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EFFICIENT MULTIVARIATE ENTROPY ESTIMATION VIA
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Many statistical procedures, including goodness-of-fit tests and methods
for independent component analysis, rely critically on the estimation of the
entropy of a distribution. In this paper, we seek entropy estimators that are
efficient and achieve the local asymptotic minimax lower bound with respect
to squared error loss. To this end, we study weighted averages of the es-
timators originally proposed by Kozachenko and Leonenko [Probl. Inform.
Transm. 23 (1987), 95–101], based on the k-nearest neighbour distances of
a sample of n independent and identically distributed random vectors in R

d .
A careful choice of weights enables us to obtain an efficient estimator in arbi-
trary dimensions, given sufficient smoothness, while the original unweighted
estimator is typically only efficient when d ≤ 3. In addition to the new esti-
mator proposed and theoretical understanding provided, our results facilitate
the construction of asymptotically valid confidence intervals for the entropy
of asymptotically minimal width.

1. Introduction. The concept of entropy plays a central role in information
theory, and has found a wide array of uses in other disciplines, including statistics,
probability and combinatorics. The (differential) entropy of a random vector X

with density function f is defined as

H = H(X) = H(f ) := −E
{
logf (X)

} = −
∫
X

f (x) logf (x) dx,

where X := {x : f (x) > 0}. It represents the average information content of an
observation, and is usually thought of as a measure of unpredictability.

In statistical contexts, it is often the estimation of entropy that is of primary
interest, for instance in goodness-of-fit tests of normality [Vasicek (1976)] or uni-
formity [Cressie (1976)], tests of independence [Goria et al. (2005)], independent
component analysis [Learned-Miller and Fisher (2004)] and feature selection in
classification [Kwak and Choi (2002)]. See, for example, Beirlant et al. (1997)
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and Paninski (2003) for other applications and an overview of nonparametric tech-
niques, which include methods based on sample spacings in the univariate case
[e.g., El Haje Hussein and Golubev (2009)], histograms [Hall and Morton (1993)]
and kernel density estimates [Paninski and Yajima (2008), Sricharan, Wei and Hero
(2013)], among others. The estimator of Kozachenko and Leonenko (1987) is par-
ticularly attractive as a starting point, both because it generalises easily to mul-
tivariate cases, and because, since it only relies on the evaluation of kth-nearest
neighbour distances, it is straightforward to compute.

To introduce this estimator, for n ≥ 2, let X1, . . . ,Xn be independent random
vectors with density f on R

d . Write ‖ · ‖ for the Euclidean norm on R
d , and for

i = 1, . . . , n, let X(1),i , . . . ,X(n−1),i denote a permutation of {X1, . . . ,Xn} \ {Xi}
such that ‖X(1),i − Xi‖ ≤ · · · ≤ ‖X(n−1),i − Xi‖. For conciseness, we let

ρ(k),i := ‖X(k),i − Xi‖
denote the distance between Xi and the kth nearest neighbour of Xi . The
Kozachenko–Leonenko estimator of the entropy H is given by

(1) Ĥn = Ĥn(X1, . . . ,Xn) := 1

n

n∑
i=1

log
(ρd

(k),iVd(n − 1)

e�(k)

)
,

where Vd := πd/2/�(1 + d/2) denotes the volume of the unit d-dimensional Eu-
clidean ball and where � denotes the digamma function. In fact, this is a general-
isation of the estimator originally proposed by Kozachenko and Leonenko (1987),
which was defined for k = 1. For integers k, we have �(k) = −γ + ∑k−1

j=1 1/j

where γ := 0.577216 . . . is the Euler–Mascheroni constant, so that e�(k)/k → 1
as k → ∞. This estimator can be regarded as an attempt to mimic the “oracle”
estimator H ∗

n := −n−1 ∑n
i=1 logf (Xi), based on a k-nearest neighbour density

estimate that relies on the approximation

k

n − 1
≈ Vdρd

(k),1f (X1).

It turns out that, when d ≤ 3 and other regularity conditions hold, the estimator Ĥn

in (1) has the same asymptotic behaviour as H ∗
n , in that

n1/2(Ĥn − H)
d→ N

(
0,Var logf (X1)

)
.

We will see that in such settings this estimator is asymptotically efficient, in the
sense of, for example, van der Vaart [(1998), p. 367]. However, when d ≥ 4, a non-
trivial bias typically precludes its efficiency. Our main object of interest, there-
fore, will be a generalisation of the estimator (1), formed as a weighted average
of Kozachenko–Leonenko estimators for different values of k, where the weights
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are chosen to try to cancel the dominant bias terms. More precisely, for a weight
vector w = (w1, . . . ,wk)

T ∈R
k with

∑k
j=1 wj = 1, we consider the estimator

Ĥw
n := 1

n

n∑
i=1

k∑
j=1

wj log ξ(j),i ,

where ξ(j),i := e−�(j)Vd(n − 1)ρd
(j),i . Weighted estimators of this general type

have been considered recently [e.g., Moon et al. (2016), Sricharan, Wei and Hero
(2013)], though our construction of the weights and our analysis is new. In par-
ticular, we show that under stronger smoothness assumptions, and with a suitable
choice of weights, the weighted Kozachenko–Leonenko estimator is efficient in
arbitrary dimensions.

There have been several previous studies of the (unweighted) Kozachenko–
Leonenko estimator, but results on the rate of convergence have until now confined
either to the case k = 1 or (very recently) the case where k is fixed as n diverges.
The original Kozachenko and Leonenko (1987) paper proved consistency of the
estimator under mild conditions in the case k = 1. Tsybakov and van der Meulen
(1996) proved that the mean squared error of a truncated version of the estimator
is O(n−1) when k = 1 and d = 1 under a condition that is almost equivalent to an
exponential tail; Biau and Devroye (2015) showed that the bias vanishes asymptot-
ically while the variance is O(n−1) when k = 1 and f is compactly supported and
bounded away from zero on its support. Very recently, in independent work and
under regularity conditions, Delattre and Fournier (2017) derived the asymptotic
normality of the estimator when k = 1, confirming the suboptimal asymptotic vari-
ance in this case. Previous works on the general k case include Singh et al. (2003),
where heuristic arguments were presented to suggest the estimator is consistent
for general d and general fixed k and has variance O(n−1) for d = 1 and gen-
eral fixed k. Gao, Oh and Viswanath (2016) obtain a mean squared error bound of
O(n−1) up to polylogarithmic factors for fixed k and d ≤ 2, though the only densi-
ties which the authors can show satisfy their tail condition have bounded support.
Singh and Póczos (2016) obtain a similar bound (without the polylogarithmic fac-
tors, but explicitly assuming bounded support) for fixed k and d ≤ 4. Mnatsakanov
et al. (2008) allow k to diverge with n, and show that the estimator is consistent
for general d .

Plug-in kernel methods are also popular for entropy estimation. Paninski and
Yajima (2008), for example, show that a smaller bandwidth than would be re-
quired for a consistent density estimator can still yield a consistent entropy esti-
mator. A k-nearest neighbour density estimate can be regarded as a kernel estima-
tor with a bandwidth that depends both on the data and on the point at which the
estimate is required. Sricharan, Wei and Hero (2013) obtain the parametric rate of
convergence for a plug-in kernel method, assuming bounded support and at least
d derivatives in the interior of the support.
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Importantly, the class of densities considered in our results allows the support of
the density to be unbounded; for instance, it may be the whole of Rd . Such settings
present significant new challenges and lead to different behaviour compared with
more commonly-studied situations where the underlying density is compactly sup-
ported and bounded away from zero on its support. To gain intuition, consider the
following second-order Taylor expansion of H(f ) around a density estimator f̂ :

H(f ) ≈ −
∫
Rd

f (x) log f̂ (x) dx − 1

2

(∫
Rd

f 2(x)

f̂ (x)
dx − 1

)
.

When f is bounded away from zero on its support, one can estimate the (smaller
order) second term on the right-hand side, thereby obtaining efficient estimators of
entropy in higher dimensions [Laurent (1996)]; however, when f is not bounded
away from zero on its support such procedures are no longer effective. To the best
of our knowledge, therefore, this is the first time that a nonparametric entropy es-
timator has been shown to be efficient in multivariate settings for densities having
unbounded support. [We remark that when d = 1, the histogram estimator of Hall
and Morton (1993) is known to be efficient under fairly strong tail conditions.]

The outline of the rest of the paper is as follows. In Section 2, we give our
main results on the mean squared error and asymptotic normality of weighted
Kozachenko–Leonenko estimators, and discuss confidence interval construction.
These main results arise from asymptotic expansions for the bias and variance,
which are stated in Section 3. Here, we also give examples to illustrate densities
satisfying our conditions, discuss how they may be weakened, and address the
fixed k case. Corresponding lower bounds are presented in Section 4. Proofs of
main results are presented in Section 5 with auxiliary material and detailed bounds
for various error terms deferred to the Appendix, which appears as the Supplemen-
tary Material [Berrett, Samworth and Yuan (2019)].

