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WEAK POINCARÉ INEQUALITIES FOR CONVERGENCE RATE
OF DEGENERATE DIFFUSION PROCESSES

BY MARTIN GROTHAUS AND FENG-YU WANG1

TU Kaiserslautern and Tianjin University

For a contraction C0-semigroup on a separable Hilbert space, the decay
rate is estimated by using the weak Poincaré inequalities for the symmetric
and antisymmetric part of the generator. As applications, nonexponential con-
vergence rate is characterized for a class of degenerate diffusion processes,
so that the study of hypocoercivity is extended. Concrete examples are pre-
sented.

1. Introduction. Let (E,F ,μ) be a probability space and (E ,D(E )) be
the quadratic form associated with a Markov semigroup Pt on L2(μ). The weak
Poincaré inequality

(1.1)

Varμ(f ) := μ
(
f 2) − μ(f )2

≤ α(r)E (f, f ) + α(r)‖f ‖2
osc, r > 0, f ∈ D(E )

with rate function α : (0,∞) → (0,∞) was introduced in [17] to describe the
following convergence rate of Pt to μ:

ξ(t) := sup
‖f ‖osc≤1

Varμ(Ptf ), t > 0.

Explicit correspondence between α and ξ has been presented in [17]. In particular,
the weak Poincaré inequality (1.1) is always available for elliptic diffusion pro-
cesses. However, it does not hold when the Dirichlet form is reducible. A typical
example is the stochastic Hamiltonian system on R

d ×R
d :

(1.2)

{
dXt = Yt dt,

dYt = √
2 dBt − (∇(1)V (Xt) + Yt

)
dt,

where Bt is the Brownian motion on R
d , ∇(1) is the gradient operator in the first

component x ∈ R
d , and V ∈ C2(Rd) satisfies

(1.3)
∥∥∇2V

∥∥ ≤ M
(
1 + |∇V |)
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for some constant M > 0 and Z(V ) := ∫
Rd e−V (x) dx < ∞. In this case, the

invariant probability measure of the diffusion process is μ = μ1 × μ2, where
μ1(dx) = Z(V )−1e−V (x) dx and μ2 is the standard Gaussian measure on R

d . Let
∇(2) be the gradient operator in the second component y ∈ R

d . Then the associated
energy form satisfies E (f, f ) = μ(|∇(2)f |2), and is thus reducible.

On the other hand, according to C. Villani [19], if the Poincaré inequality

(1.4) Varμ1(f ) := μ1
(
f 2) − μ1(f )2 ≤ c1μ1

(|∇f |2)
, f ∈ C1

b

(
R

d)
holds for some constant c1 > 0, then the Markov semigroup Pt associated with
(1.2) converges exponentially to μ in the sense that

μ
(∣∣Ptf − μ(f )

∣∣2 + |∇Ptf |2)
≤ c2e−λtμ

(∣∣f − μ(f )
∣∣2 + |∇f |2)

, t ≥ 0, f ∈ C1
b

(
R

d)
holds for some constants c2, λ > 0, where and in the following, μ(f ) := ∫

f dμ

for f ∈ L1(μ). If the gradient estimate |∇Ptf |2 ≤ K(t)Ptf
2 holds for some func-

tion K : (0,∞) → (0,∞) (see [14, 21] for concrete estimates) we obtain the L2-
exponential convergence

(1.5) Varμ(Ptf ) ≤ ce−λt Varμ(f ), t ≥ 0, f ∈ L2(μ)

for some constants c, λ > 0, which has been derived in [13] using the idea of [7].
See, for example, [1, 7, 9, 10, 13, 14, 20, 21] and references within for further
results on exponential convergence and regularity estimates of Pt .

Recently, Hu and Wang [15] prove the subexponential convergence by using the
weak Poincaré inequality

(1.6) Varμ1(f ) ≤ α(r)μ1
(|∇f |2) + r‖f ‖2

osc, f ∈ C1
b

(
R

d)
for some decreasing function α : (0,∞) → (0,∞) and ‖f ‖osc := essμ supf −
essμ inff . According to [15], Theorem 3.6, (1.6) implies

(1.7)

μ
(∣∣Ptf − μ(f )

∣∣2 + |∇Ptf |2)
≤ c1ξ(t)

(‖f ‖2∞ + μ
(|∇f |2))

, t ≥ 0, f ∈ C1
b

(
R

d)
for some constant c2 > 0 and

ξ(t) := inf
{
s > 0 : t ≥ −α(s) log s

}
, t ≥ 0.

Again, if the gradient estimate |∇Ptf |2 ≤ K(t)Ptf
2 holds then this implies

(1.8) Varμ(Ptf ) ≤ c1ξ(t)‖f ‖2
osc, t ≥ 0, f ∈ L∞(μ)

for some constant c1 > 0. In particular, if α is bounded so that (1.6) reduces to
(1.4) with c1 = ‖α‖∞, we obtain the exponential convergence as in the previous
case.
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In this paper, we aim to introduce weak Poincaré inequalities to estimate the
convergence rate for more general degenerate diffusion semigroups where μ2 is
not necessarily a Gaussian measure. Consider the following degenerate SDE for
(Xt , Yt ) on R

d1+d2 =R
d1 ×R

d2 , where d1, d2 ≥ 1 may be different:

(1.9)

{
dXt = Q

(∇(2)V2
)
(Yt )dt,

dYt = √
2 dBt − (

Q∗(∇(1)V1
)
(Xt) + (∇(2)V2

)
(Yt )

)
dt,

where Q is a d1 × d2-matrix, Vi ∈ C2(Rdi ) such that Z(Vi) < ∞, i = 1,2, and
∇(1), ∇(2) are the gradient operators in components x ∈ R

d1 and y ∈ R
d2 respec-

tively. It is easy to see that the generator of solutions to (1.9) is dissipative in L2(μ),
where μ := μ1 × μ2 for probability measures μi(dx) := Z(Vi)

−1e−Vi(x) dx on
R

di , i = 1,2; see the beginning of Section 3 for details.
Since the coefficients of the SDE (1.9) are locally Lipschitz continuous, for any

initial point z = (x, y) ∈ R
d1+d2 , the SDE has a unique solution (Xz

t , Y
z
t ) up to life

time ζ z. Let Pt be the associated (sub-) Markov semigroup, that is,

Ptf (z) = E
[
f

(
Xz

t , Y
z
t

)
1{t<ζ z}

]
, f ∈ Bb

(
R

d1+d2
)
, z ∈ R

d1+d2, t ≥ 0.

To ensure the nonexplosion of the solution and the convergence of the L2-
Markov semigroup Pt to μ, we make the following assumption.

(H) QQ∗ is invertible, there exists a constant M > 0 such that

(1.10)
∣∣(∇(i))2

Vi

∣∣ ≤ M
(
1 + ∣∣∇(i)Vi

∣∣τi
)
, i = 1,2,

for τ1 = 1 and some 1 ≤ τ2 < 2. Moreover, μ2(|∇(2)V2|4) < ∞ and V2(y) =
�(|σy − b|2) for some invertible d2 × d2-matrix σ , b ∈ R

d2 and increasing func-
tion � ∈ C3([0,∞)) such that

(1.11) sup
r≥0

∣∣∣∣�′(r) + 2r�′′(r) − 2r�′′′(r) + (d2 + 2)�′′(r)
�′(r)

∣∣∣∣ < ∞.

