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This paper develops a nonparametric estimator for the Lévy density of
an asset price, following an Itô semimartingale, implied by short-maturity
options. The asymptotic setup is one in which the time to maturity of the
available options decreases, the mesh of the available strike grid shrinks and
the strike range expands. The estimation is based on aggregating the ob-
served option data into nonparametric estimates of the conditional charac-
teristic function of the return distribution, the derivatives of which allow to
infer the Fourier transform of a known transform of the Lévy density in a
way which is robust to the level of the unknown diffusive volatility of the as-
set price. The Lévy density estimate is then constructed via Fourier inversion.
We derive an asymptotic bound for the integrated squared error of the esti-
mator in the general case as well as its probability limit in the special Lévy
case. We further show rate optimality of our Lévy density estimator in a min-
imax sense. An empirical application to market index options reveals relative
stability of the left tail decay during high and low volatility periods.

1. Introduction. Option data provides a rich source of information to study
risks in the economy and their pricing, and in particular tail events which are hard
to measure from asset return data alone. Extracting information from option data,
however, is challenging because option prices are determined by various sources of
risk (e.g., jumps as well as shocks to stochastic volatility and jump intensity) which
need to be explicitly modeled. Therefore, most of the existing work using option
data relies on fully specified parametric models. This parametric based evidence,
however, is subject to significant misspecification risk, the effects of which are
rather unclear due to the highly nonlinear dependence of the option prices on the
various sources of risk.

At the same time, recent developments on derivatives markets enable the de-
velopment and practical implementation of nonparametric estimation techniques,
particularly the ones for studying the jump part of the asset returns. More specif-
ically, over the last five years the trading in options with very short time to expi-
ration has increased significantly; see, for example, [1]. For example, for the S&P
500 market index, on each trading day there are now actively traded options with
at most two days to expiration.
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In this paper, we develop nonparametric estimators for the Lévy density of as-
set returns from short-dated options. The Lévy density of the asset return process
“summarizes” the information about the jumps and has been the main object of
study of a large body of statistical work. In the finite activity jump case, the Lévy
density can be viewed as the conditional probability of jump arrival of given size.
When extracted from option data, the Lévy density contains information both for
future expected jump risk as well as for the pricing of it (the Lévy density embed-
ded in the option prices is under the so-called risk-neutral probability measure).
Hence, this quantity is of major interest both from a theoretical and applied point
of view.

Our nonparametric procedure can be described as follows. First, we aggregate
the short-maturity option data into portfolios that provide model-free estimates
of the conditional characteristic function of the asset return for different values
of the characteristic exponent. This construction follows general results in [8] for
replicating expected smooth transforms of the return distribution via portfolios of
options. In a next step, we use the conditional characteristic function of the returns
to back out the Lévy density. This step is based on the fact that over a short interval,
the asset return is approximately like that of a Lévy process (process with i.i.d.
increments) with the value of the stochastic volatility and jump intensity “frozen”
at their values at the beginning of the interval. Hence, our problem reduces to the
nonparametric estimation of the Lévy density of a Lévy process from estimates
for the characteristic function of its increments. The main difficulty here is the
separation of the volatility from the Lévy density. To achieve this separation, we
use the fact that higher order derivatives (from third and above) of the characteristic
exponent of a Lévy process are solely determined by the Fourier transform of
a known transform of the Lévy density. Hence, the nonparametric estimation of
the Lévy density can be done via Fourier inversion of an estimate of the third
(or higher order) derivative of the characteristic exponent of the asset return. An
alternative approach, which we analyze in the Supplementary Material [27], is to
use the second derivative of the characteristic exponent. In this case, however, the
diffusive spot volatility also plays a role and, therefore, we need to perform bias
correction using a preliminary estimator for the latter.

We derive a bound on the order of magnitude of the integrated squared error in
recovering the Lévy density (or a certain known transform of it to be precise) in an
asymptotic setting of increasing number of options, with shrinking time to maturity
and strike coverage that converges to the whole positive part of the real line. In the
special Lévy case, we further derive the probability limit of the integrated squared
error of the estimator, based on the third derivative of the characteristic function,
and we show that it depends on the Lévy density of the asset price but not on
its diffusion component. We further establish rate optimality of our Lévy density
estimator in a minimax sense. We test the estimation procedure on simulated data
and we apply it to infer stock market risk-neutral Lévy densities from option data
on the S&P 500 market index.
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The current paper is related to several strands of literature. First, Lévy-based
approximations of short-dated options have been studied with various degrees of
generality in earlier work; see, for example, [1, 6, 15–17] and [24], and the many
references therein. The results of these papers are typically derived for a single op-
tion with a fixed strike while here we are interested in the approximation across the
whole range of strikes that cover the positive real line. Unlike the current study,
many of the above cited papers are not interested in the size of the approxima-
tion error or analyze it in somewhat restrictive settings (e.g., for part of the strike
domain only and/or under stronger assumptions for the underlying Itô semimartin-
gale). The asymptotic order of the approximation error depends on the strike of
the option and, for the purposes of the analysis here, we need to assess its limiting
behavior in a functional sense (in the strike). Second, there is a large literature on
the nonparametric estimation of the Lévy density from discrete observations of a
Lévy process; see, for example, [9, 10, 14, 18, 21, 22] and [25]. Some of these
results are further extended to time-changed Lévy processes [3] and affine models
[2]. The major difference between the current paper and this strand of work, from
a statistical point of view, is that we use option data for the inference which re-
sults in a very different statistical setup. Third, most closely related to the current
paper is a body of work that considers nonparametric Lévy density estimation in
the context of exponential Lévy models from options with fixed maturity; see, for
example, [4, 5, 11, 29, 30] and [31, 32]. The major differences between the current
work and these papers are two. First, our method applies to the very general Itô
semimartingale class of models which nests the exponential Lévy models but also
allows for models with time-varying volatility and jump intensity. Second, there
is a major difference in the asymptotic setup of the earlier work and the current
study: in our case, unlike the previous work, the maturity of the options shrinks.
This results in different methods of proofs and also different asymptotic behavior
of the estimators: the short maturity of the options here helps the separation of
volatility from jumps and we can thus achieve much faster rates of convergence
(in probability) than what is feasible in the fixed maturity case. These differences
are explained in more detail later in the text.

The rest of the paper is organized as follows. Section 2 describes the option
observation scheme and in Section 3 we state our assumptions. The Lévy density
estimator is given in Section 4 along with a bound on the asymptotic order of
its integrated squared error. Sections 5 and 6 present the results from a Monte
Carlo experiment and empirical application, respectively. Section 7 concludes. The
proofs are given in Section 8. A Supplementary Material [27] contains additional
theoretical results for the limit in probability of the integrated squared error of the
estimator, a lower bound for the minmax risk of recovering Lévy density from
short-dated noisy option data as well as an alternative estimator (to the one in
the main text) based on the second derivative of the characteristic function and
volatility debiasing.
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2. Setup and notation. We define with X an asset price on a filtered probabil-
ity space (�(0),F (0), (F (0)

t )t≥0,P
(0)). In this paper, we will make nonparametric

inference on the basis of derivatives written on X, that is, contracts whose payoffs
are sole functions of the trajectory of X from inception till expiration. As known
from finance theory (see, e.g., [12]), in the absence of arbitrage, the theoretical
values of derivatives prices equal their expected future discounted payoffs under
the so-called risk-neutral probability, which we henceforth denote with Q. The
latter deviates from the true probability because of the risk premia demanded by
investors for bearing risk (it overweights bad scenarios and underweights the good
scenarios) and is of major interest both for academic and practical applications.
The log-price, xt = lnXt , is an Itô semimartingale with the following dynamics
under the risk-neutral probability measure:

(2.1) xt =
∫ t

0
as ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

xμ̃(ds, dx),

where W is a Brownian motion, μ is an integer-valued random measure on R+ ×
R, counting the jumps in x, with compensator νt (x) dt ⊗dx and μ̃ is the martingale
measure associated with μ (W and νt are defined with respect to Q). Our interest
in this paper is the nonparametric estimation of νt (x) at fixed points in time from
option data.

We assume that we have observations of option prices written on X at time t ,
which expire at t + T , for some T > 0. Since t will be fixed throughout, we will
henceforth suppress the dependence on t in the notation of the option prices and
other related quantities. Also, without loss of generality, and in order to further
simplify notation, we will make the normalization Xt = 1. For simplicity, we will
also assume that the dividend yield of X and the risk-free interest rate are both
zero. With these normalizations, the theoretical values of the option prices we will
use in our analysis are given by

(2.2) OT (k) =
{
E
Q
t

(
ek − ext+T

)+ if k ≤ lnFT ,

E
Q
t

(
ext+T − ek)+ if k > lnFT ,

where FT is the price at time t of a forward contract which expires at time t + T ,
and K ≡ ek and k are the strike and log-strike, respectively, of the option. Given
the simplifying assumption of zero dividend yield and zero interest rate and the
normalization Xt = 1, we have FT ≡ 1. OT (k) is the price of an out-of-the-money
option (i.e., an option which will be worth zero if it were to expire today). This is
a call contract (an option to buy the asset) if k > 0 and a put contract (an option to
sell the asset) if k ≤ 0.

Our data consists of out-of-the-money options at time t , expiring at t + T , and
having log-strikes given by

(2.3) k ≡ k1 < k2 < · · · < kN ≡ k,
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with the corresponding strikes being

(2.4) K ≡ K1 < K2 < · · · < KN ≡ K.

We denote the gaps between the log-strikes with �i = ki − ki−1, for i = 2, . . . ,N .
We note that we do not assume an equidistant log-strike grid, that is, we allow for
�i to differ across i-s. The asymptotic theory developed below is of joint type, in
which the time to maturity of the option T goes down to zero, the mesh of the log-
strike grid supi=2,...,N �i shrinks to zero and the log-strike limits k and k increase
to infinity in absolute value.

Finally, as common in empirical asset pricing, we allow for observation error,
that is, instead of observing OT (ki), we observe

(2.5) ÔT (ki) = OT (ki) + εi,

where the sequence of observation errors {εi}i is defined on a space �(1) =
⨉k∈RAk , for Ak = R. This space is equipped with the product Borel σ -field
F (1) and with transition probability P(1)(ω(0), dω(1)) from the original probability
space �(0)—on which X is defined—to �(1). We further define

� = �(0) × �(1), F = F (0) ×F (1),

P
(
dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)).

3. Assumptions. We proceed with our formal assumptions for the process x,
the option observation scheme as well as the observation error. Below, for a generic
function f , we will denote with f ∗ its Fourier transform, provided the latter is well
defined.

