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SAMPLE PATH LARGE DEVIATIONS FOR LÉVY PROCESSES
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Let X be a Lévy process with regularly varying Lévy measure ν. We ob-
tain sample-path large deviations for scaled processes X̄n(t) � X(nt)/n and
obtain a similar result for random walks with regularly varying increments.
Our results yield detailed asymptotic estimates in scenarios where multiple
big jumps in the increment are required to make a rare event happen; we illus-
trate this through detailed conditional limit theorems. In addition, we investi-
gate connections with the classical large deviations framework. In that setting,
we show that a weak large deviation principle (with logarithmic speed) holds,
but a full large deviation principle does not hold.
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1. Introduction. In this paper, we develop sample-path large deviations for
one-dimensional Lévy processes and random walks, assuming the jump sizes are
heavy-tailed. Specifically, let X(t), t ≥ 0, be a centered Lévy process with regu-
larly varying Lévy measure ν. Assume that P(X(1) > x) is regularly varying with
index −α, and that P(X(1) < −x) is regularly varying with index −β , that is,
there exist slowly varying functions L+ and L− such that

(1.1) P
(
X(1) > x

)=L+(x)x−α, P
(
X(1) <−x

)= L−(x)x−β.

Throughout the paper, we assume α,β > 1. We also consider spectrally one-sided
processes; in that case only α plays a role. Define X̄n = {X̄n(t), t ∈ [0,1]}, with
X̄n(t)=X(nt)/n, t ≥ 0. We are interested in large deviations of X̄n.

This topic fits well in a branch of limit theory that has a long history, has intimate
connections to point processes and extreme value theory, and is still a subject of
intense activity. The investigation of tail estimates of the one-dimensional distribu-
tions of X̄n (or random walks with heavy-tailed step size distribution) was initiated
in Nagaev (1969, 1977). The state of the art of such results is well summarized in
Borovkov and Borovkov (2008), Denisov, Dieker and Shneer (2008), Embrechts,
Klüppelberg and Mikosch (1997), Foss, Korshunov and Zachary (2011). In par-
ticular, Denisov, Dieker and Shneer (2008) describe in detail how fast x needs to
grow with n for the asymptotic relation

(1.2) P
(
X(n) > x

)= nP
(
X(1) > x

)(
1 + o(1)

)
to hold, as n →∞, in settings that go beyond (1.1). If (1.2) is valid, the so-called
principle of one big jump is said to hold. A functional version of this insight
has been derived in Hult et al. (2005). A significant number of studies investi-
gate the question of if and how the principle of a single big jump is affected by
the impact of (various forms of) dependence, and cover stable processes, autore-
gressive processes, modulated processes and stochastic differential equations; see
Buraczewski et al. (2013), Foss, Konstantopoulos and Zachary (2007), Hult and
Lindskog (2007), Konstantinides and Mikosch (2005), Mikosch and Samorodnit-
sky (2000), Mikosch and Wintenberger (2013, 2016), Samorodnitsky (2004).

The problem we investigate in this paper is markedly different from all of these
works. Our aim is to develop asymptotic estimates of P(X̄n ∈A) for a sufficiently
general collection of sets A, so that it is possible to study continuous functionals
of X̄n in a systematic manner. For many such functionals, and many sets A, the
associated rare event will not be caused by a single big jump, but multiple jumps.
The results in this domain (e.g., Blanchet and Shi (2012), Foss and Korshunov
(2012), Zwart, Borst and Mandjes (2004)) are few, each with an ad hoc approach.
As in large deviations theory for light tails, it is desirable to have more general
tools available.

Another aspect of heavy-tailed large deviations we aim to clarify in this paper
is the connection with the standard large-deviations approach, which has not been
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touched upon in any of the above-mentioned references. In our setting, the goal
would be to obtain a function I such that

− inf
ξ∈A◦ I (ξ)≤ lim inf

n→∞
log P(X̄n ∈A)

logn

≤ lim sup
n→∞

log P(X̄n ∈A)

logn
≤− inf

ξ∈Ā
I (ξ),

(1.3)

where A◦ and Ā are the interior and closure of A; all of our large deviations
results are derived in the Skorokhod space D = D([0,1],R)—the space of real-
valued RCLL functions on [0,1]—and w.r.t. Skorokhod J1 topology. Equation
(1.3) is a classical large deviations principle (LDP) with speed logn (cf. Dembo
and Zeitouni (2010)). Using existing results in the literature (e.g., Denisov, Dieker
and Shneer (2008)), it is not difficult to show that X(n)/n = X̄n(1) satisfies an
LDP with rate function I1 = I1(x) which is 0 at 0, equal to (α − 1) if x > 0, and
(β − 1) if x < 0. This is a lower-semicontinuous function whose level sets are not
compact. Thus, in large-deviations terminology, I1 is a rate function, but is not a
good one. This implies that techniques such as the projective limit approach cannot
be applied. In fact, in Section 4.4, we show that there does not exist an LDP of the
form (1.3) for general sets A, by giving a counterexample. A version of (1.3) for
compact sets is derived in Section 4.3, as a corollary of our main results. A result
similar to (1.3) for random walks with semiexponential (Weibullian) tails has been
derived in Gantert (1998) (see also Gantert (2000), Gantert, Ramanan and Rembart
(2014) for related results). Though an LDP for finite-dimensional distributions can
be derived, lack of exponential tightness also persists at the sample-path level. To
make the rate function good (i.e., to have compact level sets), a topology chosen in
Gantert (1998) is considerably weaker than any of the Skorokhod topologies (but
sufficient for the application that is central in that work).

The approach followed in the present paper is based on recent developments
in the theory of regular variation. In particular, in Lindskog, Resnick and Roy
(2014), the classical notion of regular variation is redefined through a new con-
vergence concept called M-convergence (this is in itself a refinement of other re-
formulations of regular variation in function spaces; see de Haan and Lin (2001),
Mikosch and Wintenberger (2005, 2006)). In Section 2, we further investigate the
M-convergence framework by deriving a number of general results that facilitate
the development of our proofs.

This paves the way toward our main large deviations results, which are pre-
sented in Section 3. We actually obtain estimates that are sharper than (1.3), though
we impose a condition on A. For one-sided Lévy processes with Lévy measure ν,
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our result takes the form

CJ (A)

(
A◦)≤ lim inf

n→∞
P(X̄n ∈A)

(nν[n,∞))J (A)

≤ lim sup
n→∞

P(X̄n ∈A)

(nν[n,∞))J (A)
≤ CJ (A)(Ā).

(1.4)

Precise definitions can be found in Section 3.1; for now we just mention that Cj

is a measure on the Skorokhod space, and J (·) is an integer-valued set function
acting on D defined as J (A) = inf

ξ∈A∩D↑
s
D+(ξ), where D+(ξ) is the number of

discontinuities of ξ , and D
↑
s is the set of all nonincreasing step functions vanishing

at the origin. Throughout the paper, we adopt the convention that the infimum over
an empty set is ∞. Letting Dj and D<j be the sets of step functions vanishing at
the origin with precisely j and at most j − 1 steps, respectively, we note that the
measure Cj , defined on D \D<j has its support on Dj . A crucial assumption for
(1.4) to hold is that the Skorokhod J1 distance between the sets A and D<J (A)

is strictly positive. For A such that J (A) = 1, this result corresponds to the one
shown in Hult et al. (2005). (Note that Hult et al. (2005) deals with multivariate
regular variation whereas we focus on one-dimensional regular variation in this
paper.) The interpretation of the “rate function” J (A) is that it provides the number
of jumps in the Lévy process that are necessary to make the event A happen. This
can be seen as an extension of the principle of a single big jump to multiple jumps.
A rigorous statement on when (1.4) holds can be found in Theorem 3.2, which is
the first main result of the paper.

The result that comes closest to (1.4) is Theorem 5.1 in Lindskog, Resnick and
Roy (2014) which considers the M-convergence of ν[n,∞)−jP(X/n ∈ A). This
result could be used as a starting point to investigate rare events that happen on
a timescale of O(1). However, in the large-deviations scaling we consider, rare
events happen on a timescale of O(n). Controlling the Lévy process on this larger
timescale requires more delicate estimates, eventually leading to an additional fac-
tor nj in the asymptotic results. We further show that the choice j = J (A) is
the only choice that leads to a nontrivial limit. One useful notion that we de-
velop and rely on in our setting is a form of asymptotic equivalence, which can
best be compared with exponential equivalence in classical large deviations the-
ory.

In Section 3.2, we present sample-path large deviations for two-sided Lévy pro-
cesses. Our main results in this case are Theorems 3.3–3.5. In the two-sided case,
determining the most likely path requires resolving significant combinatorial is-
sues which do not appear in the one-sided case. The polynomial rate of decay for
P(X̄n ∈A), which was described by the function J (A) in the one-sided case, has a
more complicated description: the corresponding polynomial rate in the two-sided
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case is

(1.5) inf
ξ,ζ∈D↑

s ;ξ−ζ∈A

(α − 1)D+(ξ)+ (β − 1)D+(ζ ).

Note that this is a result that one could expect from the result for one-sided Lévy
processes and a heuristic application of the contraction principle. A rigorous treat-
ment of the two-sided case requires a more delicate argument compared to the
one-sided case: in the one-sided case, the argument simplifies since if one takes j

largest jumps away from X̄n, then the probability that the residual process is of sig-
nificant size is o((nν[n,∞))j ) so that it does not contribute in (1.4), while in two-
sided case, taking j largest upward jumps and k largest downward jumps from X̄n

does not guarantee that the residual process remains small with high enough prob-
ability, that is, the probability that the residual process is of significant size cannot
be bounded by o((nν[n,∞))j (nν(−∞,−n])k). In addition, it may be the case that
multiple pairs (j, k) of jumps lead to optimal solutions of (1.5). To overcome such
difficulties, we first develop general tools—Lemma 2.2 and 2.3—that establish a
suitable notion of M-convergence on product spaces. Using these results, we prove
in Theorem 5.1 the suitable M-convergence for multiple Lévy processes in the as-
sociated product space. Viewing the two-sided Lévy process as a superposition
of one-sided Lévy processes, we then apply the continuous mapping principle for
M-convergence to Theorem 5.1 to establish our main results. Although no further
implications are discussed in this paper, we believe that Theorem 5.1 itself is of
independent interest as well because it can be applied to generate large deviations
results for a general class of functionals of multiple Lévy processes.

We derive analogous results for random walks in Section 4.1. Random walks
cannot be decomposed into independent components with small jumps and large
jumps as easily as Lévy processes, making the analysis of random walks more
technical if done directly. However, it is possible to follow an indirect approach.
Given a random walk Sk, k ≥ 0, one can study a subordinated version SN(t), t ≥
0 with N(t), t ≥ 0 an independent unit rate Poisson process. The Skorokhod J1
distance between the scaled versions of Sk, k ≥ 0 and SN(t), t ≥ 0 can then be
bounded essentially in terms of the deviations of N(t) from t , which have been
studied thoroughly.

In Section 4.2, we provide conditional limit theorems which give a precise de-
scription of the limit behavior of X̄n given that X̄n ∈A as n→∞. An early result
of this type is given in Durrett (1980), which focuses on regularly varying ran-
dom walks with finite variance conditioned on the event A = {X̄n(1) > a}. Using
the recent results that we have discussed (e.g., Hult et al. (2005)), more general
conditional limit theorems can be derived for single-jump events.

We prove an LDP of the form (1.3) in Section 4.3, where the upper bound re-
quires a compactness assumption. We construct a counterexample showing that
the compactness assumption cannot be totally removed, and thus, a full LDP does
not hold. Essentially, if a rare event is caused by j big jumps, then the framework
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developed in this paper applies if each of these jumps is bounded away from below
by a strictly positive constant. Our counterexample in Section 4.4 indicates that it
is not trivial to remove this condition.

As one may expect, it is not possible to apply classical variational methods to
derive an expression for the exponent J (A), as is often the case in large deviations
for light tails. Nevertheless, there seems to be a generic connection with a class of
control problems called impulse control problems. Equation (1.5) is a specific de-
terministic impulse-control problem, which is related to Barles (1985). We expect
that techniques similar to those in Barles (1985) will be useful in characterizing
the optimal solutions for problems like (1.5). The latter challenge is not taken up
in the present study and will be addressed elsewhere. Instead, in Section 6 of the
extended version of the current paper (Rhee, Blanchet and Zwart (2016)) available
online, we analyze (1.5) directly in several examples; see also Chen et al. (2018).
In each case, a condition needs to be checked to see whether our framework is
applicable. We provide a general result that essentially states that we only need
to verify this condition for step functions in A, which makes this check rather
straightforward.

In summary, this paper is organized as follows. After developing some prelim-
inary results in Section 2, we present our main results in Section 3. Applications
to random walks and connections with classical large deviations theory are inves-
tigated in Section 4. Section 5 is devoted to proofs. We collect some useful bounds
in the Appendix.

2. M-convergence. This section reviews and develops general concepts and
tools that are useful in deriving our large deviations results. The proofs of the lem-
mas and corollaries stated throughout this section are provided in Section 5.1. We
start with briefly reviewing the notion of M-convergence, introduced in Lindskog,
Resnick and Roy (2014).

Let (S, d) be a complete separable metric space, and S be the Borel σ -algebra
on S. Given a closed subset C of S, let S\C be equipped with the relative topology
as a subspace of S, and consider the associated sub σ -algebra SS\C � {A : A ⊆
S \C,A ∈S } on it. Define Cr � {x ∈ S : d(x,C) < r} for r > 0, and let M(S \C)

be the class of measures defined on SS\C whose restrictions to S \Cr are finite for
all r > 0. Topologize M(S \C) with a sub-basis {{ν ∈M(S \C) : ν(f ) ∈G}: f ∈
CS\C, G open in R+} where CS\C is the set of real-valued, nonnegative, bounded,
continuous functions whose support is bounded away from C (i.e., f (Cr ) = {0}
for some r > 0). A sequence of measures μn ∈M(S \C) converges to μ ∈M(S \
C) if μn(f ) → μ(f ) for each f ∈ CS\C. Note that this notion of convergence in
M(S \ C) coincides with the classical notion of weak convergence of measures
(Billingsley (1968)) if C is an empty set. We say that a set A⊆ S is bounded away
from another set B ⊆ S if infx∈A,y∈B d(x, y) > 0. An important characterization
of M(S \C)-convergence is as follows.
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THEOREM 2.1 (Theorem 2.1 of Lindskog, Resnick and Roy (2014)). Let
μ,μn ∈M(S \C). Then μn → μ in M(S \C) as n→∞ if and only if

(2.1) lim sup
n→∞

μn(F )≤ μ(F)

for all closed F ∈SS\C bounded away from C and

(2.2) lim inf
n→∞ μn(G)≥ μ(G)

for all open G ∈SS\C bounded away from C.

We now introduce a new notion of equivalence between two families of random
objects, which will prove to be useful in Section 3.1 and Section 4.1. Let Fδ �
{x ∈ S : d(x,F ) ≤ δ} and G−δ � ((Gc)δ)

c. (Compare these notation to Cr ; note
that we are using the convention that superscript implies open sets and subscript
implies closed sets.)

DEFINITION 1. Suppose that Xn and Yn are random elements taking values
in a complete separable metric space (S, d), and εn is a sequence of positive real
numbers. Yn is said to be asymptotically equivalent to Xn with respect to εn if for
each δ > 0,

lim sup
n→∞

ε−1
n P

(
d(Xn,Yn)≥ δ

)= 0.

The usefulness of this notion of equivalence comes from the following lemma,
which states that if Yn is asymptotically equivalent to Xn, and Xn satisfies a limit
theorem, then Yn satisfies the same limit theorem. Moreover, it also allows one to
extend the lower and upper bounds to more general sets in case there are asymp-
totically equivalent distributions that are supported on a subspace S0 of S:

LEMMA 2.1. Suppose that ε−1
n P(Xn ∈ ·) → μ(·) in M(S \ C) for some se-

quence εn and a closed set C. In addition, suppose that μ(S \ S0) = 0 and
P(Xn ∈ S0) = 1 for each n. If Yn is asymptotically equivalent to Xn with respect
to εn, then

lim inf
n→∞ ε−1

n P(Yn ∈G)≥ μ(G)

if G is open and G∩ S0 is bounded away from C;

lim sup
n→∞

ε−1
n P(Yn ∈ F)≤ μ(F)

if F is closed and there is a δ > 0 such that Fδ ∩ S0 is bounded away from C.

This lemma is particularly useful when we work in Skorokhod space, and S0 is
the class of step functions. Taking S0 = S, a simpler version of Lemma 2.1 follows
immediately.
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COROLLARY 2.1. Suppose that ε−1
n P(Xn ∈ ·) → μ(·) in M(S \C) for some

sequence εn. If Yn is asymptotically equivalent to Xn with respect to εn, then
the law of Yn has the same (normalized) limit, that is, ε−1

n P(Yn ∈ ·) → μ(·) in
M(S \C).

Next, we discuss the M-convergence in a product space as a result of the M-
convergences on each space.

LEMMA 2.2. Suppose that S1, . . . ,Sd are separable metric spaces, C1, . . . ,

Cd are closed subsets of S1, . . . ,Sd , respectively. If μ
(i)
n (·)→ μ(i)(·) in M(Si \Ci )

for each i = 1, . . . , d , then

(2.3) μ(1)
n × · · · ×μ(d)

n (·)→ μ(1) × · · · ×μ(d)(·)
in M((

∏d
i=1 Si ) \⋃d

i=1((
∏i−1

j=1 Sj )×Ci × (
∏d

j=i+1 Sj ))).

It should be noted that Lemma 2.2 itself is not exactly “right” in the sense that
the set we take away is unnecessarily large, and hence, has limited applicability.
More specifically, the M-convergence in (2.3) applies only to the sets that are con-
tained in a “rectangular” domain

∏d
i=1(Si \Ci ). Our next observation allows one

to combine multiple instances of M-convergences to establish a more refined one
so that (2.3) applies to a class of sets that are not confined to a rectangular domain.
In particular, we will see later in Theorem 3.3 and Theorem 5.1 that in combina-
tion with Lemma 2.2, the following lemma produces the “right” M-convergence
for two-sided Lévy processes and random walks.