According to [17], Theorem 3.1, there exist two decreasing functions α1, α2 :
(0,∞) → [1,∞) such that the weak Poincaré inequality

(1.12) Varμi
(f ) ≤ αi(r)μi

(∣∣∇(i)f
∣∣2) + r‖f ‖2

osc, f ∈ C1
b

(
R

di
)
, r > 0,

holds for i = 1,2. We have the following result on the convergence rate of Pt to μ.

THEOREM 1.1. Let V1 and V2 satisfy (H). Then the solution to (1.9) is nonex-
plosive and μ is an invariant probability measure of the associated Markov semi-
group Pt . Moreover, there exist constants c1, c2 > 0 such that (1.8) holds for

(1.13) ξ(t) := c1 inf
{
r > 0 : c2t ≥ α1(r)

2α2

(
r

α1(r)2

)
log

1

r

}
,

which goes to 0 as t → ∞.



WEAK POINCARÉ INEQUALITIES FOR DEGENERATE DIFFUSIONS 2933

REMARK 1.2. (1) When V2(y) = 1
2 |y|2 the measure μ2 reduces to the stan-

dard Gaussian measure as in [15]. In this case, we may repeat the argument in the
proof of [15], Theorem 3.6, to prove (1.7) for

(1.14) ξ(t) = inf
{
r > 0 : c2t ≥ α1(r) log

1

r

}
, t > 0,

and thus extend the main result in [15] to the case that d1 �= d2. Since in this case
we have α2 ≡ 1, the convergence rate in Theorem 1.1 becomes

ξ(t) = inf
{
r > 0 : c2t ≥ α1(r)

2 log
1

r

}
, t > 0,

which is in general worse than that in (1.14). However, the argument in [15]
heavily depends on the specific V2(y) = 1

2 |y|2 (or by linear change of variables
V2(y) = |σy − b|2 for some invertible d2 × d2-matrix σ and b ∈ R

d2 ), and is hard
to extend to a general setting as in (H). Nevertheless, we would hope to improve
the convergence rate in Theorem 1.1 such that (1.14) is covered for bounded α2.

(2) Theorem 1.1 also applies to the following SDE for (Xt , Ȳt ) on R
d1+d2 for

some invertible d2 × d2-matrix σ and invertible d1 × d1-matrix Q̄Q̄∗:

(1.15)

{
dXt = Q̄

(∇(2)V2
)
(Ȳt )dt,

dȲt = √
2σ dBt − (

Q̄∗(∇(1)V1
)
(Xt) + σσ ∗(∇(2)V2

)
(Ȳt )

)
dt.

Indeed, let (Xt , Yt ) solve (1.9) and let Ȳt = σYt , V̄2(y) = V2(σ
−1y). We have(∇(2)V̄2

)
(y) = (

σ−1)∗(∇(2)V2
)(

σ−1y
)
, y ∈ R

d2,

so that

dXt = Q
(∇(2)V2

)
(Yt )dt = Qσ ∗(∇(2)V̄2

)
(Ȳt )

and

dȲt = √
2σ dBt − (

σQ∗(∇(1)V1
)
(Xt) + σσ ∗(∇(2)V̄2

)
(Ȳt )

)
dt.

Letting Q̄ = Qσ ∗, we see that the SDE (1.9) is equivalent to (1.15).

To illustrate Theorem 1.1, we consider the following example with some con-
crete convergence rates of Pt .

EXAMPLE 1.3. We write f ∼ g for real functions f and g on R
d if f − g ∈

C2
b(Rd).

(A) Let V1(x) ∼ k(1 + |x|2) δ
2 for some constants k, δ > 0.

(A1) When V2(y) = κ(1 + |y|2) ε
2 for some constants κ, ε > 0, (1.8) holds

with

ξ(t) = c1 exp
(−c2t

εδ

εδ+8ε(1−δ)++4δ(1−ε)+ )
, t ≥ 0,

for some constants c1, c2 > 0. If, in particular, δ, ε ≥ 1 then Pt converges to
μ exponentially fast.
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(A2) When V2(y) = d+p
2 log(1 + |y|2) for some constant p > 0, (1.8)

holds with

ξ(t) = c(1 + t)
− 1

θ(p)
(
log(e + t)

) 8(θ(p)+1)(1−δ)++δ
θ(p)δ

for some constant c > 0 and

θ(p) := d + p + 2

p
∧ 4p + 4 + 2d

(p2 − 4 − 2d − 2p)+
.

(A3) When V2(y) = d
2 log(1 + |y|2) + p log log(e + |y|2) for some con-

stants p > 1, (1.8) holds with

ξ(t) = c1
(
log(e + t)

)1−p · (
log log

(
e2 + t

)) 8(1−δ)+
δ

for some constants c > 0.

(B) Let V1(x) ∼ d+q
2 log(1 + |x|2) for some q > 0.

(B1) When V2(y) = k(1 + |y|2) ε
2 for some constants k, ε > 0, (1.8) holds

with

ξ(t) = c(1 + t)
− 1

2θ(q)
(
log(e + t)

) 4(1−ε)++ε
2εθ(q)

for some constant c > 0.
(B2) When V2(y) = p+d

2 log(1 + |y|2) for some constant p > 0, (1.8)
holds with

ξ(t) = c(1 + t)
− 1

2θ(q)+θ(p)+2θ(p)θ(q)
(
log(e + t)

) 1
2θ(q)+θ(p)+2θ(p)θ(q)

for some constant c > 0.
(B3) When V2(y) = d

2 log(1+|y|2)+p log log(e+|y|2) for some constant
p > 1, (1.8) holds with

ξ(t) = c
(
log(e + t)

)− p−1
1+2θ(q)

for some constant c > 0.

(C) Let V1(x) ∼ d
2 log(1 + |x|2) + q log log(e + |x|2) for some q > 0.

(C1) When V2(y) = k(1 + |y|2) ε
2 for some constant k > 0 and ε > 0, or

V2(y) = p+d
2 log(1 + |y|2) for some constant p > 0, (1.8) holds with

ξ(t) = c
(
log(e + t)

)−(q−1)

for some constant c > 0.
(C2) When V2(y) = d

2 log(1+|y|2)+p log log(e+|y|2) for some constant
p > 1, (1.8) holds with

ξ(t) = c
(
log log

(
e2 + t

))−(q−1)

for some constant c > 0.
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In the next section, we present a general result on the weak hypocoercivity for
C0-semigroups on Hilbert spaces; see Theorem 2.1, below. In Section 3, this result
is used to prove Theorem 1.1 and Example 1.3. Theorem 2.1 is the main result of
this article. It applies to a much larger class of degenerate SDEs as given in (1.9).
The state space of the Markov process associated to the semigroup can be very
general. For example, it could be a manifold or an infinite dimensional space. In
particular it also applies to degenerate spherical velocity Langevin equations as
treated in [13]. Those are prescribed by manifold-valued Stratonovich stochastic
differential equations with state space M= R

d × S of the form

dxt = ωt dt,

dωt = − 1

d − 1
(I − ωt ⊗ ωt)∇V (xt )dt + σ(I − ωt ⊗ ωt) ◦ dBt .

