2σ(τ)�−1(1 − α/2)

]
,(5.3)

where σ 2(τ ) denotes the theoretical asymptotic variance of βor(τ ); this CI is valid
by the oracle rule but contains unknown quantities. The coverage properties of this
interval also indicate whether we are in a regime where the oracle rule holds.

In a first step, we consider the properties of confidence intervals discussed in
Section 4.1 which directly utilize the availability of results from subsamples. We
consider the following three types of confidence intervals:

1. The normal confidence interval (4.1).
2. The confidence interval (4.2) based on quantiles of the t-distribution.
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3. The bootstrap confidence interval based on sample quantiles of (β̄
(1)

(τ ) −
β̄(τ )), . . . , (β̄

(B)
(τ )− β̄(τ )), where β̄

(1)
(τ ), . . . , β̄

(B)
(τ ) are computed as in (4.3);

in this section, we set B = 500.

The coverage probabilities of corresponding confidence intervals are summa-
rized in Figure 2 where we fix two subsample sizes n = 512,2048 and present two
types of plots: coverage probabilities for “small” values of S ranging from S = 2
to S = 50 and coverage probabilities for “large” values of S = 2k , k = 1, . . . ,10.
Only m = 4,32 is considered here; m = 16 can be found in the Supplementary
Material [Volgushev, Chao and Cheng (2019)].

Plots for small S help to access how different procedures behave if the number
of subsamples is small. As expected from the theory, oracle confidence intervals
and simple confidence intervals based on the t-distribution maintain nominal cov-
erage for small values of S. Confidence intervals based on normal approximation
and the bootstrap undercover for smaller values of S. Starting from about S = 20,
coverage probabilities of all four types of intervals are very close. We also see that
for m = 32, the oracle rule does not apply for a subsample size of n = 512 with
any number of subsamples S > 10; the situation improves for n = 2048. This is in
line with our asymptotic oracle theory. For “larger” values of S, there is no differ-
ence in the coverage probabilities of different intervals. As predicted by the oracle
theory, coverage starts to drop earlier for models with larger m.

Next, we analyze the properties of asymptotic confidence intervals which are
based on estimating the asymptotic variance of x�

0 β(τ ) from data. We compare
three different ways of estimating the asymptotic variance:

1. A simple pooled estimator which uses the default settings in the package
quantreg to obtain estimated variances in each subsample and takes the average
over all subsamples (additional details are provided in the Supplementary Material
[Volgushev, Chao and Cheng (2019)], Section S.9.1).

2. The estimator ̄ based on the bandwidth c∗(τ )n−1/5 which minimizes the
asymptotic MSE of the estimator Jm within subsamples of size n (additional de-
tails on the choice of optimal constant c∗(τ ) are provided in the Supplementary
Material [Volgushev, Chao and Cheng (2019)], Section S.9.1).

3. The estimator ̄ based on the bandwidth c∗(τ )N−1/5 which is motivated by
the theory developed in Theorem 4.4.

The results are reported in Table 1. Since there is no notable difference between
all approaches when S is large, only results for S ≤ 50 are displayed for the sake of
brevity. Interestingly, we do not observe a big difference between the naive band-
width choice hn ∼ n−1/5 and the optimal undersmoothing choice hn ∼ N−1/5.
This finding is quite intuitive since, once the asymptotic variance is estimated with
at most 5–10% relative error, a further increase in estimation accuracy does not
lead to substantial improvements in coverage probabilities. The completely auto-
matic choice implemented in the quantreg package also performs reasonably
well.
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FIG. 2. Coverage probabilities for x�
0 β(τ ) for different values of S and τ = 0.1,0.5,0.9 (left, mid-

dle, right row). Solid lines: n = 512, dashed lines: n = 2048. Black: asymptotic oracle CI, blue: CI
from (4.2) based on t distribution, red: CI from (4.1) based on normal distribution, green: bootstrap
CI. Throughout x0 = (1, . . . ,1)/m1/2, nominal coverage 0.95.