LEMMA 2.3. Consider a family of measures {μ(i)}i=0,1,...,m and a family of
closed subsets {C(i)}i=0,1,...,m of S such that 1

εn(i)
P(Xn ∈ ·) → μ(i)(·) in M(S \

C(i)) for i = 0, . . . ,m where {{εn(i) : n ≥ 1}}i=0,1,...,m is the family of associated
normalizing sequences. Let μ̄(0)(·) � μ(0)(·\C(0)), and suppose that μ̄(0) ∈M(S\⋂m

i=0 C(i)); lim supn→∞ εn(i)
εn(0)

= 0 for i = 1, . . . ,m; and for each r > 0, there exist
positive numbers r0, . . . , rm such that

⋂m
i=0 C(i)ri ⊆ (

⋂m
i=0 C(i))r . Then

1

εn(0)
P(Xn ∈ ·)→ μ̄(0)

in M(S \⋂m
i=0 C(i)).

A version of the continuous mapping principle is satisfied by M-convergence.
Let (S′, d ′) be a complete separable metric space, and let C′ be a closed subset
of S′.

THEOREM 2.2 (Mapping theorem; Theorem 2.3 of Lindskog, Resnick and Roy
(2014)). Let h : (S\C,SS\C)→ (S′ \C′,SS′\C′) be a measurable mapping such
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that h−1(A′) is bounded away from C for any A′ ∈SS′\C′ bounded away from C′.
Then ĥ : M(S \C) → M(S′ \C′) defined by ĥ(ν) = ν ◦ h−1 is continuous at μ

provided μ(Dh)= 0, where Dh is the set of discontinuity points of h.

For our purpose, the following slight extension will prove to be useful in devel-
oping rigorous arguments.

LEMMA 2.4. Let S0 be a measurable subset of S, and h : (S0,SS0) → (S′ \
C′,S ′

S′\C′) be a measurable mapping such that h−1(A′) is bounded away from

C for any A′ ∈ SS′\C′ bounded away from C′. Then ĥ :M(S \C) →M(S′ \ C′)
defined by ĥ(ν) = ν ◦ h−1 is continuous at μ provided that μ(∂S0 \Cr ) = 0 and
μ(Dh \Cr )= 0 for all r > 0, where Dh is the set of discontinuity points of h.

When we focus on Lévy processes, we are specifically interested in the case
where S is R

∞↓
+ × [0,1]∞, where R

∞↓
+ � {x ∈ R∞+ : x1 ≥ x2 ≥ · · · }, and S′

is the Skorokhod space D. We use the usual product metrics d
R
∞↓
+

(x, y) =∑∞
i=1

|xi−yi |∧1
2i and d[0,1]∞(x, y)=∑∞

i=1
|xi−yi |

2i for R∞↓
+ and [0,1]∞, respectively.

For the finite product of metric spaces, we use the maximum metric; that is, we
use dS1×···×Sd

((x1, . . . , xd), (y1, . . . , yd)) � maxi=1,...,d dSi
(xi, yi) for the product

S1 × · · · × Sd of metric spaces (Si , dSi
). For D, we use the usual Skorokhod J1

metric d(x, y) � infλ∈� ‖λ − e‖ ∨ ‖x ◦ λ − y‖, where � denotes the set of all
nondecreasing homeomorphisms from [0,1] onto itself, e denotes the identity and
‖ · ‖ denotes the supremum norm. Let

Sj �
{
(x, u) ∈R

∞↓
+ × [0,1]∞ : 0,1, u1, . . . , uj are all distinct

}
.

This set will play the role of S0 of Lemma 2.4. Define Tj : Sj → D to be

Tj (x,u) =∑j
i=1 xi1[ui,1]. Let Dj be the subspaces of the Skorokhod space con-

sisting of nondecreasing step functions, vanishing at the origin, with exactly
j jumps, and D�j � ⋃

0≤i≤j Di , that is, nondecreasing step functions vanish-

ing at the origin with at most j jumps. Similarly, let D<j � ⋃
0≤i<j Di . Define

Hj � {x ∈ R
∞↓
+ : xj > 0, xj+1 = 0}, and H<j � {x ∈ R

∞↓
+ : xj = 0}. The contin-

uous mapping principle applies to Tj , as we can see in the following result.

LEMMA 2.5 (Lemma 5.3 and Lemma 5.4 of Lindskog, Resnick and Roy
(2014)). Suppose A ⊂ D is bounded away from D<j . Then T −1

j (A) is bounded
away from H<j × [0,1]∞. Moreover, Tj : Sj →D is continuous.

A consequence of Lemma 2.5 and Lemma 2.4 along with the observation that Sj

is open is that one can derive a limit theorem in a path space from a limit theorem
for jump sizes.
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COROLLARY 2.2. If μn → μ in M((R
∞↓
+ ×[0,1]∞) \ (H<j ×[0,1]∞)), and

μ(Sc
j \ (H<j × [0,1]∞)r ) = 0 for all r > 0, then μn ◦ T −1

j → μ ◦ T −1
j in M(D \

D<j ).

To obtain the large deviations for two-sided Lévy measures, we will first estab-
lish the large deviations for independent spectrally positive Lévy processes, and
then apply Lemma 2.4 with h(ξ, ζ ) = ξ − ζ . The next lemma verifies two impor-
tant conditions of Lemma 2.4 for such h. Let Dl,m denote the subspace of the Sko-
rokhod space consisting of step functions vanishing at the origin with exactly l up-
ward jumps and m downward jumps. Given α,β > 1, let D<j,k �⋃

(l,m)∈I<j,k
Dl,m

and D<(j,k) � ⋃
(l,m)∈I<j,k

Dl × Dm, where I<j,k � {(l,m) ∈ Z2+ \ {(j, k)} : (α −
1)l + (β − 1)m ≤ (α − 1)j + (β − 1)k} and Z+ denotes the set of nonnegative
integers. Note that in the definition of I<j,k , the inequality is not strict; however,
we choose to use the strict inequality in our notation to emphasize that (j, k) is not
included in I<j,k .

LEMMA 2.6. Let h : D × D → D be defined as h(ξ, ζ ) � ξ − ζ . Then h is
continuous at (ξ, ζ ) ∈ D× D such that (ξ(t) − ξ(t−))(ζ(t) − ζ(t−)) = 0 for all
t ∈ (0,1]. Moreover, h−1(A)⊆D×D is bounded away from D<(j,k) for any A⊆D

bounded away from D<j,k .

We next characterize convergence-determining classes for convergence in
M(S \C).

LEMMA 2.7. Suppose that (i) Ap is a π -system; (ii) each open set G ⊆ S

bounded away from C is a countable union of sets in Ap; and (iii) for each closed
set F ⊆ S bounded away from C, there is a set A ∈Ap bounded away from C such
that F ⊆A◦ and μ(A\A◦)= 0. If, in addition, μ ∈M(S\C) and μn(A)→ μ(A)

for every A ∈Ap such that A is bounded away from C, then μn → μ in M(S \C).

REMARK 1. Since S is a separable metric space, the Lindelöf property holds.
Therefore, a sufficient condition for assumption (ii) of Lemma 2.7 is that for every
x ∈ S \ C and ε > 0, there is A ∈ Ap such that x ∈ A◦ ⊆ B(x, ε). To see that
this implies assumption (ii), note that for any given open set G, one can construct
a cover {(Ax)

◦ : x ∈ G} of G by choosing Ax so that x ∈ (Ax)
◦ ⊆ G and then

extract a countable subcover (due to the Lindelöf property) whose union is equal
to G. Note also that if A in assumption (iii) is open, then μ(A \A◦) = μ(∅) = 0
automatically.

3. Sample-path large deviations. In this section, we present large-deviations
results for scaled Lévy processes with heavy-tailed Lévy measures. Section 3.1
studies a special case, where the Lévy measure is concentrated on the positive
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part of the real line, and Section 3.2 extends this result to Lévy processes with
two-sided Lévy measures. In both cases, let Xn(t) � X(nt) be a scaled process
of X, where X is a Lévy process with a Lévy measure ν. Recall that Xn has Itô
representation (see, e.g., Section 2 of Kyprianou (2014)):

Xn(s)= nsa +B(ns)

+
∫
|x|≤1

x
[
N
([0, ns] × dx

)− nsν(dx)
]+ ∫

|x|>1
xN

([0, ns] × dx
)
,

with a a drift parameter, B a Brownian motion, and N a Poisson random measure
with mean measure Leb×ν on [0, n]×(0,∞); Leb denotes the Lebesgue measure.

3.1. One-sided large deviations. Let X be a Lévy process with Lévy mea-
sure ν. In this section, we assume that ν is a regularly varying (at infinity, with
index −α < −1) Lévy measure concentrated on (0,∞). Consider a centered and
scaled process

(3.1) X̄n(s) � 1

n
Xn(s)− sa −μ+

1 ν+1 s,

where μ+
1 � 1

ν+1

∫
[1,∞) xν(dx), and ν+1 � ν[1,∞). For each constant γ > 1, let

νγ (x,∞) � x−γ , and let ν
j
γ denote the restriction (to R

j↓
+ ) of the j -fold prod-

uct measure of νγ . Let C0(·) � δ0(·) be the Dirac measure concentrated on the
zero function. Additionally, for each j ≥ 1, define a measure Cj ∈M(D \ D<j )

concentrated on Dj as

Cj(·) � E

[
νj
α

{
y ∈ (0,∞)j :

j∑
i=1

yi1[Ui,1] ∈ ·
}]

,

where the random variables Ui, i ≥ 1 are i.i.d. uniform on [0,1].
The proof of the main result of this section hinges critically on the following

limit theorem.

THEOREM 3.1. For each j ≥ 0,

(3.2)
(
nν[n,∞)

)−j P(X̄n ∈ ·)→ Cj(·),
in M(D\D<j ), as n→∞. Moreover, X̄n is asymptotically equivalent to a process
that assumes values in D�J (A) almost surely.

PROOF SKETCH. The proof of Theorem 3.1 is based on establishing the
asymptotic equivalence of X̄n and the process obtained by just keeping its j

biggest jumps, which we will denote by Ĵ
�j
n in Section 5. Such an equivalence

is established via Proposition 5.1, and Proposition 5.2. Then Proposition 5.3 iden-
tifies the limit of Ĵ

�j
n , which coincides with the limit in (3.2). The full proof of

Theorem 3.1 is provided in Section 5.2. �
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Recall that D↑
s denotes the subset of D consisting of nondecreasing step func-

tions vanishing at the origin, and D+(ξ) denotes the number of upward jumps of
an element ξ in D. Finally, set

(3.3) J (A) � inf
ξ∈D↑

s ∩A

D+(ξ).

Now we are ready to present the main result of this section, which is the following
large-deviations theorem for X̄n.

THEOREM 3.2. Suppose that A is a measurable set. If J (A) < ∞, and if
Aδ ∩D�J (A) is bounded away from D<J (A) for some δ > 0, then

(3.4)

CJ (A)

(
A◦)≤ lim inf

n→∞
P(X̄n ∈A)

(nν[n,∞))J (A)

≤ lim sup
n→∞

P(X̄n ∈A)

(nν[n,∞))J (A)
≤ CJ (A)(Ā).

If J (A) =∞, and Aδ ∩ D�i+1 is bounded away from D�i for some δ > 0 and
i ≥ 0, then

(3.5) lim
n→∞

P(X̄n ∈A)

(nν[n,∞))i
= 0.

In particular, in case J (A) < ∞, (3.4) holds if A is bounded away from D<J (A);
in case J (A)=∞, (3.5) holds if A is bounded away from D�i .

PROOF. We first consider the case J (A) <∞. Note that J (A◦) > J (A) im-
plies that A◦ does not contain any element of D�J (A). Since CJ (A) is supported
on D�J (A), A◦ is a CJ (A)-null set. Therefore, the lower bound holds trivially if
J (A◦) > J (A). On the other hand, J (A) = J (Ā). To see this, suppose not, that
is, J (Ā) < J (A). Then there exists ζ ∈ D

↑
s ∩ Ā such that ζ ∈ D<J (A). This im-

plies that ζ ∈Aδ ∩D�J (A) for any δ > 0, which is contradictory to the assumption
that Aδ ∩D�J (A) is bounded away from D<J (A) for some δ > 0. In view of these
observations, we can assume w.l.o.g. that J (A◦) = J (A) = J (Ā). Now, from
Theorem 3.1 with j = J (A◦) along with the lower bound of Lemma 2.1 with
S0 =D�J (A),

CJ (A)

(
A◦)=CJ (A◦)

(
A◦)

≤ lim inf
n→∞

P(X̄n ∈A◦)
(nν[n,∞))J (A◦) ≤ lim inf

n→∞
P(X̄n ∈A)

(nν[n,∞))J (A)
.

Similarly, from Theorem 3.1 with j = J (Ā) along with the upper bound of
Lemma 2.1,

lim sup
n→∞

P(X̄n ∈A)

(nν[n,∞))J (A)
≤ lim sup

n→∞
P(X̄n ∈ Ā)

(nν[n,∞))J (Ā)
≤ CJ (Ā)(Ā)=CJ (A)(Ā).
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In case J (A) =∞, we reach the conclusion by applying Theorem 3.1 with j = i

along with noting that Ci(Ā)= 0. �

Theorem 3.2 dictates the “right” choice of j in Theorem 3.1 for which (3.2)
can lead to a limit in (0,∞). We conclude this section with an investigation of a
sufficient condition for Cj -continuity, that is, we provide a sufficient condition on
A which guarantees Cj(∂A)= 0. Such a property implies

(3.6) Cj

(
A◦)= Cj(A)= Cj(Ā),

implying that the liminf and limsup in our asymptotic estimates yield the same
value. Assume that A is a subset of Dj bounded away from D<j , that is,
d(A,D<j ) > γ for some γ > 0. Consider a path ξ ∈ A. Note that every ξ ∈ Dj

is determined by the pair of jump sizes and jump times (x, u) ∈ (0,∞)j ×
[0,1]j , that is, ξ(t) = ∑j

i=1 xi1[ui,1](t). Formally, we define a mapping T̂j :
Ŝj → Dj by T̂j (x, u) = ∑j

i=1 xi1[ui,1], where Ŝj � {(x, u) ∈ R
j↓
+ × [0,1]j :

0,1, u1, . . . , uj are all distinct}. Since d(A,D<j ) > γ , we know that T̂j (x, u) ∈A

implies x ∈ (γ,∞)j ; see Lemma 5.4 (b). In view of this, we can see that (3.6) holds
if the Lebesgue measure of T̂ −1

j (∂A) is 0 since Cj(A)= ∫
(x,u)∈T̂ −1

j (A)
dudν

j
α(x).

One of the typical settings that arises in applications is that the set A can be writ-
ten as a finite combination of unions and intersections of φ−1

1 (A1), . . . , φ
−1
m (Am),

where each φi : D → Si is a continuous function, and all sets Ai are subsets of
a general topological space Si . If we denote this operation of taking unions and
intersections by � (i.e., A=�(φ−1

1 (A1), . . . , φ
−1
m (Am))), then

�
(
φ−1

1

(
A◦

1
)
, . . . , φ−1

m

(
A◦

m

))⊆A◦ ⊆A⊆ Ā⊆�
(
φ−1

1 (Ā1), . . . , φ
−1
m (Ām)

)
.

Therefore, (3.6) holds if T̂ −1
j (�(φ−1

1 (Ā1), . . . , φ
−1
m (Ām))) \ T̂ −1

j (�(φ−1
1 (A◦

1),

. . . , φ−1
m (A◦

m))) has Lebesgue measure zero. A similar principle holds for the limit
measures Cj,k , defined in the next section where we deal with two-sided Lévy
processes.

3.2. Two-sided large deviations. Consider a two-sided Lévy measure ν for
which ν[x,∞) is regularly varying with index −α and ν(−∞,−x] is regularly
varying with index −β . Let

X̄n(s) � 1

n
Xn(s)− sa − (

μ+
1 ν+1 −μ−

1 ν−1
)
s,

where

μ+
1 � 1

ν+1

∫
[1,∞)

xν(dx), ν+1 � ν[1,∞),

μ−
1 � −1

ν−1

∫
(−∞,−1]

xν(dx), ν−1 � ν(−∞,−1].
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Recall the definition of Dj,k given below Corollary 2.2, and the definition of ν
j
α and

νk
β as given below (3.1). Let C0,0(·) � δ0(·) be the Dirac measure concentrated on

the zero function. For each (j, k) ∈ Z2+ \ {(0,0)}, define a measure Cj,k ∈M(D \
D<j,k) concentrated on Dj,k as

Cj,k(·)

� E

[
νj
α × νk

β

{
(x, y) ∈ (0,∞)j × (0,∞)k :

j∑
i=1

xi1[Ui,1] −
k∑

i=1

yi1[Vi,1] ∈ ·
}]

,

where Ui ’s and Vi’s are i.i.d. uniform on [0,1]. Recall that D<j,k =⋃
(l,m)∈I<j,k Dl,m and I< j, k = {(l,m) ∈ Z2+ \ {(j, k)} : (α − 1)l + (β − 1)m ≤

(α − 1)j + (β − 1)k}.
As in the one-sided case, the proof of the main theorem of this section hinges

on the following limit theorem.

THEOREM 3.3. For each (j, k) ∈ Z2+,

(3.7)
(
nν[n,∞)

)−j (
nν(−∞,−n])−kP(X̄n ∈ ·)→ Cj,k(·)

in M(D \D<j,k) as n→∞.

The proof of Theorem 3.3 builds on Theorem 3.1, using Lemma 2.2, Lemma 2.3,
Lemma 2.6 and Theorem 5.1. We provide the full proof in Section 5.2.

Let I(j, k) � (α−1)j +(β−1)k, and consider a pair of integers (J (A),K(A))

such that

(3.8)
(
J (A),K(A)

) ∈ arg min
(j,k)∈Z2+
Dj,k∩A�=∅

I(j, k).

The next theorem is the first main result of this section.

THEOREM 3.4. Suppose that A is a measurable set. If the argument minimum
in (3.8) is nonempty and A is bounded away from D<J (A),K(A), then the argument
minimum is unique and

(3.9)

lim inf
n→∞

P(X̄n ∈A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≥ CJ (A),K(A)

(
A◦),

lim sup
n→∞

P(X̄n ∈A)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≤ CJ (A),K(A)(Ā).