(1.16)

Here d ∈ N with d ≥ 2. B is a standard d-dimensional Brownian motion, z ⊗ y =
zyT for z, y ∈ R

d and yT is the transpose of y. S = S
d−1 denotes the unit sphere

with respect to the euclidean norm in R
d . Moreover, x denotes the space variable in

R
d and ω the velocity component in S ⊂ R

d and all vectors in euclidean space are
understood as column vectors. For a specified class of potentials V : Rd → R and
σ > 0 a finite constant, in [13] all assumptions of Theorem 2.1 are checked for the
equations as in (1.16). But due to Theorem 2.1, in comparison with [13] we now
can weaken the growth condition on V , since we need the space component of the
corresponding invariant measure only to fulfill a weak Poincaré inequality. Hence,
V may be chosen as any potential V1 from Example 1.3. Solutions to SDEs as in
(1.16), for example, also appear in industrial mathematics as so-called fiber lay-
down processes; see [13] and the references therein. They are used as surrogate
models for the production process of nonwovens. For those models the rate of
convergence to equilibrium is very much of interest, because this rate is related to
the quality of nonwovens. Hence, cases in which empirical measurements indicate
slow growing potentials, by our main result, now may be covered also.

2. A general framework. Let (H, 〈·, ·〉,‖ · ‖) be a separable Hilbert space,
let (L,D(L)) be a densely defined linear operator generating a C0- contraction
semigroup Pt = etL. We aim to investigate the decay rate of Pt of type

(2.1) ‖Ptf ‖2 ≤ ξ(t)
(‖f ‖2 + �(f )

)
, t ≥ 0, f ∈ D(L),

where ξ is a decreasing function with ξ(∞) := limt→∞ ξ(t) = 0, and � : H →
[0,∞] is a functional such that the set {f ∈ H : �(f ) < ∞} is dense in H.

2.1. Main result. Following the line of, for example, [7, 13], we assume that
L decomposes into symmetric and antisymmetric part:

L = S − A on D,
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where D is a core of (L,D(L)), S is symmetric and A is antisymmetric. Then
both (S,D) and (A,D) are closable in H. Let (S,D(S)) and (A,D(A)) be their
closures. These two operators are linked to the orthogonal decomposition H =
H1 ⊕H2 in the following assumptions, where

πi :H →Hi , i = 1,2,

are the orthogonal projections.

(H1) H1 ⊂ N (S) := {f ∈ D(S) : Sf = 0}; that is, H1 ⊂ D(S) (hence, π2D ⊂
D(S) due to D ⊂ D(S)) and Sπ1 = 0.

(H2) π1D ⊂ D(A) (hence, also π2D ⊂ D(A) due to D ⊂ D(A)) and
π1Aπ1|D = 0.

Since (A,D(A)) is closed, antisymmetric and π1D ⊂ D(A), (π1A,D(A)) is
closable. Denote the closure by (π1A,D(π1A)). By (H2), Aπ1 is well defined on
D , and by the antisymmetry of A,

(Aπ1)
∗ = π1A

∗ = −π1A holds on D .

Then Aπ1 with domain D(Aπ1) := {f ∈ H : π1f ∈ D(A)} is a densely defined
closed operator with adjoint (−π1A,D(π1A)). By von Neumann’s theorem (see,
e.g., [16], Theorem 5.1.9), the operators G := (Aπ1)

∗Aπ1 and I + (Aπ1)
∗Aπ1

with domain

D(G) := D
(
(Aπ1)

∗(Aπ1)
) = {

f ∈ D(Aπ1) : Aπ1f ∈ D
(
(Aπ1)

∗)}
are are self-adjoint. Furthermore, the latter one is injective and surjective (with
range equal to H) and admits a bounded linear inverse. We define the operator B

with domain D(B) = D((Aπ1)
∗) via

B := (
I + (Aπ1)

∗Aπ1
)−1

(Aπ1)
∗.(2.2)

Then B∗ = Aπ1(I + (Aπ1)
∗Aπ1)

−1 defined on D(B∗) = H is closed and
bounded. Consequently, (B,D((Aπ1)

∗)) is also bounded and has a unique ex-
tension to a bounded linear operator (B,H). By, for example, [16], Theorem 5.1.9,
we have

B = (Aπ1)
∗(

I + Aπ1(Aπ1)
∗)−1

.

Consequently, ‖B‖ ≤ 1 and π1B = B .
We shall need the following two more assumptions.

(H3) We assume D ⊂ D(G). Furthermore, there exists a constant N ≥ 1 such
that for all f ∈ D :

〈BSπ2f,π1f 〉 ≤ N

2
‖π1f ‖ · ‖π2f ‖, −〈BAπ2f,π1f 〉 ≤ N

2
‖π1f ‖ · ‖π2f ‖.
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(H4) For any f ∈ D(L) there exists a sequence {fn}n≥1 ⊂ D such that fn → f

in H and

lim sup
n→∞

〈−Lfn,fn〉 ≤ 〈−Lf,f 〉, lim sup
n→∞

�(fn) ≤ �(f ).

THEOREM 2.1. Assume (H1)–(H4) and let � satisfy

(2.3)
�(Ptf ) ≤ �(f ), �

(
e−tGf

) ≤ �(f ),

�(π1f ) ≤ �(f ), f ∈ H.

If the weak Poincaré inequalities

(2.4) ‖π1f ‖2 ≤ α1(r)‖Aπ1f ‖2 + r�(π1f ), r > 0, f ∈ D(Aπ1)

and

(2.5) ‖π2f ‖2 ≤ α2(r)〈−Sf,f 〉 + r�(f ), r > 0, f ∈ D

hold for some decreasing functions αi : (0,∞) → [1,∞), i = 1,2, then there exist
constants c1, c2 > 0 such that (2.1) holds for

(2.6) ξ(t) := c1 inf
{
r > 0 : c2t ≥ α1(r)

2α2

(
r

α1(r)2

)
log

1

r

}
,

which goes to 0 as t → ∞.

2.2. Preparations.

LEMMA 2.2. Under (H1)–(H3), we have

‖Bf ‖ ≤ 1

2
‖π2f ‖, f ∈ H,(2.7)

‖ABf ‖ ≤ ‖π2f ‖, f ∈ D,(2.8) ∣∣〈Bf,Lf 〉∣∣ ≤ ‖π2f ‖ · ‖f ‖, f ∈ D(L),(2.9)

〈BLf,f 〉 ≤ N‖π1f ‖ · ‖π2f ‖ − 〈
(1 + G)−1Gπ1f,π1f

〉
, f ∈ D(L).(2.10)

PROOF. Let f ∈ D and g = Bf . By (2.2), π1A
∗π1f = −π1Aπ1f = 0 and

π2f ∈ D(A) (see (H2)), we have

(2.11)

‖g‖2 + ‖Aπ1g‖2 = 〈
g + (Aπ1)

∗Aπ1g,g
〉 = 〈

(Aπ1)
∗f,g

〉
= 〈

(Aπ1)
∗π2f,g

〉 = 〈π2f,Aπ1g〉 ≤ ‖π2f ‖ · ‖Aπ1g‖.
Combining this with

‖π2f ‖ · ‖Aπ1g‖ ≤ 1

4
‖π2f ‖2 + ‖Aπ1g‖2,
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we obtain (2.7) for f ∈ D , and hence for all f ∈ H since D is dense in H and the
operators B , π2 are bounded.