Finally, note that the pattern of coverage probabilities varies at different τ . For
example, in the linear models with normal errors, the coverage probabilities at
tail quantiles (τ = 0.1,0.9) drop to zero much faster than those at τ = 0.5. These
empirical observations are not inconsistent with our theory where only the orders
of the upper bound for S are shown to be the same irrespective of the value of τ .
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TABLE 1
Coverage probabilities based on estimating the asymptotic variance. Different rows correspond to
different methods for obtaining covariance matrix or: using true asymptotic variance matrix, def:

default choice implemented in quantreg package, nai: asymptotically optimal constant with scaling
hn ∼ n−1/5, adj: asymptotically optimal constant with scaling hn ∼ N−1/5 as suggested by

Theorem 4.4

S

1 10 30 50 1 10 30 50 1 10 30 50

n = 512, m = 4, τ = 0.1 n = 512, m = 16, τ = 0.1 n = 512, m = 32, τ = 0.1

or 94.9 94.8 94.9 94.3 94.7 94.3 92.2 90.7 94.4 92.5 88.6 85.5
def 92.6 93.7 93.6 92.8 92 92.3 90.1 88.4 92.5 90.6 86.2 82.9
nai 94.2 93.9 93.6 93.2 96.6 93.3 91 89.4 98.9 92.7 88.4 85
adj 94.2 94.5 94.3 94.2 96.6 94.3 92.1 90.8 98.9 94.4 89.5 87.2

n = 512, m = 4, τ = 0.5 n = 512, m = 16, τ = 0.5 n = 512, m = 32, τ = 0.5

or 94.7 96 95.9 95 94.2 95.7 94.8 95.4 95.4 95.5 94.8 95
def 97.8 98.2 98.2 98.2 96.7 98.2 98 98 97.6 97.5 97.3 97.7
nai 95.9 96.8 96.4 96.3 96.7 97 96.4 97 99 97 96.2 96.7
adj 95.9 96.4 96 95.2 96.7 96.4 95.7 96.2 99 96.6 95.7 95.9

n = 512, m = 4, τ = 0.9 n = 512, m = 16, τ = 0.9 n = 512, m = 32, τ = 0.9

or 95.4 94.6 94.2 93.6 94.6 94 91.7 90.1 95.2 92.1 90.6 87.1
def 94 93.6 92.8 92.4 92.6 92.2 90 88.1 92.2 90.2 88.2 84.3
nai 94.8 93.8 93.1 92.6 96.6 93.2 90.8 88.6 99 92.5 90.1 86.6
adj 94.8 94.3 93.8 93.7 96.6 94 91.9 90.4 99 93.8 91.4 88.4

n = 2048, m = 4, τ = 0.1 n = 2048, m = 16, τ = 0.1 n = 2048, m = 32, τ = 0.1

or 95.6 94.7 94.4 94.3 95 94.2 94.4 94.4 95 95 94 94
def 94.7 94.1 93.8 94 93.8 93.2 93.5 93.7 93.6 94.2 92.7 93.1
nai 95.1 94.1 93.7 94 95.3 93.5 93.5 93.7 95.7 94.6 93.1 93.2
adj 95.1 94.6 94.4 94.5 95.3 94 94.1 94.4 95.7 94.9 93.8 93.8

n = 2048, m = 4, τ = 0.5 n = 2048, m = 16, τ = 0.5 n = 2048, m = 32, τ = 0.5

or 94.6 94.9 95.2 95.3 95.3 94.2 94.2 95.5 95.3 95.5 95.1 95.5
def 96 96.2 96.7 96.2 96.7 96.2 95.4 96.7 96 96.4 96.3 96.6
nai 95.1 95.4 95.5 95.6 96.8 95.2 95 96 96.5 95.8 95.7 95.9
adj 95.1 95.1 95.1 95.3 96.8 95 94.7 95.6 96.5 95.6 95.2 95.5

