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THE TAIL EXPANSION OF GAUSSIAN MULTIPLICATIVE CHAOS
AND THE LIOUVILLE REFLECTION COEFFICIENT1

BY RÉMI RHODES AND VINCENT VARGAS

Université Aix-Marseille and École Normale Supérieure de Paris

In this short note we derive a precise tail expansion for Gaussian mul-
tiplicative chaos (GMC) associated to the 2d Gaussian Free Fiedl (GFF) on
the unit disk with zero average on the unit circle (and variants). More specif-
ically, we show that to first order the tail is a constant times an inverse power
with an explicit value for the tail exponent as well as an explicit value for
the constant in front of the inverse power; we also provide a second order
bound for the tail expansion. The main interest of our work consists of two
points. First, our derivation is based on a simple method, which we believe
is universal in the sense that it can be generalized to all dimensions and to
all log-correlated fields. Second, in the 2d case we consider, the value of the
constant in front of the inverse power is (up to explicit terms) nothing but the
Liouville reflection coefficient taken at a special value. The explicit compu-
tation of the constant was performed in the recent rigorous derivation with
A. Kupiainen of the DOZZ formula (Kupiainen, Rhodes and Vargas (2017a,
2017b)); to our knowledge, it is the first time one derives rigorously an ex-
plicit value for such a constant in the tail expansion of a GMC measure. We
have deliberately kept this paper short to emphasize the method so that it
becomes an easily accessible toolbox for computing tails in GMC theory.

1. Introduction. Gaussian multiplicative chaos (GMC) measures are wide-
spread in probability and statistical physics; indeed, they appear in a wide variety
of contexts and in particular in the fields of finance, number theory, Liouville quan-
tum gravity and turbulence (see [15] for references). In view of the broad applica-
tions of GMC theory, it is very natural to study these measures in great detail. The
foundations of GMC theory were laid in Kahane’s 1985 seminal work [9]. If � is
some open subset of Rd , then the theory of GMC enables one to define random
measures of the form

(1.1) Mγ (dx) = eγX(x)− γ 2

2 E[X(x)2] dx,

where dx denotes the Lebesgue measure and X is a log-correlated Gaussian field,
that is, a centered Gaussian field with covariance

(1.2) E
[
X(x)X(y)

] = ln
1

|x − y| + f (x, y), x, y ∈ �
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with f some smooth and bounded function. Of course definition (1.1) is only for-
mal since X is not defined pointwise hence the measure Mγ can only be defined
via a regularization procedure. More specifically, the measure Mγ is defined via
the limit in probability of the sequence

(1.3) Mγ,ε(dx) = eγXε(x)− γ 2

2 E[Xε(x)2] dx,

where (Xε)ε>0 is a reasonable family of smooth Gaussian fields converging to-
wards X when ε goes to 0; see Berestycki’s very simple and elegant approach [3]
for an introduction to GMC and an account on the above issues of convergence.

Kahane [9] proved in 1985 that the measure Mγ is different from 0 if and only if
γ 2 < 2d;2 moreover, a standard result in GMC theory is the following condition on
existence of moments (see [15], Section 2). If O is some nonempty and bounded
open subset, then

(1.4) E
[
Mγ (O)p

]
< ∞ ⇐⇒ p <

2d

γ 2 .

In view of (1.4), it is natural to seek the exact tail behaviour of Mγ (O). This
was achieved in the beautiful work by Barral and Jin [2] in the 1d case and for a
covariance kernel of the form E[X(x)X(y)] = ln 1

|x−y| on the interval [0,1]. More
specifically, the work of Barral and Jin established that

(1.5) P
(
Mγ [0,1] > t

) = C�

t
2

γ 2

+ o

(
1

t
2

γ 2

)
,

where the constant C� is given by

(1.6) C� = 2γ 2

2 − γ 2

E[Mγ [0,1]
2

γ 2 −1
Mγ [0, 1

2 ] − Mγ [0, 1
2 ]

2
γ 2 ]

ln 2
.

Unfortunately, it is not obvious how to generalize the work [2] to higher dimen-
sions and other kernels of the type (1.2) because their argument is based on a func-
tional relation, which is obtained from a specific geometric representation (called
cone construction) of the Gaussian field with kernel E[X(x)X(y)] = ln 1

|x−y| in di-
mension 1. Moreover, the approach of Barral and Jin does not provide an explicit
value for the constant C�. Let us also mention the Appendix of Leblé–Serfaty–
Zeitouni [13] in a slightly different framework, which contains a description of the
tail of the modulus of complex GMC (for β ∈ (0,

√
2)),

Mβ(D) := lim
ε→0

ε− β2

2

∫
D

eiβXε(x) dx

2We will only consider this case in this note though there has been much progress recently in

understanding the critical case γ 2 = 2d .
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with X a full plane Gaussian Free Field (GFF)in dimension 2 and D a bounded
open subset of the plane. This type of GMC possesses moments of all orders which
are related to Coulomb gas computations. This makes possible to compute the tail
with a value of the constant given by a variational formula (whose solution is not
explicit).

Let O denote an open subset of R2 with a C1 boundary.3 The aim of this work
is to introduce a simple method to compute the tail of Mγ (O) together with an
exact value for the constant in the leading order term. We will consider the case
of the unit disk D equipped with a Gaussian Free Field (GFF) X with vanishing
mean over the unit circle (eventually augmented by an independent Gaussian per-
turbation; this covers for instance the important case of the GFF with Neumann
boundary condition). Indeed, though we believe our method can be generalized to
all dimensions and all kernels, we stick to the 2d GFF setting to keep this note
rather short. Let us stress furthermore that these generalizations may eventually
raise serious additional technicalities.

We further mention that some material in this note is inspired by the work of
Duplantier–Miller–Sheffield [6] and also by the tail estimates, which appear in our
recent proof with Kupiainen of the DOZZ formula [11, 12]. In fact, our main result
(Theorem 2.2 below) can be seen as a strengthening of the convergence results
which underlies the construction of the so-called quantum sphere in [6]. However,
this note is mostly self-contained. It requires no a priori knowledge of the paper
[6], and we recall the definition of the reflection coefficient of Liouville conformal
field theory (LCFT hereafter) before stating the main result.

1.1. The Liouville reflection coefficient. From now on we restrict to the case
of dimension 2. Consider γ ∈ (0,2), and define Q = γ

2 + 2
γ

. In this subsection we
introduce the (unit volume) reflection coefficient of LCFT. It was defined in [12]
where it plays an important role in the proof of the DOZZ formula. This coefficient
shows up when one analyzes the large values of GMC measures with a singularity,
that is, when one looks at variables of the type∫

B(v,r)

1

|x − v|γα
Mγ

(
d2x

)
.

For this integral to exist, the exponent must satisfy α < Q [5]. It turns out that,
when α is large enough (in fact α >

γ
2 ), large values of this random variable mostly

come from the singularity at the point v and the reflection coefficient quantifies
this statement (more details later). Therefore, it can intuitively be understood as
a coefficient of mass localization in GMC theory. Our proof for the tail is based
on a localization trick (see Section 3.1), which allows us to express the tail of

3Our techniques could perhaps handle more general cases, but, for the sake of simplicity, we con-
sider only the case of a smooth boundary; see Remark 3.3.
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GMC in terms of singular integrals as above. This is the reason why the reflection
coefficient is instrumental in identifying the constant in the tail of GMC measures.

