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THE SCALING LIMIT OF CRITICAL ISING INTERFACES IS CLE3

BY STÉPHANE BENOIST AND CLÉMENT HONGLER1

Columbia University and Ecole Polytechnique Fédérale de Lausanne

In this paper, we consider the set of interfaces between + and − spins
arising for the critical planar Ising model on a domain with + boundary con-
ditions, and show that it converges to nested CLE3.

Our proof relies on the study of the coupling between the Ising model
and its random cluster (FK) representation, and of the interactions between
FK and Ising interfaces. The main idea is to construct an exploration pro-
cess starting from the boundary of the domain, to discover the Ising loops
and to establish its convergence to a conformally invariant limit. The chal-
lenge is that Ising loops do not touch the boundary; we use the fact that FK
loops touch the boundary (and hence can be explored from the boundary) and
that Ising loops in turn touch FK loops, to construct a recursive exploration
process that visits all the macroscopic loops.

A key ingredient in the proof is the convergence of Ising free arcs to the
Free Arc Ensemble (FAE), established in [Ann. Inst. Henri Poincaré Probab.
Stat. 52 (2016) 1784–1798]. Qualitative estimates about the Ising interfaces
then allow one to identify the scaling limit of Ising loops as a conformally in-
variant collection of simple, disjoint SLE3-like loops, and thus by the Marko-
vian characterization of Sheffield and Werner [Ann. of Math. (2) 176 (2012)
1827–1917] as a CLE3.

A technical point of independent interest contained in this paper is an
investigation of double points of interfaces in the scaling limit of critical FK-
Ising. It relies on the technology of Kemppainen and Smirnov [Ann. Probab.
45 (2017) 698–779].

1. Introduction.

1.1. Schramm–Loewner evolution. The introduction of Schramm’s SLE
curves [28] opened the road to decisive progress toward the understanding of 2D
statistical mechanics. The (SLEκ)κ>0 form a one-parameter family of conformally
invariant random curves that are the natural candidates for the scaling limits of in-
terfaces found in critical lattice models, as shown by Schramm’s principle [28]:
if a random curve is conformally invariant and satisfies the domain Markov prop-
erty, then it must be a SLEκ for some κ > 0. The convergence of lattice model

Received May 2016; revised July 2018.
1Supported by the New York Academy of Sciences the Blavatnik Family Foundation, the Latsis

Family Foundation and the ERC Grant CONSTAMIS.
MSC2010 subject classifications. 60J67, 82B20, 82B27, 60K35.
Key words and phrases. Ising model, phase transition, free boundary conditions, Fortuin–

Kasteleyn random-cluster model, criticality, duality, scaling limits, conformal invariance, random
curves, Schramm–Loewner evolution, conformal loop ensembles.

2049

http://www.imstat.org/aop/
https://doi.org/10.1214/18-AOP1301
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2050 S. BENOIST AND C. HONGLER

curves to SLE has been established in a number of cases, in particular for the
loop-erased random walk (κ = 2) and the uniform spanning tree (κ = 8) [23], per-
colation (κ = 6) [33], the Ising model (κ = 3) and FK-Ising (κ = 16/3) [8], and
the discrete Gaussian free field (κ = 4) [29].

The development of SLE has had rich ramifications, in particular the intro-
duction of the Conformal Loop Ensembles (CLE) [31]. The (CLEκ)

κ∈( 8
3 ,8] are

conformally invariant collections of SLEκ -like random loops; they conjecturally
describe the full set (rather than a fixed marked set) of macroscopic interfaces ap-
pearing in discrete models. For percolation, the convergence of the full set of inter-
faces to CLE6 has been established [5]. For the Gaussian free field, the connection
with CLE4 is established in [1, 24]. For the random-cluster (FK) representation
of the Ising model, the convergence of boundary-touching interfaces to a subset
of CLE16/3 has been established in [19]. This paper shows convergence of Ising
interfaces to CLE3, and this is the first convergence result in the non boundary
touching regime κ ≤ 4.

1.2. Ising interfaces and SLE. The Ising model is the most classical model of
equilibrium statistical mechanics. It consists of random configurations of ±1 spins
on the vertices of a finite graph G, which interact with their neighbors: the proba-
bility of a spin configuration (σx)x∈V is proportional to exp(−βH(σ)), where the
energy H(σ) is given by −∑

x∼y σxσy and β is a positive parameter called the
inverse temperature.

The two-dimensional Ising model (i.e., when G ⊂ Z
2) has been the subject of

intense mathematical and physical investigations. A phase transition occurs at the
critical value βc = 1

2 ln(
√

2 + 1): for β < βc the spins are disordered at large dis-
tances, while for β > βc a long range order is present. Thanks to the exact solv-
ability of the model, much is known about the phase transition of the model; the
recent years have in particular seen important progress toward understanding rig-
orously the scaling limit of the fields [9, 13, 15, 16] and the interfaces [4, 8, 34] of
the model at the critical temperature βc.

For the two-dimensional Ising model, we call spin interfaces the curves that
separate the + and − spins of the model (as a technical aside, one needs to make
choices when trying to follow an Ising interface on the square lattice, however,
these discrete choices are irrelevant in the scaling limit). In the case of Dobrushin
boundary conditions (i.e., + spins on a boundary arc and − spins on the boundary
complement) the resulting distinguished spin interface linking boundary points can
be shown to converge to SLE3 [8], using the discrete complex analysis of lattice
fermions [10, 35]. In the case of more general boundary conditions (in particular
free ones), one obtains convergence to variants of SLE3, as was established in [14,
18].

Another natural class of random curves are the interfaces of random-cluster
representation of the model (which separate “wired” from “free” regions in the do-
main). Following the introduction of the fermionic observables [35], it was shown
that the Dobrushin random-cluster interfaces converge to chordal SLE16/3.
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The study of more general collections of interfaces for the Ising model and its
FK representation has seen recent progress. With free boundary conditions, the
scaling limit of the interface arcs was obtained [4]: by taking advantage of the fact
that such arcs touch the boundary, an exploration tree is constructed, made of a
bouncing and branching version of the dipolar SLE3 process.

For the FK representation of the Ising model, an exploration tree is constructed
in [19], and this tree allows one to represent the random-cluster loops that touch
the boundary in terms of a branching SLE16/3. More recently, the convergence of
the full set of these random-cluster interfaces to CLE16/3 has been shown in [20].

1.3. Ising model and CLE. The purpose of this paper is to rigorously describe
the full scaling limit of the Ising loops that arise in a domain with + boundary
conditions.

THEOREM 1. Consider the critical Ising model on a discretization (�δ)δ>0
of a (simply-connected) Jordan domain �, with + boundary conditions. Then the
set of the interfaces between + and − spins converges in law to a nested CLE3 as
δ → 0, with respect to the metric dX on the space of loop collections.

The statement we prove is actually slightly stronger (Theorem 6 in Section 3.1).
The precise definition of the Ising interfaces is given in Section 2.5, the CLE pro-
cesses are introduced in Section 2.11 and the metric dX is defined in Section 2.7.

Our strategy is to identify the scaling limit of these curves by using the coupling
between the Ising model and its random-cluster (FK) representation, often called
Edwards–Sokal coupling [12]. This allows one to construct an exploration tree
describing the Ising loops, by relying on the recursive application of a two-staged
exploration:

• We first study the random-cluster interfaces by relying on the fact that they touch
the boundary and hence can be described in terms of an exploration tree (as in
[19], and similar to [4]).

• We then explore the Ising loops, which are contained inside the random-cluster
loops: conditionally on the random-cluster loops, the Ising model inside has free
boundary conditions, allowing one to use the result of [4] to identify a subset of
the Ising interfaces.