n = 2048, m = 4, τ = 0.9 n = 2048, m = 16, τ = 0.9 n = 2048, m = 32, τ = 0.9

or 94.6 95.6 95.8 94.6 95.1 95 94.5 94.7 95.2 94.4 92.9 92.9
def 94.2 94.9 94.9 94.1 94.3 94.5 94 94.3 94.4 93.8 92.6 92.2
nai 94.4 94.9 94.8 94.1 95.5 94.7 94.2 94.4 96.7 94.4 92.7 92.5
adj 94.4 95.3 95.6 94.6 95.5 95.1 94.6 95 96.7 94.9 93.2 93.3
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Rather, this phenomenon might be explained by different derivatives of the error
density that appear in the estimation bias, and is left for future study.

5.2. Results for the estimator F̂Y |X(y|x). In this section, we consider infer-
ence on FY |X(y|x). We compare the coverage probability of the oracle asymptotic
confidence interval[

F̂Y |X
(
Q(x0; τ)|x0

) ± N−1/2σ 2
F (τ )�−1(1 − α/2)

]
(5.4)

[here σ 2
F (τ ) is the asymptotic variance of the oracle estimator] and the bootstrap

confidence interval described above Theorem 4.2. Note that the other approaches
described in Section 4 are not directly applicable here since F̂Y |X(y|x) is a func-
tional of the whole process β̂(·). Since we focus on bootstrap reliability, the num-
ber of quantile levels K = 65 and knots for spline interpolation G = 32 are chosen
sufficiently large to ensure nominal coverage of oracle intervals. A detailed study
of the impact of K , G on coverage of oracle intervals is provided in Section S.9.3.2
of the Supplementary Material [Volgushev, Chao and Cheng (2019)]. Due to space
limitations, we only show the results for small values of S; results for large val-
ues of S do not give crucial additional insights and are deferred to the Supple-
mentary Material [Volgushev, Chao and Cheng (2019)]. Coverage probabilities for
m = 4,32 are reported in Figure 3. For m = 4, the bootstrap and oracle confidence
interval show a very similar performance as soon as S ≥ 20; this is in line with the
coverage properties for the bootstrap for β̄ . For m = 32, coverage probabilities of
the oracle confidence interval indicate that the subsample size n is too small and

FIG. 3. Coverage probabilities for oracle confidence intervals (red) and bootstrap confidence inter-
vals (black) for FY |X(y|x0) for x0 = (1, . . . ,1)/m1/2 and y = Q(x0; τ ), τ = 0.1,0.5,0.9. n = 512
and nominal coverage 0.95.
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the oracle rule does not apply, even for S = 2. Interestingly, coverage probabilities
of bootstrap and asymptotic confidence intervals differ in this setting. This does
not contradict our theory for the bootstrap since that was only developed under the
assumption that we are in a regime where the oracle rule holds.

Summarizing all results obtained so far, we can conclude that inference based
on results from subsamples is reliable for S ≥ 20. Since this does not require ad-
ditional computation, we recommend using the normal approximation for S > 20
for pointwise inference and the bootstrap if process level results are required. For
S < 20, estimating the asymptotic variance within subsamples and aggregating is
recommendable. The simplest approach which is based on averaging variance es-
timators from the quanteg package works well and does not require additional
implementation, so we recommend to use this for S < 20.

APPENDIX: APPROXIMATE LINEAR MODELS WITHOUT
LOCAL BASIS STRUCTURE

In this section, we consider models with transformation Z of increasing dimen-
sion that do not have the special local structure considered in Section 3.2. The price
for this generality is that we need to assume a more stringent upper bound for S

and put additional growth restrictions on m in order to prove the oracle rule. The
conditions on K remain the same.

THEOREM A.1. Assume that conditions (A1)–(A3) hold and that additionally
mξ2

m logN = o(N/S), cm(γ N) = o(ξ−1
m ), K � N2. Then

sup
τ∈TK

∥∥β(τ ) − β̂or (τ )
∥∥

= OP

((
mc2

m logN

N

)1/2
+ c2

mξm

+
(

Smξ2
m logN

N
+ c4

mξ4
m

)(
1 + logN

S1/2

))
(A.1)

+ 1

N1/2 OP

((
mξ2

mc2
m(logN)3)1/2 +

(
Sm3ξ2

m(logN)7

N

)1/4)
+ oP

(
N−1/2)

.