We conclude the Introduction with some notation used throughout the paper.
For x ∈ R

d and r > 0, let Bx(r) be the closed Euclidean ball of radius r about x,
and let B◦

x (r) := Bx(r) \ {x} denote the corresponding punctured ball. We write
‖A‖op and |A| for the operator norm and determinant, respectively, of A ∈ R

d×d ,
and let ‖A‖ denote the vectorised Euclidean norm of a vector, matrix or array. For
a smooth function f : Rd → [0,∞), we write ḟ (x), f̈ (x) and f (m)(x), respec-
tively, for the gradient vector of f at x, Hessian matrix of f at x and the array

with (j1, . . . , jm)th entry ∂mf (x)
∂xj1 ...∂xjm

. We also write 	f (x) := ∑d
j=1

∂2f

∂x2
j

(x) for its

Laplacian, and ‖f ‖∞ := supx∈Rd f (x) for its uniform norm.

2. Main results. We begin by introducing the class of densities over which
our results will hold. Let Fd denote the class of all density functions with respect
to Lebesgue measure on R

d . For f ∈ Fd and α > 0, let

μα(f ) :=
∫
Rd

‖x‖αf (x) dx.
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Now let A denote the class of decreasing functions a : (0,∞) → [1,∞) satisfying
a(δ) = o(δ−ε) as δ ↘ 0, for every ε > 0. If a ∈ A, β > 0 and f ∈Fd is m := �β
−
1-times differentiable and x ∈ X , we define ra(x) := {8d1/2a(f (x))}−1/(β∧1) and

Mf,a,β(x) := max
{

max
t=1,...,m

‖f (t)(x)‖
f (x)

, sup
y∈B◦

x (ra(x))

‖f (m)(y) − f (m)(x)‖
f (x)‖y − x‖β−m

}
.

The quantity Mf,a,β(x) measures the smoothness of derivatives of f in neigh-
bourhoods of x, relative to f (x) itself. Note that these neighbourhoods of x are
allowed to become smaller when f (x) is small. Finally, for � := (0,∞)4 × A,
and θ = (α,β, ν, γ, a) ∈ �, let

Fd,θ :=
{
f ∈Fd : μα(f ) ≤ ν,‖f ‖∞ ≤ γ, sup

x:f (x)≥δ

Mf,a,β(x) ≤ a(δ) ∀δ > 0
}
.

We note here that Lemma 2 in the online Supplementary Material [Berrett,
Samworth and Yuan (2019)] can be used to derive a nestedness property of
the classes with respect to the smoothness parameter, namely that if θ =
(α,β, γ, ν, a) ∈ �, β ′ ∈ (0, β) and a′(δ) = 15d�β
/2a(δ), then Fd,θ ⊆ Fd,θ ′ ,
where θ ′ = (α,β ′, γ, ν, a′) ∈ �. In Section 3.2 below, we discuss the requirements
of the class Fd,θ in greater detail, and give several examples, including Gaussian
and multivariate-t densities, which belong to Fd,θ for suitable θ .

We now introduce the class of weights w = (w1, . . . ,wk)
T that we consider. For

k ∈ N, let

W(k) :=
{
w ∈ R

k :
k∑

j=1

wj

�(j + 2�/d)

�(j)
= 0 for � = 1, . . . , �d/4�

(2)
k∑

j=1

wj = 1 and wj = 0 if j /∈ {�k/d�, �2k/d�, . . . , k}}
.

Our main result below shows that for appropriately chosen weight vectors
in W(k), the normalised risk of the weighted Kozachenko–Leonenko estima-
tor Ĥw

n converges in a uniform sense to that of the oracle estimator H ∗
n :=

−n−1 ∑n
i=1 logf (Xi). Theorem 8 in Section 4 shows that this limiting risk is

optimal.

THEOREM 1. Fix d ∈ N and θ = (α,β, ν, γ, a) ∈ � with α > d and with
β > d/2. Let k∗

0 = k∗
0,n and k∗

1 = k∗
1,n denote any two deterministic sequences

of positive integers with k∗
0 ≤ k∗

1 , with k∗
0/ log5 n → ∞ and with k∗

1 = O(nτ1) and
k∗

1 = o(nτ2), where

τ1 < min
(

2α

5α + 3d
,
α − d

2α
,

4β∗

4β∗ + 3d

)
,

τ2 := min
(

1 − d/4

1 + �d/4� ,1 − d

2β

)
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and β∗ := β ∧ 1. There exists kd ∈ N, depending only on d , such that for each
k ≥ kd , we can find w = w(k) ∈W(k) with supk≥kd

‖w(k)‖ < ∞. For such w,

(3) sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

nEf

{(
Ĥw

n − H ∗
n

)2} → 0

as n → ∞. In particular,

sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

∣∣nEf

{(
Ĥw

n − H(f )
)2} − V (f )

∣∣ → 0,

where V (f ) := Varf logf (X1) = ∫
X f log2 f − H(f )2.

We remark that the level of smoothness we require for efficiency in Theorem 1,
namely β > d/2, is more than is needed for the two-stage estimator of Laurent
(1996) in the case where f is compactly supported and bounded away from zero
on its support, where β > d/4 suffices. As alluded to in the Introduction, the fact
that the function x �→ −x logx is nondifferentiable at x = 0 means that the en-
tropy functional is no longer smooth when f has full support, so the arguments of
Laurent (1996) can no longer be applied and very different behaviour may occur
[Cai and Low (2011), Lepski, Nemirovski and Spokoiny (1999)].

It is also useful, for example, for the purposes of constructing confidence inter-
vals for the entropy, to understand the asymptotic normality of the estimator. First,
note that the asymptotic variance V (f ) can be estimated analogously to H(f ) by
V̂ w

n := max(Ṽ w
n ,0), where

Ṽ w
n := 1

n

n∑
i=1

k∑
j=1

wj log2 ξ(j),i − (
Ĥw

n

)2
.

Fixing q ∈ (0,1), this suggests that a natural asymptotic (1 − q)-level confidence
interval for H(f ) is given by

In,q := [
Ĥw

n − n−1/2zq/2
(
V̂ w

n

)1/2
, Ĥw

n + n−1/2zq/2
(
V̂ w

n

)1/2]
,

where zq is the (1 − q)th quantile of the standard normal distribution; see also
Delattre and Fournier (2017). For p ≥ 1, write Pp for the class of probability
measures P on R with

∫ ∞
−∞ |x|p dP (x) < ∞. For P,Q ∈ Pp , we define the pth

Wasserstein distance between P and Q by

dp(P,Q) := inf
(X,Y )∼(P,Q)

{
E

(|X − Y |p)}1/p
,

where the infimum is taken over all pairs (X,Y ) defined on a common probability
space with X ∼ P and Y ∼ Q. Recall that if P ∈ Pp and (Pn) is a sequence

in Pp , then dp(Pn,P ) → 0 if and only if both Pn
d→ P and

∫ ∞
−∞ |x|p dPn(x) →∫ ∞

−∞ |x|p dP (x). Write L(Z) for the distribution of a random variable Z.
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THEOREM 2. Under the conditions of Theorem 1, we have

sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

d2
(
L

(
n1/2{

Ĥw
n − H(f )

})
,N

(
0,V (f )

)) → 0

as n → ∞. Consequently,

sup
q∈(0,1)

sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

∣∣Pf

(
In,q � H(f )

) − (1 − q)
∣∣ → 0.

We remark that the choice k = kn = �log6 n
 with w = w(k) ∈ W(k) satisfy-
ing supk≥kd

‖w(k)‖ < ∞ for the weighted Kozachenko–Leonenko estimator sat-
isfies the conditions for efficiency in Theorem 1 whenever f ∈ Fd,θ with θ =
(α,β, γ, ν, a) ∈ � satisfying α > d and β > d/2; knowledge of the precise val-
ues of α and β is not required. Moreover, the uniformity of the asymptotics in k

means that if k̂n = k̂n(X1, . . . ,Xn) is a data-driven choice of k, the conclusions
Theorem 2 remain valid provided that P(k̂n < k∗

0) + P(k̂n > k∗
1) → 0.

3. Bias and variance expansions for Kozachenko–Leonenko estimators.

3.1. Bias. The proof of (3) is derived from separate expansions for the bias
and variance of the weighted Kozachenko–Leonenko estimator, and we treat the
bias in this subsection. To gain intuition, we initially focus for simplicity of expo-
sition on the unweighted estimator

Ĥn = 1

n

n∑
i=1

log ξi,

where we have written ξi as shorthand for ξ(k),i . For x ∈ R
d and u ∈ [0,∞), we

introduce the sequence of distribution functions

Fn,x(u) := P(ξi ≤ u|Xi = x) =
n−1∑
j=k

(
n − 1

j

)
pj

n,x,u(1 − pn,x,u)
n−1−j ,

where

pn,x,u :=
∫
Bx(rn,u)

f (y) dy and rn,u :=
{

e�(k)u

Vd(n − 1)

}1/d

.

Further, for u ∈ [0,∞), define the limiting (Gamma) distribution function

Fx(u) := exp
{−uf (x)e�(k)} ∞∑

j=k

1

j !
{
uf (x)e�(k)}j = e−λx,u

∞∑
j=k

λ
j
x,u

j ! ,

where λx,u := uf (x)e�(k). That this is the limit distribution for each fixed k fol-
lows from a Poisson approximation to the Binomial distribution and the Lebesgue
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differentiation theorem. We therefore expect that

E(Ĥn) =
∫
X

f (x)

∫ ∞
0

logudFn,x(u) dx ≈
∫
X

f (x)

∫ ∞
0

logudFx(u)dx

=
∫
X

f (x)

∫ ∞
0

log
(

te−�(k)

f (x)

)
e−t t k−1

(k − 1)! dt dx = H.