Next, combining (2.11) with π1B = B and

‖π2f ‖ · ‖Aπ1g‖ ≤ 1

2
‖π2f ‖2 + 1

2
‖Aπ1g‖2,

we obtain

‖ABf ‖2 = ‖Aπ1Bf ‖2 = ‖Aπ1g‖2 ≤ ‖π2f ‖2, f ∈ D,

which is equivalent to (2.8).
Moreover, by the symmetry of S, antisymmetry of A, Sπ1 = 0, and B = π1B ,

we obtain from (2.8) that for any f ∈ D ,∣∣〈Bf,Lf 〉∣∣ = ∣∣〈Bf,−Af 〉∣∣ = ∣∣〈ABf,f 〉∣∣ ≤ ‖π2f ‖ · ‖f ‖.
Since D is dense in D(L) and B is bounded, this implies (2.9).

Finally, by π1B = B , Sπ1 = 0, the definition of B and (H3), for f ∈ D we
have

〈BLf,f 〉 = 〈BLf,π1f 〉 = 〈BSf,π1f 〉 − 〈BAf,π1f 〉
= 〈BSπ2f,π1f 〉 − 〈BAπ1f,π1f 〉 − 〈BAπ2f,π1f 〉
≤ N‖π1f ‖ · ‖π2f ‖ − 〈

(1 + G)−1Gπ1f,π1f
〉
.

By the boundedness of (1 + G)−1G and that D is dense in D(L), this implies
(2.10). �

Next, we need the following result on weak Poincaré inequality for subordinated
operators. Let ν be a Lévy measure on [0,∞) such that

∫ ∞
0 (r ∧1)ν(dr) < ∞, then

φν(s) :=
∫ ∞

0

(
1 − e−sr)ν(dr), s ≥ 0

is a Bernstein function. Let (S0,D(S0)) be a nonnegative definite self-adjoint oper-
ator. We intend to establish the weak Poincaré inequality for the form 〈φν(S0)f, f 〉
in terms of that for 〈S0f,f 〉. The Nash type and super Poincaré inequalities have
already been investigated in [2, 18]. Recently, subexponential decay for subordi-
nated semigroups was studied in [6], where φν is assumed to satisfy

lim inf
s→∞

φν(s)

log s
> 0.

However, this condition excludes φν(s) := s
1+s

which is indeed what we need in
the proof of Theorem 2.1.
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LEMMA 2.3. Let (A0,D(A0)) be a densely defined closed linear operator
on a separable Hilbert space H0. Let P 0

t be the C0-contraction semigroup gener-
ated by the self-adjoint operator −A∗

0A0 with domain D(A∗
0A0) := {f ∈ D(A0) :

A0f ∈ D(A∗
0)}. If the weak Poincaré inequality

(2.12) ‖f ‖2 ≤ α(r)‖A0f ‖2 + r�0(f ), r > 0, f ∈ D(A0)

holds for some decreasing α : (0,∞) → (0,∞), where �0 : H0 → [0,∞] satisfies

(2.13) �0
(
P 0

t f
) ≤ �0(f ), t ≥ 0, f ∈ D(A0),

then for all r > 0, f ∈ D(A0),

‖f ‖2 ≤
(∫ ∞

0

(
1 − e− s

α(r)
)
ν(ds)

)−1∥∥(
φν

(
A∗

0A0
))1/2

f
∥∥2 + r�(f ).

In particular, for ν(ds) = e−s ds such that φν(s) = s
1+s

, we have

‖f ‖2 ≤ (
1 + α(r)

)〈(
1 + A∗

0A0
)−1

A∗
0A0f,f

〉 + r�(f ), r > 0, f ∈ D(A0).

PROOF. Since D((A∗
0A0)

1/2) = D(A0), we have D({φν(A
∗
0A0)}1/2) ⊃

D(A0). By (2.12) and (2.13), for any f ∈ D(A0),

d

dt

∥∥P 0
t f

∥∥2 = −2
∥∥A0P

0
t f

∥∥2 ≤ − 2

α(r)

∥∥P 0
t f

∥∥2 + 2r

α(r)
�(f ), t ≥ 0, r > 0,

because P 0
t leaves D(A0) invariant. Then Gronwall’s lemma gives

(2.14)
∥∥P 0

t f
∥∥2 ≤ e− 2t

α(r) ‖f ‖2 + r�(f )
(
1 − e− 2t

α(r)
)
, r > 0, t ≥ 0.

Therefore,

‖(
φν

(
A∗

0A0
))1/2

f ‖2 =
∫ ∞

0

〈
f − P 0

s f, f
〉
ν(ds) =

∫ ∞
0

(‖f ‖2 − ‖P 0
s/2f ‖2)

ν(ds)

≥
∫ ∞

0

(‖f ‖2 − e− s
α(r) ‖f ‖2 − r�(f )

(
1 − e− s

α(r)
))

ν(ds)

= (‖f ‖2 − r�(r)
) ∫ ∞

0

(
1 − e− s

α(r)
)
ν(ds), r > 0.

This implies the desired inequality. �

In the proof of Theorem 1.1 (see Section 3 below), to verify (H3) we check the
following two inequalities:

〈BSπ2f,π1f 〉 ≤ N‖π1f ‖ · ‖π2f ‖,
〈BAπ2f,π1f 〉 ≤ N‖π1f ‖ · ‖π2f ‖, f ∈ D .

(2.15)

The first inequality is easy to check there; see Section 3, the first part in the proof
of (H3). To verify the second, we present below a sufficient condition provided in
[13], Prop. 2.15.
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PROPOSITION 2.4. Assume that the operator (−G,D) is essentially m-
dissipative (equivalently, essentially self-adjoint). If there exists constant N ∈
(0,∞) such that

(2.16)
∥∥(BA)∗g

∥∥ ≤ N‖g‖ for all g = (I + G)f,f ∈ D,

then ∣∣〈BAπ2f,π1f 〉∣∣ ≤ N‖π1f ‖ · ‖π2f ‖, f ∈ D .

2.3. Proof of Theorem 2.1.

PROOF. For any ε ∈ [0,1), let

Iε(f ) = 1

2
‖f ‖2 + ε〈Bf,f 〉, f ∈ H.

By (2.7), we have

(2.17)
1 − ε

2
‖f ‖2 ≤ Iε(f ) ≤ 1 + ε

2
‖f ‖2, f ∈ H.

Now, let f ∈ D and ft = Ptf for t ≥ 0. We have

(2.18)
d

dt
Iε(ft ) = 〈Lft , ft 〉 + ε〈BLft , ft 〉 + ε〈Bft ,Lft 〉.

By (2.5) and 〈−Lg,g〉 = 〈−Sg,g〉 for g ∈ D , we obtain

〈Lg,g〉 ≤ −‖π2g‖2

α2(r2)
+ r2�(g)

α2(r2)
, g ∈ D, r2 > 0.