• At the end of the second stage, we obtain a number of a loops. Conditionally on
these loops, the boundary conditions for Ising on the complement are monochro-
matic (either completely + or completely −), allowing one to reiterate the ex-
ploration inside of those.

We then show that the conformally invariant interfaces that we have explored are
simple and SLE3-like. Together with the Markov property inherited from the lattice
level, this allows one to use the uniqueness result of [32] to identify this limit as
CLE3.
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For the FK model naturally associated with Ising, the result equivalent to The-
orem 1, namely that the FK interfaces converge to CLE16/3, was proved by [19,
20], at least when the domain boundary is analytic. Even though our proof uses
a coupling with the FK model to show convergence of the Ising loops, we do not
get the joint convergence of FK and Ising interfaces. Another question of interest
would be to get a direct proof of the convergence of Ising interfaces to CLE3, that
is, a proof that would do away with using the auxiliary FK model but would in-
stead only rely on the strong properties of CLE to conclude. Such a proof could
give a template to use for models beyond Ising.

1.4. Outline of the paper.

• In Section 2, we give the definitions of the graphs, the models, the metrics and
the loop ensembles.

• In Section 3, we give the precise statement of our main theorem, together with
the main steps of the proof.

• In Section 4, we state two results about the scaling limit of Ising and FK inter-
faces that are instrumental in our proof, one borrowed from [4], and the other
one from the Appendix (related to [19]).

• In Section 5, we prove that the outermost Ising loops have a conformally invari-
ant scaling limit.

• In Section 6, we identify the scaling limit of outermost Ising loops, and then
construct the scaling limit of all Ising loops, thus concluding the proof of the
main theorem.

• In the Appendix, we study the scaling limit of the FK loops, in particular proving
its existence and conformal invariance, as well as showing that double points of
discrete and continuous FK loops correspond to each other.

2. Setup and definitions.

2.1. Graphs. We consider the usual square grid Z
2, with the usual adjacency

relation (denoted ∼). We denote by (Z2)∗ the dual graph, by (Z2)m the medial
graph [whose vertices are the centers of edges of Z2; two vertices of (Z2)m are ad-
jacent if the corresponding edges of Z2 share a vertex] and by (Z2)b the bi-medial
graph [i.e., the medial graph of (Z2)m]. Note that (Z2)b has a natural embedding
in the plane as 1

2Z
2 + (1

4 , 1
4). In the following, we will be interested in particular

finite subgraphs of Z2, namely those subgraphs that can be constructed as the col-
lection of vertices and edges contained in a given simply-connected finite union
of faces of Z2. We will refer to such finite subgraphs as discrete domains. For a
discrete domain G, we denote by G∗ the dual of G, by Gm the medial of G and by
Gb the bi-medial of G (see Figure 1, in particular for how these are defined at the
boundary). We denote by ∂G ⊂ G the (inner) boundary of G, which we either see
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FIG. 1. Ising and FK loops. Plain lines represent the domain G, dashed lines represent G∗ and dot-
ted lines represent Gb . In red and blue, the primal FK configuration ω [k(ω) = 7], red corresponding
to FK connected components carrying + Ising spins, and blue to FK components carrying − spins.
The green and purple represent the dual FK configuration, with purple being the subset traced by
Ising loops. In orange, the set of FK loops.

as the set of vertices of G adjacent to Z
2 \ G, or as the circuit of edges separating

the faces of G from those of Z2 \ G.
Consider a Jordan domain � ⊂ C, that is, such that its boundary ∂� is a simple

closed curve. We call discretization of � a family (�δ)δ of discrete domains of
δZ2 (the square grid of mesh size δ > 0) such that ∂�δ → ∂� (where we identify
∂�δ with its edge circuit) as δ → 0 in the topology of uniform convergence up to
reparametrization. Note that any Jordan domain admits a discretization.

2.2. Ising model. The Ising model (see, e.g., [11, 12] for modern introduc-
tions) on a discrete domain G at inverse temperature β > 0 consists of random
configurations (σx)x∈G of ±1 spins with probability proportional to exp(−βH(σ))

where the energy H is given by −H(σ) = ∑
x∼y σxσy (the sum is over all pair of

adjacent spins of G). We will focus on the Ising model at the critical temperature,
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that is, with β = βc. If there are no particular conditions on the spins of ∂G we
speak of free boundary conditions, if the spins of ∂G are conditioned to be +1
(resp., −1), we speak of + boundary conditions (resp., − boundary conditions).

2.3. FK model. The Fortuin–Kasteleyn (FK) model (or random-cluster model,
see [12] for a background reference) on a discrete domain G is a (dependent) bond
percolation model, which assigns a random open or closed state to the edges of G.
We then call configuration the set of the open edges of G. The FK(p, q) model
(with parameters 0 ≤ p ≤ 1, and q ≥ 1 being a real number) assigns to a config-
uration ω a probability proportional to po(ω)(1 − p)c(ω)qk(ω), where o(ω) is the
number of open edges, c(ω) the number of closed edges and k(ω) the number
of clusters of ω, that is, the number of connected components in the subgraph of
G obtained by deleting all the closed edges. The above description defines what
is called the FK model with free boundary conditions; the FK model with wired
boundary conditions if obtained when conditioning all the boundary edges to be
open (i.e., the edges between vertices of ∂G are forced open).

An important feature of the two-dimensional FK model is duality (see [12], Sec-
tion 6.1). For an FK configuration ω on a discrete domain G, we define the dual
configuration ω∗ on G∗ whose open edges are the dual to the closed edges of ω and
vice versa. It can be shown that for p(1 − p)−1p∗(1 − p∗)−1 = q , the dual of an
FK(p, q) configuration on G with wired boundary conditions is an FK(p∗, q) con-
figuration on G∗ with free boundary conditions. The self-dual (or critical, see [3])

FK model corresponds to FK(psd, q), where the self-dual value psd =
√

q

1+√
q

is

such that p∗
sd = psd.

2.4. FK-Ising model. When q = 2, the FK model is called the FK-Ising model.
The Ising model at inverse temperature β can be sampled from the FK-Ising model
with p = 1− e−2β by performing percolation on the FK clusters; see, for example,
[12], Section 2.3: for each FK cluster we toss a balanced coin and assign the same
±1 spin value (depending on the tossed coin) to all the vertices of the cluster, and
do this independently for each cluster. The self-dual FK-Ising model with psd =√

2
1+√

2
corresponds to the critical Ising model. In this paper, the only FK model we

will work with is the self-dual FK-Ising model. In order to clearly distinguish it
from the Ising model, we will often refer to the self-dual FK-Ising model as just
the FK model.

2.5. Ising loops. A sequence of vertices v1, . . . , vn is called a strong path if
vi ∼ vi+1 for 1 ≤ i < n (where ∼ denotes the adjacency relation) and a weak path
if vi is weakly adjacent to vi+1 (i.e., vi and vi+1 share a face) for 1 ≤ i < n.

Consider the Ising model on a discrete domain G ⊂ Z
2. An Ising loop is an

oriented simple loop on G∗ (i.e., a closed strong path of G∗ such that no edge in
the path is used twice) and such that any edge of the loop has a + spin on its left
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and a − spin on its right. In other words, an Ising loop separates a weak path of +
spins and a weak path of − spins, and is hence clockwise-oriented if it has + spins
outside and − spins inside (and counter-clockwise oriented otherwise). An Ising
loop is called leftmost if it follows a strong path of + on its left side, and rightmost
if it follows a strong path of − spins on its right.