A1. The function ht = x3νt (x) belongs to the class

Sr (Ct ) =
{
f ∈ L1(R) ∩ L2(R) :

∫
R

∣∣f ∗(x)
∣∣2(1 + x2)r dx ≤ Ct

}
,

for some positive constant r and some positive and Ft -adapted random vari-
able Ct .

A2. The process σ has the following dynamics under Q:

(3.1) σt = σ0 +
∫ t

0
bs ds +

∫ t

0
ηs dWs +

∫ t

0
η̃s dW̃s +

∫ t

0

∫
R

δσ (s, u)μσ (ds, du),

where W̃ is a Brownian motion independent of W ; μσ is a Poisson random mea-
sure on R+ ×R with compensator νσ (ds, du) = ds ⊗du, having arbitrary depen-
dence with the random measure μ; b, η and η̃ are processes with càdlàg paths and
δσ (s, u) :R+ ×R→ R is left-continuous in its first argument.
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A3. With the notation of A2, there exists an Ft -adapted random variable
t > t such that for s ∈ [t, t]:

(3.2) E
Q
t |as |4 +E

Q
t |σs |6 +E

Q
t

(
e4|xs |)+E

Q
t

(∫
R

(
e3|z| − 1

)
νs(z) dz

)4
< Ct,

for some Ft -adapted random variable Ct , and in addition for some ι > 0

(3.3) E
Q
t

(∫
R

(∣∣δσ (s, z)
∣∣4 ∨ ∣∣δσ (s, z)

∣∣)dz

)1+ι

≤ Ct .

A4. With the notation of A2, there exists an Ft -adapted random variable
t > t such that for s ∈ [t, t]:

E
Q
t |as − at |p +E

Q
t |σs − σt |p +E

Q
t |ηs − ηt |p +E

Q
t |η̃s − η̃t |p

≤ Ct |s − t | ∀p ∈ [2,4],
(3.4)

and

(3.5) E
Q
t

(∫
R

(
ez∨0|z| ∨ |z|2)∣∣νs(z) − νt (z)

∣∣dz

)p

≤ Ct |s − t | ∀p ∈ [2,3],
for some Ft -adapted random variable Ct .

A5. The log-strike grid {ki}Ni=1 is F (0)
t -adapted and on a set with probability

approaching one, we have

(3.6) η� ≤ inf
i=2,...,N

�i ≤ sup
i=2,...,N

�i ≤ �,

where η ∈ (0,1) is some positive constant and � is a deterministic sequence with
� → 0.

A6. We have: (1) E(εi |F (0)) = 0, (2) E(|εi ||F (0)) = OT (ki)ζt,i and E(ε2
i |

F (0)) = OT (ki)
2σ 2

t,i , where {ζt,i}i=1,...,N and {σ 2
t,i}i=1,...,N are sequences of Ft -

adapted random variables with supi=1,...,N ζt,i = Op(1) and supi=1,...,N σ 2
t,i =

Op(1), and (3) εi and εj are F (0)-conditionally independent whenever i �= j .

We briefly discuss each of the assumptions. Assumption A1 is a standard as-
sumption and the coefficient r controls the smoothness of the estimated function.
As we will see in the next section, our method recovers x3νt (x) and hence A1 is
an assumption for the smoothness of this function. Assumption A2 assumes that
the stochastic volatility process, σ , is an Itô semimartingale with jumps of finite
variation. This assumption is satisfied in many applications. Importantly, A2 al-
lows for general forms of dependence between the diffusion and jump components
of x and σ . Our integrability assumptions are given in A3. We require existence
of Ft -conditional moments of the values of various processes evaluated at some,
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arbitrary close to t , time in the future. We note that A3 imposes the restriction
that jumps in x are of finite variation. An extension to infinite variation jumps is
possible but at the cost of much slower rates of convergence than the one we get
here in Theorem 1 below. Assumption A4 is a “smoothness in expectation” as-
sumption. This assumption will be satisfied if the corresponding processes are Itô
semimartingales. Our assumption for the log-strike grid of the observed options is
given in A5 and it allows, in particular, for nonequidistant sampling. Finally, A6
contains our assumption for the observation error. We assume that the observation
error is centered at zero and that the errors are F (0)-conditionally independent. The
latter assumption can be weakened to require only no correlation of the errors and
certain products of them. It can be also weakened to allow for F (0)-conditional
weak dependence between the errors. Assumption A6 allows for F (0)-conditional
heteroskedasticity of the observation error. We note that A6 assumes that the F (0)-
conditional variance of the error is of the same order of magnitude as the squared
option price it is attached to. This is consistent with the relative observation error
being of order Op(1).

4. Nonparametric Lévy density recovery. We now construct our nonpara-
metric estimator of νt (x) and characterize its asymptotic properties. First, using
results in [8] for spanning risk-neutral payoffs from portfolios of options, we have
that

(4.1) E
Q
t

(
eiuxt+T

) = eiu lnFT − (
u2 + iu

) ∫ ∞
−∞

e(iu−1)kOT (k) dk, u ∈ R.

Therefore, using a Riemann sum approximation for the integral in the above ex-
pression, we have that

(4.2) f̂T (u) = eiu lnFT − (
u2 + iu

) N∑
j=2

e(iu−1)kj−1ÔT (kj−1)�j , u ∈ R,

is a consistent estimate of EQ
t (eiuxt+T ) under very general assumptions for the dy-

namics of the process x and provided k ↓ −∞, k ↑ +∞ and supi �i → 0. We
note that similar option-spanning idea lies behind the construction of the popular
option-implied volatility index VIX which is widely used as a measure of uncer-
tainty and fear gauge. More specifically, the formula for the squared VIX, up to a
higher order term, is given by 2 lnFT − 2

i
f̂ ′

T (0).
If T is small, then xt+T −xt is approximately, Ft -conditionally, the increment of

a Lévy process with generating (or characteristic) triplet (at , σ
2
t , νt ) (Definition 8.2

in [28]). Therefore, by applying Lévy–Khintchine formula (Theorem 8.1 in [28])
and assuming

∫
R |x|νt (dx) < ∞ (which is implied by our assumptions), we have

for u ∈ R

(4.3) f̂T (u) ≈ exp
(
iu lnFT + iuT at − u2

2
T σ 2

t +T

∫
R

(
eiux −1− iux

)
νt (x) dx

)
,
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and in the proof we make the above statement formal. Recall that our goal is to
recover νt without any knowledge of at and σt . To achieve this, we can consider
derivatives of f̂T (u). In particular, due to the approximation in (4.3), we have

(4.4)
f̂

(2)
T (u)

f̂T (u)
− f̂

(1)
T (u)2

f̂T (u)2
≈ −T σ 2

t − T

∫
R

x2eiuxνt (x) dx,

where for a generic function g(x) we denote with g(p)(x) its pth order derivative.
Since the last integral above is the Fourier transform of x2νt (x), we can recover
the latter via Fourier inversion from the expression on the left-hand side of (4.4),
provided we can estimate σt (a similar idea has been used by [26] in the con-
text of high-frequency data with increasing time span for a Lévy process x). The
estimation of σt , in turn, can be done either using the option data at hand or high-
frequency data on x in a local neighborhood of the observation time of the options.

Yet another approach, which avoids estimation of σt , is to base the inference on
a derivative of the expression on the left-hand side of (4.4). A similar idea has been
used by [10] in the context of estimating the jump density of a Lévy process from
high-frequency observations of the process with increasing time span. In particular,
given the approximation in (4.3), we have

(4.5)
f̂

(3)
T (u)

f̂T (u)
− 3

f̂
(2)
T (u)f̂

(1)
T (u)

f̂T (u)2
+ 2

f̂
(1)
T (u)3

f̂T (u)3
≈ −iT

∫
R

x3eiuxνt (x) dx

and, therefore,

(4.6) ht (x) = x3νt (x),

can be recovered from the expression on the left-hand side of (4.5) by Fourier
inversion. One advantage of the estimation approach based on the expression on
the left-hand side of (4.5) over the one based on the expression on the left-hand
side of (4.4) is that it avoids inference for σt and debiasing. However, estimating
x3νt (x) puts less emphasis on fitting νt (x) around zero as compared to estimating
x2νt (x).

For brevity, here we will present the analysis based on (4.5) only and in the
Supplementary Material [27] we present the results for the estimator based on
(4.4). The nonparametric estimator using the approximation in (4.5) is constructed
as follows. We first define for u ∈ R,

ĥ∗
t (u) = i

T

f̂
(3)
T (u)f̂T (u) − f̂

(2)
T (u)f̂

(1)
T (u)

f̂T (u)2

− 2i

T

f̂
(1)
T (u)(f̂

(2)
T (u)f̂T (u) − f̂

(1)
T (u)2)

f̂T (u)3
,

(4.7)
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which, given our discussion above, is an estimate of the Fourier transform of ht (x).
Using ĥ∗

t (u) our estimate for ht (x) is then given by

(4.8) ĥt (x) = 1

2π

∫
u∈[uN,l ,uN,h]

e−iuxĥ∗
t (u) du,

where −uN,l and uN,h are deterministic sequences increasing to infinity as the the
size of the option data grows. ĥt (x) is truncated Fourier inverse of ĥ∗

t (u), where
the highest frequencies have been removed since they are less precisely recovered
from the data.

A natural extension of the above estimator can be done by aggregating option
data at a fixed number of times t1, t2, . . . , tk , and using the average characteristic
function estimate over the observation times and its derivatives. In this case, we
recover the time average 1

k

∑k
i=1 hti (u). All the results derived below trivially carry

over to such an extension of ĥt and for simplicity of exposition we do not state the
formal result for this extension.

The following theorem derives the order of magnitude (in probability) of the
integrated squared error in recovering ht (x). In it, the notation an � bn means that
both sequences an/bn and bn/an are bounded.

THEOREM 1. Suppose Assumptions A1–A6 hold and in addition � � T α ,
K � T −β , K � T γ , for some α > 0, β > 0 and γ > 0 and where � is the mesh of
the log-strike grid. Let −uN,l � uN,h � uN be such that

(4.9) uN → ∞ and u2
N(T + �)| lnT |2 → 0.

Then we have

(4.10)
∫
R

(
ĥt (x) − ht (x)

)2
dx = Op

(
u−2r

N ∨ u5
N�N

)
,

where r is the constant in Assumption A1 and

(4.11) �N = � ∨ T
(
ln8 T

)(
e−2k|k|6 ∧ T −1/3)∨ e6k|k|6 ∨ e−6k|k|6.