Since ft ∈ D(L), combining this with (H4) and (2.3), we arrive at

(2.19) 〈Lft , ft 〉 ≤ −‖π2ft‖2

α2(r2)
+ r2�(ft )

α2(r2)
≤ −‖π2ft‖2

α2(r2)
+ r2�(f )

α2(r2)
, t, r2 > 0.

Next, applying Lemma 2.3 with H0 = H1, A0 = ((Aπ1)
∗(Aπ1))

1/2|H1 and �0 =
�|H1 such that condition (2.13) follows from (2.3), we see that (2.4) implies for
all r > 0, f ∈ D(Aπ1),

−〈(
I + (Aπ1)

∗(Aπ1)
)−1

(Aπ1)
∗Aπ1f,π1f

〉 ≤ − ‖π1f ‖2

α1(r1) + 1
+ r1�(π1f )

α1(r1) + 1
.

Since the operator (I + (Aπ1)
∗(Aπ1))

−1(Aπ1)
∗Aπ1 is bounded, D(Aπ1) ⊃ D

due to (H2), and by (H4) for any g ∈ D(L) we may find a sequence gn ∈ D
such that gn → g in H and lim supn→∞ �(gn) ≤ �(g), this inequality holds for
all g ∈ D(L). Combining this with (2.10) and (2.3), we obtain

〈BLft , ft 〉 ≤ N‖π1ft‖ · ‖π2ft‖
− 〈(

I + (Aπ1)
∗(Aπ1)

)−1
(Aπ1)

∗Aπ1ft ,π1ft

〉
≤ N‖π1ft‖ · ‖π2ft‖ − ‖π1ft‖2

α1(r1) + 1
+ r1�(f )

α1(r1) + 1
, t, r1 > 0.(2.20)
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Substituting (2.9), (2.19) and (2.20) into (2.18), we arrive at

d

dt
Iε(ft ) ≤ −

(‖π2ft‖2

α2(r2)
+ ε‖π1ft‖2

α1(r1) + 1

)
+ ε

(
N‖π1ft‖ · ‖π2ft‖ + ‖π2ft‖ · ‖ft‖)

+ �(f )

(
r2

α2(r2)
+ εr1

α1(r1) + 1

)
, t ≥ 0, f ∈ D .

Combining this with

εN‖π1ft‖ · ‖π2ft‖ ≤ ε‖π1ft‖2

2(α1(r1) + 1)
+ εN2(α1(r1) + 1)‖π2ft‖2

2
,

ε‖π2ft‖ · ‖ft‖ ≤ ‖π2ft‖2

2α2(r2)
+ ε2α2(r2)‖ft‖2

2
,

we obtain

(2.21)

d

dt
Iε(ft ) ≤ −

(
1

2α2(r2)
− εN2(α1(r1) + 1)

2

)
‖π2ft‖2 − ε‖π1ft‖2

2(α1(r1) + 1)

+ ε2α2(r2)‖ft‖2

2
+ �(f )

(
r2

α2(r2)
+ εr1

α1(r1) + 1

)
,

t ≥ 0, f ∈ D .

Taking

(2.22) ε = 1

2N2(α1(r1) + 1)α2(r2)
≤ 1

2

since N,α2 ≥ 1, we have

1

2α2(r2)
− εN2(α1(r1) + 1)

2
≥ 1

4α2(r2)
,

1

4α2(r2)
∧ ε

2(α1(r1) + 1)
≥ ε2α2(r2).

Then (2.21) implies

d

dt
Iε(ft ) ≤ − ‖ft‖2

8N4α2(r2)(α1(r1) + 1)2

+ �(f )

(
r2

α2(r2)
+ r1

2N2α2(r2)(α1(r1) + 1)2

)
.

Since ε ≤ 1
2 , by (2.17) we have ‖ft‖2 ≥ 4

3Iε(ft ), so that

d

dt
Iε(ft ) ≤ − Iε(ft )

6N4α2(r2)(α1(r1) + 1)2

+ �(f )

(
r2

α2(r2)
+ r1

2N2α2(r2)(α1(r1) + 1)2

)
.
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By Gronwall’s lemma and (2.22), we arrive at

Iε(ft ) ≤ exp
[
− t

6N4α2(r2)(α1(r1) + 1)2

]
Iε(f )

+ �(f )
(
3N2r1 + 6N4r2

(
α1(r1) + 1

)2)
.

Taking r1 = r , r2 = r
α1(r)

2 , using (2.17) for ε ∈ (0, 1
2) and that α1(r) ≥ 1, obtain

‖ft‖2 ≤ c1 exp
[
− c2t

α1(r)2α2(
r

α1(r)
2 )

]
‖f ‖2 + c1r�(f ), r > 0, f ∈ D, t ≥ 0.

Consequently, for any r > 0 such that c2t ≥ α1(r)
2α2(

r
α1(r)

2 ) log 1
r
, we have

‖ft‖2 ≤ c1r
(‖f ‖2 + �(f )

)
.

Therefore, (2.1) with ξ(t) in (2.6) holds for f ∈ D . By (H4), it holds for all f ∈
D(L). Then the proof is finished. �

3. Proof of Theorem 1.1. We first embed Pt in the framework of Section 2.
Since σ is invertible, we have σy − b = σ(y − σ−1b). So, with the shift y �→
y + σ−1b for the second variable y, in (H) we may and do take b = 0, that is,
V2(y) = �(|σy|2). Since we may move σ from the potential V2 to the symmetric
part of the generator L corresponding to the solution of (1.9) and the matrix Q as
described in Remark 1.2(2), we only have to consider the case V2(y) = �(|y|2).
Thus,

(3.1) ∇(2)V2(y) = 2�′(|y|2)
y.

Let

(3.2) μ = μ1 × μ2 where μi(dxi) := Z(Vi)
−1e−Vi(xi) dxi on R

d1, i = 1,2.

By Itô’s formula, the generator L for the solution to (1.9) has the decomposition

L = S − A,

where

S := �(2) − 〈(∇(2)V2
)
,∇(2) · 〉 = d2∑

i=1

(
∂2
yi

− (∂yi
V2)∂yi

)
,

A := 〈
Q∗(∇(1)V1

)
,∇(2) · 〉 − 〈

Q
(∇(2)V2

)
,∇(1) · 〉

=
d1∑

i=1

d2∑
j=1

Qij

(
(∂xi

V1)∂yj
− (∂yj

V2)∂xi

)
.
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Since above we moved σ from the potential V2 to the symmetric part of L and to
the matrix Q, instead of S and Q we should consider

d2∑
i,j=1

(
σσ ∗)

ij

(
∂yi

∂yj
− (∂yi

V2)∂yj

)
and Qσ ∗,

respectively. But, because σσ ∗ is a constant, symmetric, invertible matrix, without
loss of generality we may take σ equal to the identity matrix. The considerations
below easily generalize to general σ , but are easier to follow for σ being the iden-
tity matrix.

Let ∇ = (∇(1),∇(2)) be the gradient operator on R
d1+d2 , and denote

C∞
c

(
R

d1+d2
) = {

f ∈ C∞(
R

d1+d2
) : ∇f has compact support

}
.