In a domain carrying + boundary conditions, an Ising loop is called outermost
if it is not strictly contained inside another Ising loop, that is, if it is not separated
from the boundary by a a closed weak path of − spins. Let us now define the level
of an Ising loop (in a domain with + boundary conditions). An Ising loop is said
to be of level 1, if it is outermost, of level 2k for k ≥ 1 if it is contained inside an
Ising loop of level 2k − 1 and if it is not separated by a weak path of + spins from
that loop, and of level 2k + 1 for k ≥ 1 if it is contained inside of an Ising loop of
level 2k and if it is not separated by a weak path of − spins from that loop. Note
that two distinct outermost loops can intersect. However, the level of a loop is a
well-defined integer: for example, there are not outermost loops of level 2, as an
outermost loop cannot be strictly contained in the interior of another Ising loop.

2.6. FK loops and cut-out domains. Given an FK configuration, the set of FK
interfaces forms a set of loops on Gb. A bi-medial edge is part of an FK interface if
it lays between a primal FK cluster and a dual FK cluster, that is, if it does not cross
a primal open edge or a dual open edge. With wired or free boundary conditions, it
is easy to see that the set of bi-medial edges that are part of an FK interface forms
a collection of disjoint loops (in contrast to Ising loops, which may intersect).

The level of an FK loop is defined by declaring a loop of level 1 or outermost if
it is not contained inside another FK loop, and of level k > 1 if it is contained in
the interior of exactly k − 1 distinct FK loops. An FK loop of level k > 1 is hence
an outermost FK loop in the interior of an FK loop of level k − 1. Note that, as FK
loops are disjoint, the interior of two FK loops of same level k are disjoint.

We call the interior of an outermost FK loop a cut-out domain. This notion will
be crucial for us in the scaling limit. The set of FK loops satisfies the follow-
ing spatial Markov property (see [12], Theorem 3.4): consider the FK model with
wired boundary conditions, conditionally on the outermost FK loops, the model
inside the cut-out domains consists of independent FK models with free boundary
conditions.

REMARK 2. In the coupling with FK, the Ising loops are always a subset of
the dual FK configuration. In particular, Ising loops and FK loops never cross. As
a consequence, all Ising loops are contained in the cut-out domains of the corre-
sponding FK configuration.

2.7. The space of loop collections. An oriented loop γ is an equivalence class
of continuous maps from the unit circle S

1 to the plane R
2, where the equivalence

is given by orientation-preserving reparametrizations.
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Consider the metric d
 on the space of oriented loops defined as the supremum
norm up to reparametrization: d
(γ, γ̃ ) = inf‖γ − γ̃ ‖∞, where the infimum is
taken over all orientation-respecting parametrizations of the loops γ and γ̃ . We
define the space 
 to be the completion of the set of simple oriented loops for the
metric d
 : 
 is the set of oriented nonself-crossing loops (including trivial loops
reduced to points).

The space X of loop collections is the space of at most countable collections
{γi}i∈I of elements of 
 (loops can appear with multiplicity, and we include the
empty collection), such that:

• For each i ∈ I , the loop γi is not reduced to a point.
• For each scale ε > 0, the set of indices {i ∈ I : diam(γi) ≥ ε} is finite, where

diam denotes the Euclidean diameter.

We now define a σ -algebra on X . A matching of two sets I and J will denote
a subset π ⊆ I × J such that for each i ∈ I there is at most one j ∈ J such that
(i, j) ∈ π , and reciprocally, for each j ∈ J there is at most one i ∈ I such that
(i, j) ∈ π . Given a matching π , we denote by Iπ (resp., Jπ ) the set of unmatched
indices of I (resp., J ), that is, the subset of indices i ∈ I (resp., j ∈ J ) such that
for all j ∈ J (resp., i ∈ I ), (i, j) /∈ π .

We work with the Borel σ -algebra on X associated to the following metric:

dX
({γi}i∈I ,

{
γ ′
j

}
j∈J

) = inf
π

max
(

sup
(i,j)∈π

d


(
γi, γ

′
j

)
, sup
i∈Iπ

diam(γi), sup
j∈Jπ

diam
(
γ ′
j

))
,

where the infimum is taken over all matchings π of the index sets I and J .

2.8. The interior of a non self-crossing loop. The following lemma gives a
number of useful facts about non self-crossing loops

LEMMA 3. The connected components of the interior of a nonself-crossing
loop are open sets homeomorphic to discs, whose boundaries can be traced by
continuous curves.

We call these connected components cut-out domains. The boundary of a cut-
out domain is a curve, which is not necessarily simple. We will make convergence
statement about cut-out domains, these will always be for the topology of uniform
convergence up to reparametrization for the boundary curves.

PROOF. Let us first give a formal definition of what it means for a connected
component of the complement of a loop γ to be in the interior of γ . Consider
a continuous family of simple smooth curves γt that converge to γ when t → 0.
Without loss of generality, we can assume that all the curves γt and γ are positively
oriented. Given a point z in the complement of γt , the line integral

(2.1) It (z) = 1

2πi

∮
γt

1

w − z
dw
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takes the value 1 or 0 depending on whether the point z is inside or outside γt . For
any point z /∈ γ , the quantity It (z) is eventually well defined (as t ↓ 0), and as it
is continuous in t , needs to be constant. We obtain a limiting value I (z) = 1 or 0,
defined off γ , and locally constant where defined, hence constant on the connected
components of the complement of γ . We call such a component interior if I = 1
on it, and exterior otherwise.

We now prove that connected components of the complement of a non self-
crossing loop γ in the compactified plane R̂2 = S

2 are homeomorphic to open
discs. Indeed, consider a sequence of simple loops γ n → γ , and a point z /∈ γ . Let
D be the connected component of S2 \γ containing z. Consider the uniformization
map φn from the unit disk D to the connected component of S2 \ γ n containing z,
normalized so that 0 is sent to z and so that the derivative there is a positive real.
These maps converges uniformly on compact subsets of the disc to a conformal
map φ (by Caratheodory’s theorem [27], Theorem 1.8), and the image φ(D) = D,
is hence the image of a disk by a one-to-one bicontinuous map, so is itself an open
set homeomorphic to the disk.

Finally, we show that the boundary of the cut-out domain D containing z can
be traced by a continuous curve. We first show that, given another cut-out domain
Dw containing the point w, we can construct a subloop γ̃ of γ whose interior is a
reunion of interior connected components of γ , that include D but not Dw .

We consider an approximation by simple curves γ n → γ . For n large enough,
the points z and w are interior to γ n. We call ηn the infimum of the diameters of
curves joining two points of γ n and otherwise staying in its interior that separate
z from w in the interior of γ n. We then pick such a curve, of diameter no more
than 2ηn and call its boundary points γ n(un) and γ n(vn). Up to extracting a sub-
sequence, we can assume by compactness that un → u and vn → v �= u. Note that
ηn → 0 as z and w belong to different connected components in the limit. Hence
γ (u) = γ (v) is a double point of the curve, and moreover, by construction, the
two corresponding subloops of γ , say γ1 and γ2, are positively oriented, nonself-
crossing, and do not cross each other. By looking at the integral formula (2.1) to
determine whether a point is surrounded by a loop, and using that I γ = I γ1 + I γ2 ,
we see that each interior cut-out domain of γ is either in the interior of γ1 or in the
interior of γ2. Moreover, it is clear that one of these loops, say γ1, surrounds Dw ,
and the other, D. This provides the subloop γ̃ = γ2 as claimed.