In order to introduce the reflection coefficient, we first recall basic material in-
troduced in [16]. For all α < Q, we define the process Bα

s

(1.7) Bα
s =

{
Bα−s if s < 0,

B̄α
s if s > 0,

where (Bα
s )s≥0, (B̄α

s )s≥0 are two independent standard Brownian motions with
negative drift α − Q and conditioned to stay negative. We also consider an inde-
pendent centered Gaussian field Y defined for s ∈ R and θ ∈ [0,2π ] with covari-
ance

(1.8) E
[
Y(s, θ)Y

(
s′, θ ′)] = ln

e−s ∨ e−s′

|e−seiθ − e−s′
eiθ ′ |

and associated GMC measure

Nγ (ds dθ) = eγY (s,θ)− γ 2

2 E[Y (s,θ)2] ds dθ.

We introduce the integrated chaos measure with respect to Y

(1.9) Zs =
∫ 2π

0
eγY (s,θ)− γ 2

2 E[Y (s,θ)2] dθ.

This is a slight abuse of notation since the process Zs is not a function (for γ ≥ √
2)

but rather a generalized function; in this setup Zs ds is a stationary 1d random
measure, meaning that this random measure has same law as its pushforward by
any translation.

Now we define the (unit volume) reflection coefficient R̄(α) for all α ∈ (
γ
2 ,Q)

by the following formula:

(1.10) R̄(α) = E

[(∫ ∞
−∞

eγBα
s Zs ds

) 2
γ
(Q−α)]

.

Notice that the condition α ∈ (
γ
2 ,Q) ensures that 2

γ
(Q − α) < 4

γ 2 ; hence, one

can show that R̄(α) is well defined for all α ∈ (
γ
2 ,Q). Indeed, for all α < Q and

p ∈ (0, 4
γ 2 ) the following holds (see [12], Lemma 2.8)

(1.11) E

[(∫ ∞
−∞

eγBα
s Zs ds

)p]
< ∞.

Finally, one of the main results of [12] is an integrability result for R̄. Indeed,
one has the following remarkable explicit formula for R̄

(1.12) R̄(α) = −(πl(
γ 2

4 ))
2
γ
(Q−α)

2
γ
(Q − α)


(−γ
2 (Q − α))


(
γ
2 (Q − α))
( 2

γ
(Q − α))

,

where 
 is the standard Gamma function and l(x) = 
(x)/
(1 − x).
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Now that we have introduced R̄, we can announce the organization of the paper.
First, we state our main result in Section 2 and then proceed with the proof in
Section 3. The final section of the paper discusses how the method can be extended
to more general situations.

2. Setup and main results. We consider the open unit disk D ⊂ C equipped
with a full plane Gaussian Free Field (GFF) X with vanishing mean over the unit
circle. This is a centered Gaussian field with covariance

(2.1) ∀x, y ∈ D, E
[
X(x)X(y)

] = ln
1

|x − y| .

REMARK 2.1. Recall that the full plane GFF is a centered Gaussian distri-
bution X̃ defined up to additive constant with covariance ln 1

|x−y| . Thus, it makes

sense to consider X := X̃ − 1
2πi

∮
|z|=1 X̃(z)dz

z
, for which the covariance is easily

identified to be given by

E
[
X(x)X(y)

] = ln
1

|x − y| + 1{|x|≥1} ln |x| + 1{|y|≥1} ln |y|.

When restricted to D, this gives (2.1).

For γ ∈ (0,2), we consider the GMC measure

(2.2) Mγ

(
d2z

) := eγX(z)− γ 2

2 E[X(z)2] d2z,

where d2z is the standard Lebesgue measure in the plane (recall that (2.2) is de-
fined as the limit of (1.3) when ε goes to 0). In the sequel we adopt the following
standard convention. For β ∈ R, we denote o(tβ) (resp., O(tβ)) a quantity of the
form εt t

β where εt goes to 0 (resp., remains bounded) as t goes to infinity. Denote
by |B| the Lebesgue measure of the Borel measurable set B and by Ā the closure
of the set A.

Our main result is:

THEOREM 2.2. Set

(2.3) p0 :=
√√√√(2 − γ 2

2 )2

γ 4 + 2

γ 2 + (2 − γ 2

2 )

γ 2 .

For any δ ∈ (0,
1+p0− 4

γ 2

2+p0
) and for any open set O ⊂ D with a C1 boundary, we

have

(2.4) P
(
Mγ (O) > t

) =
2
γ
(Q − γ )

2
γ
(Q − γ ) + 1

R̄(γ )

t
4

γ 2

|O| + o
(
t
− 4

γ 2 −δ)
,
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where R̄(γ ) is the (unit volume) reflection coefficient of LCFT evaluated at γ . It
has explicit expression

R̄(γ ) = −(πl(
γ 2

4 ))
2
γ

(Q−γ )

2
γ
(Q − γ )


(−γ
2 (Q − γ ))


(
γ
2 (Q − γ ))
( 2

γ
(Q − γ ))

with Q = 2

γ
+ γ

2
,

(2.5)

and the function l is given by a ratio of Gamma functions l(x) = 
(x)/
(1 − x).

The origin of the value p0 will be more transparent in Remark 3.7 below. Also,
notice that 1 + p0 − 4

γ 2 > 0 so that our statement is not trivially empty.

REMARK 2.3. In a previous version of this note, we stated (2.4) with a bet-
ter bound on δ than the present condition; unfortunately, this was due to a slight
mistake in the proof. Also, let us mention that we do not know what is the optimal
bound on δ such that (2.4) holds.

More than the result, our method of proof makes us believe in a higher level
of generality for this result. For general GMC measures in 2d with respect to a
Gaussian field with covariance (1.2), we expect that the ln 1

|x−y| part is responsible
for the appearance of the reflection coefficient term whereas the perturbation term
f (x, y) in (1.2) produces an integral which depends only on the on-diagonal values
of f .

As an illustration of this discussion we claim:

COROLLARY 2.4. Assume the GMC measure (2.2) is defined with respect to
the Gaussian distribution X with covariance (1.2) for some function f that is lo-
cally Hölder and positive definite. For any open set O ⊂ Ō ⊂ D with a C1 bound-
ary, we have

(2.6)
P

(
Mγ (O) > t

) =
(∫

O
e

4
γ
(Q−γ )f (v,v)

d2v

) 2
γ
(Q − γ )

2
γ
(Q − γ ) + 1

R̄(γ )

t
4

γ 2

+ o
(
t
− 4

γ 2
)
,

where R̄(γ ) is still the (unit volume) reflection coefficient of LCFT evaluated at γ .

REMARK 2.5. One can apply Corollary 2.4 with f (x, y) = ln 1
|1−xȳ| to get the

right tail of GMC based on the GFF X with Neumann boundary condition in D

which has covariance E[X(x)X(y)] = ln 1
|x−y||1−xȳ| . Indeed, f (x, y) = ln 1

|1−xȳ|
is positive definite4 and locally Hölder in D.

4The fact that f is positive definite can be seen after a series expansion of the ln.
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Actually, we even believe that the above structure of the tail of GMC measures
is universal in the sense that in all dimensions there should be an analogue of
the unit volume reflection coefficient, with a probabilistic representation similar to
(1.10), such that the tail is given by (2.6) (see Section 4 for further discussion).
A specific feature of the 2d case is that there exists an explicit analytic expression
(2.5) established in [11, 12] for the expectation formula (1.10).