If additionally K 	 G 	 1, m3ξ2
m(logN)3 = o(N), c2

m(γ N)ξm = o(N−1/2) we
also have for any x0 ∈ X

sup
τ∈T

∣∣Z(x0)
�β̂(τ ) − Z(x0)

�β̂or (τ )
∣∣

≤ ∥∥Z(x0)
∥∥ sup

τ∈TK

∥∥β(τ ) − β̂or(τ )
∥∥ + sup

τ∈T
∣∣(�KQ(x0; ·))(τ ) − Q(x0; τ)

∣∣
+ sup

τ∈T
∣∣Z(x0)

�βN(τ) − Q(x0; τ)
∣∣ + oP

(∥∥Z(x0)
∥∥N−1/2)

,

(A.2)

where the projection operator �K was defined right after (2.5).
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The proof of Theorem A.1 is given in Section S.3.4.2. The general upper bound
provided in (A.1) takes a rather complicated form. Under additional assumptions
on cm, major simplifications are possible. Due to space considerations, we do not
provide additional details here, rather we implicitly carry out the simplifications
when proving the following result.

COROLLARY A.2 (Oracle rule for β(τ )). Assume that conditions (A1)–(A3)
hold and that additionally m4(logN)10 = o(N), c2

m(γ N)ξm = o(N−1/2). Provided
that additionally S = o(N1/2/(mξ2

m(logN)2)) the estimator β(τ ) defined in (2.3)
satisfies

√
Nu�

N(β(τ ) − γ N(τ))

(u�
NJ−1

m (τ)E[ZZ�]J−1
m (τ)uN)1/2

�N
(
0, τ (1 − τ)

)
,(A.3)

for any τ ∈ T , uN ∈ R
m, where Jm(τ) is defined in the statement of Corollary 3.3.

The same holds for the oracle estimator β̂or(τ ).

We note that m4(logN)10 = o(N) imposes restriction on model complexity.
In particular, this requires m = o(N1/4(logN)−5/2). An immediate consequence
of Corollary A.2 is the oracle rule for correctly specified models, including lin-
ear quantile regression with increasing dimension as a special case. In this case,
cm(γ N) = 0.

COROLLARY A.3 (Oracle rule for correctly specified models). Assume that
conditions (A1)–(A3) hold and that the quantile function satisfies Q(x; τ) =
Z(x)�γ N(τ) with a transformation Z(x) of possibly increasing dimension m with
each entry bounded almost surely. Then u�

Nβ(τ ) satisfies the oracle rule provided
that m4(logN)10 = o(N) and S = o(N1/2m−2(logN)−2).

This corollary reduces to Corollary 3.3 in Section 3.1 when m is fixed. It de-
scribes the effect of allowing m to increase on the sufficient upper bound for S. We
note that cm(γ N) = 0 and ξm � m1/2 under the settings of Corollary A.3, whose
proof follows directly from Corollary A.2.

Both Corollary 3.9 and Corollary A.2 can be applied to local polynomial spline
models, but Corollary 3.9 puts less assumptions on S and m than Corollary A.2,
because Corollary 3.9 exploits the local support property of splines. This is illus-
trated in the following Remark A.4 for the specific setting of Example 3.6.

REMARK A.4 (Comparing Corollary 3.9 and Corollary A.2 with univariate
splines). Let Z denote the univariate splines from Example 3.6 and let uN :=
Z(x0) for a fixed x0 ∈ X . We assume that (A2) and (A3) hold and that X has
a density on X = [0,1] that is uniformly bounded away from zero and infinity.
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We will verify in Section S.3.4.4 that (A1) holds with ξm � m1/2. For simplic-
ity, assume that the bias cm(γ N) satisfies ξmcm(γ N)2 = o(N−1/2). Corollary 3.9
shows that sufficient conditions for the oracle rule are m2(logN)6 = o(N) and
S = o((Nm−1(logN)−4)1/2 ∧ (Nm−2(logN)−10)). On the other hand, Corol-
lary A.2 requires the more restrictive conditions m4(logN)10 = o(N) and S =
o(N1/2m−2(logN)−2).