Enumerating the interior cut-out domains of γ using points they contain
z,w1,w2, . . . ,wl, . . ., we can iteratively extract subloops γ l of γ that contain D in
their interior but not Dw1, . . . ,Dwl

. The curves γ l converge up to reparametriza-
tion (at the very least it is easy to see that we can assume convergence up to extract-
ing a subsequence). The limiting loop γD is by construction a positively oriented
nonself-crossing loop whose interior is D. �

2.9. Nested and nonnested loop collections. We say that two loops γ and γ ′
of 
 do not cross each other if we can find two sequences (γn)n∈N and (γ ′

n)n∈N of
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elements of 
 such that γn → γ , γ ′
n → γ ′, and for each n ∈ N, the loops γn and γ ′

n

are disjoint.

LEMMA 4. Given two distinct non self-crossing loop that do not cross each
other, then either:

• their interiors are disjoint, or
• the interior of one of the loops, say γ , is included in the interior of the other

loop γ ′.

In the second case, we say that the loop γ is nested in γ ′.

PROOF. We omit the proof of this simple result, which can formally be proven
using (2.1). �

A noncrossing collection of loops is a loop collection of X such that no two
loops cross each other. A nonnested collection of loops is a loop collection of X
that is noncrossing and such that no loop is nested in another.

Given a noncrossing loop collection such that no two loops are equal, we define
the level of a loop as the number of loops containing it, plus 1. Note that the level
of a loop is always finite, by the diameter constraint on loop collections. Outermost
loops are loops of level 1, or alternatively, loops that are not nested in any other
loop. Similarly, innermost loops are loops such that no other loop is nested inside
of them. Given a noncrossing collection of loops C, we call cut-out domains of C
the cut-out domains of the innermost loops of C.

This general definition for the level of a loop does not apply to discrete Ising
loops (which is not a noncrossing collection, see Section 2.5), but coincides with
the definitions we give for discrete FK loops in Section 2.6.

2.10. Measurability of some loop collections.

LEMMA 5. The space X is complete and separable, hence is a Polish space.
Moreover, the following events on X are measurable for the Borel σ -algebra:

• The collection (γi)i∈I is noncrossing.
• The collection (γi)i∈I is nonnested.
• The loops of the collection (γi)i∈I are disjoint.
• All the loops of (γi)i∈I are simple.

PROOF. The set of finite collections of simple loops made of edges of one of
the lattices 2−n

Z
2 forms a countable family which is dense in X . In other words,

X is separable.
We now show that X is complete. Let Cn be a Cauchy sequence in X . Let us

call Nn(ε) the number of loops of Cn that are of diameter larger than or equal to ε.
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Nn is a nonincreasing integer-valued left-continuous function that goes to 0 as ε

goes to ∞. From this, we can see that Nn(ε) converges pointwise to a function
N as n → ∞, except maybe at the jump points (i.e., discontinuity points) of the
limiting function N . Let us consider a sequence of sizes εi → 0 whose elements
are distinct from the jump points of N . For a fixed εi , for any n,m large enough
(say n,m ≥ n0), the collections Cn and Cm will have the same number of loops
of diameter larger than εi . Moreover, provided that n,m are large enough, any
matching between the loops of Cn and Cm that is close to providing the optimal
matching distance dX (Cn,Cm) will have to match all of the loops of diameter larger
than εi with each other. From this, we see that we can match consistently (for all
n ≥ n0) the N(εi) large loops in such a way that their d
 distance goes uniformly
to 0. The fact that the space X is complete hence follows from the fact that 
 is.

A number of sets of loop collections can then be shown to me measurable:

• The set of collections that consists of noncrossing loops is a closed set of X ,
hence is measurable. The same holds for nonnested collections.

• For each ε, δ > 0, let us consider the set of collections Dε,δ such that the open δ-
neighborhoods of all the loops of diameter strictly larger than ε are all disjoint.
The set Dε,δ is closed, and we can write the set D of collections such that all
loops are disjoint as D = ⋂

ε

⋃
δ Dε,δ . Hence D is a measurable set.

• We say that a loop γ is in the set �δ of approximately simple loops at scale δ

if any of its double points cuts up the loop γ in two pieces that are not both of
diameter larger than or equal to δ. Note that �δ is an open set. For each ε, δ > 0,
let us consider the set of collections Sε,δ such that all the loops of diameter larger
than or equal to ε belong to �δ . The set is Sε,δ is open, and we can write the set
S of collections such that all loops are simple as S = ⋂

ε

⋂
δ Sε,δ . Hence S is a

measurable set. �

2.11. Conformal loop ensembles. The CLE measures have been introduced in
[31] as the natural candidates to describe conformally invariant collections of loops
arising as scaling limits of statistical mechanics interfaces. They form a family
indexed by κ ∈ (8

3 ,8] of random collections of SLEκ -like loops.
The usual CLEκ measure (as opposed to nested CLEκ , defined below) is defined

on a planar simply-connected domain and consists of a collection of nonnested
loops. For κ ∈ (8

3 ,4], the usual CLEκ have an elegant loop-soup construction [32],
Theorem 1.6: the CLEκ loops can be constructed by taking the outer boundaries
of clusters of loops in a Brownian loop soup of intensity c = (3κ − 8)(6 − κ)/2κ .

We now iteratively define a random loop collection called nested CLEκ . Its
outermost loop (or level 1) have the law of a usual CLEκ . Given its loops of level
k ≥ 1, we define its loops of level k + 1 as independent samples of usual CLEκ

in each of the cut-out domains associated to the loops of the level k. We choose
to orient CLE loops according to their level: clockwise for odd level loops, and
counterclockwise for even level loops.
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2.12. CLE Markovian characterization. An important result on CLEs is their
Markovian characterization.

THEOREM ([32], Theorem 1.4 and Section 2.1). A family of measures μ� on
nonnested collections of simple loops defined on simply-connected domains � is
the usual CLEκ for a certain κ ∈ (8

3 ,4] if and only if the following holds with
probability 1:

• The collection is locally finite: for any ε > 0 and any bounded region K ⊆ �,
there are only finitely-many loops of diameter greater than ε in K .

• Distinct loops of the collection are disjoint.
• The family is conformally invariant: for any conformal mapping ϕ : � → ϕ(�),

we have ϕ∗μ� = μϕ(�).
• The family satisfies the Markovian restriction property on any simply-connected

domain �: for any compact set K ⊂ � such that � \ K is simply-connected, if
{γi}i∈I is sampled from μ�, setting IK := {i : γi ∩ K �= ∅} we have that {γi}i∈I

conditioned on {γi}i∈IK
has the law of μ�\LK

, where μ�\LK
is defined as the

independent product of μ�′ taken over all connected components �′ of � \LK

and where LK = K ∪ {Inside(γi) ∪ γi : i ∈ IK}.

3. Main theorem.

3.1. Statement and strategy. Let us now give the precise version of our main
result.

THEOREM 6. Consider the critical Ising model with + boundary conditions
on a discretization (�δ)δ>0 of a Jordan domain �. Then as the mesh size δ → 0,
the set of all leftmost Ising loops converges in law with respect to dX to the nested
CLE3.

Furthermore, for any ε > 0, the following holds with probability tending to 1 as
δ → 0: for any Ising loop � of diameter larger than ε, there exists a leftmost loop
�L such that d
(�, �L) ≤ ε and such that the connected components of (� ∪ �L) \
(� ∩ �L) have diameter less than ε.

The second part of the statement (that will be proved as Lemma 14) tells us that
in order to understand all Ising loops, it is enough to understand leftmost Ising
loops. Indeed, any macroscopic Ising loop � is close to a leftmost loop �L in a very
strong sense: not only are the loops close in the topology of uniform distance up
to reparametrization, but the edges they share form a dense subset of each loop.

REMARK 7. The same result holds for rightmost loops, as the proof will show.