The integration by parts formula implies that (S,C∞
c (Rd1+d2)) is symmetric and

nonpositive definite in L2(μ) while (A,C∞
c (Rd1+d2)) is antisymmetric in L2(μ).

Consequently, L∗ := L + 2A = S + A satisfies

μ(f Lg) = μ
(
gL∗f

)
, f, g ∈ C∞

c

(
R

d1+d2
)
.

Therefore, the operator (L,C∞
c (Rd1+d2)) is dissipative and, in particular, closable

in L2(μ). Let (L,D(L)) denote the closure. For our analysis, however, we need
more than closability. We need that the closure (L,D(L)) is m-dissipative, that is,
the operator (L,D(L)) is dissipative and the operator (I − L) : D(L) → L2(μ)

is surjective. This is implied by (L,C∞
c (Rd1+d2)) being essentially m-dissipative,

that is, (L,C∞
c (Rd1+d2)) is dissipative and the set (I −L)(C∞

c (Rd1+d2)) ⊂ L2(μ)

is dense. For a densely defined operator being m-dissipative is equivalent to be the
generator of a C0-contraction semigroup. Essential m-dissipativity is a uniqueness
result. It implies that the generator of the semigroup is uniquely determined on
a given dense set of nice functions. This is of crucial importance for the present
approach, because the conditions of Theorem 2.1 usually can only be checked
on nice functions. Essential m-dissipativity is also a useful tool to related a C0-
contraction semigroup uniquely to the solution of an SDE. This, and moreover the
first assertion of Theorem 1.1, we show in the following proposition.

PROPOSITION 3.1. Under assumption (H), (L,C∞
c (Rd1+d2)) is essentially

m-dissipative in L2(μ), and the C0-contraction semigroup Tt generated by the
closure coincides with Pt in L2(μ). Consequently, the solution to (1.9) is nonex-
plosive and μ is an invariant probability measure of Pt .

PROOF. In [12], Theorem 2.9, under even weaker assumptions as in (H), es-
sential m-dissipativity of (L,C∞

c (Rd1+d2)) in L2(μ) is shown. In the proof con-
dition (1.10) for i = 2 is used. Hence, the closure (L,D(L)) generates a C0-
contraction semigroup Tt . Then μ(Lf ) = 0 for f ∈ D(L) implies that

∂tμ(Ttf ) = μ(LTtf ) = 0, t ≥ 0, f ∈ D(L),
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so that μ is an invariant probability measure of Tt . On the other hand, accord-
ing to [3], Theorem 1.1 and Proposition 1.4 (see also [5], Theorem 3.17 and Re-
mark 3.18), for μ-a.e. starting point z = (x, y) ∈ R

d1+d2 there is a law P
z on the

space of Rd1+d2 -valued continuous functions such that (Xt , Yt )t≥0 is a weak so-
lution to (1.9) and for any distribution ν(dz) = ρ(z)μ(dz) with a probability den-
sity ρ,

μ(ρTtf ) =
∫
Rd1+d2

E
z[f (Xt , Yt )

]
ν(dz), t ≥ 0, f ∈ Bb

(
R

d1+d2
)
.

By the uniqueness of the SDE (1.9), we have for μ-a.e. z ∈ R
d1+d2

Ptf (x, y) = E
z[f (Xt , Yt )

]
, t ≥ 0, f ∈ Bb

(
R

d1+d2
)
.

Therefore, μ(ρPtf ) = μ(ρTtf ) holds for any ρ ∈ L1(μ), t ≥ 0 and f ∈
Bb(R

d1+d2), and hence, Pt is a μ-version of Tt . Consequently, μ is an invari-
ant probability measure of Pt . Since Pt1 ≤ 1, this implies that Pt1 = 1, μ-a.e.
Since the coefficients of the SDE is at least C1-smooth, the semigroup Pt is Feller
so that Pt1 is continuous. Therefore, Pt1(z) = 1 holds for all z ∈ R

d1+d2 , that is,
the solution to (1.9) is nonexplosive. �

Now, to prove the second assertion in Theorem 1.1 using Theorem 2.1, we take

H= {
f ∈ L2(μ) : μ(f ) = 0

}
, H1 = {

f ∈ H : f (x, y) is independent of y
}
.

Then

(3.3) (π1f )(x, y) = π1f (x) :=
∫
Rd2

f (x, y)μ2(dy), f ∈H.

Let

D =H∩ C∞
c

(
R

d1+d2
) = {

f ∈ C∞
c

(
R

d1+d2
) : μ(f ) = 0

}
.

Let (L,D(L)), (S,D(S)) and (A,D(A)) be the closures in H of (L,D), (S,D)

and (A,D), respectively. Since the closure of (L,C∞
c (Rd1+d2)) in L2(μ) gener-

ates a strongly continuous contraction semigroup (see Proposition 3.1), we have
L2(μ) = R(L) ⊕ N (L); see [11], Theorem 8.20. Hence, because the constant
functions are in N (L), the operator (L,D) is essentially m-dissipative in H.

We verify assumptions (H1)–(H4) as follows.

PROOF OF (H1). Let f ∈ H. Then π1f ∈ L2(μ1) with μ1(π1f ) = 0.
Let {gn}n≥0 ⊂ C∞

c (Rd1) such that μ1(gn) = 0 and μ1(|gn − π1f |2) → 0. Let
g̃n(x, y) = gn(x). Then g̃n ∈ D , μ(|g̃n − π1f |2) = μ1(|gn − π1f |2) → 0 and

lim
n,m→∞μ

(|g̃n − g̃m|2 + |Sg̃n − Sg̃m|2) = lim
n,m→∞μ

(|g̃n − g̃m|2) = 0.

Thus, {g̃n}n≥1 is a Cauchy sequence in D(S) with Sgn = 0, and converges to π1f

in L2(μ). Therefore, π1f ∈ D(S) and Sπ1f = 0 since the operator is closed. �
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PROOF OF (H2). For any f ∈ D , we have π1f ∈ D depending only on the
first component. So, π1D ⊂ D ⊂ D(A). Since (π1f )(x, y) = π1f (x) only de-
pends on x, by the definitions of A and π1, we have

−(π1Aπ1)f (x, y) =
∫
Rd2

〈
Q∇(2)V2

(
y′),∇(1)π1f (x)

〉
μ2

(
dy′)

= 〈
μ2

(
Q∇(2)V2

)
,∇(1)π1f (x)

〉 = 0,

where the last step is due to V2(y) = �(|y|2) and |∇V2| ∈ L1(μ2) according to
(H). Then (H2) holds. �

PROOF OF (H3). It suffices to prove (2.15). For the first inequality, we only
need to find out a bounded measurable function K such that

(3.4) SAπ1f = KAπ1f, f ∈ D,

since this implies

BS = (
I + (Aπ1)

∗Aπ1
)−1

(Aπ1)
∗S = (

I + (Aπ1)
∗Aπ1

)−1
(SAπ1)

∗

= (
I + (Aπ1)

∗Aπ1
)−1

(KAπ1)
∗ = BK,

so that by ‖B‖ ≤ 1 we have∣∣〈BSπ2f,π1f 〉∣∣ = ∣∣〈BKπ2f,π1f 〉∣∣ ≤ ‖K‖∞‖π2f ‖ · ‖π1f ‖.
Now for any f ∈ D , (3.1) implies