Moreover, if the argument minimum in (3.8) is empty and A is bounded away from
D<l,m ∪Dl,m for some (l,m) ∈ Z2+ \ {(0,0)}, then

(3.10) lim
n→∞

P(X̄n ∈A)

(nν[n,∞))l(nν(−∞,−n])m = 0.



LARGE DEVIATIONS FOR REGULARLY VARYING PROCESSES 3565

The proof of the theorem is provided below as a consequence of the following
lemma.

LEMMA 3.1. Suppose that a sequence of D-valued random elements Yn sat-
isfies (3.7) (with X̄n replaced with Yn) for each (j, k) ∈ Z2+. Then (3.9) (with X̄n

replaced with Yn) holds if A is a measurable set for which the argument minimum
in (3.8) is nonempty, and A is bounded away from D<J (A),K(A). Moreover, (3.10)
(with X̄n replaced with Yn) holds if the argument minimum in (3.8) is empty and
A is bounded away from D<l,m ∪Dl,m for some (l,m) ∈ Z2+ \ {(0,0)}.

The proof of this lemma is provided in Section 5.2.

PROOF OF THEOREM 3.4. The uniqueness of the argument minimum is im-
mediate from the assumption that A is bounded-away from D<J (A),K(A). Since
X̄n satisfies (3.7) by Theorem 3.3, the conclusion of the theorem follows from
applying Lemma 3.1 with Yn = X̄n. �

In case one is interested in a set for which the arg min of I in (3.8) is not unique,
a natural approach is to partition A into smaller sets and analyze each element
separately. In the next theorem, we show that this strategy can be successfully em-
ployed with a minimal requirement on A. However, due to the presence of two
different slowly varying functions nαν[n,∞) and nβν(−∞,−n], the limit behav-
ior may not be dominated by a single Dl,m.

To deal with this case, let I=j,k � {(l,m) : (α − 1)l + (β − 1)m =
(α−1)j +(β−1)k}, I�j,k � {(l,m) : (α−1)l+(β−1)m < (α−1)j +(β−1)k},
D=j,k �⋃

(l,m)∈I=j,k
Dl,m, and D�j,k �⋃

(l,m)∈I�j,k
Dl,m. Denote the slowly vary-

ing functions nαν[n,∞) and nβν(−∞,−n] with L+(n) and L−(n), respec-
tively.

THEOREM 3.5. Let A be a measurable set and suppose that the argument
minimum in (3.8) is nonempty and contains a pair of integers (J (A),K(A)). If
Aδ ∩ D=J (A),K(A) is bounded away from D�J (A),K(A) for some δ > 0, then for
any given ε > 0, there exists N ∈N such that

(3.11)
P(X̄n ∈A)≥

∑
(l,m)(Cl,m(A◦)− ε)Ll+(n)Lm−(n)

n(α−1)J (A)+(β−1)K(A)
,

P(X̄n ∈A)≤
∑

(l,m)(Cl,m(Ā)+ ε)Ll+(n)Lm−(n)

n(α−1)J (A)+(β−1)K(A)
,

for all n ≥ N , where the summations are over the pairs (l,m) ∈ I=J (A),K(A). In
particular, (3.11) holds if A is bounded away from D�J (A),K(A).
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PROOF. Note first that from Lemma 5.5 (i), there exists a δ′ > 0 such that
D�J (A),K(A) is bounded away from A ∩ (Dl,m)δ′ for all (l,m) ∈ I=J (A),K(A).
Moreover, applying Lemma 5.5 (ii) to each A ∩ (Dl,m)δ′ , we conclude that there
exists ρ > 0 such that A ∩ (Dl,m)ρ is bounded away from (Dj,k)ρ for any two
distinct pairs (l,m), (j, k) ∈ I=J (A),K(A). This means that A ∩ (Dl,m)ρ ’s are all
disjoint and bounded away from D<l,m.

To derive the lower bound, we apply Theorem 3.4 to A◦ ∩ (Dl,m)ρ to obtain

Cl,m

(
A◦)= Cl,m

(
A◦ ∩Dl,m

)
= Cl,m

(
A◦ ∩Dl,m ∩ (Dl,m)ρ

)
= Cl,m

(
A◦ ∩ (Dl,m)ρ

)
≤ lim inf

n→∞
P(X̄n ∈A◦ ∩ (Dl,m)ρ)

(nν[n,∞))l(nν(−∞,−n])m

≤ lim inf
n→∞

P(X̄n ∈A∩ (Dl,m)ρ)

(nν[n,∞))l(nν(−∞,−n])m ,

for each (l,m) ∈ I=J (A),K(A). That is, for any given ε > 0, there exists an Nl,m ∈N
such that

(3.12) (Cl,m(A◦)− ε)Ll+(n)Lm−(n)

n(α−1)l+(β−1)m
≤ P

(
X̄n ∈A∩ (Dl,m)ρ

)
,

for all n≥Nl,m. Meanwhile, the following obvious bound holds:

(3.13) 0 ≤ P
(
X̄n ∈A

∖ ⋃
(l,m)∈I=J (A),K(A)

(Dl,m)ρ
)
.

Since (α−1)l+(β−1)m= (α−1)J (A)+(β−1)K(A) for (l,m) ∈ I=J (A),K(A),
summing (3.12) over (l,m) ∈ I=J (A),K(A) together with (3.13), we arrive at the
lower bound of the theorem, with N = max(l,m)∈I=J (A),K(A)

Nl,m.
Turning to the upper bound, we apply Theorem 3.4 to Ā∩ (Dl,m)ρ to get

lim sup
n→∞

P(X̄n ∈ Ā∩ (Dl,m)ρ)

(nν[n,∞))l(nν(−∞,−n])m ≤ Cl,m

(
Ā∩ (Dl,m)ρ

)=Cl,m(Ā)

for each (l,m) ∈ I=J (A),K(A). That is, for any given ε > 0, there exists N ′
l,m ∈ N

such that

(3.14) P
(
X̄n ∈A∩ (Dl,m)ρ

)≤ (Cl,m(Ā)+ ε/2)Ll+(n)Lm−(n)

n(α−1)l+(β−1)m
,

for all n ≥ N ′
l,m. On the other hand, since Ā \⋃(l,m)∈I=J (A),K(A)

(Dl,m)ρ is closed
and bounded away from D<J (A),K(A),

lim sup
n→∞

P(X̄n ∈A \⋃(l,m)(Dl,m)ρ)

(nν[n,∞))J (A)(nν(−∞,−n])K(A)
≤ CJ (A),K(A)

(
Ā
∖ ⋃

(l,m)

(Dl,m)ρ
)
,
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where the union is over the pairs (l,m) ∈ I=J (A),K(A). Therefore, there exists N ′
such that

(3.15)

P
(
X̄n ∈A

∖ ⋃
(l,m)

(Dl,m)ρ
)

≤ (CJ (A),K(A)(Ā \⋃(l,m)(Dl,m)ρ)+ ε/2)L
J (A)
+ (n)L

K(A)
− (n)

n(α−1)J (A)+(β−1)K(A)

= (ε/2)L
J (A)
+ (n)L

K(A)
− (n)

n(α−1)J (A)+(β−1)K(A)
,

for n ≥ N ′ since Ā \⋃(l,m)(Dl,m)ρ is disjoint from the support of CJ (A),K(A).
Summing (3.14) over (l,m) ∈ I=J (A),K(A) and (3.15),

(3.16) P(X̄n ∈A)≤
∑

(l,m)(Cl,m(Ā)+ ε)Ll+(n)Lm−(n)

n(α−1)J (A)+(β−1)K(A)
,

for n≥N , where N =N ′ ∨ max(l,m)∈I=J (A),K(A)
N ′

l,m. �

4. Implications. This section explores the implications of the large-deviations
results in Section 3, and is organized as follows. Section 4.1 proves a result similar
to Theorem 3.4, now focusing on random walks with regularly varying incre-
ments. Section 4.2 illustrates that conditional limit theorems can easily be studied
by means of the limit theorems established in Section 3. Section 4.3 develops a
weak large deviation priciple (LDP) of the form (1.3) for the scaled Lévy pro-
cesses. Finally, Section 4.4 shows that the weak LDP proved in Section 4.3 is the
best one can hope for in the presence of regularly varying tails, by showing that a
full LDP of the form (1.3) does not exist.

4.1. Random walks. Let Sk, k ≥ 0, be a mean-zero random walk, set S̄n(t) =
S[nt]/n, t ≥ 0, and define S̄n = {S̄n(t), t ∈ [0,1]}. Let N(t), t ≥ 0, be an indepen-
dent unit rate Poisson process. Define the Lévy process X(t) � SN(t), t ≥ 0, and
set X̄n(t) � X(nt)/n, t ≥ 0. The goal is to prove an analogue of Theorem 3.4 for
the scaled random walk S̄n. Let J (·), K(·), and Cj,k(·) be defined as in Section 3.2.

THEOREM 4.1. Suppose that P(S1 ≥ x) is regularly varying with index −α

and P(S1 ≤ −x) is regularly varying with index −β . Let A be a measurable set
bounded away from D<J (A),K(A). Then

(4.1)

lim inf
n→∞

P(S̄n ∈A)

(nP(S1 ≥ n))J (A)(nP(S1 ≤−n))K(A)
≥ CJ (A),K(A)

(
A◦),

lim sup
n→∞

P(S̄n ∈A)

(nP(S1 ≥ n))J (A)(nP(S1 ≤−n))K(A)
≤ CJ (A),K(A)(Ā).
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PROOF. The idea is to show that S̄n and X̄n has the same large deviations limit.
First, we derive the asymptotic behavior of the Lévy measure of the constructed
Lévy process X̄n. From Example A3.17 in Embrechts, Klüppelberg and Mikosch
(1997), we obtain P(X(1) ≥ x) ∼ P(S1 ≥ x). Moreover, Embrechts, Goldie and
Veraverbeke (1979) implies that ν[x,∞) ∼ P(S1 ≥ x). Similarly, it follows that
ν(−∞,−x] ∼ P(S1 ≤−x).

Now, from Lemma 3.1, (4.1) is proved if (3.7) holds for S̄n. To show that (3.7)
holds, we first claim that

(4.2)

lim sup
n→∞

P(d(X̄n,D<j,k)≥ γ, d(X̄n, S̄n)≥ δ)

(nν[n,∞))j (nν(−∞,−n])k

= lim sup
n→∞

P(d(S̄n,D<j,k)≥ γ, d(X̄n, S̄n)≥ δ)

(nν[n,∞))j (nν(−∞,−n])k = 0.

To prove this claim, we consider X̄n on a longer time horizon [0,2]. Let
X̄[0,2]

n denote the stochastic process {X̄n(t), t ∈ [0,2]}, and D
[0,2]
<j,k denote the

space of step functions on [0,2] that corresponds to D<j,k . Let d[0,2] de-
note the Skokhod J1 metric on D([0,2],R). Note that d(X̄n,D<j,k) ≥ γ im-

plies that d[0,2](X̄[0,2]
n ,D

[0,2]
<j,k) ≥ γ , and d(S̄n,D<j,k) ≥ γ implies that either

d[0,2](X̄[0,2]
n ,D

[0,2]
<j,k) ≥ γ or N(2n) ≤ n. Therefore, we see that (4.2) is implied

by

(4.3) lim sup
n→∞

P(d[0,2](X̄[0,2]
n ,D

[0,2]
<j,k)≥ γ, d(X̄n, S̄n)≥ δ)

(nν[n,∞))j (nν(−∞,−n])k = 0.

To prove (4.3), we construct a piecewise linear nondecreasing homeomorphism λ̄n

as follows. Let t0 � 0 and ti be ith jump time of N(n·). Let L � (n− 1)∧N(n).
Define λ̄n in such a way that λ̄n(t) = 1

n
N(nt) on t0, . . . , tL, λ̄n(1) = 1, and λ̄n

is a linear interpolation in between. For such λ̄n, S̄n(λ̄n(t)) = X̄n(t) at all t ∈
[0, tL], and hence, d(S̄n, X̄n) ≤ ‖λ̄n − e‖∞ ∨ ‖S̄n ◦ λ̄n − X̄n‖∞ = ‖λ̄n − e‖∞ ∨
supt∈[tL,1] |S̄n ◦ λ̄n(t)− X̄n(t)|. Note that by the construction of λ̄n, supt∈[tL,1] |S̄n ◦
λ̄n(t)− X̄n(t)| ≤ sups,t∈[1−ε,1+ε] |X̄n(t)− X̄n(s)| on N(n− εn)+ 1 ≤ n≤N(n+
εn), and hence,

(4.4)

P
(
d
(
X̄[0,2]

n ,D
[0,2]
<j,k

)≥ γ, d(X̄n, S̄n)≥ δ
)

≤ P
(
d
(
X̄[0,2]

n ,D
[0,2]
<j,k

)≥ γ, sup
s,t∈[1−ε,1+ε]

∣∣X̄n(t)− X̄n(s)
∣∣≥ δ

)

+ P
({

N(n− εn)+ 1 ≤ n≤N(n+ εn)
}c)+ P

(‖λ̄n − e‖∞ ≥ δ
)
.

The last two terms of (4.4) decay at geometric rates and are negligible asymptot-
ically. Applying Theorem 3.4 on D[0,2] to the first term of (4.4) and then letting
ε → 0, we arrive at (4.3). This proves the claim (4.2).
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Now we are ready to prove (3.7) for S̄n and conclude the proof of Theo-
rem 4.1. Let G be an open set bounded away from D<j,k so that there exists a
γ > 0 such that X̄n ∈ G implies d(X̄n,D<j,k) > γ . Since P(S̄n ∈ G) ≥ P(X̄n ∈
G−δ, d(X̄n, S̄n) < δ) = P(X̄n ∈ G−δ) − P(X̄n ∈ G−δ, d(X̄n, S̄n) ≥ δ) ≥ P(X̄n ∈
G−δ)− P(d(X̄n,D<j,k)≥ γ, d(X̄n, S̄n)≥ δ), (4.2) implies that

lim inf
n→∞

P(S̄n ∈G)

(nν[n,∞))j (nν(−∞,−n])k ≥ lim inf
n→∞

P(X̄n ∈G−δ)

(nν[n,∞))j (nν(−∞,−n])k
≥ Cj,k

(
G−δ).

We arrive at the lower bound for (3.7) by taking δ → 0. Turning to the upper bound
for (3.7), consider a closed set F bounded away from D<j,k . Then there exists a
γ > 0 such that S̄n ∈ F implies d(S̄n,D<j,k) > γ . Since for any sufficiently small
δ > 0 such that Fδ is bounded away from C, P(S̄n ∈ F) = P(S̄n ∈ F,d(X̄n, S̄n) <

δ)+ P(S̄n ∈ F,d(X̄n, S̄n) ≥ δ) ≤ P(X̄n ∈ Fδ)+ P(d(S̄n,D<j,k) ≥ γ, d(X̄n, S̄n) ≥
δ)P(X̄n ∈ Fδ), from (4.2),

lim sup
n→∞

P(S̄n ∈ F)

(nν[n,∞))j (nν(−∞,−n])k ≤ lim sup
n→∞

P(X̄n ∈ Fδ)

(nν[n,∞))j (nν(−∞,−n])k
≤ Cj,k(Fδ).

Taking δ → 0, we arrive at the upper bound for (3.7). This concludes the proof of
Theorem 4.1. �

4.2. Conditional limit theorems. As before, X̄n denotes the scaled Lévy pro-
cess defined as in Section 3.1 for the one-sided case and Section 3.2 for the two-
sided case, respectively. In this section, we present conditional limit theorems
which give a precise description of the limit law of X̄n conditional on X̄n ∈A.

The next result, for the one-sided case, follows immediately from the definition
of weak convergence and Theorem 3.2.

COROLLARY 4.1. Suppose that a measurable subset B of D satisfies the
same conditions as those that A is required to satisfy in Theorem 3.2 and that
CJ (B)(B

◦)= CJ (B)(B)= CJ (B)(B̄) > 0. Let X̄
|B
n be a process having the condi-

tional law of X̄n given that X̄n ∈ B , then there exists a process X̄
|B∞ such that

X̄|B
n ⇒ X̄|B∞

in D. Moreover, if P|B(·) is the law of X̄
|B∞ , then

P|B(X̄|B∞ ∈ ·) := CJ (B)(· ∩B)

CJ (B)(B)
.
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Let us provide a more direct probabilistic description of the process X̄
|B∞ . Di-

rectly from the definition of P|B we have that

X̄|B∞(t)=
J (B)∑
n=1

χn1[Un,1](t),

where U1, . . . ,UJ (B) are i.i.d. uniform random variables on [0,1] and

P|B(χ1 ∈ dx1, . . . , χJ (B) ∈ dxJ (B))

=
∏J (B)

i=1 (αxi
−α−1 dxi)I(xJ (B) > · · ·> x1 > 0)P(

∑J (B)
n=1 xn1[Un,1](·) ∈ B)

CJ (B)(B)
.

An easier to interpret description of P|B can be obtained by using the fact that
δB := d(B,D�J (B)−1) > 0. Define an auxiliary probability measure, P|B

# , under
which, not only U1, . . . ,UJ (B) are i.i.d. Uniform(0,1), but also χ1, . . . , χJ (B) are
i.i.d. distributed Pareto(α, δB) and independent of the Ui’s; that is,

P|B
# (χ1 ∈ dx1, . . . , χJ (B) ∈ dxJ (B))

= (α/δB)J (B)
J (B)∏
i=1

(xi/δB)−α−1 dxiI(xi ≥ δB).

Then, we have that

(4.5) P|B(X̄|B∞ ∈ ·)= P|B
#
(
X̄|B∞ ∈ · | X̄|B∞ ∈ B

)
.

Moreover, note that

(4.6) P|B
#
(
X̄|B∞ ∈ B

)= δ
−J (B)(α+2)
B CJ (B)(B) > 0.

In view of (4.5) and (4.6) one can say, at least qualitatively, that the most likely
way in which the event X̄n ∈ B is seen to occur is by means of J (B) i.i.d. jumps
which are suitably Pareto distributed and occurring uniformly throughout the time
interval [0,1].

We now are ready to provide the corresponding conditional limit theorem for
the two-sided case, building on Theorem 3.4. The proof is again immediate, using
the definition of weak convergence.

COROLLARY 4.2. Suppose that a subset B of D satisfies the conditions in
Theorem 3.4 and that

CJ (B),K(B)

(
B◦)= CJ (B),K(B)(B)= CJ (B),K(B)(B̄) > 0.