The strategy for the proof, illustrated in Figure 2, is the following:
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FIG. 2. The exploration scheme.
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• We first prove that the collection of level one (i.e., outermost) Ising loops has a
conformally invariant scaling limit (Section 5).

• We then show that this limit consists of loops that are simple, do not touch the
boundary or each other, and satisfy the Markovian restriction property (Sec-
tion 6.1).

• We then use the characterization of CLE to identify the scaling limit of the
outermost loops as nonnested CLE3 and finally obtain the convergence of all
Ising loops to nested CLE3 (Section 6.2).

REMARK 8. In [25], the authors explain how CLE3 can be obtained by per-
forming a percolation on the CLE16/3 clusters (a procedure analogous to the one
used in the discrete to construct the Ising model from the FK model). This ap-
proach explains how the joint coupling works in the continuum and provides a
proof scheme for the joint convergence of Ising and FK loops toward a coupling of
CLE16/3 and CLE3 (our approach does not, as we keep resampling the coupled FK
model to further explore Ising loops). Remark 23 provides some of the technical
tools needed for this joint convergence, but some further study of the set of discrete
FK loops seems needed in order to get a complete argument.

4. Scaling limits of Ising and FK interfaces. In this section, we state two
results on which our proof relies: first, the identification of the scaling limit of
the free boundary conditions arc for the Ising model and second, the conformal
invariance of the scaling limit of the FK interface loops.

4.1. Ising free arc ensembles. The first result that we need is the identification
of the scaling limit of the Ising arcs that arise with free boundary conditions. For
the Ising model on a discrete domain G with free boundary conditions, we call an
Ising arc a spin interface that links two boundary points. In the continuous, we
refer to the set of arcs produced by a branching SLE3(−3

2 ,−3
2) as the Free Arc

Ensemble (FAE) [4].

THEOREM 9 ([4], Theorem 6). Consider the critical Ising model on a dis-
cretization (�δ)δ>0 of a Jordan domain �, with free boundary conditions. Then as
δ → 0, the set of all Ising arcs converges in law to the Free Arc Ensemble (for the
Hausdorff metric on sets of curves, where curves are equipped with the topology
of uniform convergence up to reparametrization).

As explained in [4], the scaling limits of the interfaces linking pairs of boundary
points, and hence boundary touching loops, can be deterministically recovered
by gluing the FAE arcs. These two sets of curves (the arcs on the one hand and
the scaling limit of the boundary touching loops) contain the same data in the
continuous.
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FIG. 3. The arcs and loops of an Ising configuration in G. The path outlined in purple is the
concatenation of the arcs a(z, b) over all the boundary edges b, as in Lemma 10. The green arc
belongs to A(z, b′) but is not the arc a(z, b′).

Let us describe how boundary touching loops can be recovered from Ising arcs.
We formally put + spins on the boundary of a discrete domain G and consider the
free Ising model inside of G: the formal boundary spins do not interact, but they
play a role in determining what we call an Ising interface. Given a spin configura-
tion σ , we will consider the spin-flip of σ which is the spin configuration obtained
by switching the value of all the spins inside of G, except for the formal boundary
spins that stay at their fixed + value.

Given a face z ∈ G and an edge b on the boundary of G (i.e., an edge that lies
between a fixed + spin and a free spin), let A(z, b) be the set of all the leftmost
Ising arcs (i.e., leftmost Ising interfaces joining two points of the boundary of G)
that separate z from b in G. The proximity to z gives a natural ordering of the set
A(z, b): given two distinct arcs of A(z, b), one of them is always closer to z, in the
sense that it separates the other arc from z. When the set A(z, b) is nonempty, we
define a(z, b) to be the arc closest to z among all elements of this set, otherwise,
we let a(z, b) = b. We call the inside (resp., the outside) of a(z, b) the set of spins
neighboring the arc a(z, b) on the side of z (resp., on the side of b).

We now explain how to recover from the Ising arcs the set L(G) of all the
leftmost Ising loops that touch the boundary of G (see also Figure 4). Note that
this construction relies on the formal + spins on the boundary of G.

LEMMA 10. For any spin configuration σ and any face z ∈ G, denoting by �

the concatenation of the arcs a(z, b) over all the boundary edges b (see Figure 3),
we have:
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• Either, for any boundary edge b, the inside of a(z, b) consists of − spins only.
In that case, � is a loop in L(G).

• Or, for any boundary edge b, the inside of a(z, b) consists of + spins only. In
that case, � bounds a connected component R of

G̃ = G \ ⋃
γ∈L(G)

γ

that is not surrounded by a loop in L(G). Moreover, � is an Ising loop for the
spin-flipped configuration.

PROOF. Let us fix z ∈ G, and assume that there exists an edge b′ such that
a(z, b′) carries − spins on its inside. Then the (weak) connected component G′ of
− spins attached to the arc a(z, b′) disconnects z from the boundary [as the arc
a(z, b′) is extremal]. Hence the outer boundary of G′ consists of the arcs a(z, b)

where b ranges over all boundary edges, which forces these arcs have to carry −
spins on their inside.

If the face z is such that the above assumption does not hold, then all the edges of
a(z, b) carry + spins on their inside. It is straightforward that their concatenation
bounds a connected component R of G̃ that is not surrounded by a loop in L(G).
Note that given an edge b such that the set A(z, b) is nonempty, the arc a(z, b)

carry − spins on its outside and + spins on its inside, whereas if A(z, b) is empty,
a(z, b) = b is a boundary edge lying between two + spins. If we flip all the spins
in the interior of G, any edge of the boundary of R will carry − spins on its inside
and + spins on its outside. In other words, the boundary of the region R is an Ising
loop for the spin-flipped configuration. �

4.2. Conformal invariance of FK-Ising interfaces and cut-out domains. For
the proof of our main theorem, we need the following result, which is closely
related to (but independent of) the result of Kemppainen and Smirnov about the
scaling limit of the boundary-touching FK loops in smooth domains [19]. This
result includes in particular the convergence of FK cut-out domains to continuous
cut-out domains, defined as the maximal domains contained inside the scaling limit
of FK loops.

PROPOSITION 11. Consider the critical FK-Ising loops on a discretization
(�δ)δ of a Jordan domain �, with wired boundary conditions. The FK loops have
a conformally invariant scaling limit (in law, with respect to dX ) as the mesh size
δ → 0. This scaling limit is almost surely a noncrossing collection. Furthermore,
the discrete cut-out domains of level one FK loops converge to the cut-out domains
of the outermost loops of this scaling limit.

PROOF. The first part is proven as Proposition 22 in the Appendix and the
second part follows from Remark 23 just after. �
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5. Scaling limit of Ising outermost loops. We start with a technical lemma to
control the diameters of Ising loops: we show it is impossible to find an arbitrarily
large collection of macroscopic Ising loops.

Given a collection C of loops, let dC (resp., dC) denote the infimum (resp., supre-
mum) of the diameters of the loops in C. Consider the critical Ising model with +
boundary conditions on a discretization (�δ)δ>0 of a Jordan domain �. For any
integer n ≥ 1, we let dn denote the supremum of the quantities dC , where C ranges
over all collections of n disjoint Ising loops.

LEMMA 12. The quantity dn converges in probability to 0 as n → ∞, uni-
formly in the mesh size δ:

∀ε1, ε2 > 0,∃n0 ∈N,∀δ > 0,∀n ≥ n0, P[dn ≥ ε1] ≤ ε2.

PROOF. By contradiction, if this were not to the case, we could find ε1, ε2 > 0
such that for any integer n, we could find a mesh size δn such, with probability
at least ε2, that there would be a collection C of n disjoint Ising loops such that
dC > ε1. Note that δn → 0 as, for each fixed δ, one can draw only finitely many
simple loops on the graph �δ .