Although we do not explicitly use this approximation in our asymptotic analysis
of the bias, it motivates much of our development. It also explains the reason for
using e�(k) in the definition of ξ(k),i , rather than simply k. Lemma 3 below gives
an expression for the asymptotic bias of the unweighted Kozachenko–Leonenko
estimator.

LEMMA 3. Fix d ∈ N and θ = (α,β, ν, γ, a) ∈ �. Let k∗ = k∗
n denote any

deterministic sequence of positive integers with k∗ = O(n1−ε) as n → ∞ for some
ε > 0. Then there exist λ1, . . . , λ�β/2
−1 ∈ R, depending only on f and d , such that
supf ∈Fd,θ

maxl=1,...,�β/2
−1 |λl| < ∞ and for each ε > 0,

sup
f ∈Fd,θ

∣∣∣∣∣Ef (Ĥn) − H −
�β/2
−1∑

l=1

�(k + 2l/d)�(n)

�(k)�(n + 2l/d)
λl

∣∣∣∣∣ = O

(
max

{
k

α
α+d

−ε

n
α

α+d
−ε

,
k

β
d

n
β
d

})

as n → ∞, uniformly for k ∈ {1, . . . , k∗}, where λl = 0 if 2l ≥ dα/(α + d).

When d ≥ 3, α > 2d/(d − 2) and β > 2, we have

λ1 = − 1

2(d + 2)V
2/d
d

∫
X

	f (x)

f (x)2/d
dx,

which is finite under these assumptions; cf. the second part of Proposition 9 in Sec-
tion 5.1. Moreover, since, for each l > 0, we have �(n)

�(n+2l/d)
= n−2l/d{1+O(n−1)},

we deduce from Lemma 3 that in this setting,

sup
f ∈Fd,θ

∣∣∣∣Ef (Ĥn) − H + �(k + 2/d)

2(d + 2)V
2/d
d �(k)n2/d

∫
X

	f (x)

f (x)2/d
dx

∣∣∣∣ = o

(
k2/d

n2/d

)
.

In particular, when d ≥ 4 and
∫
X

	f (x)

f (x)2/d dx �= 0, the bias of the unweighted
Kozachenko–Leonenko estimator precludes its efficiency.

On the other hand, Lemma 3 motivates the definition of the class of weight
vectors W(k) in (2), and facilitates the expansion for the bias of the weighted
Kozachenko–Leonenko estimator in Corollary 4 below. In particular, since
2(�d/4� + 1)/d > 1/2, we see that this result provides conditions under which
the bias is o(n−1/2) for suitably chosen k. This explains why we let � take values
in the range {1, . . . , �d/4�} in (2).
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COROLLARY 4. Assume the conditions of Lemma 3. If w = w(k) ∈ W(k) for
k ≥ kd and supk≥kd

‖w(k)‖ < ∞, then for every ε > 0,

sup
f ∈Fd,θ

∣∣Ef

(
Ĥw

n

) − H(f )
∣∣ = O

(
max

{
k

α
α+d

−ε

n
α

α+d
−ε

,
k

2(�d/4�+1)
d

n
2(�d/4�+1)

d

,
k

β
d

n
β
d

})
,

uniformly for k ∈ {1, . . . , k∗}.

The proof of Lemma 3 is given in Section 5.1, but we present here some of the
main ideas that are particularly relevant for the case d ≥ 3, α > 2d/(d − 2) and
β ∈ (2,4]. First, note that

(4)
dFn,x(u)

du
= Bk,n−k(pn,x,u)

∂pn,x,u

∂u
,

where Ba,b(s) := B−1
a,bs

a−1(1 − s)b−1 denotes the density of a Beta(a, b) random
variable at s ∈ (0,1), with Ba,b := �(a)�(b)/�(a + b). For x ∈ X and r > 0, de-
fine hx(r) := ∫

Bx(r) f (y) dy. Since hx(r) is a continuous, non-decreasing function
of r , we can define a left-continuous inverse for s ∈ (0,1) by

(5) h−1
x (s) := inf

{
r > 0 : hx(r) ≥ s

} = inf
{
r > 0 : hx(r) = s

}
,

so that hx(r) ≥ s if and only if r ≥ h−1
x (s). We use the approximation

Vdf (x)h−1
x (s)d ≈ s − s1+2/d	f (x)

2(d + 2)V
2/d
d f (x)1+2/d

for small s > 0, which is formalised in Lemma 10(ii) in Section 5.1. In the case
d ≥ 3, α > 2d/(d − 2) and β ∈ (2,4], the proof of Lemma 3 can be seen as justi-
fying the use of the above approximation in the following:

E(Ĥn) =
∫
X

f (x)

∫ ∞
0

logudFn,x(u) dx

=
∫
X

f (x)

∫ 1

0
log

(
Vd(n − 1)h−1

x (s)d

e�(k)

)
Bk,n−k(s) ds dx

≈
∫
X

f (x)

∫ 1

0

{
log

(
(n − 1)s

e�(k)f (x)

)
− V

−2/d
d s2/d	f (x)

2(d + 2)f (x)1+2/d

}
Bk,n−k(s) ds dx

= log(n − 1) − �(n) + H − V
−2/d
d �(k + 2/d)�(n)

2(d + 2)�(k)�(n + 2/d)

∫
X

	f (x)

f (x)2/d
dx.

Note that log(n − 1) − �(n) = −1/(2n) + o(1/n), which leads to the given bias
expression. The proof in other cases proceeds along similar lines. These heuristics
make clear that the function h−1

x (·) plays a key role in understanding the bias. This
function is in general complicated, though some understanding can be gained from
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the following uniform density example, where it can be evaluated explicitly. This
leads to an exact expression for the bias, even though the discontinuities mean that
the density does not belong to F1,θ for any θ ∈ �.

EXAMPLE 1. Consider the uniform distribution, U [0,1]. For x ≤ 1/2, we
have

h−1
x (s) =

{
s/2, if s ≤ 2x

s − x, if 2x < s ≤ 1.

It therefore follows that

E(Ĥn) − H = 2
∫ 1/2

0

∫ ∞
0

logudFn,x(u) dx

= 2
∫ 1/2

0

∫ 1

0
log

(
2(n − 1)h−1

x (s)

e�(k)

)
Bk,n−k(s) ds dx

= 2
∫ 1

0
Bk,n−k(s)

{∫ s/2

0
log

(
2(s − x)

)
dx +

∫ 1/2

s/2
log s dx

}
ds

+ log
(

n − 1

e�(k)

)

= k

n
(log 4 − 1) + log(n − 1) − �(n).

3.2. Discussion of conditions and weakening of conditions. Recall the defi-
nitions of the quantity Mf,a,β(x) and A from Section 2. In addition to standard
moment and boundedness assumptions, the condition f ∈ Fd,θ requires that

(6) sup
x:f (x)≥δ

Mf,a,β(x) ≤ a(δ) for all δ > 0 and some a ∈ A.

In this subsection, we explore the condition (6) further, with the aid of several
examples.

The condition (6) is reminiscent of more standard Hölder smoothness assump-
tions, though we also require that the partial derivatives of the density vary less
where f is small. On the other hand, we also allow the neighbourhoods of x in the
definition of Mf,a,β(x) to shrink where f (x) is small. Roughly speaking, the con-
dition requires that the partial derivatives of the density decay nearly as fast as the
density itself in the tails of the distribution. As a simple stability property, if (6)
holds for a density f0, then it also holds for any density from the location-scale
family:{
f�(·) = |�|−1/2f0

(
�−1/2(· − μ)

) : μ ∈ R
d,� = �T ∈ R

d×d positive definite
}
.

This observation allows us to consider canonical representatives of location-scale
families in the examples below.
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PROPOSITION 5. For each of the following densities f , and for each d ∈ N,
there exists θ ∈ � such that f ∈ Fd,θ :

(i) f (x) = f (x1, . . . , xd) = (2π)−d/2e−‖x‖2/2, the standard normal density;

(ii) f (x) = f (x1, . . . , xd) ∝ (1 + ‖x‖2/ρ)−
d+ρ

2 , the multivariate-t distribution
with ρ > 0 degrees of freedom.

Moreover, the following univariate density f also belongs to F1,θ for suitable
θ ∈ �:

f (x) ∝ exp
(
− 1

1 − x2

)
1{x∈(−1,1)}.

The final part of Proposition 5 is included because it provides an example of a
density f that belongs to F1,θ for suitable θ ∈ �, even though there exist points
x0 ∈ R with f (x0) = 0.

On the other hand, there are also examples, such as Example 2 below, where
the behaviour of f near a point x0 with f (x0) = 0 precludes f belonging to Fd,θ

for any θ ∈ �. To provide some guarantees in such settings, we now give a very
general condition under which our approach to studying the bias can be applied.

PROPOSITION 6. Assume that f is bounded, that μα(f ) < ∞ for some
α > 0 and let k∗ be as in Lemma 3. Let an := 3(k + 1) log(n − 1), let rx :=
{ 2an

Vd(n−1)f (x)
}1/d and assume further that there exists β > 0 such that the function

on X given by

Cn,β(x) :=

⎧⎪⎪⎨
⎪⎪⎩

sup
y∈B◦

x (rx)

∣∣f (y) − f (x)
∣∣/‖y − x‖β, if β ≤ 1,

sup
y∈B◦

x (rx)

∥∥ḟ (y) − ḟ (x)
∥∥/‖y − x‖β−1, if β > 1,

is real-valued. Suppose that Xn ⊆ X is such that

(7) sup
x∈Xn

(
an

n − 1

)β̃/d Cn,β̃ (x)

f (x)1+β̃/d
→ 0

as n → ∞, where β̃ := β ∧ 2. Then writing qn := ∫
X c

n
f , we have for every ε > 0

that

(8) Ef (Ĥn) − H = O

(
max

{
kβ̃/d

nβ̃/d

∫
Xn

Cn,β̃ (x)

f (x)β̃/d
dx, q1−ε

n , qn logn,
1

n

})
,

uniformly for k ∈ {1, . . . , k∗}.