REMARK 4.1. The short-maturity options can be also used to recover non-
parametrically σt . One possibility is to expand locally in T the option prices with
k close to zero and then make use of the leading role played by σt in such an
expansion. An alternative approach of recovering σt is to use 1

T
�(ln f̂T (u)) for

sufficiently large u where the signal for σt is strongest. In both cases, the options
with log-strikes close to zero play a leading role in the estimation (which is un-
like the case of the estimator ĥt ). These options are much larger asymptotically (as
T ↓ 0) than the option prices with log-strikes away from zero. Therefore, the effect
of the observation error on the estimation of σt will be in general bigger than on
the recovery of ht .
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Condition (4.9) in the theorem is a relatively weak upper bound on the rate of
growth of the sequence uN which guarantees that f̂T (u) is bounded from below
in absolute value uniformly for |u| ≤ uN with probability approaching one. This is
needed as ĥ∗

t (u) involves division by f̂T (u). Note in this regard that the argument
of the exponent on the right-hand side of (4.3) is Op(T u2) as |u| → ∞ and T → 0.

Equation (4.10) gives the order of magnitude in probability of the integrated
squared error

∫
R(ĥt (x) − ht (x))2 dx. Since ĥ∗

t (u) involves division by f̂T (u) and
some of the bounds for the options hold only in probability, we characterize the
behavior of the integrated squared error in probability and not in (conditional)
expectation.

The terms in (4.10)–(4.11) determining the order of magnitude of the integrated
squared error reflect the different sources of error in the estimation. As standard for
nonparametric density estimation, we have a bias due to truncation of the high fre-
quencies in the Fourier inversion in (4.8). Its contribution in the integrated squared
error is Op(u−2r

n ), where the parameter r captures the degree of smoothness of
ht (x) (roughly the number of its derivatives). Not surprisingly, the higher r is, the
smaller this bias is.

The remaining terms on the right-hand side of (4.10) reflect the various sources
of error in approximating E

Q
t (eiuxt+T ) and its derivatives with the available option

data. The first term in �N in (4.11) is due to the measurement error in the option
prices. Its order of magnitude is determined by the number of options used in the
estimation as well as the order of magnitude of the option error variance, which
by Assumption A6 is proportional to the option price that the error is added to.
Since the option prices shrink asymptotically in magnitude as T ↓ 0, so do the
errors attached to them. We note in this regard that the option price OT (k) is of
order Op(T ) for values of k away from zero and is only of order Op(

√
T ) for k

in the vicinity of zero (see Section 8 for the precise statements). As a result, the
option error for log-strikes close to zero is asymptotically larger than the one for
log-strikes that are large in absolute value. Nevertheless, since the loading on the
options with k close to zero in our estimator is of asymptotically smaller order
than on those with k away from zero, the asymptotic effect of the observation error
on the estimation is determined by that in the observed options with k away from
zero. We further point out that the effect of the option error on the recovery of ht

dominates the error due to the smoothness of the option price as a function of k.
Recall in this regard that f̂T (u) involves a Riemann sum approximation of the
integral in (4.1).

The second term in �N is due to error in the option price stemming from ap-
proximating xt+T − xt by the increment of Ft -conditionally Lévy process with
characteristic triplet (at , σ

2
t , νt ). Naturally, this error depends on the time to ma-

turity T and not on the mesh of the observation grid of strikes �. Finally, the last
two terms in �N are due to the use of options with a finite span of strikes (recall
that the integral in (4.1) involves integration with respect to k over R while the
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strike range used in the estimation is [k, k]). The size of this error is determined
only by the order of magnitude of k and k and the tail decay of the (risk-neutral)
conditional return distribution.

The result in (4.10) is an upper bound for the estimation error in ĥt . However,
in the Supplementary Material [27] we derive the limit in probability of the inte-
grated squared error of the estimator in the specialized setting where the under-
lying process is Lévy. This result shows that the bound in (4.10) for the effect of
the observation error on the estimation [first term in (4.11)] is sharp. The limit in
probability result also shows that the precision in the estimation does not depend
on the diffusive component of the underlying asset price. This is because our es-
timator puts more weight (in relative terms) to the options with k away from zero
where the signal from the diffusion is relatively weak and is of higher asymptotic
order.

The magnitude of the effect on the precision of ĥt from the stochasticity and
time-variation of the drift, volatility and Lévy density as well as from the finite-
ness of the strike range of the options used in the estimation (last three terms in
�n) is derived under rather general conditions for the process X. Under stronger
assumptions for X, this bound on the effect of this approximation error in the esti-
mation can be further improved upon. First, in the case when the Lévy measure has
a finite support, then we do not need k ↓ −∞ and k ↑ +∞ but finite [k, k], which
covers the support of the Lévy measure, would suffice. In this case, the last three
terms in (4.11) can be replaced with a term involving only T . Second, in the case
when σt and νt (x) are time-varying but deterministic, our nonparametric estima-
tion procedure recovers nonparametrically 1

T

∫ t+T
t hs(x) ds, and the only source

of error in this case stems from the approximation of the integral on the right-hand
side of (4.1) by a finite set of options.

For a given degree of smoothness r of ht , and provided the leading term in �n is
� (due to the observation error), the asymptotic size of the integrated squared error

of our estimator is Op(�
2r/(2r+5)

) whenever uN is chosen optimally. This rate is
achievable regardless of the presence of a diffusion component in the price and
regardless of the presence of time-variation in σt and νt (x). In the Supplementary
Material [27], we show that this is the best achievable rate for an estimator of ht in
a minimax sense in the specialized setting of X being pure-jump process of finite
activity and when the observation errors are Gaussian with standard deviations
proportional to the option prices.

We finish this section with a comparison of our method with existing nonpara-
metric estimators of the Lévy measure from option data. Cont and Tankov [11] uses
penalized least squares while [4, 5, 29, 30] and [31, 32] use spectral-based tech-
niques for recovering the Lévy measure of exponential Lévy models from options
with fixed maturity T . We will restrict comparison to the existing spectral-based
estimators as their rates of convergence are explicitly derived. These estimators
are based on measures of the Fourier transform of the option price as a function of



1036 L. QIN AND V. TODOROV

the strike. That is, they are based on option-based estimates of EQ
t (eiuxt+T +xt+T )

which is very similar to our use of the characteristic function E
Q
t (eiuxt+T ). Be-

lomestny and Reiss [4] and [29] work directly with E
Q
t (eiuxt+T +xt+T ) in a setting

of finite activity jumps while [30] and [31, 32] use derivatives of it and allow for
more general jump specifications similar to our use of derivatives of f̂T .

There are two major differences between the existing option-based spectral
methods and our work. First, the earlier work applies only to the class of exponen-
tial Lévy models while the developed method here is for a general Itô semimartin-
gale. Second, the asymptotic setup in the current work is one in which T ↓ 0 simul-
taneously with � ↓ 0 while for the existing option-based methods T remains fixed.
This results in a rather different asymptotic analysis as well as rates of convergence
for the Lévy density estimate. Indeed, in a setting in which T ↓ 0, OT (k) ↓ 0 but
this does not happen uniformly in the strike domain. This fact has a nontrivial im-
pact on the analysis because our estimator is a sum of options with different strikes.
Furthermore, since the option error is proportional to the unobservable true option
price, the magnitude of this error depends on T in a rather nontrivial way.

The decreasing maturity T of the options can be also utilized to separate volatil-
ity from jumps which has nontrivial asymptotic effect. In our analysis, similar to
the previous spectral option-based estimators, we use increasing uN but such that
u2

NT → 0. Since, in our case T ↓ 0, we are effectively evaluating the characteristic
function of the return around zero (which is unlike the fixed T case). This helps in
the separation of volatility from jumps similar to the case of separating volatility
from jumps from high-frequency data on x analyzed in [20]. This also allows to
minimize the effect from the time-varying characteristics of the Itô semimartingale
on the estimation. As a result, there is a difference in the rate of convergence in the
fixed T and decreasing T cases. Focusing on the optimal rates for a given smooth-
ness parameter r , and assuming the first term in �n is leading, we have optimal
rate of convergence of �

−r/(2r+5)
n . This is exactly the same rate as for the estima-

tor of [4] but only in the case when x is compound Poisson. When x contains a
diffusion, on the other hand, the best possible rate for estimating the Lévy measure
in the case T fixed is only logarithmic while our estimator in the setting T ↓ 0
continues to converge at the fast rate �

−r/(2r+5)
n .

5. Monte Carlo study. We next present results for the performance of our
nonparametric procedure on simulated data from the following model for the risk-
neutral dynamics of X:

(5.1) Xt = X0 +
∫ t

0

√
Vs dWs +

∫ t

0

∫
R

(
ex − 1

)
μ̃(ds, dx),

with W being a Brownian motion and V having the dynamics

(5.2) dVt = κ(θ − Vt) dt + σ
√

Vtρ dWt + σ
√

Vt

√
1 − ρ2 dW̃t ,
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where W̃ is a Brownian motion orthogonal to W . The jump measure μ has a com-
pensator νt (x) dt ⊗ dx, where

(5.3) νt (dx) = c−Vt

e−λ−|x|

|x|1+β
dx1{x<0} + c+Vt

e−λ+|x|

|x|1+β
dx1{x>0}.

The specification in (5.1)–(5.3) belongs to the affine class of models of [13] com-
monly used in empirical option pricing work. Consistent with existing empirical
evidence, the jumps have time-varying jump intensity. The jump size distribution is
like the one of the tempered stable process of [7] which is found to provide good fit
to option data. The parameter β controls the behavior of the jump measure around
zero, with β < 0 corresponding to finite jump activity and β ≥ 0 to infinite activity
jump specifications. The parameters λ±, on the other hand, control the behavior of
the jump measure in the tails. We set the model parameters in a way that results
in option prices similar to observed equity index option data. In particular, we set
θ = 0.022, κ = 3.6124, σ = 0.2 and ρ = −0.5 (our unit of time is one year). We
set the jump tail parameters at λ− = 20 and λ+ = 100. We consider three cases
for β . In all cases the parameters c± are set so that the total expected jump vari-
ation is equal to the expected diffusive variance, and further the ratio of negative
to positive jump variation is 10 to 1. The parameter specifications are as follows.
Case A: β = −0.5, c− = 1.2233 × 103 and c+ = 6.8387 × 103. Case B: β = 0,
c− = 3.6364 × 102 and c+ = 9.0909 × 102. Case C: β = 0.5, c− = 0.9175 × 102

and c+ = 1.0258 × 102.
The strike grid, strike range and the total number of options per day are cali-

brated to match roughly the data we use in the empirical application. In particu-
lar, at time t , we set k = −8 × σATM

√
T + lnXt and k = 2 × σATM

√
T + lnXt ,

where we denote with σATM the Black–Scholes implied volatility of the at-the-
money option. We further use N = 60 options and assume equidistant grid for
the log-strike k. The option observation error is set to εi = 1

2Zi × OT (ki)
ψ(ki)
Q0.995

,
where {Zi}i is a sequence of i.i.d. standard normal random variables, Qα de-
notes the α-quantile of the standard normal and ψ(k) is a function of the log-
strike determined by running a nonparametric kernel regression on the data used
in the empirical application of the relative option bid-ask spread (i.e., the bid-ask
spread divided by the mid-quote) as a function of the volatility-adjusted log-strike
(k − lnXt)/(σATM

√
T ).