Let X̄
|B
n be a process having the conditional law of X̄n given that X̄n ∈ B , then

there exists a process X̄
|B∞ such that

X̄|B
n ⇒ X̄|B∞
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in D. Moreover, if P|B(·) is the law of X̄
|B∞ , then

P|B(X̄|B∞ ∈ ·) := CJ (B),K(B)(· ∩B)

CJ (B),K(B)(B)
.

A probabilistic description, completely analogous to that given for the one-
sided case, can also be provided in this case. Define δB = d(B,D<J (B),K(B)) >

0 and introduce a probability measure P|B
# under which we have the follow-

ing: First, U1, . . . ,UJ (B),V1, . . . , VK(B) are i.i.d. U(0,1); second, χ1, . . . , χJ (B)

are i.i.d. Pareto(α, δB ), and, finally �1, . . . , �K(B) are i.i.d. Pareto(β, δB ) ran-
dom variables (all of these random variables are mutually independent). Then
write

X̄|B∞(t)=
J (B)∑
n=1

χn1[Un,1](t)−
K(B)∑
n=1

�n1[Vn,1](t).

Applying the same reasoning as in the one-sided case we have that

P|B(X̄|B∞ ∈ ·)= P|B
#
(
X̄|B∞ ∈ · | X̄|B∞ ∈ B

)
and

P|B
#
(
X̄|B∞ ∈ B

)= δ
−J (B)(α+2)−K(B)(β+2)
B CJ (B),K(B)(B) > 0.

We note that these results also hold for random walks, and thus forms a signif-
icant extension of Theorem 3.1 in Durrett (1980), where it is assumed that α > 2
and B = {X̄n(1)≥ a}.

4.3. Large deviation principle. In this section, we show that X̄n satisfies
a weak large deviation principle with speed logn, and a rate function which
is piece-wise constant in the number of discontinuities. More specifically, de-
fine

(4.7) I (ξ) �

⎧⎪⎪⎨
⎪⎪⎩

(α − 1)D+(ξ)+ (β − 1)D−(ξ)

if ξ is a step function & ξ(0)= 0;

∞ otherwise,

where D−(ξ) denotes the number of downward jumps in ξ .

THEOREM 4.2. The scaled process X̄n satisfies the weak large deviation prin-
ciple with rate function I and speed logn, that is,

(4.8) − inf
x∈G

I (x)≤ lim inf
n→∞

log P(X̄n ∈G)

logn

for every open set G, and

(4.9) lim sup
n→∞

log P(X̄n ∈K)

logn
≤− inf

x∈K
I (x)

for every compact set K .
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The proof of Theorem 4.2 is provided in Section 5.3. It is based on Theo-
rem 3.4, and a reduction of the case of general A to open neighborhoods; remi-
niscent of arguments made in the proof of Cramérs theorem Dembo and Zeitouni
(2010).

4.4. Nonexistence of strong large deviation principle. We conclude the current
section by showing that the weak LDP presented in the previous section is the best
one can hope for from the classical LDP framework in our heavy-tailed setting, in
the sense that for any Lévy process X with a regularly varying Lévy measure, X̄n

cannot satisfy a strong LDP, that is, (4.9) in Theorem 4.2 cannot be extended to all
closed sets.

Consider a mapping π : D → R2+ that maps paths in D to their largest jump
sizes, that is,

π(ξ) �
(

sup
t∈(0,1]

(
ξ(t)− ξ(t−)

)
, sup
t∈(0,1]

(
ξ(t−)− ξ(t)

))
.

The supremum in the above definition should be attained since the number of
jumps whose sizes are greater than ε should be finite for any fixed ε > 0. Note
that π is continuous, since each coordinate is continuous. For example, if the
first coordinate (the largest upward jump size) of π(ξ) and π(ζ ) differ by ε, then
d(ξ, ζ ) ≥ ε/2, which implies that the first coordinate is continuous. Now, to de-
rive a contradiction, suppose that X̄n satisfies a strong LDP. In particular, suppose
(4.9) in Theorem 4.2 is true for all closed sets rather than just compact sets. Since
π is continuous w.r.t. the J1 metric, π(X̄n) has to satisfy a strong LDP with rate
function I ′(y) = inf{I (ξ) : ξ ∈ D, y = π(x)} by the contraction principle, in case
I ′ is a rate function. (Since I is not a good rate function, I ′ is not automatically
guaranteed to be a rate function per se; see, e.g., Theorem 4.2.1 and the subse-
quent remarks of Dembo and Zeitouni (2010).) From the exact form of I ′, given
by

I ′(y1, y2)= (α − 1)I(y1 > 0)+ (β − 1)I(y2 > 0),

one can check that I ′ indeed happens to be a rate function. For the sake of
simplicity, suppose that α = β = 2, and ν[x,∞) = ν(−∞,−x] = x−2. Let
Ĵ�1

n � 1
n
Q←

n (�1)1[U1,1] and K̂�1
n � 1

n
R←

n (�1)1[V1,1] where Q←
n (y) � inf{s >

0 : nν[s,∞) < y} = (n/y)1/2 and R←
n (y) � inf{s > 0 : nν(−∞,−s] < y} =

(n/y)1/2. The random variables �1 and �1 are standard exponential, and U1,
V1 uniform [0,1] (see also Section 5 for similar and more general notational con-
ventions). Note that Ȳn � (Ĵ�1

n , K̂�1
n ) is exponentially equivalent to π(X̄n) if we

couple π(X̄n) and (Ĵ�1
n , K̂�1

n ), using the representation of X̄n as in (5.4): for any
δ > 0, P(|Ȳn − π(X̄n)| > δ) ≤ P(Ȳn �= π(X̄n)) = P(Q←

n (�1) ≤ 1 or R←
n (�1) ≤
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1), which decays at an exponential rate. Hence,

log P(|Ȳn − π(X̄n)|> δ)

logn
→−∞,

as n → ∞, where | · | is the Euclidean distance. As a result, Ȳn should satisfy
the same (strong) LDP as π(X̄n). Now, consider the set A � ⋃∞

k=2[logk,∞) ×
[k−1/2,∞). Then, since [log k,∞)× [k−1/2,∞)⊆A for k ≥ 2,

P(Ȳn ∈A)≥ P
((

Ĵ�1
n , K̂�1

n

) ∈ [logn,∞)× [
n−1/2,∞))

= P
(
Q←

n (�1) > n logn,R←
n (�1) > n1/2)

= P
((

n

�1

)1/2
> n logn,

(
n

�1

)1/2
> n1/2

)

= P
(
�1 <

1

n(logn)2

)
P(�1 < 1)

= (
1 − e

− 1
n(logn)2

)(
1 − e−1).

Thus,

lim sup
n→∞

P(Ȳn ∈A)≥ lim sup
n→∞

log(1 − e
− 1

n(logn)2 )(1 − e−1)

logn

≥ lim sup
n→∞

log 1
n(logn)2 (1 − 1

2n(logn)2 )(1 − e−1)

logn

=−1.

On the other hand, since A⊆ (0,∞)× (0,∞),

(4.10) − inf
(y1,y2)∈A

I ′(y1, y2)=−2.

Noting that A is a closed (but not compact) set, we arrive at a contradiction to the
large deviation upper bound for Ȳn. This, in turn, proves that X̄n cannot satisfy a
full LDP.

5. Proofs. Section 5.1, Section 5.2 and Section 5.3 provide proofs of the re-
sults in Section 2, Section 3 and Section 4, respectively.

5.1. Proofs of Section 2. Recall that Fδ = {x ∈ S : d(x,F ) ≤ δ} and G−δ =
((Gc)δ)

c.

PROOF OF LEMMA 2.1. Let G be an open set such that G ∩ S0 is bounded
away from C. For a given δ > 0, due to the assumed asymptotic equivalence,
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P(Xn ∈G−δ, d(Xn,Yn)≥ δ)= o(εn). Therefore,

lim inf
n→∞ ε−1

n P(Yn ∈G)

≥ lim inf
n→∞ ε−1

n P
(
Xn ∈G−δ, d(Xn,Yn) < δ

)
(5.1)

= lim inf
n→∞ ε−1

n

{
P
(
Xn ∈G−δ)− P

(
Xn ∈G−δ, d(Xn,Yn)≥ δ

)}
= lim inf

n→∞ ε−1
n P

(
Xn ∈G−δ).

Pick r > 0 such that G−δ ∩ S0 ∩Cr = 0 and note that G−δ ∩ (Cr )
c is an open set

bounded away from C. Then

lim inf
n→∞ ε−1

n P
(
Xn ∈G−δ)= lim inf

n→∞ ε−1
n P

(
Xn ∈G−δ ∩ S0

)
= lim inf

n→∞ ε−1
n P

(
Xn ∈G−δ ∩ S0 ∩ (Cr )

c)
= lim inf

n→∞ ε−1
n P

(
Xn ∈G−δ ∩ (Cr )

c)
≥ μ

(
G−δ ∩ (Cr )

c)
= μ

(
G−δ ∩ (Cr )

c ∩ S0
)

= μ
(
G−δ ∩ S0

)
= μ

(
G−δ).

Since G is an open set, G = ⋃
δ>0 G−δ . Due to the continuity of measures,

limδ→0 μ(G−δ)= μ(G), and hence, we arrive at the lower bound

lim inf
n→∞ ε−1

n P(Yn ∈G)≥ μ(G)

by taking δ → 0.
Now, turning to the upper bound, consider a closed set F such that Fδ ∩ S0

is bounded away from C. Given a δ > 0, by the equivalence assumption, P(Yn ∈
F,d(Xn,Yn)≥ δ)= o(εn). Therefore,

lim sup
n→∞

ε−1
n P(Yn ∈ F)

= lim sup
n→∞

ε−1
n

{
P
(
Yn ∈ F,d(Xn,Yn) < δ

)
+ P

(
Yn ∈ F,d(Xn,Yn)≥ δ

)}
= lim sup

n→∞
ε−1
n P(Xn ∈ Fδ)

(5.2)
= lim sup

n→∞
ε−1
n P(Xn ∈ Fδ ∩ S0)
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≤ lim sup
n→∞

ε−1
n P(Xn ∈ Fδ ∩ S0)

≤ μ(Fδ ∩ S0)= μ(Fδ ∩ S0 ∩ S0)

≤ μ(F̄δ ∩ S0)= μ(F̄δ)= μ(Fδ).

Note that {Fδ} is a decreasing sequence of sets, F =⋂
δ>0 Fδ (since F is closed),

and μ ∈ M(S \ C) (and hence, μ is a finite measure on S \ Cr for some r > 0
such that Fδ ⊆ S \Cr for some δ > 0). Due to the continuity (from above) of finite
measures, limδ→0 μ(Fδ)= μ(F). Therefore, we arrive at the upper bound

lim sup
n→∞

ε−1
n P(Xn ∈ F)≤ μ(F)

by taking δ → 0. �

For a measure μ on a measurable space S, denote the restriction of μ to a sub-
space O⊆ S with μ|O.

PROOF OF LEMMA 2.2. We provide a proof for d = 2 which suffices for the
application in this article. The extension to general d is straightforward, and hence,
omitted. In view of the Portmanteau theorem for M-convergence—in particular
item (v) of Theorem 2.1 of Lindskog, Resnick and Roy (2014)—it is enough to
show that for all but countably many r > 0,(

μ(1)
n ×μ(2)

n

)
|(S1×S2)\((C1×S2)∪(S1×C2))

r (·)
converges to (

μ(1) ×μ(2))
|(S1×S2)\((C1×S2)∪(S1×C2))

r (·)
weakly on (S1×S2)\((C1×S2)∪(S1×C2))

r , which is equipped with the relative
topology as a subspace of S1 × S2. From the assumptions of the lemma and again
by Portmanteau theorem for M-convergence, we note that μ

(1)
n |S1\Cr

1
converges

to μ(1)|S1\Cr
1

weakly in S1 \Cr
1, and μ

(2)
n |S2\Cr

2
converges to μ(2)|S2\Cr

2
weakly in

S2 \ Cr
2 for all but countably many r > 0. For such r’s, μ

(1)
n |S1\Cr

1
× μ

(2)
n |S2\Cr

2

converges weakly to μ(1)|S1\Cr
1
× μ(2)|S2\Cr

2
in (S1 \ Cr

1) × (S2 \ Cr
2). Noting

that (S1 × S2) \ ((C1 × S2) ∪ (S1 × C2))
r coincides with (S1 \ Cr

1) × (S2 \ Cr
2),

and μ(1)|S1\Cr
1
× μ(2)|S2\Cr

2
and μ

(1)
n |S1\C1

× μ
(2)
n |S2\C2

coincide with (μ(1) ×
μ(2))|(S1×S2)\((C1×S2)∪(S1×C2))

r and (μ
(1)
n × μ

(2)
n )|(S1×S2)\((C1×S2)∪(S1×C2))

r , re-
spectively, we reach the conclusion. �

PROOF OF LEMMA 2.3. Starting with the upper bound, suppose that F is
a closed set bounded away from

⋂m
i=0 C(i). From the assumption, there exist
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r0, . . . , rm such that F ⊆⋃m
i=0(S \C(i)ri ), and hence,

lim sup
n→∞

P(Xn ∈ F)

εn(0)
≤ lim sup

n→∞

m∑
i=0

P(Xn ∈ F ∩ (S \C(i)ri ))

εn(i)

εn(i)

εn(0)

≤ lim sup
n→∞

m∑
i=0

P(Xn ∈ F \C(i)ri )

εn(i)

εn(i)

εn(0)

= lim sup
n→∞

P(Xn ∈ F \C(0)r0)

εn(0)

≤ μ(0)(F \C(0)r0
)≤ μ̄(0)(F ).

Turning to the lower bound, if G is an open set bounded away from
⋂m

i=0 C(i),

lim inf
n→∞

P(Xn ∈G)

εn(0)
≥ lim inf

n→∞
P(Xn ∈G \C(0)r )

εn(0)
≥ μ(0)(G \C(0)r

)
.

Taking r → 0 yields the lower bound. �

PROOF OF LEMMA 2.4. Suppose that μn → μ in M(S\C), and μ(Dh \Cr )=
0 and μ(∂S0 \ Cr ) = 0 for each r > 0. Note that ∂h−1(A′) ⊆ S \ Cr for some
r > 0 due to the assumption, and ∂h−1(A′) ⊆ h−1(∂A′) ∪ Dh ∪ ∂S0. Therefore,
μ(∂h−1(A′)) ≤ μ ◦ h−1(∂A′)+ μ(Dh \Cr )+ μ(∂S0 \Cr ) = 0. Applying Theo-
rem 2.1 (iv) of Lindskog, Resnick and Roy (2014) for h−1(A′), we conclude that
μn(h

−1(A′))→ μ(h−1(A′)). Again, by Theorem 2.1(iv) of Lindskog, Resnick and
Roy (2014), this means that μn ◦ h−1 → μ ◦ h−1 in M(S′ \ C′), and hence, ĥ is
continuous at μ. �

PROOF OF LEMMA 2.6. The continuity of h is well known; see, for example,
Section 3.5 of Whitt (1980). For the second claim, it is enough to prove that for
each j and k, h−1(A)⊆D×D is bounded away from Dj ×Dk whenever A⊆D is
bounded away from Dj,k . Given j and k, let A ⊆ D be bounded away from Dj,k .
To prove that h−1(A) is bounded away from Dj × Dk by contradiction, suppose
that it is not. Then, for any given ε > 0, one can find ξ ∈ D and ζ ∈ D such that
d(ξ,Dj ) < ε/2, d(ζ,Dk) < ε/2, and ξ − ζ ∈ A. Since a continuous time-change
of a step function does not change the number of jumps and jump-sizes, there exist
ξ ′ ∈Dj and ζ ′ ∈Dk such that ‖ξ − ξ ′‖∞ < ε/2 and ‖ζ − ζ ′‖∞ < ε/2. Therefore,
d(ξ−ζ, ξ ′−ζ ′)≤ ‖(ξ−ζ )−(ξ ′−ζ ′)‖∞ ≤ ‖ξ−ξ ′‖∞+‖ζ −ζ ′‖∞ < ε. From this
along with the property d(ξ ′ − ζ ′,Dj,k)= 0, we conclude that d(ξ − ζ,Dj,k) < ε.
Taking ε → 0, we arrive at d(A,Dj × Dk) = 0 which is contradictory to the as-
sumption. �

PROOF OF LEMMA 2.7. From (i) and the inclusion-exclusion formula,
μn(

⋃m
i=1 Ai) → μ(

⋃m
i=1 Ai) as n →∞ for any finite m if Ai ∈ Ap is bounded
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away from C for i = 1, . . . ,m. If G is open and bounded away from C, there is
a sequence of sets Ai, i ≥ 1 in Ap such that G =⋃∞

i=1 Ai ; note that since G is
bounded away from C, Ai ’s are also bounded away from C. For any ε > 0, one
can find Mε such that μ(

⋃Mε

i=1 Ai)≥ μ(G)− ε, and hence,

lim inf
n→∞ μn(G)≥ lim inf

n→∞ μn

(
Mε⋃
i=1

Ai

)
= μ

(
Mε⋃
i=1

Ai

)
≥ μ(G)− ε.

Taking ε → 0, we arrive at the lower bound (2.2). Turning to the upper bound,
given a closed set F , we pick A ∈ Ap bounded away from C such that F ⊆ A◦.
Then

μ(A)− lim sup
n→∞

μn(F )= lim
n→∞μn(A)+ lim inf

n→∞
(−μn(F )

)
= lim inf

n→∞
(
μn(A)−μn(F )

)
= lim inf

n→∞ μn(A \ F)

≥ lim inf
n→∞ μn

(
A◦ \ F

)
≥ μ

(
A◦ \ F

)= μ(A)−μ(F).

Note that μ(A) < ∞ since A is bounded away from C, which together with the
above inequality establishes the upper bound (2.2). �

5.2. Proofs of Section 3. This section provides the proofs for the limit the-
orems (Theorem 3.1, Theorem 3.3) presented in Section 3. The proof of Theo-
rem 3.1 is based on:

1. The asymptotic equivalence between the target object X̄n and the process
obtained by keeping its j largest jumps, which will be denoted as Ĵ

�j
n : Proposi-

tion 5.1 and Proposition 5.2 prove such asymptotic equivalences. Two technical
lemmas (Lemma 5.1 and Lemma 5.2) play key roles in Proposition 5.2.