To aid interpretation of Proposition 6, we first remark that if f ∈ Fd,θ for some
θ = (α,β, γ, ν, a) ∈ �, then (7) holds, with Xn := {x ∈ X : f (x) ≥ δn}, where
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δn is defined in (12) below. On the other hand, if f /∈ Fd,θ , we may still be able
to obtain explicit bounds on the terms in (8) on a case-by-case basis, as in the
following example.

EXAMPLE 2. For a > 1, consider f (x) = �(a)−1xa−1e−x1{x>0}, the density
of the �(a,1) distribution. Then for any τ ∈ (0,1) small enough, we may take

Xn =
[(

k

n

) 1
a
−τ

, (1 − τ) log
n

k

]

to deduce from Proposition 6 that for every ε > 0,

Ef (Ĥn) − H = o

(
k1−ε

n1−ε

)
,

uniformly for k ∈ {1, . . . , k∗}.

Similar calculations show that the bias is of the same order for Beta(a, b) dis-
tributions with a, b > 1.

3.3. Asymptotic variance and normality. We now study the asymptotic vari-
ance of Kozachenko–Leonenko estimators under the assumption that the tuning
parameter k is diverging with n; the fixed k case is deferred to the next subsection.

LEMMA 7. Let θ = (α,β, γ, ν, a) ∈ � with α > d and β > 0. Let k∗
0 = k∗

0,n

and k∗
1 = k∗

1,n denote any two deterministic sequences of positive integers with

k∗
0 ≤ k∗

1 , with k∗
0/ log5 n → ∞ and with k∗

1 = O(nτ1), where τ1 satisfies the con-
dition in Theorem 1. Then for any w = w(k) ∈ W(k) with supk≥kd

‖w(k)‖ < ∞, we
have

sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

∣∣nVarf Ĥw
n − V (f )

∣∣ → 0

as n → ∞.

The proof of this lemma is lengthy, and involves many delicate error bounds, so
we outline the main ideas in the unweighted case here. First, we argue that

Var Ĥn = n−1 Var log ξ1 + (
1 − n−1)

Cov(log ξ1, log ξ2)

= n−1V (f ) + Cov
(
log

(
ξ1f (X1)

)
, log

(
ξ2f (X2)

)) + o
(
n−1)

,

where we hope to exploit the fact that ξ1f (X1)
p→ 1. The main difficulties in the

argument are caused by the fact that handling the covariance above requires us to
study the joint distribution of (ξ1, ξ2), and this is complicated by the fact that X2
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may be one of the k nearest neighbours of X1 or vice versa, and more generally,
X1 and X2 may have some of their k nearest neighbours in common. Dealing care-
fully with the different possible events requires us to consider separately the cases
where f (X1) is small and large, as well as the proximity of X2 to X1. Finally,
however, we can apply a normal approximation to the relevant multinomial distri-
bution (which requires that k → ∞) to deduce the result. We remark that under
stronger conditions on k, it should also be possible to derive the same conclusion
about the asymptotic variance of Ĥn while only assuming similar conditions on
the density to those required in Proposition 6, but we do not pursue this here.

3.4. Fixed k. A crucial step in the proof of Lemma 7 is the normal approxi-
mation to a certain multinomial distribution (cf. the bound on the term W4). This
normal approximation is only valid when k → ∞ as n → ∞. In this subsection,
we present evidence to suggest that, when k is fixed (i.e., not depending on n), then
Kozachenko–Leonenko estimators are inefficient. For simplicity, we focus on the
unweighted version of estimator.

Define the functions

αr(s, t) := 1

Vd

μd

(
B0

(
s1/d) ∩ Br1/de1

(
t1/d))

,

where e1 = (1,0, . . . ,0)T is the first element of the standard basis for Rd and μd

denotes Lebesgue measure on R
d . Also define the functions Tk on [0,∞)3 by

Tk(r, s, t) := eαr (s,t)
L(r,s,t)∑

�=0

I (r,s)−�∑
i=0

J (r,t)−�∑
j=0

{s − αr(s, t)}i{t − αr(s, t)}jα�
r (s, t)

i!j !�!

−
I (r,s)∑
i=0

J (r,t)∑
j=0

si tj

i!j ! ,

where L(r, s, t) := k − 1 − 1{r<max(s,t)}, I (r, s) := k − 1 − 1{r<s}, J (r, t) := k −
1 − 1{r<t}.

In the case k = 1, this function appears in Delattre and Fournier (2017), where
the authors show that, under certain regularity conditions,

lim
n→∞nVar Ĥn − V (f ) = � ′(1) +

∫
[0,∞)3

e−s−t T1(r, s, t)

st
dr ds dt

− 1 + 2 log 2.

Since T1(r, s, t) = {eαr (s,t) − 1}1{r≥s∨t} ≥ 0, this limit is strictly positive. More
generally, Poisson approximation to the same multinomial distribution mentioned
above, together with analysis similar to the proof of Lemma 7, suggests that for
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TABLE 1
Asymptotic variance inflation (9) of the Kozachenko–Leonenko estimator for fixed k

d\k 1 2 3 4 5

1 2.14 0.97 0.64 0.48 0.39
2 2.29 1.01 0.64 0.47 0.38
3 2.42 1.03 0.64 0.47 0.37
5 2.61 1.05 0.65 0.47 0.37

10 2.85 1.10 0.68 0.50 0.40

(fixed) k ≥ 2,

lim
n→∞nVar Ĥn − V (f )

= � ′(k) +
∫
[0,∞)3

e−s−t Tk(r, s, t)

st
dr ds dt − 1

+ 2−(2k−2)

(
2k − 2

k − 1

){
�(2k − 1) − �(k) − log 2

}

+ 1

k − 1

k−2∑
j=0

2−k−j

(
k + j − 1

j

)

× [
1 − (k − j)

{
�(k + j) − log 2 − �(k)

}]
.

(9)

Here, the � ′(k) term arises as in (18), the integral term arises from the Poisson
approximation, the −1 arises as in (27) and the remaining terms come from the
fact that X1 can be one of the k nearest neighbours of X2, or vice-versa, which
induces a singular component into the joint distribution function Fn,x,y of (ξ1, ξ2)

given (X1,X2) = (x, y). It is interesting to observe that this asymptotic inflation of
the variance is distribution-free; by Theorem 8 in Section 4 below, any distribution-
free upper bound on lim supn→∞ nVar Ĥn − V (f ) is necessarily nonnegative. We
conjecture that it is in fact strictly positive for each fixed k. Evidence for this is
provided in Table 1, where we tabulate numerical values for (9) for a few values of
d and k. These agree with those obtained by Delattre and Fournier (2017) for the
case k = 1.

4. Lower bounds. In this section, we address the optimality in a local asymp-
totic minimax sense of the limiting normalised risk V (f ) given in Theorem 1 us-
ing ideas of semiparametric efficiency [e.g., van der Vaart (1998), Chapter 25]. For
f ∈ Fd,θ , t ≥ 0 and a Borel measurable function g : Rd → R, define ft,g : Rd →
[0,∞) by

(10) ft,g(x) := 2c(t)

1 + e−2tg(x)
f (x),
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where c(t) := (
∫
Rd

2
1+e−2tg(x) f (x) dx)−1. This definition ensures that {ft,g : t ≥

0} is differentiable in quadratic mean at t = 0 with score function g [e.g., van
der Vaart (1998), Example 25.16]. We say (H̃n) is an estimator sequence if H̃n :
(Rd)×n →R is a measurable function for each n ∈ N.

THEOREM 8. Fix d ∈ N, θ = (α,β, γ,μ, a) ∈ � and f ∈Fd,θ . For λ ∈ R, let
gλ := λ{logf + H(f )}. Then, writing I for the set of finite subsets of R, we have
for any estimator sequence (H̃n) that

(11) sup
I∈I

lim inf
n→∞ max

λ∈I
nEf

n−1/2,gλ

[{
H̃n − H(fn−1/2,gλ

)
}2] ≥ V (f ).

Moreover, whenever t |λ| ≤ min(1, {144V (f )}−1/2), we have ft,gλ ∈ Fd,θ̃ , where

θ̃ := (α,β,4γ,4μ, ã) ∈ �, and ã ∈ A is defined in (61) in the Supplementary
Material.

The proof of Theorem 8 reveals that, at every f ∈ Fd,θ , the entropy functional
H is differentiable relative to the tangent set {gλ : λ ∈ R} with efficient influence
function

ψ̃f := − logf − H(f ).