The estimation is done on the basis of one month of short-maturity option data
(20 trading days). As in the real data, the options are observed during trading days
at the time of market close. Similar to the available data, the time to maturity of
the options in the estimation window changes in four cycles (each corresponding
to one week) from 5 business days to expiration to 1 business day to expiration.
Finally, in the Monte Carlo study, we consider three cases for the starting value of
volatility: low, median and high, corresponding to 25th, 50th and 75th quantiles,
respectively, of the unconditional distribution of V . For simplicity, assume that the
statistical and risk-neutral probabilities for the volatility dynamics coincide.
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The frequency cutoff parameter vector (uN,l, uN,h) is set according to the fol-
lowing simple rule. We first compute

∑20
t=1 ĥ∗

t (u) for a wide range [−50,50] of u.
We then set

uN,l = argmin
u∈[−50,0)

∣∣∣∣∣
20∑
t=1

ĥ∗
t (u)

∣∣∣∣∣ and uN,h = argmin
u∈(0,50]

∣∣∣∣∣
20∑
t=1

ĥ∗
t (u)

∣∣∣∣∣.
The intuition behind this choice is that, while lim|u|→∞ |h∗

t (u)| = 0 due to the
smoothness of ht (u), ĥ∗

t (u) will not shrink to zero for very large values of |u|, for
a given N , due to the discreteness of the strike grid of the available options. The
above choice of uN,l and uN,h picks the range of u which is roughly consistent
with the asymptotic behavior of h∗

t (u) in the tails.
On Figure 1, we illustrate the performance of our estimator on one simulated

option data set for each of the cases and for the three different starting values of the
volatility. Overall the recovery of the Lévy density for the negative jumps seems
quite satisfactory while the estimate of the Lévy density for the positive jumps
is relatively noisy. There are two explanations for this. First, the available strike
range for out-of-the-money calls (whose value is determined predominantly by the
positive jumps) is much smaller than for the puts. Second, the Lévy density for the
positive jumps is typically quite small and as a result it becomes very steep around
the origin (this is because the Lévy density explodes at zero for the infinite activity
jump cases). This steep decay of the Lévy density for the positive jumps is hard to
estimate precisely with the given mesh of the log-strike grid.

On the other hand, the Lévy density for the negative jump size is recovered well
in all considered cases. In relative terms, the least precise results are obtained for
the low volatility regime. This is to be expected since when volatility is rather low,
the strike range is relatively narrow (remember our log-strike grid is set propor-
tional to the current level of volatility). Nevertheless, the deviations from the true
Lévy density even in the low volatility regime appear small.

The above observations are confirmed from the results of a Monte Carlo study
which are summarized in Table 1. We report the integrated squared error as well
as a measure of the variability of the function ht (x) over a range for the jump size
of [−0.3,0.3]. This range is rather wide. Indeed, in all considered cases we have∫
|x|≤0.3 |x|νt (x) dx/

∫
R |x|νt (x) dx > 0.99. From Table 1, we can notice that in all

scenarios, the integrated squared error is small relative to the variation of ht (x).
As suggested from the analysis of Figure 1 above, the low volatility regime is the
most difficult for the recovery of the Lévy density.

Finally, we note that, similar to standard nonparametric kernel regressions, es-
timation is less precise at the edges of the support of the Lévy density, which here
means for x around zero as well as for x approaching ±∞. In these regions, in fi-
nite samples we can even have negative estimates. This is of course not surprising
and is mere reflection of the weak signal in the data about the Lévy density at zero
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FIG. 1. Estimated Lévy density in the Monte Carlo study. On each plot, we display ln(1+ 1
x3 ĥt (x))

(dashed line) and ln(1 + νt (x)) (solid line) on one simulated option data set.

and infinity. Most accurate results for the recovery of νt (x) are obtained for val-
ues of x within the log-strike range [k, k] and which in absolute value are slightly
above zero (determined by the mesh of the strike grid relative to the underlying
asset price).
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TABLE 1
Monte Carlo Results. The MISE is the average of∫
|x|≤0.3(ĥt (x) − ht (x))2 dx over 1000 replications

Model case Vol regime
∫
|x|≤0.3 h2

t (x)dx MISE

A Low 3.13 × 10−4 7.65 × 10−6

A Median 5.93 × 10−4 1.06 × 10−5

A High 1.04 × 10−3 1.61 × 10−5

B Low 7.11 × 10−6 6.86 × 10−7

B Median 1.36 × 10−5 6.86 × 10−7

B High 2.34 × 10−5 6.14 × 10−7

C Low 4.68 × 10−6 2.44 × 10−7

C Median 8.82 × 10−6 2.62 × 10−7

C High 1.52 × 10−5 2.84 × 10−7

Overall, the results from the Monte Carlo study suggest satisfactory perfor-
mance of the Lévy density recovery in empirically realistic settings.

6. Empirical application. We now apply our nonparametric Lévy density es-
timation method to data on short-maturity options written on the S&P 500 market
index. With the introduction of the weekly options (i.e., options that expire on a
weekly basis), the availability of short-dated options have increased significantly,
see the evidence in [1]. As a result, for each trading day we have options written
on the S&P 500 index that expire on the Friday of the week. Therefore, the time
to maturity of the closest to expiration available options ranges from one business
day to five business days, resulting in an average time to maturity of our option
data of 2.5 business days. Our data covers the period 2014–2015 but for brevity
we present only results for April 2015 and September 2015. These are two very
different periods in terms of market behavior: the first is a very calm period with
low market volatility and the second is a more turbulent one generated in part by
heightened global economic uncertainty.

We use mid-quotes at market close from OptionMetrics and remove strikes
with zero bids for the traded out-of-the-money options. The average number
of options per day in our sample is 64 and the average log-strike range is
[−9.14 × σATM

√
T ,3.27 × σATM

√
T ], which are similar to the corresponding

numbers we used in our Monte Carlo study. Finally, we set the value of the fre-
quency cutoff vector (uN,l, uN,h) used in the Fourier inversion exactly as in the
simulation study.

The results from the estimation are presented in Figure 2. We can make several
observations. First, in both periods, our estimates for the Lévy density of the posi-
tive jumps are very close to zero. This is consistent with earlier empirical evidence
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FIG. 2. Empirical estimates of Lévy density. The lines represent estimate of ln(1 + νt (x)) for April
2015 (solid line) and September 2015 (dashed line).

and is also in line with our Monte Carlo study where we found difficulty in ac-
curately recovering the shape of the Lévy density of the positive jumps due to its
small magnitude (the authors of [1] report difficulty in its recovery even in a para-
metric setting). Second, we recover a Lévy density for the negative jumps which
is monotone in the jump size. This is like the parametric models we used in the
Monte Carlo study but is unlike a Gaussian model for the jump distribution (with
negative mean) commonly used in finance since the seminal work of [23]. Third,
even though the two considered periods are very different in terms of volatility, the
estimated shape of the left tail appears quite stable and the change in the left jump
tail from April 2015 to September 2015 can be instead explained by a level shift.

7. Conclusion. In this paper, we develop a nonparametric estimator for the
Lévy density of an asset price from noisy observations of short-dated options
written on it. We derive a (sharp) bound for the asymptotic order of the inte-
grated squared error of the estimator and we show its rate optimality in the cur-
rent asymptotic setting. The nonparametric Lévy density estimator can be used as
an important diagnostic tool for building and testing parametric models as well as
for the construction of nonparametric measures of (risk-neutral) jump risk. Exist-
ing model specifications for asset returns differ both in terms of dynamics of the
stochastic volatility and jump intensity as well as the jump distribution (Lévy den-
sity). The current estimator applies to settings with time-varying Itô semimartin-
gale characteristics and can help the parametric modeling in a robust way.
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8. Proofs. For ease of exposition, in the proofs we will set uN = −uN,l =
uN,h, with the more general asymmetric cutoff case being shown in exactly the
same way.

Furthermore, in the proofs we will denote with Ct a finite-valued Ft -adapted
random variable which might change from line to line. If the variable depends on
some parameter q , then we will use the notation Ct(q).

8.1. Decompositions and notation. The jump part of the process xt can be
represented as an integral with respect to Poisson random measure. In particular,
using the so-called Grigelionis representation of the jump part of a semimartingale
(Theorem 2.1.2 of [19]), upon suitably extending the probability space, we can
write

(8.1)
∫ t

0

∫
R

μ̃(ds, dx) ≡
∫ t

0

∫
E

δx(s, z)μ̃x(ds, dz),

where μx(ds, dz) is a Poisson measure on R+ × E with compensator dt ⊗ λ(dz),
for some σ -finite measure on E, μ̃x is the martingale counterpart of μx , and δx

is a predictable and R-valued function on � × R+ × E such that νt (z) dz is the
image of the measure λ under the map z → δx(t, z) on the set {z : δx(ω, t, z) �= 0}.

There are different choices for E, λ and the function δx . For the analysis here,
it will be convenient to use E = R+ × R, λ to be the Lebesgue measure, and
δx(t, z) = z21{z1≤νt (z2)} for z = (z1, z2).

We proceed with introducing some notation that will be used throughout the
proofs. By noting that xt = 0, we can split xs into

(8.2)
xc
s =

∫ s

t
au du +

∫ s

t
σu dWu,

xd
s =

∫ s

t

∫
E

δx(u, z)μ̃x(du, dz), s ≥ t.

We now introduce two approximations for xs . The first is x̃s = x̃c
s + x̃d

s , where for
s ≥ t :

(8.3) x̃c
s = at (s − t) + σt (Ws − Wt), x̃d

s =
∫ s

t

∫
E

δx(t, z)μ̃x(du, dz).