(SAπ1f )(x, y) = S
〈
Q∇(2)V2,∇(1)π1f

〉
(x, y)

= (
�(2) − 〈∇(2)V2,∇(2)·〉) d1∑

i=1

(
2�′(|y|2)

(Qy)i∂xi
π1f (x)

)

= 2
d1∑

i=1

(
�′′(|y|2)(

2d2 − 4�′(|y|2)|y|2 + 4
)

− 2�′(|y|2)2 + 4�′′′(|y|2)|y|2)
(Qy)i∂xi

π1f (x)

= 2H
(|y|2)〈

Q∇(2)V2(y),∇(1)π1f (x)
〉 = 2H

(|y|2)
(Aπ1f )(x, y),

where

H(r) := 2r�′′′(r) + (d2 + 2)�′′(r)
�′(r)

− �′(r) − 2r�′′(r), r > 0,

is bounded according to (H). Then (3.4) holds for some bounded function K .
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To prove the second inequality in (2.15), we consider the operator G :=
−π1A

2π1 = (Aπ1)
∗Aπ1 on D . By the definitions of A and π1, we have

(Gf )(x, y) = (Gf )(x)

=
∫
Rd2

−Hessπ1f

(
Q∇(2)V2

(
y′),Q∇(2)V2

(
y′))(x)

× HessV2

(
Q∗∇(1)V1(x),Q∗∇(1)π1f (x)

)(
y′)μ2

(
dy′).(3.5)

Then (3.1) implies∫
Rd2

Hessπ1f

(
Q∇(2)V2(y),Q∇(2)V2(y)

)
(x)μ2(dy)

= 4
d1∑

i,j=1

∫
Rd2

(∂xi
∂xj

π1f )(x)�′(|y|2)2
(Qy)i(Qy)jμ2(dy)

= 4
d1∑

i,j=1

d2∑
k=1

∫
Rd2

(∂xi
∂xj

π1f )(x)�′(|y|2)2
QikQiky

2
kμ2(dy)

= 4

d2

d1∑
i,j=1

∫
Rd2

(
QQ∗)

ij (∂xi
∂xj

π1f )(x)�′(|y|2)2|y|2μ2(dy)

= μ2(|∇V2|2)
d2

d1∑
i,j=1

(
QQ∗)

ij (∂xi
∂xj

π1f )(x).

Similarly,∫
Rd2

HessV2

(
Q∗∇(1)V1(x),Q∗∇(1)π1f (x)

)
(y)μ2(dy)

= 〈
Q∗∇(1)V1(x),Q∗∇(1)π1f (x)

〉 ∫
Rd2

2�′(|y|2) + 4�′′(|y|2)|y|2
d2

μ2(dy)

= 〈Q∗∇(1)V1(x),Q∗∇(1)π1f (x)〉
d2

∫
Rd2

�(2)V2(y)μ2(dy)

= μ2(|∇(2)V2|2)
d2

〈
Q∗∇(1)V1(x),Q∗∇(1)π1f (x)

〉
.

Therefore, letting N(V2) = μ2(|∇(2)V2|2)
d2

which is a positive constant according to
(H), we obtain

(Gf )(x, y) = (Gf )(x)

= −N(V2)

d1∑
i,j=1

(
QQ∗)

ij

(
∂xi

∂xj
− (∂xj

V1)(x)∂xi

)
π1f (x).(3.6)

This enables us to provide the following assertion.
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LEMMA 3.2. (I + G)(D) is dense in H, so that (−G,D) is essentially m-
dissipative (equivalently, essentially self-adjoint) on H.

PROOF. First recall that for densely defined, symmetric and dissipative lin-
ear operators on a Hilbert space, the property of being essential m-dissipative is
equivalent to essential self-adjointness. Consider the operator (T ,C∞

c (Rd1)) on
the Hilbert space L2(μ1) defined by

(3.7) T :=
d1∑

i,j=1

(
QQ∗)

ij

{
∂xi

∂xj
− (∂xj

V1)(x)∂xi

}
.

Using integration by parts formula, we have

〈T h,g〉L2(μ1)
= −μ1

(〈
QQ∗∇(1)h,∇(1)g

〉)
, f ∈ C∞

c

(
R

d1
)
, g ∈ C∞(

R
d1

)
.

By [4], Theorem 7, or [22], Theorem 3.1, our assumptions in (H) imply that
(T ,C∞

c (Rd1)) is essentially self-adjoint (hence, essentially m-dissipative) on
L2(μ1). Therefore, L2(μ1) = R(T ) ⊕N (T ). By (1.12) the null space N (T ) con-
sists of the constant functions only. Hence, (T ,C∞

c (Rd1)) restricted to H1 = {g ∈
L2(μ1) : μ1(g) = 0} is also essentially self-adjoint. Thus, (I + G)(D) is dense in
H, because H =H1 ⊕H2 and G acts trivial on H2. �

Now we continue to prove the second inequality in (2.15). Let f ∈ D and g =
(I + G)f . As in (3.5), by the definitions of A and π1 we have(

A2π1f
)
(x, y) = Hessπ1f

(
Q∇(2)V2

(
y′),Q∇(2)V2(y)

)
(x)

− HessV2

(
Q∗∇(1)V1(x),Q∗∇(1)π1f (x)

)
(y),

so

(3.8)

∥∥A2π1f
∥∥ ≤ ∥∥Q∇(2)V2

∥∥2
L4(μ2)

∥∥(∇(1))2
π1f

∥∥
L2(μ1)

+ ∥∥(∇(2))2
V2

∥∥
L2(μ2)

∥∥∣∣Q∗∇(1)V1
∣∣ · ∣∣Q∗∇(1)π1f

∣∣∥∥
L2(μ1)

.

Due to (3.6) and (3.7), we see that π1f solves the elliptic equation

π1f − N(V2)T π1f = π1g in L2(μ1).

By applying the elliptic a priori estimates from [8], (2.2) and Lemma 8 (or see
[13], Section 5.1, for corresponding proofs including domain issues) to the right-
hand side of (3.8) we conclude

(3.9)
∥∥(BA)∗g

∥∥
L2(μ) ≤ c‖π1g‖L2(μ1)

≤ c‖g‖L2(μ)

for some constant c ∈ (0,∞) only depending on V1 and V2. According to Proposi-
tion 2.4 and Lemma 3.2, this implies the second inequality in (2.15). In conclusion,
assumption (H3) holds. �
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PROOF OF (H4). Let f ∈ D(L). Since μ(f ) = 0, we have

γ1 := essμ inff ≤ 0, γ2 := essμ supf ≥ 0.

Since D is a core of (L,D(L)), we may take {gn}n≥1 ⊂ D such that gn → f and
Lgn → Lf in L2(μ). To control ‖gn‖osc, for any n ≥ 1, we take hn ∈ C∞(R) such
that 0 ≤ h′

n ≤ 1 and

hn(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r for r ∈ [γ1, γ2],
γ1 − 1

2n
for r ≤ γ1 − 1

n
,

γ2 + 1

2n
for r ≤ γ2 + 1

n
.