This observation, together with (3) in Theorem 1, confirms that under the assump-
tions on θ , w and k in that result, the weighted Kozachenko–Leonenko estimator
Ĥw

n is (asymptotically) efficient at f ∈Fd,θ in the sense that

n1/2{
Ĥw

n − H(f )
} = 1

n1/2

n∑
i=1

ψ̃f (Xi) + op(1)

[cf. van der Vaart (1998), Lemma 25.23]. Moreover, the second part of Theorem 8
and Theorem 1 imply in particular that, under these same conditions on θ , w and k,
the estimator Ĥw

n attains the local asymptotic minimax lower bound, in the sense
that

sup
I∈I

lim
n→∞ max

λ∈I
nEf

n−1/2,gλ

[{
Ĥw

n − H(fn−1/2,gλ
)
}2] = V (f ).

5. Proofs of main results.

5.1. Auxiliary results and proofs of Lemma 3 and Corollary 4. Throughout the
proofs, we write a � b to mean that there exists C > 0, depending only on d ∈ N

and θ ∈ �, such that a ≤ Cb. The proof of Lemma 3 relies on the following two
auxiliary results, whose proofs are given in Appendix A.1.
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PROPOSITION 9. Let θ = (α,β, γ, ν, a) ∈ �, d ∈ N and τ ∈ ( d
α+d

,1]. Then

sup
f ∈Fd,θ

∫
{x:f (x)<δ}

a
(
f (x)

)
f (x)τ dx → 0

as δ ↘ 0. Moreover, for every ρ > 0,

sup
f ∈Fd,θ

∫
X

a
(
f (x)

)ρ
f (x)τ < ∞.

Recall the definition of h−1
x (·) in (5). The first part of Lemma 10 below pro-

vides crude but general bounds; the second gives much sharper bounds in a more
restricted region.

LEMMA 10. (i) Let f ∈ Fd and let α > 0. Then for every s ∈ (0,1) and x ∈
R

d , (
s

Vd‖f ‖∞

)1/d

≤ h−1
x (s) ≤ ‖x‖ +

(
μα(f )

1 − s

)1/α

.

(ii) Fix θ = (α,β, γ, ν, a) ∈ �, and let Sn ⊆ (0,1), Xn ⊆ R
d be such that

Cn := sup
f ∈Fd,θ

sup
s∈Sn

sup
x∈Xn

a(f (x))d/(1∧β)s

f (x)
→ 0.

Then there exists n∗ = n∗(d, θ) ∈ N such that for all n ≥ n∗, s ∈ Sn, x ∈ Xn and
f ∈Fd,θ , we have∣∣∣∣∣Vdf (x)h−1

x (s)d −
�β/2
−1∑

l=0

bl(x)s1+2l/d

∣∣∣∣∣ � s

{
a(f (x))d/(2∧β)s

f (x)

}β/d

,

where b0(x) = 1 and |bl(x)| � a(f (x))lf (x)−2l/d for l ≥ 1. Moreover, if β > 2,
then

b1(x) = − 	f (x)

2(d + 2)V
2/d
d f (x)1+2/d

.

We are now in a position to prove Lemma 3.

PROOF OF LEMMA 3. (i) We initially prove the result in the case d ≥ 3, α >

2d/(d − 2) and β ∈ (2,4], where it suffices to show that

sup
f ∈Fd,θ

∣∣∣∣Ef (Ĥn) − H + �(k + 2/d)�(n)

2(d + 2)V
2/d
d �(k)�(n + 2/d)

∫
X

	f (x)

f (x)2/d
dx

∣∣∣∣

= O

(
max

{
k

α
α+d

−ε

n
α

α+d
−ε

,
k

β
d

n
β
d

})
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as n → ∞, uniformly for k ∈ {1, . . . , k∗}. Fix f ∈ Fd,θ . Define cn := a(k/(n −
1))1/(1∧β), let

(12) δn := kcd
n log2(n − 1)/(n − 1)

and let Xn := {x : f (x) ≥ δn}. Recall that an := 3(k + 1) log(n − 1) and let

ux,s := Vd(n − 1)h−1
x (s)d

e�(k)
.

The proof is based on (4) and Lemma 10(ii), which allows us to make the transfor-
mation s = pn,x,u = hx(rn,u). Writing Ri, i = 1, . . . ,5 for remainder terms to be
bounded at the end of the proof, we can write

E(Ĥn) =
∫
X

f (x)

∫ ∞
0

logudFn,x(u) dx

=
∫
Xn

f (x)

∫ 1

0
Bk,n−k(s) logux,s ds dx + R1

=
∫
Xn

f (x)

∫ an
n−1

0
Bk,n−k(s) logux,s ds dx + R1 + R2

=
∫
Xn

f (x)

∫ an
n−1

0

{
log

(
(n − 1)s

e�(k)f (x)

)

− V
−2/d
d s2/d	f (x)

2(d + 2)f (x)1+2/d

}
Bk,n−k(s) ds dx +

3∑
i=1

Ri

=
∫
Xn

f (x)

{
log

(
n − 1

f (x)

)
− �(n) − V

−2/d
d Bk+2/d,n−k	f (x)

2(d + 2)Bk,n−kf (x)1+2/d

}
dx

+
4∑

i=1

Ri

= H + log(n − 1) − �(n) − V
−2/d
d �(k + 2/d)�(n)

2(d + 2)�(k)�(n + 2/d)

∫
Xn

	f (x)

f (x)2/d
dx

+
5∑

i=1

Ri.

After multiplying the integrand by an appropriate positive power of δn/f (x), the
first part of Proposition 9 tells us that for every ε > 0,

sup
k∈{1,...,k∗}

k2/d

n2/d
sup

f ∈Fd,θ

∫
X c

n

	f (x)

f (x)2/d
dx = O

(
k

α
α+d

−ε

n
α

α+d
−ε

)
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as n → ∞. Since log(n − 1) − �(n) = O(1/n), it now remains to bound
R1, . . . ,R5. Henceforth, to save repetition, we adopt without further mention the
convention that whenever an error term inside O(·) or o(·) depends on k, this er-
ror is uniform for k ∈ {1, . . . , k∗}; thus g(n, k) = h(n, k) + o(1) as n → ∞ means
supk∈{1,...,k∗} |g(n, k) − h(n, k)| → 0 as n → ∞.

To bound R1. By Lemma 10(i), we have V α
d μα(f )d‖f ‖α∞ ≥ ααdd/(α +d)α+d .

Hence

| logux,s | ≤ log(n − 1) + ∣∣�(k)
∣∣ − log s + ∣∣log‖f ‖∞

∣∣ + | logVd |
+ d

α

∣∣logμα(f )
∣∣ − d

α
log(1 − s) + d log

(
1 + ‖x‖

μ
1/α
α (f )

)

≤ log(n − 1) + ∣∣�(k)
∣∣ − log s

(13)

+ max
{

logγ,
1

α
log

(
V α

d νd(α + d)α+d

ααdd

)}

+ | logVd | + d

α
max

{
logν,

1

d
log

(
V α

d γ α(α + d)α+d

ααdd

)}

− d

α
log(1 − s) + d log

(
1 + ‖x‖(α + d)

1
α
+ 1

d V
1/d
d γ 1/d

α1/dd1/α

)
.

Moreover, for any C0,C1 ≥ 0, ε ∈ (0, α) and ε′ ∈ (0, ε), we have by Hölder’s in-
equality that

sup
f ∈Fd,θ

∫
X c

n

f (x)
{
C0 + log

(
1 + C1‖x‖)}

dx

≤ δ
α−ε′
α+d
n sup

f ∈Fd,θ

∫
X

f (x)
d+ε′
α+d

{
C0 + log

(
1 + C1‖x‖)}

dx

≤ δ
α−ε′
α+d
n (1 + ν)

d+ε′
α+d

[∫
Rd

{C0 + log(1 + C1‖x‖)} α+d
α−ε′

(1 + ‖x‖α)
d+ε′
α−ε′

dx

] α−ε′
α+d

= o

(
k

α
α+d

−ε

n
α

α+d
−ε

)
.

Since |E(log B)| = �(a + b) − �(a) when B ∼ Beta(a, b), we deduce that for
each ε > 0,

R1 =
∫
X c

n

f (x)

∫ 1

0
Bk,n−k(s) logux,s ds dx = o

(
k

α
α+d

−ε

n
α

α+d
−ε

)

as n → ∞, uniformly for f ∈ Fd,θ .



306 T. B. BERRETT, R. J. SAMWORTH AND M. YUAN

To bound R2. For random variables B1 ∼ Beta(k, n − k) and B2 ∼ Bin(n − 1,

an/(n − 1)) we have that for every ε > 0,

P
(
B1 ≥ an/(n − 1)

) = P(B2 ≤ k − 1) ≤ exp
(
−(an − k + 1)2

2an

)
(14)

= o
(
n−(3−ε)),

where the inequality follows from standard bounds on the left-hand tail of the
binomial distribution [see, e.g., Shorack and Wellner (2009), equation (6), p. 440].
Now, for any C1 > 0, we have α log(1 + C1‖x‖) ≤ (1 + C1‖x‖)α − 1, so that
supf ∈Fd,θ

∫
X f (x) log(1 + C1‖x‖) dx < ∞. Moreover,

−
∫ 1

an
n−1

log(1 − s)Bk,n−k(s) ds ≤ n − 1

n − k − 1

∫ 1

an
n−1

Bk,n−k−1(s) ds = o
(
n−(3−ε)),

for every ε > 0, by a virtually identical argument to (14). We therefore deduce
from these facts and (13) that for each ε > 0,

(15) R2 =
∫
Xn

f (x)

∫ 1

an
n−1

Bk,n−k(s) logux,s ds dx = o
(
n−(3−ε)),

which again holds uniformly in f ∈ Fd,θ .
To bound R3. We can write

R3 =
∫
Xn

f (x)

∫ an
n−1

0

[{
log

(
Vdf (x)h−1

x (s)d

s

)
− Vdf (x)h−1

x (s)d − s

s

}

+
{
Vdf (x)h−1

x (s)d − s

s
+ V

−2/d
d s2/d	f (x)

2(d + 2)f (x)1+2/d

}]
Bk,n−k(s) ds dx

=: R31 + R32,

say. Now, note that

sup
k∈{1,...,k∗}

sup
f ∈Fd,θ

sup
s∈(0,an/(n−1)]

sup
x∈Xn

a(f (x))ds

f (x)
≤ 6

log(n − 1)
→ 0.