Let us comment on the physics literature. To our knowledge, an explicit tail
expansion for GMC was derived (at the level of physics rigor) in the papers [7,
8] in the 1d case for two specific log-correlated models—the circular case in [7]
and the unit interval case in [8] (with exact logarithmic correlations, i.e., the case
where f = 0 in (1.2)). Their derivation is based on exact integrability results for
GMC, hence their results are much stronger than just tail expansions for these
specific GMC measures; however, these works do not address the derivation of
tail expansions for 1d GMC associated to general logarithmic kernels or more
importantly for GMC in higher dimensions. We refer to the Section 4 below for
more on this.

Finally, let us mention that the our main result Theorem 2.2 (together with its
Corollary 2.4) reinforces/strengthens the convergence results used to define the
unit volume quantum sphere [6], Definition 4.21, stated by Duplantier–Miller–
Sheffield. Indeed, the definition of quantum sphere in [6] is the following. Con-
sider the random field h defined on the cylinder R × [0,2π ] by the sum of two
independent processes h1(s) + Y(s, θ) such that:

• The radial part h1 is 2
γ

lnU , where U is chosen according to the a Bessel ex-

cursion measure with index δ = 4 − 8
γ 2 (and reparametrized to have quadratic

variation ds).
• The nonradial part Y has the law given by (1.8).

The (unit volume or area) quantum sphere is obtained by conditioning the mea-
sure eγh ds dθ to have volume 1. By definition 2

γ
lnU is distributed according to

Bγ + 2
γ

ln e�, where (e�)2 (which is the maximum of the excursion) is distributed

according to the (infinite) measure u
δ
2 −2 du (recall that δ = 4 − 8

γ 2 ). Recalling the
definition (1.9) of Zs , we define

ρ(γ ) =
∫ ∞
−∞

eγBγ
s Zs ds.

Therefore, the law of the (unit volume or area) quantum sphere μh is obtained as
the following limit when ε goes to 0

(2.7) E
[
F(μh)

] := lim
ε→0

1

Cε

E
[
F

((
e�)2

eγBγ
s Nγ (ds dθ)

)
1(e�)2ρ(γ )∈[1,1+ε]

]
,

where Cε = E[1(e�)2ρ(γ )∈[1,1+ε]] and F is an arbitrary bounded measurable func-
tional defined on the space of Radon measures equipped with the weak-� topology.
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The asymptotics of this quantity is easily identified with a simple change of vari-
ables

E
[
F

((
e�)2

eγBγ
s Nγ (ds dθ)

)
1(e�)2ρ(γ )∈[1,1+ε]

]
=

∫ ∞
0

E
[
F

(
ueγBγ

s Nγ (ds dθ)
)
1uρ(γ )∈[1,1+ε]

]
u

δ
2 −2 du

=
∫ ∞

0
E

[
F

(
y

eγBγ
s Nγ (ds dθ)

ρ(γ )

)
ρ(γ )1− δ

2

]
1y∈[1,1+ε]y

δ
2 −2 dy.

It is then straightforward to get the equivalent as ε → 0

E
[
F

((
e�)2

eγBγ
s Nγ (ds dθ)

)
1(e�)2ρ(γ )∈[1,1+ε]

]
≈

(∫ ∞
0

1v∈[1,1+ε]v
δ
2 −2 dv

)
E

[
F

(
eγBγ

s Nγ (ds dθ)

ρ(γ )

)
ρ(γ )

2
γ
(Q−γ )

]
,

where a ≈ b means that the ratio a/b converges to 1 and we have used that 1− δ
2 =

2
γ
(Q − γ ). Therefore, definition (2.7) is equivalent to the following:

DEFINITION 2.6. The law of the unit area quantum sphere μh (in the space
of quantum surfaces with two marked points −∞ and ∞5) is given by

(2.8) E
[
F(μh)

] = 1

R̄(γ )
E

[
F

(
eγBγ

s Nγ (ds dθ)

ρ(γ )

)
ρ(γ )

2
γ

(Q−γ )
]
,

where R̄(γ ) is the unit volume reflection coefficient and F is an arbitrary bounded
measurable functional defined on the space of Radon measures equipped with the
weak-� topology.

In view of expression (2.8), it is quite natural to interpret R̄(γ ) as the partition
function of the unit area quantum sphere. Hence, our paper suggests (and proves to
the extent of Corollary 2.4) that the unit area quantum sphere is a universal feature
of tails of GMC measures.

Also, the above simple computation shows the equivalence between the reflec-
tion coefficient (or two-point correlation function) constructed in [12] and the unit
area quantum sphere (with two marked points). Let us mention that this equiva-
lence [5] ↔ [6] has been established in [1] for quantum surfaces with three marked
points.

5See [6] for the definition of quantum surfaces. Here, we choose a parameterisation of the unit area
quantum sphere such that the radial part is maximal at 0.
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3. Proof of Theorem 2.2.

Conventions and notations. We will denote | · | the norm in C of the standard
Euclidean metric. For all r > 0, we will denote by B(x, r) (resp., C(x, r)) the
Euclidean ball (resp., circle) of center x and radius r . We will write X � Y when
the random variables X and Y are independent.

3.1. Localization trick. The difficulty in computing right tails of random mea-
sures usually lies in the fact that the right tail should depend on the macroscopic
shape of the random measure. An important observation in our argument is that
tails of GMC measures depend only very softly on their global shape. It is based
on the Girsanov transform, which we apply in a way so as to localize the computa-
tions for the right tail of GMC measures around a fixed point. Girsanov’s transform
is a standard tool in the study of Gaussian processes (or even GMC measures) but,
to the best of our knowledge, it has never been used to localize large mass effects of
GMC measures. Anyway, this simple observation reduces drastically the difficulty
of computing the tails.

LEMMA 3.1 (Localization trick). Let O be an open set. We have

P
(
Mγ (O) > t

) =
∫
O
E

[
1

Mγ (v,O)
1{Mγ (v,O)>t}

]
d2v,(3.1)

where we have set

Mγ (v,O) :=
∫
O

1

|z − v|γ 2 Mγ

(
d2z

)
.

PROOF. First write

P
(
Mγ (O) > t

) = E

[
Mγ (O)

Mγ (O)
1{Mγ (O)>t}

]

=
∫
O
E

[
eγX(v)− γ 2

2 E[X(v)2] 1

Mγ (O)
1{Mγ (O)>t}

]
d2v.

(3.2)

Girsanov’s transform then asserts that weighting the probability law by

eγX(v)− γ 2

2 E[X(v)2] amounts to shifting the law of X by γ ln 1
|·−v| , and our claim

follows. Of course, as the field X is distribution-valued, it cannot be evaluated
pointwise. The last equality in (3.2) thus requires a cut-off regularization of X(v)

and then a harmless passage to the limit in the regularization parameter to be rig-
orously established (use the fact that supε>0 E[ 1

Mγ,ε(O)
] < +∞ where ε stands for

the regularization parameter). �

The important point is that the asymptotic behavior of the quantity E[ 1
Mγ (v,O)

×
1{Mγ (v,O)>t}] is completely dominated by the behavior close to v because of the



TAIL OF GMC MEASURES 3091

singularity 1
|z−v|γ 2 . So, we will establish the following estimate which will be

enough to complete our argument.

LEMMA 3.2. For any δ ∈ (0,
1+p0− 4

γ 2

2+p0
) and for all open sets O ⊂ D with C1

boundary, there exists some function ε : R+ ×O →R such that

∀v ∈O, E

[
1

Mγ (v,O)
1{Mγ (v,O)>t}

]
=

2
γ
(Q − γ )

2
γ
(Q − γ ) + 1

R̄(γ )

t
4

γ 2

+ 1

t
4

γ 2 +δ
ε(t, v)

and satisfying ∀v limt→∞ |ε(t, v)| = 0 and supv∈O,t≥1 dist(v,Oc)α|ε(t, v)| <

+∞ for some α < 1.