2. M-convergence of Ĵ
�j
n : Lemma 5.3 identifies the convergence of jump

size sequences, and Proposition 5.3 deduces the convergence of Ĵ
�j
n from the

convergence of the jump size sequences via the mapping theorem established in
Section 2.

For Theorem 3.3, we first establish a general result (Theorem 5.1) for the M-
convergence of multiple Lévy processes in the associated product space using
Lemmas 2.2 and 2.3. We then apply Lemma 2.6 to prove Theorem 3.3.

Recall that Xn(t) � X(nt) is a scaled process of X, where X is a Lévy process
with a Lévy measure ν supported on (0,∞). Also recall that Xn has Itô represen-
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tation

Xn(s)= nsa +B(ns)+
∫
|x|≤1

x
[
N
([0, ns] × dx

)− nsν(dx)
]

+
∫
|x|>1

xN
([0, ns] × dx

)
,

(5.3)

where N is the Poisson random measure with mean measure Leb × ν on [0, n] ×
(0,∞) and Leb denotes the Lebesgue measure. It is easy to see that

Jn(s) �
Ñn∑
l=1

Q←
n (�l)1[Ul,1](s)

D=
∫
|x|>1

xN
([0, ns] × dx

)
,

where �l = E1 + E2 + · · · + El ; Ei ’s are i.i.d. and standard exponential random
variables; Ul’s are i.i.d. and uniform variables in [0,1]; Ñn =Nn([0,1]× [1,∞));
Nn =∑∞

l=1 δ(Ul,Q
←
n (�l)), where δ(x,y) is the Dirac measure concentrated on (x, y);

Qn(x) � nν[x,∞), Q←
n (y) � inf{s > 0 : nν[s,∞) < y}. Note that Ñn is the

number of �l’s such that �l ≤ nν+1 , where ν+1 � ν[1,∞), and hence, Ñn ∼
Poisson(nν+1 ). Throughout the rest of this section, we use the following repre-
sentation for the centered and scaled process X̄n � 1

n
Xn:

X̄n(s)
D= 1

n
Jn(s)+ 1

n
B(ns)

+ 1

n

∫
|x|≤1

x
[
N
([0, ns] × dx

)− nsν(dx)
]− (

μ+
1 ν+1

)
s.

(5.4)

PROOF OF THEOREM 3.1. We decompose X̄n into a centered compound Pois-
son process J̄n, a centered Lévy process with small jumps and continuous incre-
ments Ȳn, and a residual process that arises due to centering Z̄n. After that, we will
show that the compound Poisson process determines the limit. More specifically,
consider the following decomposition:

(5.5)

X̄n(s)
D= Ȳn(s)+ J̄n(s)+ Z̄n(s),

Ȳn(s) � 1

n
B(ns)+ 1

n

∫
|x|≤1

x
[
N
([0, ns] × dx

)− nsν(dx)
]
,

J̄n(s) � 1

n

Ñn∑
l=1

(
Q←

n (�l)−μ+
1

)
1[Ul,1](s),

Z̄n(s) � 1

n

Ñn∑
l=1

μ+
1 1[Ul,1](s)−μ+

1 ν+1 s,
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where μ+
1 � 1

ν+1

∫
[1,∞) xν(dx). Let Ĵ

�j
n � 1

n

∑j
l=1 Q←

n (�l)1[Ul,1] be, roughly

speaking, the process obtained by just keeping the j largest (uncentered) jumps
of J̄n. In view of Corollary 2.1 and Proposition 5.3, it suffices to show that X̄n

and Ĵ
�j
n are asymptotically equivalent. Proposition 5.1 along with Proposition 5.2

prove the desired asymptotic equivalence, and hence, conclude the proof of the
Theorem 3.1. �

PROPOSITION 5.1. Let X̄n and J̄n be as in the proof of Theorem 3.1. Then X̄n

and J̄n are asymptotically equivalent w.r.t. (nν[n,∞))j for any j ≥ 0.

PROOF. In view of the decomposition (5.5), we are done if we show that
P(‖Ȳn‖ > δ) = o((nν[n,∞))−j ) and P(‖Z̄n‖ > δ) = o((nν[n,∞))−j ). For the
tail probability of ‖Ȳn‖,

P
[

sup
t∈[0,1]

∣∣Ȳn(t)
∣∣> δ

]
≤ P

[
sup

t∈[0,n]
∣∣B(t)

∣∣> nδ/2
]

+ P
[

sup
t∈[0,n]

∣∣∣∣
∫
|x|≤1

x
[
N
(
(0, t] × dx

)− tν(dx)
]∣∣∣∣> nδ/2

]
.

We have an explicit expression for the first term by the reflection principle, and in
particular, it decays at a geometric rate w.r.t. n. For the second term, let Y ′(t) �∫
|x|≤1 x[N((0, t]×dx)− tν(dx)]. Using Etemadi’s bound for Lévy processes (see

Lemma A.4), we obtain

P
[

sup
t∈[0,n]

∣∣∣∣
∫
|x|≤1

x
[
N
([0, t] × dx

)− tν(dx)
]∣∣∣∣> nδ/2

]

≤ 3 sup
t∈[0,n]

P
[∣∣Y ′(t)

∣∣> nδ/6
]

≤ 3 sup
t∈[0,n]

{
P
[∣∣Y ′(�t�)∣∣> nδ/12

]+ P
[∣∣Y ′(t)− Y ′(�t�)∣∣> nδ/12

]}
≤ 3 sup

t∈[0,n]
P
[∣∣Y ′(�t�)∣∣> nδ/12

]+ 3 sup
t∈[0,n]

P
[∣∣Y ′(t)− Y ′(�t�)∣∣> nδ/12

]
= 3 sup

1≤k≤n

P
[∣∣Y ′(k)

∣∣> nδ/12
]+ 3 sup

t∈[0,1]
P
[∣∣Y ′(t)

∣∣> nδ/12
]

≤ 3 sup
1≤k≤n

P

[∣∣∣∣∣
k∑

i=1

{
Y ′(i)− Y ′(i − 1)

}∣∣∣∣∣> nδ/12

]

+ 3P
[

sup
t∈[0,1]

∣∣Y ′(t)
∣∣m > (nδ/12)m

]
.

Since Y ′(i)− Y ′(i − 1) are i.i.d. with Y ′(i)− Y ′(i − 1)
D= Y ′(1) = ∫

|x|≤1 x[N((0,

1] × dx)− ν(dx)] and Y ′(1) has exponential moments, the first term decreases at
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a geometric rate w.r.t. n due to the Chernoff bound; on the other hand, since Y ′(t)
is a martingale, the second term is bounded by 3 E|Y ′(1)|m

nm(δ/12)m
for any m by Doob’s

submartingale maximal inequality. Therefore, by choosing m large enough, this
term can be made negligible. For the tail probability of ‖Z̄n‖, note that Z̄n is a
mean zero Lévy process with the same distribution as μ+

1 (N(ns)/n−ν+1 s), where
N is the Poisson process with rate ν+1 . Therefore, again from the continuous-time
version of Etemadi’s bound, we see that P(‖Z̄n‖ > δ) decays at a geometric rate
w.r.t. n for any δ > 0. �

PROPOSITION 5.2. For each j ≥ 0, let J̄n and Ĵ
�j
n be defined as in the proof

of Theorem 3.1. Then J̄n and Ĵ
�j
n are asymptotically equivalent w.r.t. (nν[n,∞))j .

PROOF. With the convention that the summation is 0 in case the superscript is
strictly smaller than the subscript, consider the following decomposition of J̄n:

Ĵ�j
n � 1

n

j∑
l=1

Q←
n (�l)1[Ul,1],

J̄ >j
n � 1

n

Ñn∑
l=j+1

(
Q←

n (�l)−μ+
1

)
1[Ul,1],

J̌�j
n � 1

n

j∑
l=1

−μ+
1 1[Ul,1],

R̄n � 1

n
I(Ñn < j)

j∑
l=Ñn+1

(
Q←

n (�l)−μ+
1

)
1[Ul,1],

so that
J̄n = Ĵ�j

n + J̌�j
n + J̄ >j

n − R̄n.

Note that P(‖J̌�j
n ‖ ≥ δ)= 0 for sufficiently large n since ‖J̌�j

n ‖ = jμ1/n. On the
other hand, P(‖R̄n‖ ≥ δ) decays at a geometric rate since {‖R̄n‖ ≥ δ} ⊆ {Ñn < j}
and P(Ñn < j) decays at a geometric rate. Since P(‖J̄ >j

n ‖ ≥ δ) ≤ P(‖J̄ >j
n ‖ ≥

δ,Q←
n (�j ) ≥ nγ ) + P(‖J̄ >j

n ‖ ≥ δ,Q←
n (�j ) ≤ nγ ), Lemma 5.1 and Lemma 5.2

given below imply P(‖J̄ >j
n ‖ ≥ δ)= o((nν[n,∞))j ) by choosing γ small enough.

Therefore, Ĵ
�j
n and J̄n are asymptotically equivalent w.r.t. (nν[n,∞))j . �

Define a measure μ
(j)
α on R

∞↓
+ by

μ(j)
α (dx1, dx2, . . .) �

j∏
i=1

να(dxi)I[x1≥x2≥···≥xj>0]
∞∏

i=j+1

δ0(dxi),

where να(x,∞)= x−α , and δ0 is the Dirac measure concentrated at 0.
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PROPOSITION 5.3. For each j ≥ 0,(
nν[n,∞)

)−j P
(
Ĵ�j

n ∈ ·)→ Cj(·)
in M(D \D<j ) as n→∞.

PROOF. Noting that (μ
(j)
α ×Leb)◦T −1

j =Cj and P(Ĵ
�j
n ∈ ·)= P(((Q←

n (�l)/

n, l ≥ 1), (Ul, l ≥ 1)) ∈ T −1
j (·)), Lemma 5.3 and Corollary 2.2 prove the proposi-

tion. �

LEMMA 5.1. For any fixed γ > 0, δ > 0, and j ≥ 0,

(5.6) P
{∥∥J̄ >j

n

∥∥≥ δ,Q←
n (�j )≥ nγ

}= o
((

nν[n,∞)
)j )

.

PROOF. (Throughout the proof of this lemma, we use μ1 and ν1 in place of
μ+

1 and ν+1 , respectively.) We start with the following decomposition of J̄
>j
n : for

any fixed λ ∈ (0, δ
3ν1μ1

),

J̄ >j
n = 1

n

Ñn∑
l=j+1

(
Q←

n (�l)−μ1
)
1[U1,1]

= J̃ [j+1,nν1(1+λ)]
n − J̃ [Ñn+1,nν1(1+λ)]

n I
(
Ñn < nν1(1 + λ)

)
+ J̃ [nν1(1+λ)+1,Ñn]

n I
(
Ñn > nν1(1 + λ)

)
,

where

J̃ [a,b]
n � 1

n

�b�∑
l=�a�

(
Q←

n (�l)−μ1
)
1[Ul,1].

Therefore,

P
{∥∥J̄ >j

n

∥∥≥ δ,Q←
n (�j )≥ nγ

}
≤ P

(∥∥J̃ [j+1,nν1(1+λ)]
n

∥∥≥ δ/3,Q←
n (�j )≥ nγ

)
+ P

(∥∥J̃ [Ñn+1,nν1(1+λ)]
n

∥∥≥ δ/3
)+ P

(
Ñn > nν1(1 + λ)

)
= (i) + (ii) + (iii).

Noting that ‖J̃ [Ñn+1,nν1(1+λ)]
n ‖ ≤ (ν1(1+λ)− Ñn/n)μ1—recall that Ñn is defined

to be the number of l’s such that Q←
n (�l) ≥ 1, and hence, 0 ≤ Q←

n (�l) < 1 for
l > Ñn—we see that (ii) is bounded by

P
((

ν1(1 + λ)− Ñn/n
)
μ1 ≥ δ/3

)= P
(

Ñn

nν1
≤ 1 + λ− δ

3ν1μ1

)
,
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which decays at a geometric rate w.r.t. n since Ñn is Poisson with rate nν1. For the
same reason, (iii) decays at a geometric rate w.r.t. n. We are done if we prove that
(i) is o((nν[n,∞))j ). Note that Q←

n (�j )≥ nγ implies Qn(nγ )≥ �j , and hence,

(1+λ)nν1∑
l=j+1

(
Q←

n

(
�l − �j +Qn(nγ )

)−μ1
)
1[Ul,1]

≤
(1+λ)nν1∑
l=j+1

(
Q←

n (�l)−μ1
)
1[Ul,1]

≤
(1+λ)nν1∑
l=j+1

(
Q←

n (�l − �j)−μ1
)
1[Ul,1].

Therefore, if we define

An �
{
Q←

n (�j )≥ nγ
}
,

B ′
n �

{
sup

t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←

n (�l − �j )−μ1
)
1[Ul,1](t)≥ nδ

}
,

B ′′
n �

{
inf

t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←

n

(
�l − �j +Qn(nγ )

)−μ1
)
1[Ul,1](t)≤−nδ

}
,

then we have that

(i) ≤ P
(
An ∩ (B ′

n ∪B ′′
n

))
≤ P

(
An ∩B ′

n

)+ P
(
An ∩B ′′

n

)
= P(An)

(
P
(
B ′

n

)+ P
(
B ′′

n

))
,

where the last equality is from the independence of An and B ′
n as well as of

An and B ′′
n (which is, in turn, due to the independence of �j and �l − �j ).

From Lemma 5.4(c) and Proposition 5.3, P(An) = P(Ĵ
�j
n ∈ (D \ D<j )

−γ /2) =
O((nν[n,∞))j ), and hence, it suffices to show that the probabilities of the com-
plements of B ′

n and B ′′
n converge to 1, that is, for any fixed γ > 0,

(5.7) P

{
sup

t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←

n (�l − �j)−μ1
)
1[Ul,1](t) < nδ

}
→ 1

and

(5.8) P

{
inf

t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←

n

(
�l − �j +Qn(nγ )

)−μ1
)
1[Ul,1](t) >−nδ

}
→ 1.
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Starting with (5.7)

P

{
sup

t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←

n (�l − �j )−μ1
)
1[Ul,1](t) < nδ

}

= P

{
sup

t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t) < nδ

}

≥ P

{
sup

t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t) < nδ, Ñn ≤ (1 + λ)nν1 − j

}

≥ P

{
sup

t∈[0,1]

Ñn∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t) < nδ, Ñn ≤ (1 + λ)nν1 − j

}

≥ P

{
sup

t∈[0,1]

Ñn∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t) < nδ)

}

− P
{
Ñn > (1 + λ)nν1 − j

}
.

The second inequality is due to the definition of Q←
n and that μ1 ≥ 1 (and hence,

Q←
n (�l) − μ1 ≤ 0 on l ≥ Ñn), while the last inequality comes from the generic

inequality P(A∩B)≥ P(A)−P(Bc). The second probability converges to 0 since
Ñ is Poisson with rate nν1. Moving on to the first probability in the last expres-

sion, observe that
∑Ñn

l=1(Q
←
n (�l) − μ1)1[Ul,1](·) has the same distribution as the

compound Poisson process
∑J (n·)

i=1 (Di − μ1), where J is a Poisson process with
rate ν1 and Di ’s are i.i.d. random variables with the distribution ν conditioned (and
normalized) on [1,∞), that is, P{Di ≥ s} = 1∧ (ν[s,∞)/ν[1,∞)). Using this, we
obtain

P

{
sup

t∈[0,1]

Ñn∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t) < nδ

}

= P

{
sup

1≤m≤J (n)

m∑
l=1

(Dl −μ1) < nδ

}

≥ P

{
sup

1≤m≤2nν1

m∑
l=1

(Dl −μ1) < nδ, J (n)≤ 2nν1

}

≥ P

{
sup

1≤m≤2nν1

m∑
l=1

(Dl −μ1) < nδ

}
− P

{
J (n) > 2nν1

}
.

(5.9)

The second probability vanishes at a geometric rate w.r.t. n because J (n) is Poisson
with rate nν1. The first term can be investigated by the generalized Kolmogorov
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inequality; cf. Lemma in page 335 of Shneer and Wachtel (2011) (given as Re-
sult A.1 in the Appendix):

P

(
max

1≤m≤2nν1

m∑
l=1

(Dl −μ1)≥ nδ/2

)
≤ C

2nν1V (nδ/2)

(nδ/2)2 ,

where V (x)= E[(Dl −μ1)
2;μ1−x ≤Dl ≤ μ1+x] ≤ μ2

1+E[D2
l ;Dl ≤ μ1+x].

Note that

E
[
D2

l ;Dl ≤ μ1 + x
]= ∫ 1

0
2s ds +

∫ μ1+x

1
2s

ν[s,∞)

ν[1,∞)
ds

= 1 + 2

ν1
(μ1 + x)2−αL(μ1 + x),

for some slowly varying L. Hence,

P

(
max

1≤m≤2nν1

m∑
l=1

(Dl −μ1) < nδ

)

≥ 1 − P

(
max

1≤m≤2nν1

m∑
l=1

(Dl −μ1)≥ nδ/2

)
→ 1,

as n→∞.
Now, turning to (5.8), let γn � Qn(nγ ).