It follows by Lemma 10(ii) that there exist a constant C = C(d, θ) > 0 and n1 =
n1(d, θ) ∈ N such that for n ≥ n1, k ∈ {1, . . . , k∗}, s ≤ an/(n − 1) and x ∈ Xn,∣∣∣∣Vdf (x)h−1

x (s)d − s

s
+ s2/d	f (x)

2(d + 2)V
2/d
d f (x)1+2/d

∣∣∣∣ ≤ C

{
sa(f (x))d/2

f (x)

}β/d

,

and∣∣∣∣Vdf (x)h−1
x (s)d − s

s

∣∣∣∣ ≤ d1/2V
−2/d
d s2/da(f (x))

2(d + 2)f (x)2/d
+ C

{
sa(f (x))d/2

f (x)

}β/d

≤ 1

2
.
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Thus, for n ≥ n1 and k ∈ {1, . . . , k∗}, using the fact that | log(1 + z) − z| ≤ z2 for
|z| ≤ 1/2,

|R31| ≤ 2
∫
Xn

f (x)

∫ 1

0

[
dV

−4/d
d s4/da(f (x))2

4(d + 2)2f (x)4/d

+ C2
{
sa(f (x))d/2

f (x)

}2β/d]
Bk,n−k(s) ds dx

≤ dV
−4/d
d �(k + 4/d)�(n)

2(d + 2)2�(k)�(n + 4/d)

∫
Xn

a
(
f (x)

)2
f (x)1−4/d dx

+ 2C2�(k + 2β/d)�(n)

�(k)�(n + 2β/d)

∫
Xn

a
(
f (x)

)β
f (x)1−2β/d dx.

On the other hand, we also have for n ≥ n1 and k ∈ {1, . . . , k∗} that

|R32| ≤ C

∫
Xn

f (x)

∫ 1

0

{
sa(f (x))d/2

f (x)

}β/d

Bk,n−k(s) ds dx

≤ C�(k + β/d)�(n)

�(k)�(n + β/d)

∫
Xn

a
(
f (x)

)β/2
f (x)1−β/d dx.

Multiplying each of the integrals by f (x)/δn to an appropriate positive power if
necessary and by the second part of Proposition 9, for every ε > 0,

max
(|R31|, |R32|) = O

(
max

{
k

α
α+d

−ε

n
α

α+d
−ε

,
k

β
d

n
β
d

})
,

uniformly for f ∈ Fd,θ .
To bound R4. We have

R4 =
∫
Xn

f (x)

∫ 1

an
n−1

{
log

(
(n − 1)s

e�(k)f (x)

)
− V

−2/d
d s2/d	f (x)

2(d + 2)f (x)1+2/d

}
Bk,n−k(s) ds dx.

Consider the random variable B1 ∼ Beta(k, n − k). Then, using (14) and the fact
that (n − 1)s/e�(k) ≥ 1 for s ≥ an/(n − 1) and n ≥ 3, we conclude that for every
ε > 0 and n ≥ 3,

|R4| ≤
{

log
(

n − 1

e�(k)

)
+

∫
Xn

f (x)

(∣∣logf (x)
∣∣ + a(f (x))

f (x)
2
d V

2
d

d

)
dx

}
P

(
B1 ≥ an

n − 1

)

= o
(
n−(3−ε)),

uniformly for f ∈Fd,θ , where, by Lemma 1(i) in the Supplementary Material, we
have supf ∈Fd,θ

∫
Xn

f (x)| logf (x)|dx < ∞.
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To bound R5. We use the fact that for f ∈Fd,θ , x ∈ X and ε′ > 0,

∣∣logf (x)
∣∣ ≤ ∣∣log‖f ‖∞

∣∣ + log
(‖f ‖∞

f (x)

)

≤ max
{

logγ, logVd + 1

α
log

(
νd(α + d)α+d

ααdd

)}
+ 1

ε′
(

γ

f (x)

)ε′
.

It follows from the first part of Proposition 9 (having replaced a(δ) with
max{a(δ), | log δ|} if necessary) that for each ε > 0,

R5 =
∫
X c

n

f (x)
{
log(n − 1) − �(n) − logf (x)

}
dx = o

(
k

α
α+d

−ε

n
α

α+d
−ε

)

uniformly in f ∈ Fd,θ . The claim follows when d ≥ 3, α > 2d/(d − 2) and β ∈
(2,4].

We now consider the case where either d ≤ 2 or α ≤ 2d/(d − 2) or β ∈ (0,2],
for which we need only show that

sup
f ∈Fd,θ

∣∣Ef (Ĥn) − H
∣∣ = O

(
max

{
k

α
α+d

−ε

n
α

α+d
−ε

,
k

β
d

n
β
d

})
.

The calculation here is very similar, but we approximate logux,s simply by
log( (n−1)s

e�(k)f (x)
). Writing R′

1, . . . ,R
′
5 for the modified error terms, we obtain

Ef (Ĥn) = H + log(n − 1) − �(n) +
5∑

i=1

R′
i .

Here, R′
1 = R1 = o{( k

n
)α/(α+d)−ε}, and R′

2 = R2 = o(n−(3−ε)), for every ε > 0 in
both cases. On the other hand,

R′
3 =

∫
Xn

f (x)

∫ an
n−1

0
log

(
Vdf (x)h−1

x (s)d

s

)
Bk,n−k(s) ds dx

= O

(
max

{
k

α
α+d

−ε

n
α

α+d
−ε

,
kβ/d

nβ/d

})

for every ε > 0, by Lemma 10(ii). Similarly, for every ε > 0,

R′
4 =

∫
Xn

f (x)

∫ 1

an
n−1

log
(

(n − 1)s

e�(k)f (x)

)
Bk,n−k(s) ds dx = o

(
n−(3−ε)),

and R′
5 = R5 = o{( k

n
)α/(α+d)−ε}. All of these bounds hold uniformly in f ∈ Fd,θ ,

so the claim is established for this setting.
Finally, consider now the case d ≥ 3, α > 2d/(d − 2) and β > 4. Again the

calculation is very similar to the earlier cases, with the main difference being that



EFFICIENT ENTROPY ESTIMATION 309

in bounding the error corresponding to R3, we require a higher-order Taylor ex-
pansion of

log
(

1 + Vdf (x)h−1
x (s)d − s

s

)
.

This can be done using Lemma 10(ii); we omit the details for brevity. �

PROOF OF COROLLARY 4. It is convenient to write d ′ := �d/4�+1 and β ′ :=
�β/2
 − 1. We have

∣∣Ef

(
Ĥw

n

) − H
∣∣ =

∣∣∣∣∣
k∑

j=1

wj

{
Ef (log ξ(j),1) − H −

�d/4�∑
l=1

�(j + 2l/d)�(n)

�(j)�(n + 2l/d)
λl

}∣∣∣∣∣

≤
∣∣∣∣∣

k∑
j=1

wj

{
Ef (log ξ(j),1) − H −

β ′∑
l=1

�(j + 2l/d)�(n)

�(j)�(n + 2l/d)
λl

}∣∣∣∣∣

+
∣∣∣∣∣

k∑
j=1

wj

β ′∑
l=d ′

�(j + 2l/d)�(n)

�(j)�(n + 2l/d)
λl

∣∣∣∣∣.
The first term can be bounded, uniformly for f ∈ Fd,θ and k ∈ {1, . . . , k∗}, using
Lemma 3. For the second term, we can use monotonicity properties of ratios of
gamma functions to write∣∣∣∣∣

k∑
j=1

wj

β ′∑
l=d ′

�(j + 2l/d)�(n)

�(j)�(n + 2l/d)
λl

∣∣∣∣∣

≤ max
d ′≤�≤β ′ |λ�|

k∑
j=1

|wj |
β ′∑

l=d ′

�(k + 2l/d)�(n)

�(k)�(n + 2l/d)

≤ d1/2‖w‖(
β ′ − d ′ + 1

)�(k + 2d ′/d)�(n)

�(k)�(n + 2d ′/d)
max

d ′≤l≤β ′ |λl| = O

(
k2d ′/d

n2d ′/d

)
,

uniformly for f ∈ Fd,θ . The result follows. �

5.2. Proof of Lemma 7. Since this proof is long, we focus here on the main
argument, and defer proofs of bounds on the many error terms to Appendix A.5.