Now relation (3.2) combined with Lemma 3.2 yields that

P
(
Mγ (O) > t

) =
2
γ
(Q − γ )

2
γ
(Q − γ ) + 1

R̄(γ )

t
4

γ 2

+ 1

t
4

γ 2 +δ

∫
O

ε(t, v) d2v.

Notice that since O has a C1 boundary and supv∈O,t≥1 dist(v,Oc)α|ε(t, v)| <

+∞, the term
∫
O ε(t, v) d2v is indeed well defined. In fact the term

∫
O ε(t, v) d2v

converges to 0 as t goes to infinity by using the dominated convergence theorem
and the fact that for all v one has limt→∞ |ε(t, v)| = 0. This yields Theorem 2.2.
The remaining part of this section is thus devoted to the proof of this lemma.

REMARK 3.3. Let us stress here that the assumption that O has a C1

boundary ensures that
∫
O

1
dist(v,Oc)α

d2v < ∞ for all α < 1. Therefore, the term∫
O ε(t, v) d2v is well defined and converges to 0. This is the only place where the

C1 assumption is used, and perhaps one could relax a bit the C1 assumption by a
finer analysis of the ε(t, v) term.

3.2. GFF with vanishing mean over a circle. Given v ∈ C, we consider the
GFF Xv,r with vanishing mean over the circle C(v, r), namely a centered Gaussian
random distribution with covariance for x, y ∈ D

(3.3) E
[
Xv,r(x)Xv,r (y)

] = ln
1

|x − y| + ln
( |x − v|

r

)
+

+ ln
( |y − v|

r

)
+

+ ln r,

where we use the notation |z|+ = |z| if |z| ≥ 1 and |z|+ = 1 if |z| ≤ 1.
Let us denote by (Xv,r

u )u≥0 the circle average of this field

Xv,r
u = 1

2πi

∮
|w−v|=re−u

Xv,r (w)
dw

w − v
.

A simple computation shows that (Xv,r
u )u≥0 is a standard Brownian motion start-

ing from 0 independent of the sigma algebra σ {Xv,r(z); z ∈ B(v, r)c}.
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3.3. Polar decomposition and the reflection coefficient. The asymptotic ex-
pansion in Lemma 3.2 will be determined by the behavior of the integral Mγ (v,O)

around the singularity at v. As already noticed in [12], an important ingredient in
the analysis is the reflection coefficient. We consider the polar decomposition of
the chaos measure. We have the following equality in the sense of distributions

Xv,r(v + re−seiθ ) = Bs + Y(s, θ),

where Bs is Brownian Motion starting form the origin at s = 0 and Y(s, θ) the
independent centered Gaussian field with covariance

(3.4) E
[
Y(s, θ)Y

(
s′, θ ′)] = ln

e−s ∨ e−s′

|e−seiθ − e−s′
eiθ ′ | .

Then we get by the change of variables z = v + re−seiθ 6

(3.5)
∫
B(v,r)

eγXv,r (z)− γ 2

2 E[Xv,r (z)2]

|z − v|γ 2 d2z
law= r2−γ 2

∫ ∞
0

eγ (Bs−(Q−γ )s)Zs ds.

The following decomposition lemma due to Williams (see [17]) will be useful
in the study of Mγ (v,B(v, r)):

LEMMA 3.4. Let (Bs − νs)s≥0 be a Brownian motion with negative drift, that
is, ν > 0, and let M = sups(Bs − νs). Then, conditionally on M , the law of the
path (Bs − νs)s≥0 is given by the joining of two independent paths:

• A Brownian motion ((B1
s +νs))s≤τM

with positive drift ν > 0 run until its hitting
time τM of M .

• (M + B2
s − νs)s≥0 where B2

s − νs is a Brownian motion with negative drift
conditioned to stay negative.

By the joining of two paths (Xs)s≤T (with T > 0) and (X̄s)s≥0, we mean the path
(Xs1s≤T + X̄s−T 1s>T )s≥0. Moreover, one has the following time reversal property
for all C > 0 (where τC denotes the hitting time of C)(

B1
τC−s + ν(τC − s) − C

)
s≤τC

law= (B̃s − νs)s≤L−C
,

where (B̃s − νs)s≥0 is a Brownian motion with drift −ν conditioned to stay nega-
tive and L−C is the last time (B̃s − νs) hits −C.

REMARK 3.5. As a consequence of the above lemma, one can also deduce
that the process (B̃L−C+s − ν(L−C + s) + C)s≥0 is equal in distribution to (B̃s −
νs)s≥0.

6Observe that the measures involved in this relation are defined through a limiting procedure. Thus,
one needs to apply the change of variables in the regularized measures and then pass to the limit to
obtain the relation.
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We may apply Lemma 3.4 to (3.5). Let M = sups≥0(Bs − (Q− γ )s), and L−M

be the last time (B
γ
s )s≥0 hits −M (recall that B

γ
s was defined in (1.7)). Then,∫ ∞

0
eγ (Bs−(Q−γ )s)Zs ds

law= eγM
∫ ∞
−L−M

eγBγ
s Zs+L−M

ds

law= eγM
∫ ∞
−L−M

eγBγ
s Zs ds,

(3.6)

where we used stationarity of the process Zs (and independence of Zs and Bs ).
The distribution of M is well known (see Section 3.5.C in the textbook [10] for
instance):

(3.7) P
(
eγM > t

) = 1

t
2(Q−γ )

γ

, t ≥ 1.

Now notice that R̄(γ ) appears as the coefficient of the tail of the random variable
eγM

∫ ∞
−∞ eγBγ

s Zs ds

∀η > 0, P

(
eγM

∫ ∞
−∞

eγBγ
s Zs ds > t

)
= R̄(γ )t

− 2
γ
(Q−γ ) + o

(
t
− 2

γ
(Q−γ )−(1−η))

.

Indeed, setting Z := ∫ ∞
−∞ eγBγ

s Zs ds, we have because of (3.7)

P
(
eγMZ > t

) = P
(
eγMZ > t,Z ≤ t

) + P
(
eγMZ > t,Z > t

)
= E

[
Z

2
γ
(Q−γ )1Z≤t

]
t
− 2

γ
(Q−γ ) + P

(
eγMZ > t,Z > t

)
= R̄(γ )t

− 2
γ

(Q−γ ) +E
[
Z

2
γ
(Q−γ )1Z>t

]
t
− 2

γ
(Q−γ )

+ P
(
eγMZ > t,Z > t

)
.

Now, using (1.11) and Markov’s inequality, the two correction terms are easily

seen to be o(t
− 2

γ
(Q−γ )−(1−η)

).

3.4. Decomposition of the GMC around v. We fix v ∈ O, and set r =
dist(v, ∂O). Our purpose now is to replace the field X in the definition of
Mγ (v,B(v, r)) by the field Xv,r in order to use the polar decomposition of the
GMC measure in B(v, r) as detailed in the previous subsection. It suffices to sub-
tract the mean value of X along the circle C(v, r). Therefore, we introduce

Nv,r = 1

2πi

∮
|w−v|=r

X(w)
dw

w − v
.