The second approximation is given by xs = xc
s + xd

s , where for s ≥ t :

(8.4)
xc

s = at (s − t) +
∫ s

t
σ u dWu, xd

s = x̃d
s ,

σ s = σt + ηt (Ws − Wt) + η̃t (W̃s − W̃t ).

The option prices at time t associated with terminal value x̃t+T are denoted with
ÕT (k) and the ones with terminal value of xt+T are denoted with OT (k).
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8.2. Proof of Theorem 1. We set

(8.5) fT (u) = eiu lnFT − (
u2 + iu

) ∫ +∞
−∞

e(iu−1)kÕT (k) dk.

From [8], we have

(8.6) fT (u) ≡ E
Q
t

(
eiu ln X̃t+T

)
,

and, therefore, since ln X̃s is an Ft -conditional Lévy process for s ≥ t , by applying
Lévy–Khintchine formula (Theorem 8.1 in [28]), we can further write

(8.7) fT (u) = exp
(
iuatT − u2

2
T σ 2

t + T

∫
R

(
eiux − 1 − iux

)
νt (x) dx

)
,

where we used the normalization ln X̃t = 1. From here, if we denote

(8.8) h∗
t (u) =

∫
R

eiuxht (x) dx,

then we observe that h∗
t (u) coincides with the second derivative in u of the function

(i/T )f
(1)
T (u)/fT (u) and ĥ∗

t (u) is its sample analogue. Applying the Plancherel’s
identity, we can write∫

R

(
ĥt (x) − ht (x)

)2
dx

= 1

2π

∫
|u|≤uN

∣∣ĥ∗
t (u) − h∗

t (u)
∣∣2 du︸ ︷︷ ︸

IV

+ 1

2π

∫
|u|>uN

∣∣h∗
t (u)

∣∣2 du︸ ︷︷ ︸
IB

.
(8.9)

By Assumption A1, for the bias due to the truncation of the higher frequencies, we
have IB = O(u−2r

N ). For the analysis of IV , we will suitably decompose the differ-
ence ĥ∗

t (u)−h∗
t (u) and we will analyze the terms in the decomposition separately.

To this end, we split

(8.10) f̂T (u) − fT (u) = f̂T ,1(u) + f̂T ,2(u) + f̂T ,3(u) + f̂T ,4(u),

where f̂T ,k(u) = −(u2 + iu)f T,k(u), for k = 1,2,3,4, with

f T,1(u) =
N∑

j=2

e(iu−1)kj−1εj−1�j,

f T,2(u) =
N∑

j=2

e(iu−1)kj−1
(
OT (kj−1) − ÕT (kj−1)

)
�j,

f T,3(u) =
N∑

j=2

∫ kj

kj−1

(
e(iu−1)kj−1ÕT (kj−1) − e(iu−1)kÕT (k)

)
dk,

f T,4(u) = −
∫ k1

−∞
e(iu−1)kÕT (k) dk −

∫ +∞
kN

e(iu−1)kÕT (k) dk.
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We decompose in a similar way f̂
(j)
T (u) − f

(j)
T (u) = ∑4

k=1 f̂
(j)
T ,k(u), for j =

1,2,3.
We now derive bounds for f̂

(j)
T ,k(u) using the auxiliary lemmas in Section 8.3.

First, from Lemma 8, we have

(8.11) sup
u∈R

[
1

(1 + |u|)2

3∑
j=0

∣∣f̂ (j)
T ,1(u)

∣∣] = Op

(
T | lnT |)

and ∫ uN

−uN

∣∣f̂T ,1(u)
∣∣2 du = Op

(
u5

NT 3/2�
)
,∫ uN

−uN

∣∣f̂ (1)
T ,1(u)

∣∣2 du = Op

(
u5

NT 2� ∨ u3
nT

3/2�
)
,

(8.12)

∫ uN

−uN

∣∣f̂ (2)
T ,1(u)

∣∣2 du = Op

(
u5

NT 2� ∨ unT
3/2�

)
,∫ uN

−uN

∣∣f̂ (3)
T ,1(u)

∣∣2 du = Op

(
u5

NT 2�
)
.

(8.13)

In addition, taking into account u2
NT → 0, we also have for |u| ≤ uN

(8.14)
∣∣f (1)

T (u)
∣∣ ≤ C

√
T ,

∣∣f (2)
T (u)

∣∣+ ∣∣f (3)
T (u)

∣∣ ≤ CT .

Next, using Assumption A5 for the observation grid of strike prices, we have for
j = 0,1,2,3

∑
i:|eki−1−1|≤√

T

�i ≤
∫ ln(1+√

T )

ln(1−√
T )

dk + 2�

= Op(
√

T ) if α > 1/2,

∑
i:|eki−1−1|∈(

√
T ,0.5∨√

T ]

�i

|ki−1| ≤
∫ ln(1−√

T )+�

ln(1−√
T )∧ln(0.5)

dk

|k| +
∫ ln(1+√

T )∨ln(1.5)

ln(1+√
T )−�

dk

|k|

= Op

(
ln(1/T )

)
if α > 1/2,

and similarly ∑
i:|eki−1−1|≤2�

�i = Op(�),

∑
i:|eki−1−1|∈(2�,0.5]

�i

|ki−1| = Op

(
ln(1/T )

)
if α ≤ 1/2,
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as well as ∑
i:|eki−1−1|>0.5∨√

T

k
j
i−11{ki−1>0}�i

≤
∫ k+�

ln(1+√
T )∨ln(1.5)

kj dk = Op

(
k
j+1)

,∑
i:|eki−1−1|>0.5∨√

T

e−ki−1 |ki−1|j 1{ki−1∈( 1
6 lnT ,0)}�i

≤
∫ ln(1−√

T )∧ln(0.5)

(ln(T 1/6)∨k)−�
e−k|k|j dk

= Op

(
e−k|k|j ∧ T − 1

6 | lnT |j ),
and if further k < 1

6 lnT we have∑
i:|eki−1−1|>0.5∨√

T

e2ki−1 |ki−1|j 1{ki−1∈[k, 1
6 lnT ]}�i

≤
∫ ln(T 1/6)+�

k
e2k|k|j dk = Op

(
T

1
3 | lnT |j ).

For k < 1
6 lnT , we have∣∣f T,2(u)

∣∣ ≤ ∑
i:ki−1∈[k,ln(T 1/6∧(1−0.5∨√

T ))]
e−ki−1

(
OT (ki−1) + ÕT (ki−1)

)
�i

+ ∑
i:ki−1>ln(T 1/6∧(1−0.5∨√

T ))

e−ki−1
∣∣OT (ki−1) − ÕT (ki−1)

∣∣�i,

and using Lemma 2 for the first summand on the right-hand side of the above
inequality and Lemmas 3–4 for the other one, we have for k < 1

6 lnT∣∣f T,2(u)
∣∣ ≤ CtT

∑
i:ki−1∈[k,ln(T 1/6∧(1−0.5∨√

T ))]
e2ki−1�i + Ct | lnT |

× ∑
i:ki−1>ln(T 1/6∧(1−0.5∨√

T ))

e−ki−1

(
T 3/2 ∨

(
T 3/2

|eki−1 − 1| ∧ T

))
�i.

Similarly, for k ≥ 1
6 lnT , by application of Lemmas 3–4, we get

∣∣f T,2(u)
∣∣ ≤ Ct | lnT |

N∑
i=1

e−ki−1

(
T 3/2 ∨

(
T 3/2

|eki−1 − 1| ∧ T

))
�i.
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These bounds can be easily extended to ones for |f̂T ,2(u)| by using |f̂T ,2(u)| ≤
2(u2 ∨ 1)|f T,2(u)|, and analogous bounds can be derived also for |f̂ (j)

T ,2(u)|. From
here, by taking into account the orders of magnitude derived above for various
sums over functions of ki , �i and T , we have∣∣f̂ (j)

T ,2(u)
∣∣

≤ Ct

(|u| ∨ 1
)2[

T
3
2 | lnT |j+1((|k|j e−k ∧ T − 1

6
)+ k

j+1)+ | lnT |T �
]
.

(8.15)

We turn next to f̂
(j)
T ,3(u). We first split f T,3(u) into

f
(a)

T ,3(u) =
N∑

j=2

∫ kj

kj−1

(
e(iu−1)kj−1 − e(iu−1)k)ÕT (kj−1) dk,

f
(b)

T ,3(u) =
N∑

j=2

∫ kj

kj−1

e(iu−1)k(ÕT (kj−1) − ÕT (k)
)
dk,

and we make similar separations of f
(j)

T ,3(u), for j = 1,2,3. For f
(a,j)

T ,3 (u), we
make use of the following algebraic inequalities:∣∣e(iu−1)kj−1 − e(iu−1)k

∣∣
≤ ∣∣e−kj−1 − e−k

∣∣+ e−kj−1
∣∣eiukj−1 − eiuk

∣∣
≤ C

(|u�| ∧ 1
)
e−kj−1, k ∈ [kj−1, kj ], j = 2, . . . ,N,∣∣kp − k

p
j−1

∣∣
≤ C�

(
�

p−1 ∨ |kj−1|p−1), p = 1,2,3, k ∈ [kj−1, kj ], j = 2, . . . ,N.

We then split the summation into three parts: the first part consists of the summands
for which the intervals of integration over k are over regions for which |ek − 1| >

1/2, the second part consists of summands for which the intervals of integration
over k are with |ek − 1| ≤ (

√
T ∨ 2�), and the third part consists of the rest of the

summands (see Lemma 5). The regions do not overlap for T ≤ 1/2 which can be
assumed without loss of generality as T shrinks asymptotically. Using Lemma 6
for the first part of the summation (provided T is sufficiently small so that kl,t >

ln 1
2 and kh,t < ln 3

2 ) and Lemma 5 for the other two parts, we then have

(8.16)
∣∣f̂ (a,j)

T ,3 (u)
∣∣ ≤ Ct

(|u| ∨ 1
)2(|u�| ∧ 1

)
T | lnT |, j = 0,1,2,3.