Given any scale η < ε1, we can find a finite collection of annuli of inner radius η

and outer radius ε1 such that the domain � is covered by the balls of radius η at the
center of these annuli. Moreover, we can pick such a covering collection by using
a number Cη−2 of annuli, where C is a constant that depends on the domain � but
not on η. Each Ising loop has to intersect the inside of at least one of these annuli
(as they form a cover of our domain), and so each Ising loop of diameter larger
than ε1 forces the existence of an Ising interface crossing in at least one of these
annuli. In turn, the existence of more than Cη−2(N − 1) + 1 disjoint Ising loops
of diameter larger than ε1 implies that one of the annulus in the cover contains at
least N disjoint Ising interface crossings.

As Ising interfaces form a subset of the FK dual configuration through the
Edwards–Sokal coupling, FK dual paths provide similar crossings: for any inte-
ger N , for any scale η < ε1, we can find a mesh size δ < η such that with probabil-
ity at least ε2, there exists an annulus of inner radius η and outer radius ε1 which
is crossed by N disjoint dual FK arms.

However [7], Lemma 5.7 (via the use of quasi-multiplicativity [7], Theorem 1.3,
to compute arm exponents) implies that FK N -arm monochromatic (i.e., all arms
are primal or all arms are dual) exponents are larger than 2 for N large enough
(note that, as FK measures are positively correlated, these exponents also provide
upper bounds on dual crossing of annuli that intersect the wired boundary of our
domain �). Hence we can find an integer N , such that, provided that the scale η

is small enough, the probability that at least one annuli among Cη−2 is crossed
by N disjoint dual FK arms is arbitrarily small, uniformly in the mesh size δ.
This yields a contradiction, and so the quantity dn converges to 0 as claimed.

�
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FIG. 4. In orange, a FK loop touching the boundary of the domain �: the corresponding primal FK
cluster carries + spins. In red and blue, paths of Ising + and − spins, respectively. The plain paths
correspond to the collection of arcs a(z, b), that together draw an Ising loop of level 1 surrounding z.
In dashed, a few arcs belonging to A(z, b).

Let us now argue that the outermost Ising loops have a conformally invariant
scaling limit. Consider the critical Ising model with + boundary conditions cou-
pled with an FK model with wired boundary conditions on a discretization (�δ)δ>0
of a Jordan domain �.

LEMMA 13. As the mesh size δ → 0, the leftmost level one Ising loops con-
verge in law with respect to the topology generated by dX to a conformally invari-
ant scaling limit.

Furthermore, in the scaling limit, the Ising loops are contained in the cut-out
domains of the outermost FK loops.

PROOF. We are going to describe the collection L of leftmost level one Ising
loops iteratively as a countable union of loop collections L = ⋃

nLn. Convergence
will follow from the a.s. convergence of each of the loop collections Ln, as well
as from the fact that the supremum of the diameter of the loops in Ln goes to 0 in
probability as n → ∞, uniformly in δ.

Let us first describe L1 (see Figure 4). We start by conditioning on the outermost
FK loops in �δ . Let us denote by C1 the associated set of discrete cut-out domains
in �δ (see Section 2.9). Any cut-out domain Cδ ∈ C1 satisfies the following: it is
bordered on its outside by a strong path of + and, conditionally on Cδ , the Ising
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spins inside of Cδ have free boundary conditions. Let us call L(Cδ) the set of
leftmost Ising loops in Cδ that touch the boundary of Cδ (note that we are in the
setup of Lemma 10).

Now, consider the loop collection

L1 = ⋃
Cδ∈C1

L(Cδ),

where the union is over all cut-out domains Cδ ∈ C1. We can pass the construction
of L1 to the scaling limit. By Proposition 11, the discrete cut-out domains Cδ ∈ C1
converge to the continuous cut-out domains as δ → 0. Moreover, for any cut-out
domain C = limCδ , the Ising arc ensemble in Cδ converges to the (conformally
invariant) Free Arc Ensemble in C as δ → 0 (Theorem 9). Hence, the boundary
touching loops L(Cδ) converge (via the correspondence between arcs and loops
explained in Lemma 10). Consequently, the collection L1 has a conformally in-
variant scaling limit.

Recall now that any Ising loop is contained inside one of the cut-out domains
Cδ ∈ C1 (Remark 2). For such a cut-out domain Cδ , we have that the loops of L1
further cut Cδ in regions of two types (this is the dichotomy of Lemma 10):

• The regions enclosed by the loops of L1 (each loop in L1 separates an inner
weak circuit of − on its inside and a strong circuit of + on its outside).

• The regions that are outside the loops of L1 (these regions have strong + bound-
ary conditions). Let us denote by R(Cδ) the set of these regions.

A loop �δ that is inside of Cδ hence falls into one of three categories:

• The loop �δ is strictly contained inside of a loop of L1: in this case, it is of level
two or higher (i.e., it is not outermost).

• The loop �δ is contained inside of a loop Lδ ∈ L1 and it shares an edge with
Lδ (and hence is of level one, but not leftmost if it is distinct from Lδ). The
structure of these loops is described in Lemma 14 below.

• The loop �δ is strictly contained in one of the regions in R(Cδ).

In order to find the remaining leftmost level 1 Ising loops (i.e., the collection L \
L1) we hence just need to look inside the regions in R(Cδ).

Let us call

R2 = ⋃
Cδ∈C1

R(Cδ).

Any region Cδ ∈ R2 carries strong + boundary conditions, and its boundary is
connected by a strong path of + to the boundary of �δ , so any leftmost level 1
Ising loop in Cδ is also a leftmost level 1 Ising loop of �δ .

By resampling a FK representation with wired boundary conditions of the Ising
model in each of the domains Cδ , we can take the construction we just did for the
unique region of R1 = {�δ} (that yielded the loop collections L1) and apply this
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construction to each of the regions in R2. In particular, we construct a collection
C2 of cut-out domains associated to the outermost FK loops in each region in R2,
and use these to obtain a collection of leftmost level 1 Ising loops L2, as well as a
set of smaller regions R3 with + boundary conditions, that contain all the leftmost
level 1 Ising loops that were neither in L1 nor in L2. We further iterate until all
loops are found, so that L = ⋃

nLn. For each fixed n, the loop collection Ln has a
conformally invariant scaling limit, for the same reason that L1 has.

To deduce the convergence of L = ⋃
nLn from the convergence of the terms Ln,

we need them to uniformly converge in some sense: we will show that macroscopic
Ising loops cannot belong to Ln for n arbitrarily large. More precisely, we will now
show that the quantity dLn (the diameter of the largest loop in Ln) tends to 0 in
probability as n → ∞, uniformly in δ. As the loops of Ln are contained in the
domains belonging to Rn, it is enough to show that the supremum dRn of the
diameters of the elements of Rn goes to 0 in probability as n → ∞, uniformly in
δ.

We now fix an integer n ≥ 1, and consider an integer 1 ≤ i ≤ n + 1. We denote
by Si the set of collections of n disjoint loops �1, . . . , �n such that:

• For 1 ≤ j < i, �j is the boundary of a domain in Rj+1.
• For i ≤ j ≤ n, �j is an Ising loop.
• For any 1 ≤ j < n, �j+1 is contained in the interior of �j .

For 1 ≤ i ≤ n, consider the following operation Fi on spin configurations: con-
dition first on the cut-out domains Ci , and flip the Ising spins inside these domains.
Conditioned on the cut-out domains Ci , the Ising model inside of them has the law
of independent Ising models with free boundary conditions. Hence the map Fi is
measure-preserving. Moreover, the boundary of any domain in Ri+1 becomes an
Ising loop after the spin flip (by Lemma 10). Hence, any collection in Si+1 for the
configuration σ belongs to the set Si for the configuration Fi(σ ). This gives the
following estimate, for any ε1 > 0:

P

[
sup

C∈Si+1

dC ≥ ε1

]
≤ P

[
sup
C∈Si

dC ≥ ε1

]
.