PROOF OF LEMMA 7. We employ the same notation as in the proof of
Lemma 3, except that we redefine δn so that δn := kcd

n log3(n − 1)/(n − 1). We
write Xn := {x : f (x) ≥ δn} for this newly-defined δn. Similar to the proof of
Lemma 3, all error terms inside O(·) and o(·) that depend on k are uniform for
k ∈ {k∗

0 , . . . , k∗
1}, and we now adopt the additional convention that, where relevant,
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these error terms are also uniform for f ∈ Fd,θ . By the nested properties of the
classes Fd,θ with respect to the smoothness parameter β , we may assume without
loss of generality that β ∈ (0,1]. We first deal with the variance of the unweighted
estimator Ĥn, and note that

Var Ĥn = n−1 Var log ξ1 + (
1 − n−1)

Cov(log ξ1, log ξ2)

= n−1 Var log ξ1 + (
1 − n−1){

Cov
(
log

(
ξ1f (X1)

)
, log

(
ξ2f (X2)

))
(16)

− 2 Cov
(
log

(
ξ1f (X1)

)
, logf (X2)

)}
.

We claim that for every ε > 0,

(17) Var log ξ1 = V (f ) + 1

k

{
1 + o(1)

} + O

{
max

(
kβ/d

nβ/d
logn,

k
α

α+d
−ε

n
α

α+d
−ε

)}

as n → ∞. The proof of this claim uses similar methods to those in the proof of
Lemma 3. In particular, writing S1, . . . , S5 for remainder terms to be bounded later,
we have

E
(
log2 ξ1

) =
∫
X

f (x)

∫ ∞
0

log2 udFn,x(u) dx

=
∫
Xn

f (x)

∫ 1

0
Bk,n−k(s) log2 ux,s ds dx + S1

=
∫
Xn

f (x)

∫ an
n−1

0
Bk,n−k(s) log2 ux,s ds dx + S1 + S2

=
∫
Xn

f (x)

∫ an
n−1

0
log2

(
(n − 1)s

e�(k)f (x)

)
Bk,n−k(s) ds dx + S1 + S2 + S3(18)

=
∫
Xn

f (x)
[
log2 f (x) − 2

{
log(n − 1) − �(n)

}
logf (x)

+ � ′(k) − � ′(n) + {
log(n − 1) − �(n)

}2]
dx +

4∑
i=1

Si

=
∫
X

f (x) log2 f (x) dx +
5∑

i=1

Si + 1

k

{
1 + o(1)

}
,

as n → ∞. In Appendix A.5.1, we show that for every ε > 0,

(19)
5∑

i=1

|Si | = O

{
max

(
kβ/d

nβ/d
logn,

k
α

α+d
−ε

n
α

α+d
−ε

)}

as n → ∞. Combining (18) with (19) and Lemma 3, we deduce that (17) holds.
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The next step of our proof consists of showing that for every ε > 0,

(20)

Cov
(
log

(
ξ1f (X1)

)
, logf (X2)

)

= O

(
max

{
k− 1

2 + 2α−ε
α+d

n
2α−ε
α+d

,
k

1
2 + β

d

n1+ β
d

log2+β/d n

})

as n → ∞. Define

F−
n,x(u) :=

n−2∑
j=k

(
n − 2

j

)
pj

n,x,u(1 − pn,x,u)
n−2−j ,

F̃n,x(u) :=
n−2∑

j=k−1

(
n − 2

j

)
pj

n,x,u(1 − pn,x,u)
n−2−j ,

so that

P(ξ1 ≤ u|X1 = x,X2 = y) =
{
F−

n,x(u) if ‖x − y‖ > rn,u,

F̃n,x(u) if ‖x − y‖ ≤ rn,u.

Writing ũn,x,y := Vd(n − 1)‖x − y‖de−�(k), we therefore have that

Cov
(
log

(
ξ1f (X1)

)
, logf (X2)

)
=

∫
X×X

f (x)f (y) logf (y)

∫ ∞
ũn,x,y

log
(
uf (x)

)
d
(
F̃n,x − F−

n,x

)
(u) dx dy(21)

− H(f )

∫
X

f (x)

∫ ∞
0

log
(
uf (x)

)
d
(
F−

n,x − Fn,x

)
(u) dx.

To deal with the first term in (21), we make the substitution

(22) y = yx,z := x + rn,1

f (x)1/d
z,

and let dn := (24 logn)1/d . Writing T1, T2, T3 for remainder terms to be bounded
later, for every ε > 0 and for k ≥ 2,∫

X×X
f (x)f (y) logf (y)

∫ ∞
ũn,x,y

log
(
uf (x)

)
d
(
F̃n,x − F−

n,x

)
(u) dy dx

= rd
n,1

∫
Xn

∫
B0(dn)

f (yx,z) logf (yx,z)

×
∫ ∞

‖z‖d
f (x)

log
(
uf (x)

)
d
(
F̃n,x − F−

n,x

)
(u) dz dx + T1

= rd
n,1

∫
Xn

f (x) logf (x)

∫
B0(dn)

∫ ∞
‖z‖d
f (x)

log
(
uf (x)

)
d
(
F̃n,x − F−

n,x

)
(u) dz dx(23)
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+ T1 + T2

= k − 1

n − k − 1

∫
Xn

f (x) logf (x) dx

×
∫ an

n−1

0
log

(
(n − 1)s

e�(k)

)
Bk,n−k−1(s)

(
1 − (n − 2)s

k − 1

)
ds +

3∑
i=1

Ti

= H(f )

n
+ O

(
n−2) + o

(
k

α
α+d

−ε

n1+ α
α+d

−ε

)
+

3∑
i=1

Ti.

In Appendix A.5.2, we show that for every ε > 0,

(24)
3∑

i=1

|Ti | = O

(
max

{
k− 1

2 + 2α
α+d

−ε

n
2α

α+d
−ε

,
k

1
2 + β

d

n1+ β
d

log2+β/d n

})

as n → ∞. We now deal with the second term in (21). Writing U1, U2 for remain-
der terms to be bounded later, for every ε > 0,∫

X
f (x)

∫ ∞
0

log
(
uf (x)

)
d
(
F−

n,x − Fn,x

)
(u) dx

=
∫
Xn

f (x)

∫ an
n−1

0
log

(
ux,sf (x)

)
Bk,n−k−1(s)

{
(n − 1)s − k

n − k − 1

}
ds dx + U1

=
∫
Xn

f (x)

∫ 1

0
log

(
(n − 1)s

e�(k)

)
Bk,n−k−1(s)

{
(n − 1)s − k

n − k − 1

}
ds dx(25)

+ U1 + U2

= 1

n − 1
+ U1 + U2 + o

(
k

α
α+d

−ε

n1+ α
α+d

−ε

)
.

In Appendix A.5.3, we show that for every ε > 0,

(26) |U1| + |U2| = O

(
k1/2

n
max

{
kβ/d

nβ/d
,
k

α
α+d

−ε

n
α

α+d
−ε

})
.

From (21), (23), (24), (25) and (26), we conclude that (20) holds.
By (16), it remains to consider Cov(log(ξ1f (X1)), log(ξ2f (X2))). We require

some further notation. Let Fn,x,y denote the conditional distribution function of
(ξ1, ξ2) given X1 = x,X2 = y. Let a−

n := (k − 3k1/2 log1/2 n) ∨ 0, a+
n := (k +

3k1/2 log1/2 n) ∧ (n − 1), and let

vx := inf
{
u ≥ 0 : (n − 1)pn,x,u = a+

n

}
,

lx := inf
{
u ≥ 0 : (n − 1)pn,x,u = a−

n

}
,
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so that P{ξ1 ≤ lX1} = o(n−(9/2−ε)) and P{ξ1 ≥ vX1} = o(n−(9/2−ε)) for every
ε > 0. For pairs (u, v) with u ≤ vx and v ≤ vy , let (M1,M2,M3) ∼ Multi(n − 2;
pn,x,u,pn,y,v,1 − pn,x,u − pn,y,v), and write

Gn,x,y(u, v) := P(M1 ≥ k,M2 ≥ k),

so that Fn,x,y(u, v) = Gn,x,y(u, v) for ‖x − y‖ > rn,u + rn,v . Write

� :=
(

1 αz

αz 1

)

with αz := V −1
d μd(B0(1) ∩ Bz(1)) for z ∈R

d , let ��(s, t) denote the distribution
function of a N2(0,�) random vector at (s, t), and let � denote the standard uni-
variate normal distribution function. Writing Wi for remainder terms to be bounded
later, and writing h(u, v) := log(uf (x)) log(vf (y)) as shorthand, we have

Cov
(
log

(
ξ1f (X1)

)
, log

(
ξ2f (X2)

))
=

∫
X×X

f (x)f (y)

∫ ∞
0

∫ ∞
0

h(u, v)d(Fn,x,y − Fn,xFn,y)(u, v) dx dy

=
∫
X×X

f (x)f (y)

∫
[lx ,vx ]×[ly ,vy ]

h(u, v)d(Fn,x,y − Fn,xFn,y)(u, v) dx dy

+ W1

=
∫
X×X

f (x)f (y)

∫
[lx ,vx ]×[ly ,vy ]

h(u, v)d(Fn,x,y − Gn,x,y)(u, v) dx dy

(27)

− 1

n
+

2∑
i=1

Wi

=
∫
Xn×X

f (x)f (y)

∫ vx

lx

∫ vy

ly

(Fn,x,y − Gn,x,y)(u, v)

uv
dudv dx dy − 1

n

+
3∑

i=1

Wi

= rd
n,1

k

∫
B0(2)

∫ ∞
−∞

∫ ∞
−∞

{
��(s, t) − �(s)�(t)

}
ds dt dz − 1

n
+

4∑
i=1

Wi

= e�(k)

k(n − 1)
− 1

n
+

4∑
i=1

Wi = O

(
1

nk

)
+

4∑
i=1

Wi.