Then fn := hn(gn) → f in L2(μ),

lim sup
n→∞

〈−Lfn,fn〉 = lim sup
n→∞

μ
(
h′

n(gn)
2∣∣∇(2)gn

∣∣2)
≤ lim sup

n→∞
μ

(∣∣∇(2)gn

∣∣2) = lim sup
n→∞

〈−Lgn,gn〉 = 〈−Lf,f 〉
and

lim sup
n→∞

‖fn‖osc ≤ lim sup
n→∞

(
γ2 − γ1 + 1

n

)
= γ2 − γ1 = ‖f ‖osc.

Therefore, we have verified assumption (H4). �

PROOF OF THEOREM 1.1. It remains to prove (1.8) for ξ in (1.13). Let
�(f ) = ‖f ‖2

osc. The condition (2.3) is obvious by the definition of π1 and the
L∞(μ)-contraction of the Markov semigroups Pt and e−tG. Since we have verified
assumptions (H1)–(H4), by Theorem 2.1 it suffices to prove the weak Poincaré
inequalities

‖π1f ‖2 ≤ cα1(r)‖Aπ1f ‖2 + r�(π1f ), r > 0, f ∈ D(Aπ1),(3.10)

‖π2f ‖2 ≤ cα2(r)〈Sf,f 〉 + r�(f ), r > 0, f ∈ D,(3.11)

for some constant c ∈ (0,∞).
Recall that for any f ∈ D we have

(π1f )(x, y) =
∫
Rd2

f (x, y)μ2(dy).

By V2(y) = �(|y|2), we obtain

‖Aπ1f ‖2 =
∫
Rd1+d2

〈
Q∇(2)V2(y),∇(1)π1f (x)

〉2
μ(dx,dy)

= 4

Z(V2)

d1∑
i,j=1

∫
Rd1

(
∂xi

π1f (x)
)(

∂xj
π1f (x)

)
μ1(dx)
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×
∫
Rd2

�′(|y|2)2
(Qy)i(Qy)j e−�(|y|2) dy

= 4

Z(V2)

d1∑
i,j=1

d2∑
k=1

QikQjk

∫
Rd1

(
∂xi

π1f (x)
)(

∂xj
π1f (x)

)
μ1(dx)

×
∫
Rd2

�′(|y|2)
y2
kμ2(dy)

= 4
∫
Rd |y|2�′(|y|2)2μ2(dy)

Z(V2)d2
μ1

(|Q∗∇(1)π1f |2)
.

Since QQ∗ is invertible, 0 < Z(V2) < ∞, and

0 < 4
∫
Rd2

|y|2�′(|y|2)
μ2(dy) = μ2

(∣∣∇(2)V2
∣∣2)

< ∞
by (H), this implies

(3.12)
1

c
μ1

(∣∣∇(1)π1f
∣∣2) ≤ ‖Aπ1f ‖2 ≤ cμ1

(∣∣∇(1)π1f
∣∣2)

, f ∈ D

for some constant 1 < c < ∞. So, f ∈ D(Aπ1) implies that π1f ∈ H 1,2(μ1),
the completion of C∞

c (Rd1) with respect to the corresponding Sobolev norm

‖g‖1,2 :=
√

μ1(g2 + |∇(1)g|2). Combining this with inequality (1.12) for i = 1,

which naturally extends to f ∈ H 1,2(μ1), we prove (3.10).
Next, for the above f and x ∈ R

d , we have f̂x := f (x, ·) − π1f (x) ∈ C∞
c (Rd),

μ2(f̂x) = 0 and ‖f̂x‖osc ≤ ‖f ‖osc. Then (1.12) for i = 2 implies

μ2
(|f̂x |2) ≤ α2(r)μ2

(∣∣∇(2)f (x, ·)∣∣2) + r‖f ‖2
osc, r > 0.

Combining this with∫
Rd1

μ2
(|f̂x |2)

μ1(dx) = ‖f − π1f ‖2 = ‖π2f ‖2,

∫
Rd1

μ2
(∣∣∇(2)f (x, ·)∣∣2)

μ1(dx) =
∫
Rd1+d2

∣∣∇(2)f
∣∣2(x, y)μ(dx,dy) = −〈Lf,f 〉,

we prove (3.11) for c = 1. �

To prove Example 1.3, we need the following lemma, where the first assertion
follows from [17], Theorem 3.1, and Remark (1) after, and the others are taken
from [17], Example 1.4, and its proof.

LEMMA 3.3. Let μV (dx) = e−V (x) dx be a probability measure on R
d . Then

the weak Poincaré inequality

(3.13) VarμV
(f ) ≤ rαV (r)μV

(|∇f |2) + r‖f ‖2
osc, r > 0, f ∈ C1

b

(
R

d)
holds for some decreasing αV : (0,∞) → [0,∞). In particular:
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(1) If V (x) ∼ k|x|δ or V (x) ∼ k(1 + |x|2) δ
2 for some constants k, δ > 0, then

(3.13) holds with

αV (r) = c
(
log

(
1 + r−1)) 4(1−δ)+

δ

for some constant c > 0.
(2) If V (x) ∼ d+p

2 log(1 + |x|2) for some constant p > 0, then (3.13) holds
with

αV (r) = cr−θ(p)

for some constant c > 0 and θ(p) := min(
p+d+2

p
,

4p+4+2d

(p2−4−2d−2p)+ ).

(3) If V (x) ∼ d
2 log(1 + |x|2) + p log log(e + |x|2) for some constant p > 1,

then (3.13) holds with

αV (r) = c1ec2r
− 1

p−1

for some constant c1, c2 > 0.

PROOF OF EXAMPLE 1.3. We only consider case (A) and the assertions in the
other two cases can be verified in the same way.

By Lemma 3.3, (2.4) holds for

(3.14) α1(r) = c
(
log

(
e + r−1)) 4(1−δ)+

δ

for some constant c > 0. Moreover, for case (A1), (2.5) holds for

α2(r) = c′(log
(
e + r−1)) 4(1−ε)+

ε .

Then for a constant c2 > 0 there exist constants κ1, κ2 > 0 such that the inequality

(3.15) c2t ≥ α1(r)
2α2

(
r

α1(r)2

)
log

1

r

implies

r ≤ κ1 exp
(−κ2t

δε

δε+8ε(1−δ)++4δ(1−ε)+ )
.

Therefore, the desired assertion follows from (1.13).
For case (A2), we may take

α2(r) = c′r−θ(p)

for some constant c′ > 0. Then for a constant c2 > 0, there exist constants κ > 0
such that inequality (3.15) implies

r ≤ κt
− 1

θ(p)
(
log(e + t)

) 8(θ(p)+1)(1−δ)++δ
θ(p)δ ,

so that the desired assertion follows from (1.13).
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Finally, for case (A3) we may take

α2(r) = c′ exp
(
c′′r− 1

p−1
)

for some constants c′, c′′ > 0. Then for a constant c2 > 0, there exist constants
κ > 0 such that inequality (3.15) implies

r ≤ κ
(
log(e + t)

)−(p−1) · (
log log

(
e2 + t

)) 8(1−δ)+
δ ,

so that the desired assertion follows from (1.13). �
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