If we piece together these estimates for i going from 1 to n, we see that

P[dRn ≥ ε1] ≤ P

[
sup

C∈Sn+1

dC ≥ ε1

]
≤ P

[
sup
C∈S1

dC ≥ ε1

]
≤ P[dn ≥ ε1],

where dn is as in Lemma 12. In other words, dRn is stochastically dominated by
dn. This yields the desired estimate on dRn via Lemma 12. �

LEMMA 14. Any macroscopic level one Ising loop is close to a leftmost level
one loop, as in Theorem 6. Moreover, the set of rightmost level one loops has the
same scaling limit as the set of leftmost level one loops.
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FIG. 5. In red, orange and blue, the loop �L. In purple, red and orange, the exploration γ L
a,b . In

green, red and blue, the exploration γ L
c,d .

PROOF. Any level one Ising loop � is contained in a leftmost level one Ising
loop �L (that we can for example construct as the boundary of the connected com-
ponent containing � of the complement of the set of vertices that are connected to
the boundary by a strong path of +). From the proof of Lemma 13, we have that,
uniformly in δ, with high probability, there is a bounded number of leftmost level
one Ising loop �L of diameter larger than a fixed ε, it is hence enough to prove the
current lemma for a fixed leftmost Ising loop �L.

Recall that such a loop �L can be recovered by gluing Ising arcs in a subdomain
R of �δ that carries free Ising boundary conditions. In particular (see Figure 5),
if a, b, c, d are four points on the boundary of R that are in direct order, and such
that a and b are not disconnected by �L, and c and d are not disconnected by it
either, but a and c are, then the loop �L can be obtained by gluing a subpath of the
leftmost Ising exploration γ L

a,b from a to b (as defined in [4]) with a subpath of the
leftmost Ising exploration γ L

c,d from c to d: indeed, the curve γ L
a,b contains all of

�L except for the arc disconnecting a from the interior of �L.
In [4], Section 4.2 (see Lemma 18 and the argument following it), it is shown

that the leftmost and rightmost Ising explorations from a to b, γ L
a,b and γ R

a,b are
close to each other in a strong sense: the supremum of the diameters of the con-
nected components of (γ L

a,b ∪ γ R
a,b) \ (γ L

a,b ∩ γ R
a,b) goes to 0 in probability as the
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mesh size δ goes to 0 (this is a rephrasing of the last assertion of Theorem 6). This
implies that, with high probability, we can glue a subpath of γ R

a,b together with a
subpath of γ R

c,d and thus get a rightmost Ising loop �R that will be close to �L in
the same strong sense. In particular, �R will share some edges with �L, and hence
be a level one loop.

Moreover, with high probability, any Ising loop � contained in �L falls in one of
three categories:

• One of the edges of � belongs to �L ∩ �R . In that case, we see that �L ∩ �R ⊂ �

and � is close to both �L and �R in the strong sense described above.
• No edge of � belongs to �L ∩ �R , but � shares an edge with �L. In that case, the

loop � is contained in a connected components of (�L ∪ �R) \ (�L ∩ �R), hence
is microscopic.

• The loop � shares no edge with �L, in which case it is of level 2.

As a result, for any ε > 0, with probability tending to 1 as δ → 0, any loop
of level 1 of diameter greater than ε contained in �L is such that d
(�, �L) ≤ ε,
and such that the connected components of (� ∪ �L) \ (� ∩ �L) have diameter less
than ε. �

6. Identification of the scaling limit. In this section, we complete the proof
of Theorem 6, by using the characterization of CLE.

6.1. Qualitative properties of the scaling limit of Ising loops.

LEMMA 15. In the scaling limit, the outermost Ising loops almost surely do
not touch the boundary.

In order to prove this, we will use the following notation. Consider the critical
Ising model with + boundary conditions on the discretization �δ of a Jordan do-
main �. Let us fix a real number d ≤ diam(�)/10, and consider a cover of the
boundary ∂� by a finite family of boundary subarcs I1, . . . ,Im of diameter less
than d .

For any boundary subarc I ⊂ ∂�, and any positive real r > 0, let Ir := {z ∈
� : d(z,I) ≤ r} be the r-neighborhood of I . For any positive reals ε > η > 0, let
Eδ(η, ε,I) be the event that there is a weak − spin cluster linking Iη to � \ (∂�)ε

in Id .

LEMMA 16. For any ε > 0, we have

(6.1) lim
η→0

lim sup
δ→0

P

(⋃
j

Eδ(η, ε,Ij )

)
= 0.
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PROOF. Let us suppose by contradiction that this limit is positive: as we will
see, this will imply the occurrence of a zero-probability event for SLE3. If (6.1)
were not to hold, we could find some ε > 0 and some boundary subarc I = Ij

such that

lim sup
η→0

lim sup
δ→0

P
(
Eδ(η, ε,I)

) = α > 0.

Let us consider a boundary subarc J that does not intersect I2d and consider the
critical Ising model on �δ with + boundary conditions on ∂�\J and − boundary
conditions on J (denote by P

+/− the corresponding measure). By monotonicity
with respect to the boundary conditions, we would have

lim sup
η→0

lim sup
δ→0

P
+/−(

Eδ(η, ε,I)
) = α′ ≥ α > 0.

Let us fix sequences ηk → 0 as k → ∞ and δn,k → 0 as n → ∞ such that for
all n, k we have

P
+/−(

Eδn,k
(ηk, ε,I)

) ≥ α′

2
> 0.

Let us consider the first crossing ξ of − spins in Id from Iηk to � \ (∂�)ε in
counterclockwise order. We arbitrarily extend ξ to ∂� by adding to it a path ξ ′
staying in Iηk .

We condition on the data F of all the Ising spins included in Id to the left of
ξ ∪ ξ ′. Conditionally on ξ to exist, and on the data F , the law of the remaining
spins is given by an Ising model in a quad, where two of the opposing boundary
subintervals (ξ and J ) carry − spins (see Figure 6). Moreover, the extremal length
of this quad is bounded, uniformly in ξ , δ.

By RSW-type estimates [7], Corollary 1.7, we obtain that with (uniformly) pos-
itive probability, ξ is connected by a path of − spins to the − spins of J . This
implies that the Ising interface generated by the ± boundary condition hits Iηk .
Passing to the limit n → ∞ and then k → ∞ implies that the scaling limit of the
interface generated by the boundary conditions hits I with positive probability,
which is a contradiction: the scaling limit is SLE3 [8], Theorem 1, which never
hits the boundary of the domain it lives in [22], Proposition 6.8. �

PROOF OF LEMMA 15. Lemma 16 shows that the scaling limits of Ising loops
almost surely either do not touch the boundary or are included in it. However, this
second possibility almost surely does not happen, as Ising loops are included in
cut-out domains of the scaling limits of the FK loops, themselves described by
a branching SLE16/3(−2/3). On the event that an Ising loop is included in the
boundary, the same would have to be true of a piece of SLE16/3(−2/3), which
cannot happen.