The proof in the unweighted case is completed by showing in Appendix A.5.4 that
for every ε > 0,

4∑
i=1

|Wi | = O

(
max

{
log

5
2 n

nk
1
2

,
k

3
2 + α−ε

α+d

n1+ α−ε
α+d

,
k

3
2 + 2β

d

n1+ 2β
d

,
k
(1+ d

2β
) α−ε
α+d

n1+ α−ε
α+d

,
k

1
2 + β

d logn

n1+ β
d

,
k

2α−ε
α+d

n
2α−ε
α+d

})

as n → ∞.
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The proof in the weighted case uses similar arguments; details are deferred to
Appendix A.5.4. �

5.3. Proofs of Theorems 1 and 2.

PROOF OF THEOREM 1. Writing jt := �tk/d� for t = 1, . . . , d and d ′ :=
�d/4� + 1 for convenience, a sufficient condition for W(k) �= ∅ is that the ma-
trix A(k) ∈ R

d ′×d ′
with (l, t)th entry

A
(k)
lt = �(jt )

−1�
(
jt + 2(l − 1)/d

)
k−2(l−1)/d ,

is invertible. This follows because, writing e1 := (1,0, . . . ,0)T ∈ R
d ′

we can then
define w = w(k) ∈ W(k) by setting

(wjt )
�d/4�+1
t=1 := (

A(k))−1
e1

and setting all other entries of w to be zero. Now define A ∈R
d ′×d ′

to have (l, t)th
entry Alt := (t/d)2(l−1)/d . Since x−a�(x)−1�(x + a) → 1 as x → ∞ for a ∈ R,
we have ‖A(k) −A‖ → 0 as k → ∞. Now, A is a Vandermonde matrix (depending
only on d) and as such has determinant

|A| = ∏
1≤t1<t2≤d ′

d−2/d(
t
2/d
2 − t

2/d
1

)
> 0.

Hence, by the continuity of the determinant and eigenvalues of a matrix, we have
that there exists kd > 0 such that, for k ≥ kd , the matrix A(k) is invertible and∥∥(

A(k))−1
e1

∥∥ ≤ ∣∣λmin
(
A(k))∣∣−1 ≤ 2

∣∣λmin(A)
∣∣−1

,

where λmin(·) denotes the eigenvalue of a matrix with smallest absolute value. It
follows that, for each k ≥ kd , there exists w(k) ∈ W(k) satisfying supk≥kd

‖w(k)‖ <

∞, as required.
Now, by Corollary 4 and the fact that w ∈ W(k), we have for ε > 0 sufficiently

small,

Ef

(
Ĥw

n

) − H(f ) = O

(
max

{
k

α
α+d

−ε

n
α

α+d
−ε

,
k

2d′
d

n
2d′
d

,
k

β
d

n
β
d

})
= o

(
n−1/2)

,

uniformly for f ∈ Fd,θ , under our conditions on k∗
1 , α and β . By Lemma 7, we

have Var Ĥw
n = n−1V (f )+ o(n−1) uniformly for f ∈ Fd,θ . Note that by Cauchy–

Schwarz, very similar arguments to those used at (18) and Lemma 1 in the Sup-
plementary Material we have that, for j ∈ supp(w),∣∣Covf

(
log

(
ξ(j),1f (X1)

)
, logf (X1)

)∣∣ ≤ {
V (f )Ef

[
log2(

ξ(j),1f (X1)
)]}1/2 → 0
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uniformly for f ∈ Fd,θ . Therefore, also using (20), we have that

Varf
(
Ĥw

n − H ∗
n

) = Varf Ĥw
n + 2 Covf

(
Ĥw

n , logf (X1)
) + n−1V (f )

= Varf Ĥw
n − n−1V (f )

+ 2

n

k∑
j=1

wj Covf

(
log

(
ξ(j),1f (X1)

)
, logf (X1)

)

+ 2
(
1 − n−1) k∑

j=1

wj Cov
(
log

(
ξ(j),2f (X2)

)
, logf (X1)

)

= o
(
n−1)

as n → ∞, uniformly for f ∈ Fd,θ . The conclusion (3) follows on writing

Ef

{(
Ĥw

n − H ∗
n

)2} = Varf
(
Ĥw

n − H ∗
n

) + (
Ef Ĥw

n − H(f )
)2

,

and the final conclusion is then immediate. �

PROOF OF THEOREM 2. First, note that by the final conclusion of Theorem 1
and by Lemma 1(i) of the Supplementary Material, there exists n0 ∈N, depending
only on d and θ , such that

sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

nE
[{

Ĥw
n − H(f )

}2]
< ∞

for n ≥ n0. Now let H denote the class of Lipschitz functions h : R → R with
|h(x) − h(y)| ≤ |x − y| for all x, y ∈ R. By the Kantorovič–Rubinšteı̆n theorem
[Kantorovič and Rubinšteı̆n (1958), Kellerer (1985)], we have for n ≥ n0 that

d1
(
L

(
n1/2{

Ĥw
n − H(f )

})
,L

(
n1/2{

H ∗
n − H(f )

}))
= sup

h∈H
∣∣Ef h

(
n1/2{

Ĥw
n − H(f )

}) −Eh
(
n1/2{

H ∗
n − H(f )

})∣∣
(28)

≤ sup
h∈H

Ef

∣∣h(
n1/2{

Ĥw
n − H(f )

}) − h
(
n1/2{

H ∗
n − H(f )

})∣∣
≤ n1/2

Ef

∣∣Ĥw
n − H ∗

n

∣∣ ≤ n1/2[
Ef

{(
Ĥw

n − H ∗
n

)2}]1/2
.

Now let Z ∼ N(0,V (f )). Then by the Wasserstein central limit theorem [e.g.,
Barbour and Chen (2005), Theorem 3.2],

d1
(
L

(
n1/2{

H ∗
n − H(f )

})
,N

(
0,V (f )

)) ≤ 3β3(f )

n1/2V (f )
,(29)

where

β3(f ) := Ef

{∣∣logf (X1) + H(f )
∣∣3} =

∫
X

f (x)
∣∣logf (x) + H(f )

∣∣3 dx.
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We deduce from (28) and (29), together with Theorem 1 and Lemma 1 in the the
Supplementary Material, that

sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

d1
(
L

(
n1/2{

Ĥw
n − H(f )

})
,N

(
0,V (f )

)) → 0

as n → ∞. But the final conclusion of Theorem 1 then allows us to replace d1 with
d2 in this convergence statement, and this completes the proof of the first part of
the theorem.

For the second part, set

εn = εw
n (d, θ) := supk∈{k∗

0 ,...,k∗
1 } supf ∈Fd,θ

(2Ef [{Ṽ w
n − V (f )}2])1/3

inff ∈Fd,θ
V (f )2/3 ,

so that εn → 0, by Lemmas 1(ii) and 3 in the Supplementary Material. Then, by
two applications of Markov’s inequality, for n large enough that εn ≤ 1,

Pf

(∣∣∣∣ (V̂
w
n )1/2

V 1/2(f )
− 1

∣∣∣∣ ≥ εn

)
≤ Pf

(∣∣∣∣ Ṽ w
n

V (f )
− 1

∣∣∣∣ ≥ εn

)
+ Pf

(
Ṽ w

n ≤ 0
)

≤ Ef [{Ṽ w
n − V (f )}2]
V (f )2

(
1

ε2
n

+ 1
)

≤ εn.

For n ∈N and L ≥ 1, define hn,L :R → [0,1] by

hn,L(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if |x| > zq/2(1 + εn) + 1/L,

L
{
zq/2(1 + εn) + 1/L − |x|} if 0 < |x| − zq/2(1 + εn) ≤ 1/L,

1 if |x| ≤ zq/2(1 + εn).

Thus hn,L has Lipschitz constant L and hn,L(x) ≥ 1{|x|≤zq/2(1+εn)}. Then, with
Z ∼ N(0,1) and for large n,

Pf

(
In,q � H(f )

)

≤ Pf

(
n1/2|Ĥw

n − H(f )|
V 1/2(f )

≤ zq/2(1 + εn)

)
+ Pf

(
V 1/2(f )

(V̂ w
n )1/2

≤ 1

1 + εn

)

≤ Ef hn,L

(
n1/2{Ĥw

n − H(f )}
V 1/2(f )

)
+ εn

≤ Ef hn,L(Z) + εn + Ld1

(
L

(
n1/2{Ĥw

n − H(f )}
V 1/2(f )

)
,L(Z)

)

≤ P
(|Z| ≤ zq/2(1 + εn) + L−1) + εn

+ L

V 1/2(f )
d1

(
L

(
n1/2(

Ĥw
n − H(f )

))
,N

(
0,V (f )

))
.
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Since L ≥ 1 was arbitrary, we deduce from the first part of the theorem and
Lemma 1(ii) in the Supplementary Material that

lim sup
n→∞

sup
q∈(0,1)

sup
k∈{k∗

0 ,...,k∗
1 }

sup
f ∈Fd,θ

Pf

(
In,q � H(f )

) − (1 − q) ≤ inf
L≥1

2

L(2π)1/2 = 0.

The lower bound is obtained by a similar argument, omitted for brevity. �
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and remaining proofs.
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