For f
(b,j)

T ,3 (u), we first consider the case α > 1/2. Then we split the summation
into three parts: the first part consists of the summands for which the intervals of
integration over k are over regions for which k is above 1 in absolute value, the
second part consists of summands for which the intervals of integration over k
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are with |k| ≤ √
T , and the third part consists of the rest of the summands (see

Lemma 7). Then, using Lemma 7 and the condition in (4.9), we have for j =
0,1,2,3 and α > 1/2

(8.17)
∣∣f̂ (b,j)

T ,3 (u)
∣∣ ≤ Ct

[(|u| ∨ 1
)2(ln |k| + ln k

)
�T + α

(j)

T ,�
(u)

]
, |u| ≤ uN,

where

α
(0)

T ,�
(u) = (|u| ∨ 1

)2| lnT |�√
T ,

α
(1)

T ,�
(u) = (|u| ∨ 1

)| lnT |�√
T ,

α
(2)

T ,�
(u) = | lnT |�√

T ,

α
(3)

T ,�
(u) = | lnT |�T | lnT |.

For the case α ≤ 1/2, we make similar decomposition as for the case α > 1/2,
except that the second part now consists of summands for which the intervals of
integration over k are with |k| ≤ 2�. For this part, we apply Lemma 5 while for
the other two we use Lemma 7 (we use the second bound in Lemma 7 for the
third part). This leads to the same bound as above also to hold for |f̂ (b,j)

T ,3 (u)| when
α ≤ 1/2.

Finally, applying Lemma 6, provided k < kl,t and k > kh,t (which will eventu-
ally happen as k ↓ −∞ and k ↑ ∞ and kl,t and kh,t are Ft -adapted constants that
do not change as we add more option data), we have

(8.18)
∣∣f̂ (j)

T ,4(u)
∣∣ ≤ Ct

(|u| ∨ 1
)2(|k|j e3k + k

j
e−3k)T , j = 0,1,2,3.

Since u2
NT → 0 [due to (4.9)] and

∫
R |z|2νt (z) dz is a finite Ft -adapted variable

due to Assumption A3, from (8.7), we then have that for sufficiently high value of
N , there exists a constant ε > 0 such that we have inf|u|≤uN

|fT (u)| > ε. Similarly,
using the bounds in (8.11)–(8.18) and the condition in (4.9), we have that

(8.19) sup
|u|≤uN

3∑
j=0

4∑
i=1

∣∣f̂ (j)
T ,i (u)

∣∣ = Op

(
u2

N | lnT |(T ∨ √
T �)

)
,

and, therefore, since u2
NT | lnT | → 0 and u2

N�T 1/2| lnT | → 0 [due to (4.9)], the
probability of the event sup|u|≤uN

|f̂T (u) − fT (u)| ≥ ε
2 converges to 0. Therefore,

(8.20) P(�n) → 0 for �n =
{
ω : inf|u|≤uN

∣∣f̂T (u)
∣∣ < ε

2

}
.
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Using the above two results, u2
NT | lnT | → 0 and u2

N�T 1/2| lnT | → 0, we have
on the set �c

n

T
∣∣ĥ∗

t (u) − h∗(u)
∣∣

≤ Ct

∣∣f̂ (3)
T (u) − f

(3)
T (u)

∣∣+ Ct

∣∣f (3)
T (u)

∣∣∣∣f̂T (u) − fT (u)
∣∣

+ Ct

∣∣f (1)
T (u)

∣∣∣∣f̂ (2)
T (u) − f

(2)
T (u)

∣∣
+ Ct

∣∣f̂ (1)
T (u) − f

(1)
T (u)

∣∣∣∣f̂ (2)
T (u) − f

(2)
T (u)

∣∣
+ Ct

(∣∣f (1)
T (u)f

(2)
T (u)

∣∣+ ∣∣f (1)
T (u)

∣∣3)∣∣f̂T (u) − fT (u)
∣∣

+ Ct

∣∣f̂ (1)
T (u) − f

(1)
T (u)

∣∣3
+ Ct

∣∣f (1)
T (u)

∣∣2∣∣f̂ (1)
T (u) − f

(1)
T (u)

∣∣.

(8.21)

Using this inequality and the bounds in (8.11)–(8.18), we have altogether∫
|u|≤uN

(
ĥ∗

t (u) − h∗
t (u)

)2
du = Op(A1 + A2 + A3 + A4),

where we denote

A1 = u5
N�,

A2 = u5
NT ln8 T

(|k|6e−2k ∧ T −1/3 + k
8)

,

A3 = u7
N ln2 T �

2 + u5
N�

2(
ln2 |k| + ln2 k

)
,

A4 = u5
N

(|k|6e6k + |k|6e−6k).
From here, the result of the theorem follows by taking into account the restriction
on uN given in (4.9).

8.3. Auxiliary results.

LEMMA 1. Suppose Assumptions A2–A4 hold. Then there exist Ft -adapted
t > t and Ct such that for s ∈ [t, t ∧ (t + T )], we have

E
Q
t

(
exs − 1

)2 +E
Q
t

(
e−xs − 1

)2 +E
Q
t

(
exs − 1

)2 +E
Q
t

(
ex̃s − 1

)2 ≤ CtT ,(8.22)

E
Q
t

∣∣ex̃d
s − 1

∣∣+E
Q
t

∣∣ex̃d
s − 1

∣∣2 +E
Q
t

∣∣ex̃d
s − 1

∣∣3 +E
Q
t

∣∣e−x̃d
s − 1

∣∣3 ≤ CtT ,(8.23)

E
Q
t

∣∣exs−x̃s − 1
∣∣4 ≤ CtT

4.(8.24)
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PROOF. We start with the first term in (8.22). By application of Itô’s formula,

exs − 1 =
∫ s

t
exuau du +

∫ s

t
exuσu dWu + 1

2

∫ s

t
exuσ 2

u du

+
∫ s

t

∫
E

exu−(eδx(u,z) − 1
)
μ̃x(du, dz)

+
∫ s

t

∫
E

exu−(eδx(u,z) − 1 − δx(u, z)
)
νx(du, dz),

where we made use of the fact that xt = 0. From here, applying Hölder’s inequal-
ity and using the integrability assumptions for xs and as , σs and νs(z) in Assump-
tion A3, we get the result in (8.22) for EQ

t (exs − 1)2. The result for EQ
t (e−xs − 1)2

is showed in exactly the same way.
We continue with (8.23). Using Itô’s lemma and the fact that x̃d

t = 0, we have

ex̃d
s − 1 =

∫ s

t
ex̃d

u−(eδx(t,z) − 1
)
μ̃x(du, dz)

+
∫ s

t
ex̃d

u−(eδx(t,z) − 1 − δx(t, z)
)
νx(du, dz).

(8.25)

We can then apply the Burkholder–Davis–Gundy inequality and make use of the
fact that sups∈[t,t+T ]E

Q
t (e3x̃d

s ) < ∞ due to our assumption for the Lévy measure in
Assumption A3 and Theorem 25.17(iii) of [28]. From here, the result in (8.23) con-
cerning ex̃d

s − 1 follows. The part of (8.23) about e−x̃d
s − 1 is shown in exactly the

same way by making use of the fact that we have sups∈[t,t+T ]E
Q
t (e−3x̃d

s ) < ∞ due
to our assumption on the Lévy measure in Assumption A3 and Theorem 25.17(iii)
of [28].

Turning next to the bound in (8.24), by application of Itô’s formula, we can
write for s ∈ [t, t + T ]

(8.26) xs − x̃s = ηt

2
(Ws − Wt)

2 − (s − t)
ηt

2
+ η̃t

∫ s

t
(W̃u − W̃t ) dWu.

Then for every p such that pηtT < 1, we have EQ
t (e

pηt
2 (Ws−Wt)

2
) < ∞. In addition,

for any p > 0 using successive conditioning and the Jensen’s inequality, we have

E
Q
t

(
epη̃t

∫ s
t (W̃u−W̃t ) dWu

) = E
Q
t

(
e

p2η̃2
t

2

∫ s
t (Wu−Wt)

2 du)
≤ 1

s − t
E
Q
t

(∫ s

t
e

p2η̃2
t

2 (s−t)(Wu−Wt)
2
du

)
.

The latter integral is finite as soon as p|η̃t |T < 1. Combining the above bounds
and using a first-order Taylor series expansion, we have for T sufficiently small
(depending on the values of ηt and η̃t ) the bound in (8.24).
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We are left with the bounds in (8.22) that involve xs and x̃s . The result involving
x̃s follows by applying the algebraic inequality |xy − 1| ≤ |x − 1|+ |y − 1|+ |x −
1||y − 1| for x, y ∈R, the bounds in (8.23), the Ft -conditional independence of x̃c

s

and x̃d
s for s ≥ t , as well as the bound E

Q
t (ex̃c

s −1)2 ≤ CtT for s ∈ [t, t +T ] which
follows by direct evaluation of exponential moments of a normal random variable.

We finish with the bound in (8.22) for xs . First, we can write exs = exs−x̃s ex̃c
s ex̃d

s ,
use the Ft -conditional independence of x̃d

s from xs − x̃s and x̃c
s , the bounds in

(8.23) and (8.24), the bound E
Q
t (epx̃s ) ≤ Ct(p) for every finite p and s ≥ t , as

well as Hölder’s inequality to conclude EQ
t (e3xs ) ≤ Ct for s ∈ [t, t ∧(t +T )]. From

here, we can apply Itô’s formula for exs − 1, use the above result, the integrability
assumptions of A3 as well as the Burkholder–Davis–Gundy inequality to get the
result. �

LEMMA 2. Suppose Assumptions A2–A4 hold. There exist Ft -adapted ran-
dom variables t > t and Ct > 0 that do not depend on k and T , such that for
T < t − t we have

(8.27) OT (k) ≤ CtT

⎧⎪⎪⎨⎪⎪⎩
e2k

e−k − 1
if k < 0,

1

ek − 1
if k > 0.

PROOF. For k < 0, we use (8.22) and the following algebraic inequality:

(
ek − ex)+ ≤ e2k((e−x − 1

)− (
e−k − 1

))+ ≤ e2k |e−x − 1|2
|e−k − 1| , k < 0, x ∈ R.

For k > 0, we use (8.22) and the following algebraic inequality

(
ex − ek)+ ≤ (ex − 1)2

ek − 1
, k > 0, x ∈ R. �

LEMMA 3. Suppose Assumptions A2–A4 hold. There exist Ft -adapted ran-
dom variables t > t and Ct > 0 that do not depend on k and T , such that for
T < t − t we have

(8.28)
∣∣OT (k) − OT (k)

∣∣ ≤ Ct | lnT |T 3/2.