Remark A.4 indicates that Corollary 3.9 gives sharper bounds than Corol-
lary A.2 when both results are applicable. Note however that Corollary A.2 applies
to more general settings since, in contrast to Corollary 3.9; it does not require Con-
dition (L). For instance, linear models as discussed in Corollary A.3 can in general
not be handled by Corollary 3.9. Finally, we discuss sufficient conditions for the
process oracle rule.

COROLLARY A.5 [Oracle rule for β̂(τ )]. Let x0 ∈ X , let the conditions of
Corollary A.2 hold. Suppose that τ �→ Q(x0; τ) ∈ �

η
c(T ), rτ ≥ η, N2 	 K 	

G 	 N1/(2η)‖Z(x0)‖−1/η, and supτ∈T |Z(x0)
�γ N(τ)−Q(x0; τ)| = o(‖Z(x0)‖ ×

N−1/2). Let the limit Hx0(τ1, τ2) defined in (3.14) exist and be nonzero for any
τ1, τ2 ∈ T :

1. The projection estimator β̂(τ ) defined in (2.5) satisfies
√

N

‖Z(x0)‖
(
Z(x0)

�β̂(·) − Q(x0; ·)) �Gx0(·) in 	∞(T ),(A.4)

where Gx0 is a centered Gaussian process with E[Gx0(τ )Gx0(τ
′)] = Hx0(τ, τ

′).
This matches the process convergence of Z(x0)

�β̂or (τ ).
2. The estimator F̂Y |X(·|x0) defined in (2.8) satisfies

√
N

‖Z(x0)‖
(
F̂Y |X(·|x0) − FY |X(·|x0)

)
� −fY |X(·|x0)Gx0

(
FY |X(·|x0)

)
in 	∞((

Q(x0; τL),Q(x0; τU )
))

,

where and Gx0 is the centered Gaussian process from (A.4). The same is true for
F̂ or

Y |X .

The proof of Corollary A.5 is given in Section S.3.4.5. Note that the condition
on K is the same as in Corollary 3.10. Results along the lines of Corollary A.5 can
be obtained for any estimator of the form u�

N β̂(·), as long as uN satisfies certain
technical conditions. For example, the partial derivative, the average derivative
and the conditional average derivative of Q(x; τ) in x fall into this framework. For
brevity, we refer the interested reader to Section 2.3 of Belloni et al. (2017) for
examples of vectors uN and omit the technical details.
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REMARK A.6. The weak convergence in (A.3) was derived with the center-
ing γ N for notational convenience. As pointed out in Chao, Volgushev and Cheng
(2017), other choices of centering sequences can be advantageous (for instance,
this is the case in the setting of partial linear models; see also Belloni et al. (2017)
for an alternative centering sequence). The conclusions of Theorem A.2 can be
generalized by replacing γ N in there by other vectors βN(τ) as long as certain
technical conditions are satisfied. However, this requires additional notation and
technicalities. To keep the presentation simple, we provide those details in Sec-
tion S.3.4.1 in the Supplementary Material [Volgushev, Chao and Cheng (2019)].
Similarly, the results in Section 3.2 could be stated in terms of more general se-
quences βN instead of the one considered in (3.8) at the cost of additional notation
and conditions.

Acknowledgments. The authors would like to thank the Editors and two
anonymous referees for helpful comments that helped to considerably improve
an earlier version of this manuscript.

SUPPLEMENTARY MATERIAL

Supplement to “Distributed inference for quantile regression processes”
(DOI: 10.1214/18-AOS1730SUPP; .pdf). The supplement contains additional
technical remarks, simulation results and all proofs.
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