This is a centered Gaussian variable with variance

E
[
N2

v,r

] = − ln r.
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We introduce the field X̃ = X − Nv,r which has the same law as Xv,r . One can
notice that

E
[
X̃(x)Nv,r

] = 0

for all |x − v| ≤ r ; hence, X̃ is independent from Nv,r in this region. Therefore,
using the decomposition in distribution obtained in Section 3.3

(3.8) Mγ

(
v,B(v, r)

) = r2−γ 2
eγMEr,vIγ (M),

where we have set

Er,v := eγNv,r− γ 2

2 E[N2
v,r ], Iγ (M) :=

∫ ∞
−L−M

eγBγ
s Zs ds

with the convention that Iγ (∞) = ∫ ∞
−∞ eγBγ

s Zs ds. We will constantly use in the
sequel the fact that x �→ Iγ (x) is an increasing function.

3.5. Getting rid of the nonsingularity. Now we argue that the behaviour of
E[ 1

Mγ (v,O)
1{Mγ (v,O)>t}] is completely determined by that of E[ 1

Mγ (v,B(v,r))
×

1{Mγ (v,B(v,r))>t}]. We will show this claim by giving an upper/lower bound of

E[ 1
Mγ (v,O)

1{Mγ (v,O)>t}] up to o(t
− 4

γ 2 −δ
) for any δ ∈ (0,

1+p0− 4
γ 2

2+p0
). We introduce

the notation A := Mγ (v,B(v, r)c ∩ O). A key lemma in the argument is the fol-
lowing:

LEMMA 3.6. For all p ∈ (0, 4
γ 2 ), there is some constant Cp > 0,

∀v ∈O, E
[
Ap] ≤ Cp ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if p ∈
(

0,
4

γ 2 − 1
)
,(

ln
1

r

)p∨1
if p = 4

γ 2 − 1,

rψ(p) if
4

γ 2 − 1 < p <
4

γ 2

with ψ(p) = (2 − γ 2

2 )p − γ 2

2 p2 and r = dist(v,Oc).

REMARK 3.7. Notice that ψ(p) > 0 for p ∈ (0,4/γ 2 − 1). The value of p0
in (2.3) is determined in such a way that ψ(p0) = −1. This ensures that ψ(p) ∈
(−1,0) for p ∈ (4/γ 2 −1,p0). Our proof will show that the exponent α appearing
in Lemma 3.2 will actually be given by ψ(p) for some p ∈ (4/γ 2 − 1,p0).

PROOF. If p > 0, observe that ψ(p) > 0 if and only if p < 2
γ
(Q − γ ) =

4
γ 2 − 1. In this case the result is a simple consequence of Lemma A.1 in [5].
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Now we study the case p ≥ 4
γ 2 − 1. Set Bn := {x ∈ D;2−n−1 ≤ |x − v| ≤ 2−n}

and An = Mγ (0,Bn)
p . Assume p > 1 (if p ≤ 1 use sub-additivity of the mapping

x �→ xp in the next argument). Using in turn Minkowski’s inequality and invari-
ance under translations, we have

E
[
Ap]1/p ≤

− ln r
ln 2∑

n=0

E
[
Ap

n

]1/p +E
[
Mγ (O)p

]1/p
.

It is standard fact in GMC theory that An scales as E[Ap
n ] = 2−nψ(p)

E[Ap
1 ] (see

the review [15] for instance). We deduce that

E
[
Ap]1/p ≤ Cp

− ln r
ln 2∑

n=0

2−nψ(p)/p.

Since ψ(p) ≤ 0, we get our claim. �

Now we first give the upper bound. Fix δ ∈ (0,
p0+1− 4

γ 2

2+p0
). We can find η > δ

such that

(3.9) (1 − η)(1 + p0) >
4

γ 2 + δ, 1 + p0 >
4

γ 2 + η.

Hence, we can choose 4
γ 2 < p < p0 + 1 such that (1 − η)p > 4

γ 2 + δ.

E

[
1

Mγ (v,O)
1{Mγ (v,O)>t}

]

≤ E

[
1

Mγ (v,B(v, r)) + A
1{Mγ (v,B(v,r))>t−t1−η}

]

+E

[
1

A
1{A>t1−η}

]
≤ E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t−t1−η}

]
+E

[
Ap−1]

t−(1−η)p.

(3.10)

Notice that the expectation E[Ap−1] can be analyzed with Lemma 3.6 and gives
E[Ap−1] ≤ Cprψ(p−1) with ψ(p − 1) ∈ (−1,0).

For the lower bound we first restrict to the set {A < t1−η} to get

E

[
1

Mγ (v,B(v, r)) + A
1{Mγ (v,B(v,r))+A>t}

]

≥ E

[
1

Mγ (v,B(v, r)) + t1−η
1{Mγ (v,B(v,r))>t,A<t1−η}

]
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= E

[
1

Mγ (v,B(v, r)) + t1−η
1{Mγ (v,B(v,r))>t}

]

−E

[
1

Mγ (v,B(v, r)) + t1−η
1{Mγ (v,B(v,r))>t,A>t1−η}

]

≥ E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]
(3.11)

− t1−η
E

[
1

Mγ (v,B(v, r))2 1{Mγ (v,B(v,r))>t}
]

−E

[
1

Mγ (v,B(v, r)) + t1−η
1{Mγ (v,B(v,r))>t,A>t1−η}

]

≥
(

1 − 1

tη

)
E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]

−E

[
1

Mγ (v,B(v, r)) + t1−η
1{Mγ (v,B(v,r))>t,A>t1−η}

]
,

where we have used the inequality (1 + u)−1 ≥ 1 − u. The last of the three terms

E

[
1

Mγ (v,B(v, r)) + t1−η
1{Mγ (v,B(v,r))>t,A>t1−η}

]

is less than t−(1−η)
P(A > t1−η), and, by the Markov inequality,

t−(1−η)
P

(
A > t1−η) ≤ t−(1−η)p

E
[
Ap−1] ≤ C ≤ t−(1−η)prψ(p−1)

with ψ(p − 1) ∈ (−1,0). The second will be treated in the same time as the first

(next subsection) and will be proved to be O(t
− 4

γ 2 −η
), hence o(t

− 4
γ 2 −δ

).

3.6. Behaviour near the singularity. In view of the bounds (3.10) and (3.11),
it remains to study the term

E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]
.

We will proceed by using decomposition (3.8) and establishing lower/upper
bounds.

Lower bound. In the study of the lower bound, let us fix η such that η > δ

and η satisfies (3.9) in such a way that we can find 1 < p < 1 + p0 with p(1 −
η) > 4

γ 2 + δ. We will introduce the event {γM > η ln t}. On this event one has
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Iγ (M) ≥ Iγ (
η
γ

ln t), and therefore,

E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]

= E

[
1

r2−γ 2
Er,veγMIγ (M)

1{r2−γ 2
Er,veγMIγ (M)>t}

]

≥ E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (

η
γ

ln t)>t}1{γM>η ln t}
]

= E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (

η
γ

ln t)>t}
]

−E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (

η
γ

ln t)>t}1{γM<η ln t}
]
.