PROOF. Throughout the proof, we will assume T < t − t , where t is defined
in the statement of the lemma. First, given the definitions of OT (k) and OT (k), we
have

(8.29)
∣∣OT (k) − OT (k)

∣∣ ≤ E
Q
t

∣∣ext+T − ext+T
∣∣.
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Further, we make use of the following algebraic inequality for x, y ∈ R and ε > 0:∣∣ey − ex
∣∣ ≤ ∣∣ey − ex

∣∣1{|x−y|>ε} + ex+ε|x − y|
≤ ∣∣ey − 1

∣∣1{|x−y|>ε} + ∣∣ex − 1
∣∣1{|x−y|>ε} + ex+ε|x − y|

≤ |ey − 1||x − y|
ε

+ (
ε−1 + eε)∣∣ex − 1

∣∣|x − y| + eε|x − y|.
(8.30)

We apply the above inequality with y = xt+T and x = xt+T and some ε > 0. To
proceed further, we make use of bounds for EQ

t |xt+T −xt+T |p , EQ
t (ext+T −1)2 and

E
Q
t (ext+T − 1)2 for powers p ∈ [1,2]. First, by applying the Burkholder–Davis–

Gundy inequality and using our assumption for the processes η and η̃ in A4, we
have

E
Q
t

∣∣∣∣∫ s

t
(ηu − ηt ) dWu +

∫ s

t
(η̃u − η̃t )dW̃u

∣∣∣∣2 ≤ CtT
2 for s ∈ [t, t + T ].

This bound, another application of the Burkholder–Davis–Gundy inequality and
our assumption for the process a in A4 and for δσ in A3, leads to the following
inequality for p ∈ [1,2] and s ∈ [t, t + T ]:

(8.31) E
Q
t

∣∣∣∣xc
s − xc

s −
∫ s

t

∫ u

t

∫
R

δσ (v, z)μ̃σ (dv, dz) dWu

∣∣∣∣p ≤ Ct(p)T
3p
2 .

Next, using integration by parts, we can write∫ s

t

∫ u

t

∫
R

δσ (v, z)μ̃σ (dv, dz) dWu

= (Ws − Wt)

∫ s

t

∫
R

δσ (u, z)μ̃σ (du, dz)

−
∫ s

t

∫
R
(Wu − Wt)δ

σ (u, z)μ̃σ (du, dz),

and we can further split

|Ws − Wt |
∣∣∣∣∫ s

t

∫
R

δσ (u, z)μ̃σ (du, dz)

∣∣∣∣
≤ √|s − t |∣∣ln |s − t |∣∣∣∣∣∣∫ s

t

∫
R

δσ (u, z)μ̃σ (du, dz)

∣∣∣∣
+ |Ws − Wt |

∣∣∣∣∫ s

t

∫
R

δσ (u, z)μ̃σ (du, dz)

∣∣∣∣1{ |Ws−Wt |√|s−t || ln |s−t ||>1}.

In addition, by the applying the Burkholder–Davis–Gundy inequality and the al-
gebraic inequality |∑i xi |α ≤ ∑

i |xi |α for a sequence of reals {xi}i≥1 and some
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α ∈ (0,1], we have

E
Q
t

∣∣∣∣∫ s

t

∫
R
(Wu − Wt)

qδσ (u, z)μ̃σ (du, dz)

∣∣∣∣p
≤ Ct(p)E

Q
t

∣∣∣∣∫ s

t
|Wu − Wt |qp

∫
R

∣∣δσ (u, z)
∣∣p dz du

∣∣∣∣,
for p ∈ [1,2] and q = 0,1. Successive application of the Burkholder–Davis–
Gundy inequality and the integrability conditions for δσ yield

E
Q
t

∣∣∣∣∫ s

t

∫
R

δσ (u, z)μ̃σ (du, dz)

∣∣∣∣p ≤ Ct(p)|s − t |, p ∈ [1,3].
Combining the above results and using Hölder’s inequality, we have for s ∈ [t, t +
T ] and p ∈ [1,2]
(8.32) E

Q
t

∣∣∣∣∫ s

t

∫ u

t

∫
R

δσ (v, z)μ̃σ (dv, dz) dWu

∣∣∣∣p ≤ Ct(p)| lnT |pT 1+p
2 .

Next, applying the Burkholder–Davis–Gundy inequality and the algebraic inequal-
ity |∑i xi |q ≤ ∑

i |xi |q , for a sequence of reals {xi}i≥1 and q ∈ (0,1], and recalling
the definition of δx yields

E
Q
t

∣∣xd
s − xd

s

∣∣p ≤ Ct(p)E
Q
t

∣∣∣∣∫ s

t

∫
E

∣∣δx(u, z) − δx(t, z)
∣∣pνx(du, dz)

∣∣∣∣
≤ Ct(p)E

Q
t

∣∣∣∣∫ s

t

∫
R

|z|p∣∣νs(z) − νt (z)
∣∣dz

∣∣∣∣, p ∈ [1,2].
(8.33)

Therefore, using the assumption for νt (z) in A4, we have

(8.34) E
Q
t

∣∣xd
s − xd

s

∣∣p ≤ Ct(p)T
3
2 ∀s ∈ [t, t + T ],p ∈ [1,2].

We next denote ξs,1 = ∫ s
t exuσu dWu and ξs,2 = ∫ s

t

∫
E exu−(eδx(u,z) − 1)μ̃x(du, dz)

for s ≥ t . By using the Cauchy–Schwarz inequality, the bound in (8.34), the same
steps as for the proof of (8.22) involving E

Q
t (exs − 1)2, we get

E
Q
t

(∣∣exs − 1 − ξs,1 − ξs,2
∣∣∣∣xd

s − xd
s

∣∣) ≤ CtT
7
4 .

Next, we can further split (recall that xt = 0)

ξs,1 =
∫ s

t

(
exuσu − σt

)
dWu +

∫ s

t
σt dWu ≡ ξa

s,1 + ξb
s,1,

and analyze separately ξa
s,1(x

d
s − xd

s ) and ξb
s,1(x

d
s − xd

s ). For ξb
s,1(x

d
s − xd

s ), we can
apply Hölder’s inequality and (8.34). For ξa

s,1(x
d
s − xd

s ), we can apply Hölder’s
inequality and use the bounds in (8.34) and (8.22) as well as Assumptions A3 and
A4. Altogether

E
Q
t

∣∣ξs,1
(
xd
s − xd

s

)∣∣ ≤ CtT
3
2 ∀s ∈ [t, t + T ].
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Next, using integration by parts,

ξs,2
(
xd
s − xd

s

) =
∫ s

t

∫
E

exu−(eδx(u,z) − 1
)(

δx(u, z) − δx(t, z)
)
μ(du, dz)

+
∫ s

t

∫
E

exu−(eδx(u,z) − 1
)(

xd
u− − xd

u−
)
μ̃(du, dz)

+
∫ s

t

∫
E

(
δx(u, z) − δx(t, z)

)
ξu−,2μ̃(du, dz).

Using the bound in (8.22), the Cauchy–Schwarz inequality as well as Assumptions
A3 and A4, we have

E
Q
t

(∫ s

t

∫
E

exu− ∣∣eδx(u,z) − 1
∣∣∣∣δx(u, z) − δx(t, z)

∣∣μ(du, dz)

)
≤ E

Q
t

(∫ s

t
exu

∫
R

ez|z|∣∣νu(z) − νt (z)
∣∣du

)
≤ CtT

3
2 .

We have a similar bound for the other two terms in the decomposition of ξs,2(x
d
s −

xd
s ) by using Hölder’s inequality, the bound in (8.34) as well as Assumptions A3

and A4. Thus, altogether

E
Q
t

∣∣ξs,2
(
xd
s − xd

s

)∣∣ ≤ CtT
3
2 .

Combining the above bounds, we have

(8.35) E
Q
t

∣∣(exs − 1
)(

xd
s − xd

s

)∣∣ ≤ CtT
3
2 .

Exactly the same analysis leads to

(8.36) E
Q
t

∣∣(exs − 1
)(

xd
s − xd

s

)∣∣ ≤ CtT
3
2 .

Combining the bounds in (8.31), (8.32), (8.34), (8.35) and (8.36) with the one
in (8.22), and using the Cauchy–Schwarz inequality and (8.30), we get the bound
of the lemma to be proved. �

LEMMA 4. Suppose Assumptions A2–A4 hold. There exist Ft -adapted ran-
dom variables t > t and Ct > 0 that do not depend on k and T , such that for
T < t − t we have

(8.37)
∣∣OT (k) − ÕT (k)

∣∣ ≤ Ct

(
T

3
2 ∨

(
T 3/2

|ek − 1| ∧ T

))
.

PROOF. Throughout the proof, we will assume T < t − t , where t is defined
in the statement of the lemma. For X, Y being reals and K being a nonnegative
number, we have the following algebraic inequality:∣∣(Y − K)+ − (X − K)+

∣∣ ≤ |Y − X|(1{|Y−X|>K/2} + 1{X≥K/2}),
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and similarly for X, Y being reals and K being a nonpositive number, we have∣∣(K − Y)+ − (K − X)+
∣∣ ≤ |Y − X|(1{|Y−X|>−K/2} + 1{X≤K/2}).

Applying these inequalities [note that ÕT (k) = E
Q
t (ex̃t+T − ek)+ if ek > 1 and

ÕT (k) = E
Q
t (ek − ex̃t+T )+ if ek ≤ 1], we have∣∣OT (k) − ÕT (k)

∣∣
≤ E

Q
t

[∣∣ext+T − ex̃t+T
∣∣(1{|ext+T −ex̃t+T |>|ek−1|/2} + 1{|ex̃t+T −1|≥|ek−1|/2})

]
.

Then, if
√

T > |ek − 1|, we can bound∣∣OT (k) − ÕT (k)
∣∣ ≤ E

Q
t

∣∣ext+T − ex̃t+T
∣∣,

and from here the result in (8.37) in the case
√

T > |ek −1| follows from the results
in (8.23) and (8.24), the Cauchy–Schwarz inequality as well as the Ft -conditional
independence of x̃d

t+T from xt+T − x̃t+T .
If

√
T ≤ |ek − 1|, first using the algebraic inequality |xy − 1| ≤ |x − 1| + |y −

1| + |x − 1||y − 1|, for some reals x and y, we can bound∣∣ext+T − ex̃t+T
∣∣

≤ ∣∣ext+T −x̃t+T − 1
∣∣(∣∣ex̃c

t+T − 1
∣∣+ ∣∣ex̃d

t+T − 1
∣∣+ ∣∣ex̃c

t+T − 1
∣∣∣∣ex̃d

t+T − 1
∣∣+ 1

)
.