P

{
inf

t∈[0,1]

(1+λ)nν1∑
l=j+1

(
Q←

n

(
�l − �j +Qn(nγ )

)−μ1
)
1[Ul,1](t) >−nδ

}

= P

{
inf

t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←

n (�l + γn)−μ1
)
1[Ul,1](t) >−nδ

}

≥ P

{
inf

t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←

n (�l + γn)−μ1
)
1[Ul,1](t) >−nδ,E0 ≥ γn

}

≥ P

{
inf

t∈[0,1]

(1+λ)nν1−j∑
l=1

(
Q←

n (�l +E0)−μ1
)
1[Ul,1](t) >−nδ,E0 ≥ γn

}

= P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←

n (�l)−μ1
)
1[Ul,1](t) >−nδ,�1 ≥ γn

}

≥ P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←

n (�l)−μ1
)
1[Ul,1](t) >−nδ

}
− P{�1 < γn}

= (A)− (B),



LARGE DEVIATIONS FOR REGULARLY VARYING PROCESSES 3585

where E0 is a standard exponential random variable. (Recall that �l � E1 +E2 +
· · · + El , and hence, (�l + E0,Ul)

D= (�l+1,Ul)
D= (�l+1,Ul+1).) Since (B) =

P{�1 < γn}→ 0 (recall that γn = nν[nγ,∞) and ν is regularly varying with index
−α <−1), we focus on proving that the first term (A) converges to 1:

(A)= P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←

n (�l)−μ1
)
1[Ul,1](t) >−nδ

}

≥ P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=2

(
Q←

n (�l)−μ1
)
1[Ul,1](t) >−nδ,

Ñn ≤ (1 + λ)nν1 − j + 1

}

≥ P

{
inf

t∈[0,1]

Ñn∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t)≥−nδ/3,

inf
t∈[0,1]−

(
Q←

n (�1)−μ1
)
1[U1,1](t) >−nδ/3,

inf
t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

(
Q←

n (�l)−μ1
)
1[Ul,1](t)≥−nδ/3,

Ñn ≤ (1 + λ)nν1 − j + 1

}

≥ P

{
inf

t∈[0,1]

Ñn∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t)≥−nδ/3

}

+ P
{
Q←

n (�1)−μ1 < nδ/3
}

+ P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

(
Q←

n (�l)−μ1
)
1[Ul,1](t)≥−nδ/3

}

+ P
{
Ñn ≤ (1 + λ)nν1 − j + 1

}− 3

= (AI) + (AII) + (AIII) + (AIV) − 3.

The third inequality comes from applying the generic inequality P(A ∩ B) ≥
P(A)+ P(B)− 1 three times. Since Ñn is Poisson with rate nν1,

(AIV) = P
{
Ñn ≤ (1 + λ)nν1 − j + 1

}= P
{

Ñn

nν1
≤ 1 + λ− j − 1

nν1

}
→ 1.
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For the first term (AI),

(AI) = P

{
inf

t∈[0,1]

Ñn∑
l=1

(
Q←

n (�l)−μ1
)
1[Ul,1](t)≥−nδ/3

}

= P

{
sup

t∈[0,1]

Ñn∑
l=1

(
μ1 −Q←

n (�l)
)
1[Ul,1](t)≤ nδ/3

}

= P

{
sup

1≤m≤J (n)

m∑
l=1

(μ1 −Dl)≤ nδ/3

}
,

where Di is defined as before. Note that this is of exactly same form as (5.9)
except for the sign of Dl , and hence, we can proceed exactly the same way using
the generalized Kolmogorov inequality to prove that this quantity converges to 1—
recall that the formula only involves the square of the increments, and hence, the
change of the sign has no effect. For the second term (AII),

(AII) ≥ P
{
Q←

n (�1)≤ nδ/3
}≥ P

{
�1 > Qn(nδ/3)

}→ 1,

since Qn(nδ/3)→ 0. For the third term (AIII),

(AIII) = P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

(
Q←

n (�l)−μ1
)
1[Ul,1](t)≥−nδ/3

}

≥ P

{
inf

t∈[0,1]

(1+λ)nν1−j+1∑
l=Ñn+1

−μ11[Ul,1](t)≥−nδ/3

}

≥ P

{(1+λ)nν1−j+1∑
l=Ñn+1

μ1 ≤ nδ/3

}

≥ P
{
μ1
(
(1 + λ)nν1 − j − Ñn + 1

)≤ nδ/3
}

≥ P
{

1 + λ− δ

3ν1μ1
≤ Ñn

nν1
+ j − 1

nν1

}

→ 1,

since λ < δ
3ν1μ1

. This concludes the proof of the lemma. �

LEMMA 5.2. For any j ≥ 0, δ > 0, and m <∞, there is γ0 > 0 such that

P
{∥∥J̄ >j

n

∥∥> δ,Q←
n (�j )≤ nγ0

}= o
(
n−m).

PROOF. (Throughout the proof of this lemma, we use μ1 and ν1 in place of
μ+

1 and ν+1 , respectively, for the sake of notational simplicity.) Note first that
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Q←
n (�j ) =∞ if j = 0, and hence, the claim of the lemma is trivial. Therefore,

we assume j ≥ 1 throughout the rest of the proof. Since for any λ > 0,

P
{∥∥J̄ >j

n

∥∥> δ,Q←
n (�j )≤ nγ

}

≤ P

{∥∥∥∥∥
Ñn∑

l=j+1

(
Q←

n (�l)−μ1
)
1[Ul,1]

∥∥∥∥∥> nδ,Q←
n (�j )≤ nγ,

Ñn

nν1
∈
[

j

nν1
,1 + λ

]}

+ P
{

Ñn

nν1
/∈
[

j

nν1
,1 + λ

]}
,

(5.10)

and P{ Ñn

nν1
/∈ [ j

nν1
,1 + λ]} decays at a geometric rate w.r.t. n, it suffices to show

that (5.10) is o(n−m) for small enough γ > 0. First, recall that by the definition of
Q←

n (·),
Q←

n (x)≥ s ⇐⇒ x ≤Qn(s),

and

nν
(
Q←

n (x),∞)≤ x ≤ nν
[
Q←

n (x),∞)
.

Let L be a random variable conditionally (on Ñn) independent of everything else
and uniformly sampled on {j + 1, j + 2, . . . , Ñn}. Recall that given Ñn and �j ,
the distribution of {�j+1,�j+2, . . . ,�Ñn

} is the same as that of the order statistics

of Ñn − j uniform random variables on [�j ,nν[1,∞)]. Let Dl, l ≥ 1, be i.i.d.
random variables whose conditional distribution is the same as the conditional
distribution of Q←

n (�L) given Ñn and �j . Then the conditional distribution of∑Ñn

l=j+1(Qn(�l)−μ1)1[Ul,1] is the same as that of
∑Ñn−j

l=1 (Dl −μ1)1[Ul,1]. There-

fore, the conditional distribution of ‖∑Ñn

l=j+1(Qn(�l)−μ1)1[Ul,1]‖∞ is the same
as the corresponding conditional distribution of sup1≤m≤Ñn−j

|∑m
l=1(Dl − μ1)|.

To make use of this in the analysis that follows, we make a few observations on
the conditional distribution of Q←

n (�L) given �j and Ñn.

(a) The conditional distribution of Q←
n (�L):

Let q � Q←
n (�j ). Since �L is uniformly distributed on [�j ,Qn(1)] = [�j ,

nν[1,∞)], the tail probability is

P
{
Q←

n (�L)≥ s|�j , Ñn

}= P
{
�L ≤Qn(s)|�j , Ñn

}
= P

{
�L ≤ nν[s,∞)|�j , Ñn

}
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= P
{

�L − �j

nν[1,∞)− �j

≤ nν[s,∞)− �j

nν[1,∞)− �j

|�j , Ñn

}

= nν[s,∞)− �j

nν[1,∞)− �j

for s ∈ [1, q]; since this is nonincreasing w.r.t. �j and nν(q,∞)≤ �j ≤ nν[q,∞),
we have that

ν[s, q)

ν[1, q)
≤ P

{
Q←

n (�L)≥ s|�j , Ñn

}≤ ν[s, q]
ν[1, q] .

(b) Difference in mean between conditional and unconditional distribution:
From (a), we obtain

μ̃n � E
[
Q←

n (�L)|�j , Ñn

] ∈ [1 +
∫ q

1

ν[s, q)

ν[1, q)
ds,1 +

∫ q

1

ν[s, q]
ν[1, q] ds

]
,

and hence,

|μ1 − μ̃n| ≤
∣∣∣∣ν[1, q)

∫∞
1 ν[s,∞) ds − ν[1,∞)

∫ q
1 ν[s, q) ds

ν[1,∞)ν[1, q)

∣∣∣∣
∨
∣∣∣∣ν[1, q] ∫∞1 ν[s,∞) ds − ν[1,∞)

∫ q
1 ν[s, q]ds

ν[1,∞)ν[1, q]
∣∣∣∣.

Since

ν[1, q)
∫∞

1 ν[s,∞) ds − ν[1,∞)
∫ q

1 ν[s, q) ds

ν[1,∞)ν[1, q)

= ν[q,∞)

ν[1, q)
(q − 1)+

∫∞
q ν[s,∞) ds

ν[1,∞)
− ν[q,∞)

∫ q
1 ν[s,∞) ds

ν[1,∞)ν[1, q)
,

and

ν[1, q)
∫∞

1 ν[s,∞) ds − ν[1,∞)
∫ q

1 ν[s, q) ds

ν[1,∞)ν[1, q)

− ν[1, q] ∫∞1 ν[s,∞) ds − ν[1,∞)
∫ q

1 ν[s, q]ds

ν[1,∞)ν[1, q]

= ν{q}((q − 1)ν[1,∞)+ ∫∞
q ν[s,∞) ds + ∫ q

1 ν[s,∞) ds)

ν[1,∞)(ν[1, q)+ ν{q}) ,

we see that |μ1 − μ̃n| is bounded by a regularly varying function with index 1−α

(w.r.t. q) from Karamata’s theorem.
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(c) Variance of Q←
n (�L): Turning to the variance, we observe that, if α ≤ 2,

(5.11)

E
[
Q←

n (�L)2|�j , Ñn

]≤ ∫ 1

0
2s ds + 2

∫ q

1
s
ν[s, q]
ν[1, q] ds

≤ 1 + 2

ν[1, q]
∫ q

1
sν[s,∞) ds

= 1 + q2−αL(q)

for some slowly varying function L(·). If α > 2, the variance is bounded w.r.t. q .

Now, with (b) and (c) in hand, we can proceed with an explicit bound since all the
randomness is contained in q . Namely, we infer

P

(∥∥∥∥∥
Ñn∑

l=j+1

(
Q←

n (�l)−μ1
)
1[Ul,1]

∥∥∥∥∥∞ > nδ,Q←
n (�j )≤ nγ,

Ñn

nν1
∈
[

j

nν1
,1+ λ

])

= P

(∥∥∥∥∥
Ñn∑

l=j+1

(
Q←

n (�l)−μ1
)
1[Ul,1]

∥∥∥∥∥∞ > nδ,�j ≥Qn(nγ ),

Ñn

nν1
∈
[

j

nν1
,1 + λ

])

= E

[
P

(∥∥∥∥∥
Ñn∑

l=j+1

(
Q←

n (�l)−μ1
)
1[Ul,1]

∥∥∥∥∥∞ > nδ
∣∣∣�j , Ñn

)
;�j ≥Qn(nγ ),

Ñn

nν1
∈
[

j

nν1
,1 + λ

]]

= E

[
P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑

l=1

(Dl −μ1)

∣∣∣∣∣> nδ
∣∣∣�j , Ñn

)
;�j ≥Qn(nγ ),

Ñn

nν1
∈
[

j

nν1
,1 + λ

]]
.

By Etemadi’s bound (Result A.2 in Appendix),

P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑

l=1

(Dl −μ1)

∣∣∣∣∣≥ nδ
∣∣∣�j , Ñn

⎞
⎠

≤ 3 max
1≤m≤Ñn

P

(∣∣∣∣∣
m∑

l=1

(Dl −μ1)

∣∣∣∣∣≥ nδ
∣∣∣�j , Ñn

⎞
⎠(5.12)
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≤ 3 max
1≤m≤Ñn

{
P

(
m∑

l=1

(Dl −μ1)≥ nδ
∣∣∣�j , Ñn

⎞
⎠

+ P

(
m∑

l=1

(μ1 −Dl)≥ nδ
∣∣∣�j , Ñn

⎞
⎠
}

and as |Dl − μ̃n| is bounded by q , we can apply Prokhorov’s bound (Result A.3 in
Appendix) to get

P

(
m∑

l=1

(μ1 −Dl)≥ nδ
∣∣∣�j , Ñn

⎞
⎠

= P

(
m∑

l=1

(μ̃n −Dl)≥ nδ −m(μ1 − μ̃n)
∣∣∣�j , Ñn

⎞
⎠

≤ P

(
m∑

l=1

(μ̃n −Dl)≥ nδ − nν1(1 + λ)(μ1 − μ̃n)
∣∣∣�j , Ñn

⎞
⎠

≤
(

qn(δ − ν1(1 + λ)(μ1 − μ̃n))

mvar(Q←
n (�L))

)− n(δ−ν1(1+λ)(μ1−μ̃n))

2q

≤
(

nν1(1 + λ)var(Q←
n (�L))

qn(δ − ν1(1 + λ)(μ1 − μ̃n))

) n(δ−ν1(1+λ)(μ1−μ̃n))

2q

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
ν1(1 + λ)(1 + q2−αL1(q))

q(δ − ν1(1 + λ)q1−αL2(q))

) n(δ−ν1(1+λ)q1−αL2(q))

2q

if α ≤ 2,

(
ν1(1 + λ)C

q(δ − ν1(1 + λ)q1−αL2(q))

) n(δ−ν1(1+λ)q1−αL2(q))

2q

otherwise,

for some C > 0 if m ≤ (1 + λ)nν1. Therefore, there exist constants M and c such
that q ≥M (i.e., �j ≤Qn(M)) implies

P

(
m∑

l=1

(μ1 −Dl)≥ nδ
∣∣∣�j

⎞
⎠≤ c

(
q1−α∧2) nδ

8q ,

and since we are conditioning on q =Q←
n (�j )≤ nγ ,

c
(
q1−α∧2) nδ

8q ≤ c
(
q1−α∧2) δ

8γ .

Hence,

P

(
m∑

l=1

(μ1 −Dl)≥ nδ
∣∣∣�j

⎞
⎠≤ c

(
Q←

n (�j )
1−α∧2) δ

8γ .
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With the same argument, we also get

P

(
m∑

l=1

(Dl −μ1)≥ nδ
∣∣∣�j

⎞
⎠≤ c

(
Q←

n (�j )
1−α∧2) δ

8γ .

Combining (5.12) with the two previous estimates, we obtain

P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑

l=1

(Dl −μ1)

∣∣∣∣∣≥ nδ
∣∣∣�j , Ñn

)
≤ 6c

(
Q←

n (�j )
1−α∧2) δ

8γ ,

on �j ≥Qn(nγ ), Ñn − j ≤ nν1(1 + λ), and �j ≤Qn(M). Now,

E

[
P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑

l=1

(Dl −μ1)

∣∣∣∣∣> nδ
∣∣∣�j , Ñn

)
;�j ≥Qn(nγ );

Ñn

nν1
∈
[

j

nν1
,1 + λ

]]

≤ E

[
P

(
max

1≤m≤Ñn−j

∣∣∣∣∣
m∑

l=1

(Dl −μ1)

∣∣∣∣∣> nδ
∣∣∣�j , Ñn

)
;�j ≥Qn(nγ );

Ñn

nν1
∈
[

j

nν1
,1 + λ

]
;�j ≤Qn(M)

]

+ P
(
�j > Qn(M)

)
≤ E

[
6c
(
Q←

n (�j )
1−α∧2) δ

8γ
]+ P

(
�j > Qn(M)

)
≤ E

[
6c
(
Q←

n (�j )
1−α∧2) δ

8γ ;Q←
n (�j )≥ nβ]+ P

(
Q←

n (�j ) < nβ)
+ P

(
�j > Qn(M)

)
≤ 6c

(
nβ(1−α∧2)) δ

8γ + P
(
�j > Qn

(
nβ))+ P

(
�j > Qn(M)

)
≤ 6c

(
nβ(1−α∧2)) δ

8γ + P
(
�j >

(
n1−αβL(n)

))+ P
(
�j > Qn(M)

)
,

for any β > 0. If one chooses β so that 1 − αβ > 0 (e.g., β = 1
2α

), the second and
third terms vanish at a geometric rate w.r.t. n. On the other hand, we can pick γ

small enough compared to δ, so that the first term is decreasing at an arbitrarily
fast polynomial rate. This concludes the proof of the lemma. �

Recall that we denote the Lebesgue measure on [0,1]∞ with Leb and defined
measures μ

(j)
α and μ

(j)
β on R

∞↓
+ as

μ(j)
α (dx1, dx2, . . .) �

j∏
i=1

να(dxi)I[x1≥x2≥···≥xj>0]
∞∏

i=j+1

δ0(dxi),

and να(x,∞)= x−α , where δ0 is the Dirac measure concentrated at 0.
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LEMMA 5.3. For each j ≥ 0,
(
nν[n,∞)

)−j P
[((

Q←
n (�l)/n, l ≥ 1

)
, (Ul, l ≥ 1)

) ∈ ·]→ (
μ(j)

α × Leb
)
(·)

in M((R
∞↓
+ × [0,1]∞) \ (H<j × [0,1]∞)) as n→∞.

PROOF. We first prove that

(5.13)
(
nν[n,∞)

)−j P
[(

Q←
n (�l)/n, l ≥ 1

) ∈ ·]→ μ(j)
α (·)

in M(R
∞↓
+ \H<j ) as n→∞. To show this, we only need to check that

(5.14)
(
nν[n,∞)

)−j P
[(

Q←
n (�l)/n, l ≥ 1

) ∈A
]→ μ(j)

α (A)

for A’s that belong to the convergence-determining class Aj � {{z ∈ R
∞↓
+ : x1 ≤

z1, . . . , xl ≤ zl} : l ≥ j, x1 ≥ · · · ≥ xl > 0}. To see that Aj is a convergence-

determining class for M(R
∞↓
+ \ H<j )-convergence, note that A′

j � {{z ∈ R
∞↓
+ :

x1 ≤ z1 < y1, . . . , xl ≤ zl < yl} : l ≥ j, x1, . . . , xl ∈ (0,∞), y1, . . . , yl ∈ (0,∞]}
satisfies conditions (i), (ii) and (iii) of Lemma 2.7, and hence, is a convergence-
determining class. Now define Aj (i)’s recursively as Aj (i + 1) � {B \A :A,B ∈
Aj (i),A ⊆ B} for i ≥ 0, and Aj (0) = A′′

j � {{z ∈ R
∞↓
+ : x1 ≤ z1, . . . , xl ≤ zl} :

l ≥ j, x1, . . . , xl > 0}. Since we restrict the set-difference operation between nested
sets, the limit associated with the sets in Aj (i + 1) is determined by the sets
in Aj (i), and eventually, A′′

j . Noting that A′
j ⊆ ⋃∞

i=0 Aj (i), we see that A′′
j is

a convergence-determining class. Now, since both P[(Q←
n (�l)/n, l ≥ 1) ∈ ·] and

μ
(j)
α (·) are supported on R

∞↓
+ , one can further reduce the convergence determining

class from A′′
j to Aj .