The correction term (second expectation in final line above) is r−αo(t
− 4

γ 2 −δ
) with

α < 1. Indeed, on the event {γM < η ln t}, the event {r2−γ 2
Er,ve

γMIγ (
η
γ

ln t) >

t} is contained in the event {r2−γ 2
Er,vIγ (∞) > t1−η}. Hence, the correction

term is less than E[(r2−γ 2
Er,v)

p−1]t−(1−η)p
E[Iγ (∞)p−1] = rψ(p−1)t−(1−η)p ×

E[Iγ (∞)p−1], where the function ψ has been defined in Lemma 3.6.
Then we average with respect to M to get (recall that the distribution of M is

given by (3.7))

E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (

η
γ

ln t)>t}
]

≥ E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (

η
γ

ln t)>t}1{r2−γ 2
Er,vIγ (∞)≤t}

]

= 2(Q − γ )

2(Q − γ ) + γ
E

[(
r2−γ 2

Er,v

) 2
γ
(Q−γ )

Iγ (
η
γ

ln t)
4

γ 2

Iγ (∞)
1{r2−γ 2

Er,vIγ (∞)≤t}
]
t
− 4

γ 2

= 2(Q − γ )

2(Q − γ ) + γ
E

[Iγ (
η
γ

ln t)
4

γ 2

Iγ (∞)

]
t
− 4

γ 2

− 2(Q − γ )

2(Q − γ ) + γ

×E

[(
r2−γ 2

Er,v

) 2
γ
(Q−γ )

Iγ (
η
γ

ln t)
4

γ 2

Iγ (∞)
1{r2−γ 2

Er,vIγ (∞)>t}
]
t
− 4

γ 2 .
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Above, we have used the fact E[(r2−γ 2
Er,v)

2
γ
(Q−γ )] = 1. One has

E

[(
r2−γ 2

Er,v

) 2
γ

(Q−γ )
Iγ (

η
γ

ln t)
4

γ 2

Iγ (∞)
1{r2−γ 2

Er,vIγ (∞)>t}
]
t
− 4

γ 2

≤ E
[(

r2−γ 2
Er,v

) 4
γ 2 −1+η

Iγ (∞)
4

γ 2 −1+η]
t
− 4

γ 2 −η

= r
ψ( 4

γ 2 −1+η)
E

[
Iγ (∞)

4
γ 2 −1+η]

t
− 4

γ 2 −η
,

where 4
γ 2 − 1 + η < p0 by condition (3.9). Hence, it remains to show that

E[ Iγ (
η
γ

ln t)

4
γ 2

Iγ (∞)
] = R̄(γ )(1 + o(t−η)) to get the desired lower bound. By Remark 3.5

the process B̂
γ
s , defined for s ≤ 0 by the relation B̂

γ
s = Bγ

s−L− η
γ ln t

+ η
γ

ln t , is inde-

pendent from everything and distributed like (Bγ
s )s≤0. We can then write∫ ∞

−∞
eγBγ

s Zs ds = Iγ

(
η

γ
ln t

)
+ t−ηB

with

B =
∫ 0

−∞
eγ B̂

γ
s Zs−L− η

γ ln t
ds.

We set m = 4
γ 2 . Then we have (use the triangle inequality to get the third line

below)

R̄(γ ) −E

[
Iγ

(
η

γ
ln t

)m

/Iγ (∞)

]

= E

[( Iγ (
η
γ

ln t) + t−ηB

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]
−E

[( Iγ (
η
γ

ln t)

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]

≤
(
E

[( Iγ (
η
γ

ln t)

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]1/m

+E

[(
t−ηB

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]1/m)m

−E

[( Iγ (
η
γ

ln t)

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]
.

This expression is of the form (αt + βt)
m − αm

t with βt

αt
≤ c for some c > 0 and

all t ≥ 0. Let us consider another constant C such that (1 + x)m − 1 ≤ Cx for
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0 ≤ x ≤ c. We deduce that (αt +βt )
m −αm

t ≤ Cαm−1
t βt . Plugging this estimate in

the above expression yields

R̄(γ ) −E

[
Iγ

(
η

γ
ln t

)m

/Iγ (∞)

]

≤ Ct−η
E

[( Iγ (
η
γ

ln t)

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]1−1/m

×E

[(
B

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]1/m

.

In the above expression the first expectation is less than R̄(γ )1−γ 2/4. We aim to
bound the second one. Let us fix η′ ∈ (0,1). Then,

E

[(
B

(Iγ (
η
γ

ln t) + t−ηB)1/m

)m]1/m

≤ E

[
Bm

Iγ (0)1−η′
(t−ηB)η

′

]1/m

≤ t
η′η
m E

[
Bm−η′

Iγ (0)−1+η′]1/m
.

Notice that the last expectation is finite (use Hölder inequality and the fact that B

has finite moments of order q < m and Iγ (0) has finite negative moments of all
order). This proves our claim for the lower bound provided that we choose η′ small
enough so as to make η(1 − η′

m
) > δ.

Upper bound. For the upper bound we use again the decomposition (3.8)

E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]

= E

[
1

r2−γ 2
Er,veγMIγ (M)

1{r2−γ 2
Er,veγMIγ (M)>t}

]
.

We want to replace the term Iγ (M) in the fraction by Iγ (∞). Hence, we write

E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]

= E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (M)>t}

]
+ C(t),

where C(t) stands for the cost for this replacement

(3.12) C(t) := E

[
1

r2−γ 2
Er,veγM

(
1

Iγ (M)
− 1

Iγ (∞)

)
1{r2−γ 2

Er,veγMIγ (M)>t}
]
.
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Now we establish that this cost satisfies C(t) = r−αo(t
− 4

γ 2 −δ
) with α < 1.

By Remark 3.5, conditionally on M , the process B̂
γ
s defined for s ≤ 0 by the

relation B̂
γ
s = Bγ

s−L−M
+ M is independent from everything and distributed like

(Bγ
s )s≤0. We can then write∫ ∞

−∞
eγBγ

s Zs ds = Iγ (M) + e−γMB

with

B =
∫ 0

−∞
eγ B̂

γ
s Zs−L−M

ds.

Now we observe that, under the condition δ ∈ (0,
p0+1− 4

γ 2

2+p0
), one can find η ∈ (0,1)

and p ∈ (0,1 + p0) such that

(3.13) p(1 − η) + 4

γ 2 η > δ + 4

γ 2 and η

(
1 + 4

γ 2

)
> δ + 4

γ 2 .

Indeed, this condition is equivalent to the set of conditions (1+p0)(1−η)+ 4
γ 2 η >

δ+ 4
γ 2 and η(1+ 4

γ 2 ) > δ+ 4
γ 2 which are in turn equivalent to η < 1− δ

1+p0− 4
γ 2

and

η(1+ 4
γ 2 ) > δ+ 4

γ 2 . This is possible if and only if (1− δ

1+p0− 4
γ 2

)(1+ 4
γ 2 ) > δ+ 4

γ 2

which produces our condition δ <
1+p0− 4

γ 2

2+p0
. Notice that the η introduced in the

proof of the upper bound is not the same as the η introduced in the proof of the
lower bound. We are going to evaluate the cost term on different possible event,
that is, we introduce

(3.14) Ci(t) := E[ " 1Ai
],

where " stands for the integrand inside the expectation in (3.12) and the event
Ai (i = 1,2) ranges respectively, among the two events {M >

η
γ

ln t} and {M ≤
η
γ

ln t}.
Let us start with C1(t), which can be estimated by

C1(t) = E

[
1

r2−γ 2
Er,veγM

(
Iγ (∞) − Iγ (M)

Iγ (M)Iγ (∞)

)
1{r2−γ 2

Er,veγMIγ (M)>t,M>
η
γ

ln t}
]

≤ E

[
1

e2γM

B

Iγ (M)2 F

(
t

eγMIγ (M)

)
1{M>

η
γ

ln t}
]
,

where we have introduced the function

(3.15) F(u) = E

[
1

r2−γ 2
Er,v

1{r2−γ 2
Er,v>u}

]
.
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The above expression for the cost will be analyzed according to different possi-
ble regimes of the function F , depending on the possible values of its argument

t
eγMIγ (M)

. For this observe that 1 < 2γQ(1−
√

2
Q

), hence we can choose 0 < q < 2

and 0 < a < 1 such that

(3.16) 1 < aqγQ and 0 < a < 1 −
√

2

Q
.