From here, if
√

T ≤ |ek − 1|, we have∣∣OT (k) − ÕT (k)
∣∣ ≤ 2

|ek − 1|E
Q
t

[∣∣ext+T −x̃t+T − 1
∣∣2ex̃t+T

]
+
(

2 + 2

|ek − 1|
)

×E
Q
t

[∣∣ext+T −x̃t+T − 1
∣∣(∣∣ex̃c

t+T − 1
∣∣+ ∣∣ex̃d

t+T − 1
∣∣

+ ∣∣ex̃c
t+T − 1

∣∣∣∣ex̃d
t+T − 1

∣∣)].
(8.38)

To proceed further, we first note that, since E
Q
t (epx̃c

t+T ) < ∞ for every finite p, by
using a first-order Taylor series expansion, we have

E
Q
t

∣∣ex̃c
t+T − 1

∣∣p ≤ Ct(p)T p/2 ∀p ≥ 1.

Combining the above bound with the ones in (8.23) and (8.24) as well as (8.38),
and using the Cauchy–Schwarz inequality as well as the fact that x̃d

t+T is Ft -
conditionally independent from x̃c

t+T and xt+T − x̃t+T , we get the result of the
lemma in the case

√
T ≤ |ek − 1|. �
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LEMMA 5. Suppose Assumptions A2–A4 hold. There exist Ft -adapted ran-
dom variables t > t and Ct > 0 that do not depend on k and T , such that for
T < t − t we have

(8.39) ÕT (k) ≤ Ct

(√
T ∧ T

|ek − 1|
)
.

PROOF. We look only at the case k > 0, with the case k ≤ 0 being proven in
an analogous way. For k > 0, we have

ÕT (k) ≤ E
Q
t

[(
ex̃t+T − 1

)
1{ex̃t+T −1>ek−1}

]
≤ E

Q
t

(∣∣ex̃t+T − 1
∣∣( |ex̃t+T − 1|

ek − 1
∧ 1

))

≤ E
Q
t |ex̃t+T − 1|2

ek − 1
∧E

Q
t

∣∣ex̃t+T − 1
∣∣.

From here, the result to be proved follows by making use of E
Q
t |ex̃t+T − 1|2 ≤

CtT and E
Q
t |ex̃t+T − 1| ≤ Ct

√
T . The first of these two inequalities is shown in

Lemma 1 and the second one follows from the first one and an application of
Jensen’s inequality. �

LEMMA 6. Suppose Assumptions A2–A4 hold and denote kl,t = −σt ×√
T | lnT | and kh,t = σt

√
T | lnT |. Then there exist Ft -adapted random variables

Ct > 0 and t > t that do not depend on k and T , such that for T < t − t , we have

(8.40)

⎧⎪⎪⎨⎪⎪⎩
k < kl,t =⇒ ÕT (k) ≤ Ct

e2k

(e−k+kl,t − 1)2
T ,

k > kh,t =⇒ ÕT (k) ≤ Ct

1

(ek−kh,t − 1)2
T .

PROOF. Throughout the proof, we will assume T < t − t , where t is defined in
the statement of the lemma. We introduce the set Ct = {ω : |x̃c

t+T | ≤ σt

√
T | lnT |}.

Applying Chebyshev’s and Hölder’s inequalities and using (8.23) as well as the
Ft -conditional independence of x̃c

t+T and x̃d
t+T , we have

(8.41) E
Q
t

[(
ex̃t+T − ek)+1{Cc

t }
] ≤ 2e−2kE

Q
t

[
e3x̃t+T 1{Cc

t }
] ≤ Cte

−2kT .

Next, taking into account the definition of the set Ct , we have

E
Q
t

[(
ex̃t+T − ek)+1{Ct }

] ≤ eσt

√
T | lnT |EQ

t

(
ex̃d

t+T − ek−σt

√
T | lnT |)+.

For k > kh,t , we have ek−σt

√
T | lnT | > 1 and, therefore, by an application of Cheby-

shev’s inequality and the preceding inequality, we have

k > kh,t =⇒ E
Q
t

[(
ex̃t+T − ek)+1{Ct }

] ≤ Ct

(ek−kh,t − 1)2
E
Q
t

∣∣ex̃d
t+T − 1

∣∣3.
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We can then use (8.23) to get altogether

(8.42) k > kh,t =⇒ E
Q
t

[(
ex̃t+T − ek)+1{Ct }

] ≤ Ct

(ek−kh,t − 1)2
T .

From here, the second bound in (8.40) easily follows. For the first bound, exactly
as before, using (8.23), we first have

(8.43) E
Q
t

[(
ek − ex̃t+T

)+1{Cc
t }
] ≤ 2e4kE

Q
t

[(
e−3x̃t+T

)
1{Cc

t }
] ≤ Cte

4kT .

We further have

E
Q
t

[(
ek − ex̃t+T

)+1{Ct }
] ≤ eσt

√
T | lnT |EQ

t

(
ek+σt

√
T | lnT | − ex̃d

t+T
)+

≤ e2k+3σt

√
T | lnT |EQ

t

(
e−x̃d

t+T − e−k−σt

√
T | lnT |)+.

From here, by using (8.23), we get

k < kl,t =⇒ E
Q
t

[(
ek − ex̃t+T

)+1{Ct }
] ≤ 2e2k+3σt

√
T lnT |

(e−k+kl,t − 1)2
E
Q
t

∣∣e−x̃d
t+T − 1

∣∣3
≤ Ct

e2k

(e−k+kl,t − 1)2
T .

(8.44)

Combining the above bounds, we have the first result in (8.40). �

LEMMA 7. Suppose Assumptions A2–A4 hold. For k1 < k2 < 0 or k1 > k2 >

0, we have ∣∣ÕT (k1) − ÕT (k2)
∣∣

≤ Ct

[(
T

k2
2

∧ 1
)

1{|k2|≤1} + T

k4
2

1{|k2|>1}
]∣∣ek1 − ek2

∣∣,(8.45)

and further

(8.46)
∣∣ÕT (k1) − ÕT (k2)

∣∣ ≤ Ct

(
T

|k2| + e
− k2

2
12σ2

t T

)∣∣ek1 − ek2
∣∣ if |k2| ≤ 1,

where Ct is an Ft -adapted random variable that does not depend on k1, k2 and T .

PROOF. We have the following algebraic inequalities:∣∣(X − K1)
+ − (X − K2)

+∣∣ ≤ |K1 − K2|1{X>K2} ∀X,K1 ≥ K2,∣∣(K1 − X)+ − (K2 − X)+
∣∣ ≤ |K1 − K2|1{X<K2} ∀X,K1 ≤ K2.
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Therefore, to prove the claim it suffices to evaluate for any k > 0 the probability
Qt (|x̃t+T | > k). Using Chebychev’s and the Burkholder–Davis–Gundy inequali-
ties, and upon noting that x̃t = 0 and taking into account the integrability condi-
tions on the processes at , σt and νt , we have⎧⎪⎨⎪⎩

Qt

(∣∣x̃d
t+T + atT

∣∣ > k
) ≤ Ct

T

k
if k ∈ (0,1],

Qt

(|x̃t+T | > k
) ≤ Ct

T

k4 if k > 1.

We can further write

Qt

(
σt |Wt+T − Wt | > k

) = Qt

(
e|Wt+T −Wt |2/(3T ) > ek2/(3σ 2

t T ))
≤ Ce−k2/(3σ 2

t T ) for k > 0.

From here, the first result of the lemma follows by applying the first bound with
k = |k2| and the second one follows by applying both inequalities with k = |k2|/2.

�

LEMMA 8. Suppose Assumptions A2–A6 hold and in addition � � T α , K �
T −β , K � T γ for some α > 0, β > 0 and γ > 0. We then have

sup
u∈R

∣∣∣∣∣
N∑

j=2

e(iu−1)kj−1k
p
j−1εj−1�j

∣∣∣∣∣
= Op

(
T | lnT |), p = 0,1,2,3,

(8.47)

sup
u∈R

E

(∣∣∣∣∣
N∑

j=2

e(iu−1)kj−1εj−1�j

∣∣∣∣∣
2∣∣∣∣F (0)

)

= Op

(
T 3/2�

)
,

(8.48)

sup
u∈R

E

(∣∣∣∣∣
N∑

j=2

e(iu−1)kj−1k
p
j−1εj−1�j

∣∣∣∣∣
2∣∣∣∣F (0)

)

= Op

(
T 2�

)
, p = 1,2,3.

(8.49)

PROOF. We start with (8.47). We have

sup
u∈R

∣∣∣∣∣
N∑

j=2

e(iu−1)kj−1k
p
j−1εj−1�j

∣∣∣∣∣ ≤
N∑

j=2

e−kj−1 |kj−1|p|εj−1|�j .

Furthermore, using Lemmas 2–6 and provided T < t − t for some Ft -adapted
t > t , we have

E

(
N∑

j=2

|kj−1|p|εj−1|�j

∣∣∣∣F (0)

)
≤ CtT | lnT |.
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Combining the above two results, we get (8.47). We turn next to (8.48)–(8.49).
Using the assumption for the F (0)-conditional variance of the errors εj in As-
sumption A6 as well as Assumption A5 for the mesh of the log-strike grid, we
have

E

(∣∣∣∣∣
N∑

j=2

e(iu−1)kj−1k
p
j−1εj−1�j

∣∣∣∣∣
2∣∣∣∣F (0)

)

≤ Ct sup
i=1,...,N

σ 2
t,i

N−1∑
j=1

k
2p
j e−2kj OT (kj )

2�
2
.

Therefore, since supi=1,...,N σ 2
t,i is Op(1) and using the results of Lemmas 2–6,

provided T < t − t for some Ft -adapted t > t , we have

E

(∣∣∣∣∣
N∑

j=2

e(iu−1)kj−1εj−1�j

∣∣∣∣∣
2∣∣∣∣F (0)

)
≤ CtT

3/2�,

E

(∣∣∣∣∣
N∑

j=2

e(iu−1)kj−1k
p
j−1εj−1�j

∣∣∣∣∣
2∣∣∣∣F (0)

)
≤ CtT

2�, p = 1,2,3.

From here, the bounds in (8.48)–(8.49) follow. �
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SUPPLEMENTARY MATERIAL

Supplement to “Nonparametric implied Lévy densities” (DOI: 10.1214/18-
AOS1703SUPP; .pdf). The supplement contains the following items: (1) limit re-
sults for the integrated squared error of the nonparametric estimator, (2) lower
bounds for the minimax risk of recovering Lévy density from noisy option data
with heteroskedastic Gaussian observation errors, and (3) alternative Lévy density
estimator based on the second derivatives of the characteristic function of the asset
return estimated from the option data.
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