To check the desired convergence for the sets in Aj , we first characterize the
limit measure. Let l ≥ j and x1 ≥ · · · ≥ xl > 0. By the change of variables vi =
xα
i y−α

i for i = 1, . . . , j ,

μ(j)
α

({
z ∈R

∞↓
+ : x1 ≤ z1, . . . , xl ≤ zl

})
= I(j = l) ·

∫ ∞
xj

· · ·
∫ ∞
x1

I(y1 ≥ · · · ≥ yj ) dνα(y1) · · ·dνα(yj )

= I(j = l) ·
( j∏

i=1

xi

)−α

·
∫ 1

0
· · ·

∫ 1

0
I
(
x−α

1 v1 ≤ · · · ≤ x−α
j vj

)
dv1 · · ·dvj .

Next, we find a similar representation for the distribution of �1, . . . ,�l . Let
U(1), . . . ,U(l−1) be the order statistics of l − 1 i.i.d. uniform random variables on
[0,1]. Recall first that the conditional distribution of (�1/�l, . . . ,�l−1/�l) given
�l does not depend on �l and coincides with the distribution of (U(1), . . . ,U(l−1));
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see, for example, Section 4 of Pyke (1965). Suppose that l ≥ j and 0 ≤ y1 ≤ · · · ≤
yl . By the change of variables ui = γ−1yivi for i = 1, . . . , l − 1, and γ = ylvl ,

P(�1 ≤ y1, . . . ,�l ≤ yl)

= E
[
P(�1/�l ≤ y1/�l, . . . ,�l−1/�l ≤ yl−1/�l|�l) · I(�l ≤ yl)

]
=
∫ yl

0
P(U(1) ≤ y1/γ, . . . ,U(l−1) ≤ yl−1/γ )

e−γ γ l−1

(l − 1)! dγ

=
∫ yl

0
e−γ γ l−1

∫ yl−1/γ

0
· · ·

∫ y1/γ

0
I(u1 ≤ · · · ≤ ul−1 ≤ 1) du1 · · ·dul−1 dγ

=
(

l−1∏
i=1

yi

)∫ yl

0
e−γ

∫ 1

0
· · ·

∫ 1

0
I(y1v1 ≤ · · · ≤ yl−1vl−1 ≤ γ )dv1 · · ·dvl−1 dγ

=
(

l∏
i=1

yi

)
·
∫ 1

0
· · ·

∫ 1

0
e−ylvl I(y1v1 ≤ · · · ≤ ylvl) dv1 · · ·dvl.

Since 0 ≤Qn(nx1)≤ · · · ≤Qn(nxl) for x1 ≥ · · · ≥ xl > 0,(
nν[n,∞)

)−j P
[
Q←

n (�1)/n≥ x1, . . . ,Q
←
n (�l)≥ xl

]
= (

nν[n,∞)
)−j P

[
�1 ≤Qn(nx1), . . . ,�l ≤Qn(nxl)

]

= (
nν[n,∞)

)−j ·
(

l∏
i=1

Qn(nxi)

)

·
∫ 1

0
· · ·

∫ 1

0
e−Qn(nxl)vl I

(
Qn(nx1)v1 ≤ · · · ≤Qn(nxl)vl

)
dv1 · · ·dvl

=
( j∏

i=1

Qn(nxi)

nν[n,∞)

)
·
(

l∏
i=j+1

Qn(nxi)

)

·
∫ 1

0
· · ·

∫ 1

0
e−Qn(nxl)vl I

(
Qn(nxi)

nν[n,∞)
v1 ≤ · · · ≤ Qn(nxi)

nν[n,∞)
vl

)
dv1 · · ·dvl.

Note that Qn(nxi) → 0 and Qn(nxi)
nν[n,∞)

→ x−α
i as n → ∞ for each i = 1, . . . , l.

Therefore, by bounded convergence,(
nν[n,∞)

)−j P
[
Q←

n (�1)/n≥ x1, . . . ,Q
←
n (�l)≥ xl

]

→ I(j = l)

( j∏
i=1

xi

)−α

·
∫ 1

0
· · ·

∫ 1

0
I
(
x−α

1 v1 ≤ · · · ≤ x−α
j vj

)
dv1 · · ·dvj

= μ(j)
α

({
z ∈R

∞↓
+ : x1 ≤ z1, . . . , xl ≤ zl

})
,
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which concludes the proof of (5.13). The conclusion of the lemma follows from
the independence of (Q←

n (�l)/n, l ≥ 1) and (Ul, l ≥ 1) and Lemma 2.2. �

LEMMA 5.4. Suppose that x1 ≥ · · · ≥ xj ≥ 0; ui ∈ (0,1) for i = 1, . . . , j ;
y1 ≥ · · · ≥ yk ≥ 0; vi ∈ (0,1) for i = 1, . . . , k; u1, . . . , uj , v1, . . . , vk are all dis-
tinct.

(a) For any ε > 0,{
x ∈G : d(x, y) < (1 + ε)δ implies y ∈G

}
⊆G−δ

⊆ {
x ∈G : d(x, y) < δ implies y ∈G

}
.

Also, (A∩B)δ ⊆Aδ ∩Bδ and A−δ ∪B−δ ⊆ (A∪B)−δ for any A and B .
(b)

∑j
i=1 xi1[ui,1] ∈ (D \D<j )

−δ implies xj ≥ δ.

(c)
∑j

i=1 xi1[ui,1] /∈ (D \D<j )
−δ implies xj ≤ 2δ.

(d)
∑j

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi ,1] ∈ (D \D<j,k)
−δ implies xj ≥ δ and yk ≥ δ.

(e) Suppose that ξ ∈ Dj,k . If l < j or m < k, then ξ is bounded away from
Dl,m.

(f) If I (ξ) > (α− 1)j + (β − 1)k, then ξ is bounded away from D<j,k ∪Dj,k .

PROOF. (a) Immediate consequences of the definition.
(b) From (a), we see that

∑j
i=1 xi1[ui,1] ∈ (D \ D<j )

−δ and
∑j−1

i=1 xi1[ui,1] ∈
D<j implies d(

∑j
i=1 xi1[ui,1],

∑j−1
i=1 xi1[ui,1])≥ δ, which is not possible if xj < δ.

(c) We prove that for any ε > 0,
∑j

i=1 xi1[ui,1] /∈ (D \ D<j )
−δ implies xj ≤

(2+ ε)δ. To show this, in turn, we work with the contrapositive. Suppose that xj >

(2 + ε)δ. If d(
∑j

i=1 xi1[ui,1], ζ ) < (1 + ε/2)δ, by the definition of the Skorokhod
metric, there exists a nondecreasing homeomorphism φ of [0,1] onto itself such
that ‖∑j

i=1 xi1[ui,1] − ζ ◦φ‖∞ < (1+ ε/2)δ. Note that at each discontinuity point

of
∑j

i=1 xi1[yi ,1], ζ ◦ φ should also be discontinuous. Otherwise, the supremum

distance between
∑j

i=1 xi1[ui,1] and ζ ◦ φ has to be greater than (1 + ε/2)δ, since

the smallest jump size of
∑j

i=1 xi1[ui,1] is greater than (2 + ε)δ. Hence, there has
to be at least j discontinuities in the path of ζ ; that is, ζ ∈D\D<j . We have shown

that d(
∑j

i=1 xi1[ui,1], ζ ) < (1 + ε/2)δ implies ζ ∈ D \ D<j , which in turn, along

with (a), shows that
∑j

i=1 xi1[ui,1] ∈ (D \D<j )
−δ .

(d) Suppose that
∑j

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi ,1] ∈ (D \ D<j,k)
−δ . Since∑j−1

i=1 xi1[ui,1] −
∑k

i=1 yi1[vi ,1] /∈D \D<j,k ,

xj ≥ d

( j∑
i=1

xi1[ui,1] −
k∑

i=1

yi1[vi ,1],
j−1∑
i=1

xi1[ui,1] −
k∑

i=1

yi1[vi ,1]
)
≥ δ.

Similarly, we get yk ≥ δ.
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(e) Let ξ =∑j
i=1 xi1[ui,1] −

∑k
i=1 yi1[vi ,1]. First, we claim that d(ζ, ξ) ≥ xj/2

for any ζ ∈Dl,m with l < j . Suppose not, that is, d(ζ, ξ) < xj/2. Then there exists

a nondecreasing homeomorphism φ of [0,1] onto itself such that ‖∑j
i=1 xi1[ui,1]−

ζ ◦φ‖∞ < xj/2. Note that this implies that at each discontinuity point s of ξ , ζ ◦φ

should also be discontinuous. Otherwise, |ζ ◦φ(s)−ξ(s)|+|ζ ◦φ(s−)−ξ(s−)| ≥
|ξ(s)− ξ(s−)| ≥ xj , and hence, it is contradictory to the bound on the supremum
distance between ξ and ζ ◦ φ. However, this implies that ζ has j upward jumps,
and hence, contradictory to the assumption ζ ∈Dl,m, proving the claim. Likewise,
d(ζ, ξ)≥ yk/2 for any ξ ∈Dl,m with m < k.

(f) Note that in case I (ξ) is finite, D+(ξ) > j or D−(ξ) > k. In this case,
the conclusion is immediate from (e). In case I (ξ) = ∞, either D+(ζ ) = ∞,
D−(ζ ) = ∞, ξ(0) �= 0, or ξ contains a continuous nonconstant piece. By con-
taining a continuous nonconstant piece, we refer to the case that there exist t1 and
t2 such that t1 < t2, ξ(t1) �= ξ(t2−) and ξ is continuous on (t1, t2). For the first
two cases where the number of jumps is infinite, the conclusion is an immediate
consequence of (e). The case ξ(0) �= 0 is also obvious. Now we are left with deal-
ing with the last case, where ξ has a continuous nonconstant piece. To discuss this
case, assume w.l.o.g. that ξ(t1) < ξ(t2−). We claim that d(ξ,Dj,k) ≥ ξ(t2−)−ξ(t1)

2(j+1)
.

Note that for any step function ζ ,

‖ξ − ζ‖ ≥ ∣∣ξ(t2−)− ζ(t2−)
∣∣∨ ∣∣ξ(t1)− ζ(t1)

∣∣
≥ (

ξ(t2−)− ζ(t2−)
)∨ (ζ(t1)− ξ(t1)

)
≥ 1

2

{(
ξ(t2−)− ξ(t1)

)− (
ζ(t2−)− ζ(t1)

)}

≥ 1

2

{(
ξ(t2−)− ξ(t1)

)− ∑
t∈(t1,t2)

(
ζ(t)− ζ(t−)

)}

≥ 1

2

{(
ξ(t2−)− ξ(t1)

)− 2D+(ζ )‖ξ − ζ‖},
where the fourth inequality is due to the fact that ‖ξ − ζ‖ ≥ ζ(t)−ζ(t−)

2 for all
t ∈ (t1, t2). From this, we get

‖ξ − ζ‖ ≥ ξ(t2−)− ξ(t1)

2(D+(ζ )+ 1)
≥ ξ(t2−)− ξ(t1)

2(j + 1)
,

for ζ ∈ Dj,k . Now, suppose that ζ ∈ Dj,k . Since ζ ◦ φ is again in Dj,k for any
nondecreasing homeomorphism φ of [0,1] onto itself,

d(ξ, ζ )≥ ξ(t2−)− ξ(t1)

2(j + 1)
,

which proves the claim. �
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Now we move on to the proof of Theorem 3.3. We first establish Theo-
rem 5.1, which plays a key role in the proof. Recall that D<j = ⋃

0≤l<j Dl and

let D<(j1,...,jd ) � ⋃
(l1,...,ld )∈I<(j1,...,jd )

∏d
i=1 Dli where I<(j1,...,jd ) � {(l1, . . . , ld) ∈

Zd+ \ {(j1, . . . , jd)} : (α1 − 1)l1 + · · · + (αd − 1)ld ≤ (α1 − 1)j1 + · · · + (αd −
1)jd}. For each l ∈ Z+ and i = 1, . . . , d , let C

(i)
l (·) � E[νl

αi
{x ∈ (0,∞)l :∑l

j=1 xj 1[Uj ,1] ∈ ·}] where U1, . . . ,Ul are i.i.d. uniform on [0,1], and νl
αi

is as
defined right below (3.1).

THEOREM 5.1. Consider independent one-dimensional Lévy processes X(1),

. . . ,X(d) with spectrally positive Lévy measures ν1(·), . . . , νd(·), respectively. Sup-
pose that each νi is regularly varying (at infinity) with index −αi < −1, and let
X̄

(i)
n be centered and scaled scaled version of X(i) for each i = 1, . . . , d . Then, for

each (j1, . . . , jd) ∈ Zd+,

P((X̄
(1)
n , . . . , X̄

(d)
n ) ∈ ·)∏d

i=1(nνi[n,∞))ji
→C

(1)
j1

× · · · ×C
(d)
jd

(·)

in M(
∏d

i=1 D \D<(j1,...,jd )).

PROOF. From Theorem 3.1, we know that (nνi[n,∞))−j P(X̄
(i)
n ∈ ·)→ Cj(·)

in M(D \ D<j ) for i = 1, . . . , d and any j ≥ 0. This along with Lemma 2.2, for
each (l1, . . . , ld) ∈ Zd+ we obtain

d∏
i=1

(
nνi[n,∞)

)−li P
((

X̄(1)
n , . . . , X̄(d)

n

) ∈ ·)→C
(1)
l1

× · · · ×C
(d)
ld

(·)

in M(
∏d

i=1 D \ C(l1,...,ld )) where C(l1,...,ld ) � ⋃d
i=1(D

i−1 × D<li × Dd−i ). Since
D<(j1,...,jd ) = ⋂

(l1,...,ld )/∈I<(j1,...,jd )
C(l1,...,ld ), our strategy is to proceed with

Lemma 2.3 to obtain the desired M(
∏d

i=1 D \ D<(j1,...,jd ))-convergence by com-
bining the M(

∏d
i=1 D \ C(l1,...,ld ))-convergences for (l1, . . . , ld) /∈ I<(j1,...,jd ).

We first rewrite the infinite intersection over Zd+ \ I<(j1,...,jd ) as a finite one
to facilitate the application of the lemma. Consider a partial order ≺ on Zd+
such that (l1, . . . , ld) ≺ (m1, . . . ,md) if and only if C(l1,...,ld ) � C(m1,...,md).
Note that this is equivalent to li ≤ mi for i = 1, . . . , d and li < mi for at
least one i = 1, . . . , d . Let Jj1,...,jd

be the subset of Zd+ consisting of the
minimal elements of Zd+ \ I<(j1,...,jd ), that is, Jj1,...,jd

� {(l1, . . . , ld) ∈ Zd+ \
I<(j1,...,jd ) : (m1, . . . ,md) ≺ (l1, . . . , ld) implies (m1, . . . ,md) ∈ I<(j1,...,jd )}. Fig-
ure 1 illustrates how the sets I<(j1,...,jd ) and Jj1,...,jd

look when d = 2, j1 = 2,
j2 = 2, α1 = 2, α2 = 3. It is straightforward to show that |Jj1,...,jd

| < ∞,
and that (m1, . . . ,md) /∈ I<(j1,...,jd ) implies C(l1,...,ld ) ⊆ C(m1,...,md) for some
(l1, . . . , ld) ∈ Jj1,...,jd

; therefore, D<(j1,...,jd ) =⋂
(l1,...,ld )∈Jj1,...,jd

C(l1,...,ld ). In view
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FIG. 1. An example of I<(j1,...,jd ) and Jj1,...,jd
where d = 2, j1 = 2, j2 = 2, α1 = 2 and α2 = 3.

The blue dots represent the elements of I<(j1,j2), and the red dots represent the elements of Jj1,j2 .
The dashed red line represents (l1, l2) such that (α1 − 1)l1 + (α2 − 1)l2 = (α1 − 1)j1 + (α2 − 1)j2.

of this and the fact that lim sup
∏d

i=1(nνi [n,∞))−li∏d
i=1(nνi [n,∞))−ji

→ 0 for (l1, . . . , ld) ∈ Jj1,...,jd
\

{(j1, . . . , jd)}, the conclusion of the theorem follows from Lemma 2.3 if we
show that for each r > 0, ξ � (ξ1, . . . , ξd) /∈ (

⋃
(l1,...,ld )∈I<j1,...,jd

∏d
i=1 Dli )

r implies
ξ /∈ (C(l1,...,ld ))

r for some (l1, . . . , ld) ∈ Jj1,...,jd
. To see that this is the case, sup-

pose that ξ is bounded away from
⋃

(l1,...,ld )∈I<j1,...,jd

∏d
i=1 Dli by r > 0. Let mi �

inf{k ≥ 0 : ξi ∈ (D�k)
r}. In case mi =∞ for some i, one can pick a large enough

M ∈ Z+ such that Mei /∈ I<(j1,...,jd ) where ei is the unit vector with 0 entries ex-
cept for the ith coordinate. Letting (l1, . . . , ld) ∈ Jj1,...,jd

be an index such that
C(l1,...,ld ) ⊆ CMei

, we find that ξ /∈ (C(l1,...,lj ))
r ⊆ (CMei

)r verifying the premise.

If maxi=1,...,d mi < ∞, ξ ∈ (
∏d

i=1 Dmi
)r , and hence, (m1, . . . ,md) /∈ I<(j1,...,jd ),

which, in turn, implies that there exists (l1, . . . , ld) ∈ Jj1,...,jd
such that C(l1,...,ld ) ⊆

C(m1,...,md). However, due to the construction of mi ’s, each ξi is bounded away
from D<mi

by r , and hence, ξ is bounded away from Di−1 × D<mi
× Dd−i by r

for each i. Therefore, ξ /∈ (C(l1,...,lj ))
r ⊆ (C(m1,...,mj ))

r , and hence, the premise is
verified. Now we can apply Lemma 2.3 to reach the conclusion of the theorem.