Now we restrict the cost C1(t) further to the events {tr−aγQ ≤ eγMIγ (M)} and
then {tr−aγQ > eγMIγ (M)}, producing two quantities that we respectively call
C1

1(t) and C2
1(t).

Concerning C1
1(t), on the event {tr−aγQ ≤ eγMIγ (M)}, we can use the rough

estimate F(u) ≤ r−2 (obtained by using the fact that indicator functions are
bounded by 1 in (3.15)) to deduce that for any 0 < q < 2

C1
1(t) ≤ r−2

E

[
B

(eγMIγ (M))2 1{M>
η
γ

ln t}1{tr−aγQ<eγMIγ (M)}
]

= rqaγQ−2t−q
E

[
B

(eγMIγ (M))2−q
1{M>

η
γ

ln t}1{tr−aγQ<eγMIγ (M)}
]

(3.17)

≤ CrqaγQ−2t−q
E

[
1

(eγM)2−q
1{M>

η
γ

ln t}
]
.

Above, we have used the fact that E[ B
Iγ (M)q−2 |M] can be bounded by constant.

Indeed, we use Hölder’s inequality with conjugate exponents m, m′ and B � M as
well as Iγ (0) � M to get the fact that

E

[
B

Iγ (M)2−q

∣∣∣ M

]
≤ E

[
B

Iγ (0)2−q

∣∣∣ M

]
≤ E

[
Bm]1/m

E
[
Iγ (0)−(2−q)m′]1/m′

< +∞
provided that m is chosen smaller than 4

γ 2 (recall that Iγ (0) has negative moments
of all order; see [12]). Now we can use the explicit exponential law for M to get

that (3.17) is less than CrqaγQ−2t
−q−(

2Q
γ

−q)η. Condition (3.16) imposes that the

r-exponent satisfies qaγQ−2 > −1. The t-contribution equals t
−(1+ 4

γ 2 )η−q(1−η)
,

which is as expected thanks to condition (3.13).
Concerning C2

1(t), by using the Girsanov transform with the term

e−γNv,r− γ 2

2 E[N2
v,r ], we get for some standard Gaussian random variable Z and for

ur−aγQ > 1

F(u) = r−2
P

(
Z > Q(− ln r)1/2

(
1 + 1

γQ

lnu

− ln r

))
≤ r−2

P
(
Z > (1 − a)Q(− ln r)1/2) ≤ Cr

1
2 (1−a)2Q2−2.
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Then, using this estimate, C2
1(t) is seen to be less than

Cr
1
2 (1−a)2Q2−2

E

[
1

(eγMIγ (M))2 1{M>
η
γ

ln t}
]

which is less than Cr
1
2 (1−a)2Q2−2t

−(1+ 4
γ 2 )η

using the explicit exponential distri-
bution (3.7) of M as in (3.17). Again, conditions (3.16) and (3.13) ensure respec-
tively, that the r-exponent and t-exponent behave as expected. This concludes the
case of C1(t).

Now we analyze C2(t)

C2(t) ≤ E

[
1

r2−γ 2
Er,veγM

(
Iγ (∞) − Iγ (M)

Iγ (M)Iγ (∞)

)
1{r2−γ 2

Er,veγMIγ (M)>t,M≤ η
γ

ln t}
]

≤ t−p
E

[(
r2−γ 2

Er,v

)p−1]
E

[(
eγMIγ (M)

)p−11{M≤ η
γ

ln t}
]

≤ Crψ(p−1)t−p
E

[
Iγ (∞)p−1]

E
[
(eγM1{M≤ η

γ
ln t}

]
≤ rψ(p−1)t

−p+η(p− 4
γ 2 )

,

where we have used that almost surely Iγ (∞)−Iγ (M)

Iγ (∞)
≤ 1. Hence, condition (3.13)

ensures that the cost term is rψ(p−1)o(t
− 4

γ 2 −δ
). To conclude, it suffices to bound

the term

E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (M)>t}

]

≤ E

[
1

r2−γ 2
Er,veγMIγ (∞)

1{r2−γ 2
Er,veγMIγ (∞)>t}

]

= 2(Q − γ )

2(Q − γ ) + γ
R̄(γ )t

− 4
γ 2 + rψ(p−1)o

(
t
− 4

γ 2 −δ)
,

where o(t
− 4

γ 2 −δ
) is uniform in v, r . The last line is obtained by independence

of Er,v , M , Iγ (∞) and the explicit tail of the exponential distribution. Our claim
follows.

PROOF OF COROLLARY 2.4. In what follows, the Gaussian process X0 stands
for the GFF inside D with vanishing mean on the unit circle, that is, with covari-
ance structure given by (2.1) whereas G is an independent centered Gaussian field
in D such that

E
[
G(x)G(y)

] = f (x, y),

with f the function appearing in (1.2). Then we may assume that X = X0 + G.
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Now we follow and adapt the proof of Theorem 2.2. For this we set

M0
γ (dx) = eγX0(x)− γ 2

2 E[X0(x)2] dx

in such a way that Mγ (dx) = eγG(x)− γ 2

2 E[G(x)2]M0
γ (dx). The localization trick

then yields

P
(
Mγ (O) > t

) = E

[
M0

γ (O)

M0
γ (O)

1{Mγ (O)>t}
]

=
∫
O
E

[
eγX0(v)− γ 2

2 E[X0(v)2] 1

M0
γ (O)

1{Mγ (O)>t}
]
d2v,

and Girsanov’s transform asserts that weighting the probability law by

eγX0(v)− γ 2

2 E[X0(v)2] amounts to shifting the law of X by γ ln 1
|·−v| , hence

P
(
Mγ (O) > t

) =
∫
O
E

[
1

M0
γ (v,O)

1{Mγ (v,O)>t}
]
d2v,(3.18)

where we have set

M0
γ (v,O) :=

∫
O

1

|z − v|γ 2 M0
γ

(
d2z

)
and Mγ (v,O) :=

∫
O

1

|z − v|γ 2 Mγ

(
d2z

)
.

Let us set r = dist(v, ∂O) and r ′ = min(r, ε), where ε > 0 is a regularization pa-
rameter which will be sent to 0 in the end. Sticking to the notations of Section 3.5,
we set

A0 := M0
γ

(
v,B

(
v, r ′)c ∩O

)
and A := Mγ

(
v,B

(
v, r ′)c ∩O

)
.

Therefore, Mγ (v,O) = Mγ (v,B(v, r ′)) + A and similarly for the correspond-
ing items with index 0. Our next step will be to use the computations already
done for items with index 0 in the proof of Theorem 2.2 and compare with items
Mγ (v,B(v, r ′)) and A. The difference between these quantities involves the pro-
cess G which will be estimated in terms of the quantities:

Sr ′(v) := sup
z∈B(v,r ′)

eγG(z)− γ 2

2 E[G(z)2], S := sup
z∈O

eγG(z)− γ 2

2 E[G(z)2],(3.19)

Ir ′(v) := inf
z∈B(v,r ′)

eγG(z)− γ 2

2 E[G(z)2], I := inf
z∈O eγG(z)− γ 2

2 E[G(z)2].(3.20)
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Then we can reproduce the argument (3.10) for the upper bound

E

[
1

M0
γ (v,O)

1{Mγ (v,O)>t}
]

≤ E

[
1

M0
γ (v,B(v, r ′)) + A

1{Mγ (v,B(v,r ′))>t−t1−η}
]

+E

[
1

A
1{A>t1−η}

]

≤ E

[
1

M0
γ (v,B(v, r ′))

1{Mγ (v,B(v,r ′))>t−t1−η}
]

+E
[
Ap−1]

t−(1−η)p

≤ E

[
1

M0
γ (v,B(v, r ′))

1{Sr′ (v)M0
γ (v,B(v,r))>t−t1−η}

]
+E

[
Ap−1]

t−(1−η)p.