�

PROOF OF THEOREM 3.3. Let X(+) and X(−) be Lèvy processes with spec-
trally positive Lévy measures ν+ and ν−, respectively, where ν+[x,∞)= ν[x,∞)

and ν−[x,∞)= ν(−∞,−x] for each x > 0, and denote the corresponding scaled
processes as X̄

(+)
n (·) � X(+)(n·)/n and X̄

(−)
n (·) � X(−)(n·)/n. More specifically,

let

X̄(+)
n (s)= sa +B(ns)/n+ 1

n

∫
|x|≤1

x
[
N
([0, ns] × dx

)− nsν(dx)
]

+ 1

n

∫
x>1

xN
([0, ns] × dx

)
,

X̄(−)
n (s)= 1

n

∫
x<−1

xN
([0, ns] × dx

)
.



3598 C.-H. RHEE, J. BLANCHET AND B. ZWART

From Theorem 5.1, we know that (nν[n,∞))−j (nν(−∞,−n])−kP((X̄
(+)
n ,

X̄
(−)
n ) ∈ ·) → C+

j × C−
k (·) in M((D × D) \ D<(j,k)) where C+

j (·) � E[νj
α{x ∈

(0,∞)j : ∑j
i=1 xi1[Ui,1] ∈ ·}] and C−

k (·) � E[νk
β{y ∈ (0,∞)k : ∑k

i=1 yi1[Ui,1] ∈
·}]. In view of Lemma 2.6 and that C+

j ×C−
k {(ξ, ζ ) ∈D×D : (ξ(t)−ξ(t−))(ζ(t)−

ζ(t−)) �= 0 for some t ∈ (0,1]} = 0, we can apply Lemma 2.4 for h(ξ, ζ )= ξ − ζ .
Noting that Cj,k(·) = (C+

j × C−
k ) ◦ h−1(·), we conclude that (nν[n,∞))−j ×

(nν(−∞,−n])−kP(X̄
(+)
n − X̄

(−)
n ∈ ·) → Cj,k(·) in M(D \ D<j,k). Since X̄n has

the same distribution as X̄
(+)
n − X̄

(−)
n , the desired M(D \D<j,k)-convergence for

X̄n follows. �

PROOF OF LEMMA 3.1. In general,

min
(j,k)∈Z2+
Dj,k∩Ā �=∅

I(j, k)≤ I
(
J (A),K(A)

)≤ min
(j,k)∈Z2+

Dj,k∩A◦�=∅

I(j, k),

and the left inequality cannot be strict since A is bounded away from D<J (A),K(A).
On the other hand, in case the right inequality is strict, then DJ (A),K(A) ∩ A◦ =
∅, which in turn implies CJ (A),K(A)(A

◦) = 0 since CJ (A),K(A) is supported on
DJ (A),K(A). Therefore, the lower bound is trivial if the right inequality is strict. In
view of these observations, we can assume w.l.o.g. that (J (A),K(A)) is also in
both

arg min
(j,k)∈Z2+

Dj,k∩A◦ �=∅

I(j, k) and arg min
(j,k)∈Z2+
Dj,k∩Ā�=∅

I(j, k).

Since A◦ and Ā are also bounded-away from D<J (A),K(A), the upper bound of
(3.9) is obtained from (2.1) and Theorem 3.3 for Ā, j = J (Ā) = J (A), and k =
K(Ā) = K(A); the lower bound of (3.9) is obtained from (2.2) and Theorem 3.3
for A◦, j = J (A◦) = J (A), and k = K(A◦) = K(A). Finally, we obtain (3.10)
from Theorem 3.3 and (2.1) with j = l, k = m, F = Ā along with the fact that
Cl,m(Ā)= 0 since A is bounded away from Dl,m. �

LEMMA 5.5. Let A be a measurable set and suppose that the argument min-
imum in (3.8) is nonempty and contains a pair of integers (J (A),K(A)). Let
(l,m) ∈ I=J (A),K(A).

(i) If Aδ ∩ Dl,m is bounded away from D�J (A),K(A) for some δ > 0, then
A∩ (Dl,m)γ is bounded away from D�J (A),K(A) for some γ > 0.

(ii) If A is bounded away from D�J (A),K(A), then there exists δ > 0 such that
A∩ (Dl,m)δ is bounded away from Dj,k for any (j, k) ∈ I=J (A),K(A) \ {(l,m)}.

PROOF. For (i), we prove that if d(A2δ ∩Dl,m,D�J (A),K(A)) > 3δ then d(A∩
(Dl,m)δ,D�J (A),K(A))≥ δ. Suppose that d(A∩ (Dl,m)δ,D�J (A),K(A)) < δ. Then
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there exists ξ ∈ A ∩ (Dl,m)δ and ζ ∈ D�J (A),K(A) such that d(ξ, ζ ) < δ. Note
that we can find ξ ′ ∈ Dl,m such that d(ξ, ξ ′) ≤ 2δ, which means that ξ ′ ∈ A2δ ∩
Dl,m. Therefore, d(A2δ ∩ Dl,m,D�J (A),K(A)) ≤ d(ξ ′, ζ ) ≤ d(ξ ′, ξ) + d(ξ, ζ ) ≤
2δ + δ ≤ 3δ.

For (ii), suppose that d(A,D�J (A),K(A)) > γ for some γ > 0 and (l,m) and
(j, k) are two distinct pairs that belong to I=J (A),K(A). Assume w.l.o.g. that j < l.
(If j > l, it should be the case that k < m, and hence, one can proceed in the
same way by switching the roles of upward jumps and downward jumps in the
following argument.) Let c be a positive number such that c > 8(l − j) + 2 and
set δ = γ /c. We will show that A ∩ (Dl,m)δ and (Dj,k)δ are bounded away from
each other. Let ξ be an arbitrary element of A ∩ (Dl,m)δ . Then there exists a ζ ∈
Dl,m such that d(ζ, ξ)≤ 2δ. Note that d(ζ,D�J (A),K(A))≥ (c−2)δ; in particular,
d(ζ,Dj,m)≥ (c−2)δ. If we write ζ �∑l

i=1 xi1[ui,1] −
∑m

i=1 yi1[vi ,1], this implies
that xj+1 ≥ (c−2)δ

l−j
. Otherwise, (c−2)δ >

∑l
i=j+1 xi = ‖ζ −ζ ′‖ ≥ d(ζ, ζ ′), where

ζ ′ � ζ −∑l
i=j+1 xi1[ui,1] ∈ Dj,m. Therefore, d(ζ,Dj,k) ≥ (c−2)δ

2(l−j)
, which in turn

implies d(ξ,Dj,k) ≥ (c−2)δ
2(l−j)

− 2δ > 2δ. Since ξ was arbitrary, we conclude that
A∩ (Dl,m)δ bounded away from (Dj,k)δ . �

5.3. Proofs for Section 4. Recall that

I (ξ) �
{
(α − 1)D+(ξ)+ (β − 1)D−(ξ) if ξ is a step function with ξ(0)= 0,

∞ otherwise.

PROOF OF THEOREM 4.2. Observe first that I (·) is a rate function. The level
sets {ξ : I (ξ) ≤ x} equal

⋃
(l,m)∈Z2+

(α−1)l+(β−1)m≤�x�
Dl,m and are therefore closed—

note the level sets are not compact so I (·) is not a good rate function (see, e.g.,
Dembo and Zeitouni (2010) for the definition and properties of good rate func-
tions).

Starting with the lower bound, suppose that G is an open set. We assume w.l.o.g.
that infξ∈G I (ξ) < ∞, since the inequality is trivial otherwise. Due to the dis-
crete nature of I (·), there exists a ξ∗ ∈ G such that I (ξ∗) = infξ∈G I (ξ). Set
j � D+(ξ∗) and k � D−(ξ∗). Let u+1 , . . . , u+j be the sorted (from the earliest to

the latest) upward jump times of ξ∗; x+1 , . . . , x+j be the sorted (from the largest

to the smallest) upward jump sizes of ξ∗; u−1 , . . . , u−k be the sorted downward
jump times of ξ∗; x−1 , . . . , x−k be the sorted downward jump sizes of ξ∗. Also, let
x+j+1 = x−k+1 = 0, u+0 = u−0 = 0, and u+j+1 = u−k+1 = 1. Note that if ζ ∈ Dl,m for

l < j , then d(ξ∗, ζ )≥ x+j /2 since at least one of the j upward jumps of ξ∗ cannot

be matched by ξ . Likewise, if ζ ∈ Dl,m for m < k, then d(ξ∗, ζ ) ≥ x−k /2. There-
fore, d(D<j,k, ξ

∗) ≥ (x+j ∧ x−k )/2. On the other hand, since G is an open set, we

can pick δ0 > 0 so that the open ball Bξ∗,δ0 � {ζ ∈ D : d(ζ, ξ) < δ0} centered at
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ξ∗ with radius δ0 is a subset of G, that is, Bξ∗,δ0 ⊂ G. Let δ = (δ0 ∧ x+j ∧ x−k )/4.

If j = k = 0, then ξ∗ ≡ 0, and hence, {X̄n ∈ G} contains {‖X̄n‖ ≤ δ} which is a
subset of Bξ∗,δ . One can apply Lemma A.4 to show that P(Xn ∈ G) converges to
1, which, in turn, proves the inequality. Now, suppose that either j ≥ 1 or k ≥ 1.
Then d(Bξ∗,δ,D<j,k)≥ δ. As d(Bξ∗,δ,D<j,k) > 0 and Bξ∗,δ is open, we see from
our sharp asymptotics (Theorem 3.1) that

Cj,k(Bξ∗,δ)≤ lim inf
n→∞

(
nν[n,∞)

)−j (
nν(−∞,−n])−k

P (X̄n ∈ Bξ∗,δ).

From the definition of Cj,k , it follows that Cj(Bξ∗,δ) > 0. To see this, note first
that we can assume w.l.o.g. that x±i ’s are all distinct since G is open (because, if
some of the jump sizes are identical, we can pick ε such that Bξ∗,ε ⊆ G, and then
perturb those jump sizes by ε to get a new ξ∗ which still belongs to G while whose
jump sizes are all distinct). Suppose that ξ∗ =∑j

l=1 x+
i+l

1[u+i ,1] −
∑k

l=1 x−
i−l

1[u−i ,1],
where {i±1 , . . . , i±j } are permutations of {1, . . . , j}. Let 2δ′ � δ∧�+

u ∧�+
x ∧�−

u ∧
�−

x , where �+
u = mini=1,...,j+1(u

+
i −u+i−1), �+

x = mini=1,...,j (x
+
i−1 −x+i ), �−

u =
mini=1,...,k+1(u

−
i − u−i−1), and �−

x = mini=1,...,k(x
−
i−1 − x−i ). Consider a subset

B ′ of Bξ∗,δ :

B ′ �
{ j∑

l=1

y+
i+l

1[v+l ,1] −
k∑

l=1

y−
i−l

1[v−l ,1] :

v+i ∈ (u+i − δ′, u+i + δ′
)
, y+i ∈ (x+i − δ′, x+i + δ′

)
, i = 1, . . . , j ;

v−i ∈ (u−i − δ′, u−i + δ′
)
, y−i ∈ (x−i − δ′, x−i + δ′

)
, i = 1, . . . , k

}
.

Then

Cj,k(Bξ∗,δ)≥ Cj,k

(
B ′)

=
∫
(u+1 −δ′,u+1 +δ′)×···×(u+j −δ′,u+j +δ′)

dLeb

·
∫
(x+1 −δ′,x+1 +δ′)×···×(x+j −δ′,x+j +δ′)

dνα

·
∫
(u−1 −δ′,u−1 +δ′)×···×(u−k −δ′,u−k +δ′)

dLeb

·
∫
(x−1 −δ′,x−1 +δ′)×···×(x−k −δ′,x−k +δ′)

dνβ

≥ (
2δ′
)j (2δ′

(
x+1
)α)j (2δ′

)k(2δ′
(
x−1
)β)k

> 0.
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We conclude that

lim inf
n→∞

log P(X̄n ∈G)

logn

≥ lim inf
n→∞

log P(X̄n ∈ Bξ∗,δ)

logn
(5.15)

≥ lim inf
n→∞

log(Cj,k(Bξ∗,δ)(nν[n,∞))j (nν(−∞,−n])k(1 + o(1)))

logn

=−((α − 1)j + (β − 1)k
)
,

which is the lower bound. Turning to the upper bound, suppose that K is a compact
set. We first consider the case where infξ∈K I (ξ) < ∞. Pick ξ∗, j and k as in the
lower bound, that is, I (ξ∗) � infξ∈K I (ξ), j � D+(ξ∗), and k � D−(ξ∗). Here,
we can assume w.l.o.g. either j ≥ 1 or k ≥ 1 since the inequality is trivial in case
j = k = 0. For each ζ ∈K , either I (ζ ) > I (ξ∗), or I (ζ )= I (ξ∗). We construct an
open cover of K by considering these two cases separately:

• If I (ζ ) > I (ξ∗), ζ is bounded away from D<j,k∪Dj,k (Lemma 5.4(f)). For each
such ζ ’s, pick a δζ > 0 in such a way that d(ζ,D<j,k ∪Dj,k) > δζ . Set jζ � j

and kζ � k. Note that in this case Cjζ ,kζ (B̄ζ,δζ )= 0.
• If I (ζ )= I (ξ∗), set jζ � D+(ζ ) and kζ � D−(ζ ). Since they are bounded away

from D<jζ ,kζ (Lemma 5.4(e)), we can choose δζ > 0 such that d(ζ,D<jζ ,kζ ) >

δζ and Cjζ ,kζ (B̄ζ,δζ ) <∞.

Consider an open cover {Bζ ;δζ
: ζ ∈K} of K and its finite subcover {Bζi ;δζi

}i=1,...,m.

For each ζi , we apply the sharp asymptotics (Theorem 3.3) to B̄ζi;δζi
to get

(5.16) lim sup
n→∞

log P(X̄n ∈ B̄ζi;δζi
)

logn
≤ (α − 1)jζi

+ (β − 1)kζi
=−I

(
ξ∗
)
.

Therefore,

lim sup
n→∞

log P(X̄n ∈ F̄ )

logn
≤ lim sup

n→∞
log

∑m
i=1 P(X̄n ∈ B̄ζi;δζi

)

logn

= max
i=1,...,m

lim sup
n→∞

log P(X̄n ∈ B̄ζi;δζi
)

logn
(5.17)

≤−I
(
ξ∗
)=− inf

ξ∈K
I (ξ),

completing the proof of the upper bound in case the right-hand side is finite.
Now, turning to the case infξ∈K I (ξ) =∞, fix an arbitrary positive integer l.

Since D<l,l is closed and disjoint with a compact set K , it is also bounded away
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from each ζ ∈ K . Now picking δζ > 0 so that B̄ζ,δζ is disjoint with K for each
ζ , one can construct an open cover {Bζ ;δζ

: ζ ∈ K} of K . Let {Bζi;δζi
}i=1,...,m its

finite subcover, then from the same calculation as (5.16) and (5.17),

lim sup
n→∞

log P(X̄n ∈K)

logn
≤−(α + β − 2)m.

Taking m→∞, we arrive at the desired upper bound. �

APPENDIX: INEQUALITIES

LEMMA A.1 (Generalized Kolmogorov inequality; Lemma in p. 335 of Shneer
and Wachtel (2011)). Let Sn =X1 + · · · +Xn be a random walk with mean zero
increments, that is, EXi = 0. Then

P
(
max
k≤n

Sk ≥ x
)
≤ C

nV (x)

x2 ,

where V (x)= E(X2
1; |X1| ≤ x), for all x > 0.

LEMMA A.2 (Etemadi’s inequality). Let X1, . . . ,Xn be independent real-
valued random variables defined on some common probability space, and let
x ≥ 0. Let Sk denote the partial sum Sk =X1 + · · · +Xk . Then

P
(

max
1≤k≤n

|Sk| ≥ 3x
)
≤ 3 max

1≤k≤n
P
(|Sk| ≥ x

)
.

LEMMA A.3 (Prokhorov’s inequality; Prokhorov (1959)). Suppose that ξi ,
i = 1, . . . , n are independent, zero-mean random variables such that there exists a
constant c for which |ξi | ≤ c for i = 1, . . . , n, and

∑n
i=1 var ξi <∞. Then

P

(
n∑

i=1

ξi > x

)
≤ exp

{
− x

2c
arcsinh

xc

2
∑n

i=1 var ξi

}
,

which, in turn, implies

P

(
n∑

i=1

ξi > x

)
≤
(

cx∑n
i=1 var ξi

)− x
2c

.

We extend the Etemadi’s inequality to Lévy processes in the following lemma.

LEMMA A.4. Let Z be a Lévy process. Then

P
(

sup
t∈[0,n]

∣∣Z(t)
∣∣≥ x

)
≤ 3 sup

t∈[0,n]
P
(∣∣Z(t)

∣∣≥ x/3
)
.
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PROOF. Since Z (and hence, |Z| also) is in D, sup0≤k≤2m |Z( nk
2m )| converges

to supt∈[0,n] |Z(t)| almost surely as m→∞. To see this, note that one can choose
ti ’s such that |Z(ti)| ≥ supt∈[0,n] |Z(t)| − i−1. Since {ti}’s are in a compact set
[0, n], there is a subsequence, say, t ′i , such that t ′i → t0 for some t0 ∈ [0, n]. The
supremum has to be achieved at either t−0 or t0. Either way, with large enough m,
sup0≤k≤2m |Z( nk

2m )| becomes arbitrarily close to the supremum. Now, by bounded
convergence,

P
{

sup
t∈[0,n]

∣∣Z(t)
∣∣> x

}

= lim
m→∞P

{
sup

0≤k≤2m

∣∣∣∣Z
(

nk

2m

)∣∣∣∣> x

}

= lim
m→∞P

{
sup

0≤k≤2m

∣∣∣∣∣
k∑

i=0

(
Z

(
ni

2m

)
−Z

(
n(i − 1)

2m

))∣∣∣∣∣> x

}

≤ lim
m→∞3 sup

0≤k≤2m

P

{∣∣∣∣∣
k∑

i=0

(
Z

(
ni

2m

)
−Z

(
n(i − 1)

2m

))∣∣∣∣∣> x/3

}

= lim
m→∞3 sup

0≤k≤2m

P
{∣∣∣∣Z

(
nk

2m

)∣∣∣∣> x/3
}

≤ 3 sup
t∈[0,n]

P
{∣∣Z(t)

∣∣> x/3
}
,

where Z(t) � 0 for t < 0. �
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