(3.21)

We have the obvious bound for p ∈ (0, 4
γ 2 )

E
[
Ap] ≤ E

[
Sp]

E
[
A

p
0

]
.

The assumption of f being Hölder on Ō ensures that E[Sp] is finite by standard
arguments for the supremum of Gaussian processes (see lecture 6 in [4], e.g.).
Hence, A satisfies the same bounds as Lemma 3.6, and the second term in (3.21)

is again of the form (r ′)ψ(p−1)o(t
− 4

γ 2 −δ
).

The first term in (3.21), concerning the behaviour near the singularity at v, is
bounded as in Section 3.6 which states that

E

[
1

M0
γ (v,B(v, r ′))

1{M0
γ (v,B(v,r ′))>t−t1−η}

]

≤ 2(Q − γ )

2(Q − γ ) + γ
R̄(γ )t

− 4
γ 2 + (

r ′)−α
o
(
t
− 4

γ 2 −δ)
for some α ∈ (0,1). By independence of Sr ′(v) and conditioning on Sr ′(v), we
deduce

E

[
1

M0
γ (v,B(v, r ′))

1{Sr′ (v)M0
γ (v,B(v,r ′))>t−t1−η}

]

≤ 2(Q − γ )

2(Q − γ ) + γ
R̄(γ )t

− 4
γ 2
E

[(
Sr ′(v)

) 4
γ 2

] + (
r ′)−α

o
(
t
− 4

γ 2 −δ)
.

Integrating this relation over O, we deduce from (3.18) that

lim sup
t→∞

t
4

γ 2
P

(
Mγ (O) > t

) ≤
(∫

O
E

[(
Sr ′(v)

) 4
γ 2

]
dv

)
2(Q − γ )

2(Q − γ ) + γ
R̄(γ ).

This bound is valid for arbitrary ε (recall that r ′ = min(r, ε)). So, we want to
let ε → 0. An easy application of the dominated convergence theorem ensures
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that

lim
ε→0

∫
O
E

[(
Sr ′(v)

) 4
γ 2

]
dv =

∫
O
E

[(
eγG(v)− γ 2

2 E[G(v)2]) 4
γ 2

]
dv

=
∫
O

e
4
γ
(Q−γ )f (v,v)

dv.

Hence,

lim sup
t→∞

t
4

γ 2
P

(
Mγ (O) > t

) ≤
(∫

O
e

4
γ

(Q−γ )f (v,v)
dv

)
2(Q − γ )

2(Q − γ ) + γ
R̄(γ ).

This shows the upper bound. The lower bound is established in the same way
(using (3.20)). �

4. Extensions to other cases. In this section we explain how to generalize
our results to the other cases. Though the claims of this section cannot be taken for
granted (due to the fact that it sweeps under the rug potential technical difficulties),
it provides, nonetheless, arguments which we believe are convincing to tackle the
other cases.

4.1. The 2d case. Consider now the general case in 2d of a log-correlated
kernel of the type (1.2). Along the same lines as for the proof of Theorem (2.2),
the localization trick allows us to trade the study of the tail of the random variable
Mγ (O) for the study of the tail of the singular integral (for some r > 0)

(4.1) Mγ

(
v,B(v, r)

) :=
∫
B(v,r)

eγ 2f (v,z) e
γX(z)− γ 2

2 E[X(z)2]

|z − v|γ 2 d2z

for each point v ∈ O (f appears in (1.2)). The full tail of Mγ (O) is obtained by
integration of the term

E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]
with respect to the measure d2v. The advantage of this localization trick is that
the tail of (4.1) is completely concentrated around v and is determined by a lo-
cal analysis, which is more transparent than a direct study of Mγ (O). For r small
the variable X has roughly covariance of the form ln 1

|x−y| + f (v, v), and there-

fore X ≈ X̄ + N (in law) where X̄ has ln 1
|x−y| covariance and N is a centered

Gaussian independent from everything and with variance f (v, v). Combining this
decomposition with our estimates for X̄, one expects that

(4.2)

t
4

γ 2
E

[
1

Mγ (v,B(v, r))
1{Mγ (v,B(v,r))>t}

]

→
t→∞

2
γ
(Q − γ )

2
γ
(Q − γ ) + 1

R̄(γ )e
4
γ
(Q−γ )f (v,v)

.
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Gathering the above considerations, we expect the following generalization of
Theorem 2.2 for kernels of type (1.2)

(4.3)
P

(
Mγ (O) > t

) =
(∫

O
e

4
γ
(Q−γ )f (v,v)

d2v

) 2
γ
(Q − γ )

2
γ
(Q − γ ) + 1

R̄(γ )
1

t
4

γ 2

+ o
(
t
− 4

γ 2
)
.

We leave open the determination of bounds on the o(t
− 4

γ 2 ) term.

4.2. The other dimensions. In higher dimensions we expect the method to
work as well by decomposing the log-correlated field into a radial part (Brownian
motion) and an independent radial part around each localization point v. The con-
stant in the expansion will then be given by explicit terms times the d-dimensional
analog R̄d(γ ) of the reflection coefficient R̄(γ ) defined by (1.10). The question
is then to know if we can compute explicitly this expectation depending on d .
Presently, getting explicit formulas in dimension d ≥ 3 seems out of reach since
one can not rely on the powerful framework of 2d conformal field theory for the
GFF.

Like in dimension 2, we also have an explicit expression for R̄1(γ ) in dimen-
sion 1. Indeed, one has the following expression for R̄1(γ ) (the so-called boundary
unit volume reflection coefficient in the terminology of Liouville field theory):

R̄1(γ ) = E

[(∫ ∞
−∞

eγB1,γ
s eγ Y (s)− γ 2E[Y(s)2]

2 Zs ds

) 2
γ
(Q1−γ )]

,

where B1,γ
s is defined like Bγ

s in (1.7) with Q replaced by Q1 = γ
2 + 1

γ
and Ys is

the restriction to the real line of the centered Gaussian field with covariance (3.4).
This yields the asymptotic

P
(
Mγ (O) > t

) =
(∫

O
e

2
γ

(Q1−γ )f (v,v)
d2v

)(
1 − γ 2

2

)
R̄1(γ )

t
2

γ 2

+ o
(
t
− 2

γ 2
)
.

The recent integrability results of Rémy for GMC on the circle [14] allows us to
compute explicitly the tail of Mγ (O) in the case when X is the circular logarithmic
noise and O = (0,2π); as a matter of fact, the result of Rémy is much more precise
since it gives the precise density of the total mass of GMC on the circle (this density
was conjectured in the physics literature in 2008 by Fyodorov–Bouchaud [7]; see
also a similar conjecture in [8] for the case of the unit interval). This leads to the
following explicit expression for R̄1(γ )

R̄1(γ ) = (2π)
2
γ
(Q1−γ )

(1 − γ 2

2 )
(1 − γ 2

2 )
2

γ 2

.
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