The interested reader can find an inspiration for an argument that does not use
the FK coupling but RSW-type considerations instead in [4], Lemma 18. �
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FIG. 6. In the domain �, with boundary arcs I and J materialized by their extremities (purple
points), we consider the Ising model with mixed boundary conditions P

+/−, conditioned on ξ to
exist, and on F , the data of the state of all spins in the dashed turquoise region. We obtain an Ising
model in a quad whose boundary consists of J (carrying − spins, in red); the green path, carrying
mixed spins; the curve ξ carrying − spins, in red and a blue curve (in two shades), carrying mixed
spins. RSW estimates ensure the existence with uniformly positive probability of a strong path of
− spins (dashed red) in this quad. This path forces the Ising interface γ generated by the mixed
boundary conditions on � to get close to ∂� at the base of ξ .

LEMMA 17. The scaling limit of the outermost Ising loops are almost surely
simple and do not touch each other.

PROOF. As explained in the proof of Lemma 13, we can discover the collec-
tion of outermost Ising loops L1 through the iteration of an exploration process of
FK loops and Ising arcs. At the nth, step, we discover a subcollection Ln.

Two Ising loops with different discovery times m < n do not touch each other
in the scaling limit. Indeed, the loops in

⋃
n>mLn (i.e., the loops that are discov-

ered at times strictly larger than m) are outermost loops within one of the cut-out
domains of the collection Rm. By Lemma 15, the loops in

⋃
n>mLn stay strictly

inside the domains of Rn (with the notation of the proof of Lemma 13), and hence
cannot intersect the loops in Lm.

We now show that the loops of a sub-collection Lm are almost surely simple
and do not touch each other. Recall that these Ising loops are recovered by gluing
arcs of a FAE staying in a cut-out domain of some FK loops (in the collection
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Rm). By Proposition 24, the boundaries of cut-out domains in Rm are simple
disjoint curves. Moreover, the Ising loops that stay within a single cut-out domain
are simple and disjoint: indeed, these loops are constructed by gluing arcs of the
FAE, which is a family of simple disjoint arcs. �

LEMMA 18. In the scaling limit, the outermost Ising loops satisfy the domain
Markov property.

PROOF. This directly follows from the discrete Markov property, together
with the convergence of outermost Ising loops for any discrete approximation of
the continuous domain (Lemma 13). �

Finally, we will need to identify the value of the parameter κ = 3.

LEMMA 19. Consider the scaling limit of the outermost Ising loops. Almost
surely, there is a subarc of a loop that has Hausdorff dimension 11/8.

PROOF. As explained in the proof of Lemma 13, the Ising loops can be con-
structed by gluing arcs of the FAE, which are pieces of an SLE3(−3

2 ,−3
2) explo-

ration tree. As a result, Ising loops have subarcs that have Hausdorff dimension
11/8 (see [2]). �

6.2. Proof of Theorem 6.

PROOF. The outermost Ising loops have a conformally invariant scaling limit
(Lemma 13). By Lemmas 15 and 17, the loops of the scaling limit are simple
and do not touch each other or the boundary. By Lemma 18, these loops satisfy
the Markovian restriction property. Hence, by the Sheffield–Werner Markovian
characterization property, the scaling limit of the outermost Ising loops is a CLEκ

for some 8
3 < κ ≤ 4. By Lemma 19 and the construction of CLEκ in terms of

SLEκ -like loops [31], we deduce that κ must be equal to 3.
We now establish the convergence of the Ising loops of level 2. These loops lay

inside of the outermost Ising loops, that is, are loops of an Ising configuration with
− boundary conditions. The set of leftmost loops in a domain with − boundary
conditions has the same law as the set of rightmost loops in a domain with +
boundary conditions. By the second part of Lemma 14, the scaling limit of level
2 loops is hence given by independent CLE3 in each of the level 1 loops. Further
iterating this argument, we identify the set of loops of level n as independent CLE3
inside the loops of level n − 1.

Moreover, a corollary of Lemma 12 is that the supremum of the diameters of
the Ising loops of level n goes to 0 in probability as n → ∞, uniformly in the mesh
size δ. Hence the convergence of the set of all Ising loops to nested CLE3 follows
from the convergence of the Ising loops of level n, for each fixed n. �
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APPENDIX A: FK INTERFACES HAVE A CONFORMALLY INVARIANT
SCALING LIMIT

In this section, we prove Proposition 11: we show that for any Jordan domain
�, the set of all level one (outermost) FK loops in � converges toward a con-
formally invariant limit (see also [19] for an alternative approach). We prove the
convergence of a single FK exploration path (Lemma 20) without smoothness as-
sumptions on ∂�.

We rely on [21] to get tightness of the exploration path, and we rely on the con-
vergence result [8], Theorem 2, together with an argument similar to the one used
in [4] to identify the scaling limit. Once we know the convergence of a single ex-
ploration, we can deduce the convergence of all outermost FK loops by iteratively
using the convergence of FK exploration interfaces (Proposition 22).

Let us also point out that [20] have recently given an alternative proof of the
results stated here, with a more in-depth description of the relevant loops.

A.1. Convergence of FK interfaces. Consider a discrete domain �δ , with
dual �∗

δ and bi-medial �b
δ . Consider an FK model configuration ω on �δ with

wired boundary conditions and its dual configuration ω∗. Given boundary bi-
medial points a and b, we define the FK exploration γδ of ω from a to b as follows:

• γδ is a simple path on the bi-medial graph of �δ from a to b

• when γδ is not on the boundary ∂�b
δ , γδ follows the primal boundary cluster of

ω on its left and a dual cluster of ω∗ on its right
• when γδ is on ∂�b

δ , γδ keeps a dual cluster on its right whenever possible (i.e.,
with the constraint that γδ is simple and goes from a to b).

The following result gives us that the interface γδ converges to the SLEκ(−ρ)

process with κ = 16/3 and ρ = κ − 6 (see, e.g., [30, 31]).

LEMMA 20. Let �δ be a discrete approximation of a Jordan domain � and
let aδ, bδ ∈ ∂�b

δ with aδ, bδ → a, b ∈ ∂�. Let γδ be the FK exploration from aδ

to bδ . Then γδ converges in law to an SLE16/3(−2/3) curve, with respect to the
supremum norm up to reparametrization.

PROOF. For any discrete time step n ≥ 0, let us denote by �n,δ the connected
component of �δ \ γδ[0, n] containing b. Let us denote by On,δ the clockwise-
most point of ∂�n,δ ∩ ∂�δ (i.e., the rightmost intersection of γδ[0, n] with ∂�δ).
Conditionally on γδ[0, n], the configuration ω in �n,δ is an FK configuration with
boundary conditions that are free on the right of γδ (i.e., on the counterclockwise
arc [γδ(n),On,δ]) and wired elsewhere.

Analogously to the reasoning made in [4], we can use the crossing estimates of
[7] on the domains (�n,δ) to apply the technology of [21], Theorems 3.4 and 3.12,
which allows us to obtain that the law of the exploration γδ is tight.
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Let us now consider an almost sure scaling limit γ of γδk
for δk → 0 (which is

possible via the Skorokhod embedding theorem). Consider a conformal mapping
� → H with (a, b) �→ (0,∞) and denote by λ the image of γ . Encode λ by a
Loewner chain, that is, consider the family of conformal mappings gt : Ht → H,
where Ht is the unbounded connected component of H \ λ[0, t] and we normal-
ize t and gt such that, for any time t , gt (z) = z + 2t/z + o(1/z) as z → ∞. Set
Ut := gt (λ(t)) and Ot := sup(λ[0, t] ∩ R). As usual, we have the Loewner equa-
tion ∂tgt (z) = 2/(gt (z) − Ut) and as a result Ut characterizes λ and hence γ .

Let us now characterize the law of Ut . Set

Xt := Ot − Ut√
16/3

.

The following two properties allow one to prove that Xt is a Bessel process of
dimension d = 3/2 (as in [4]):

• The process Xt is instantaneously reflecting off 0, that is, the set of times {t :
Xt = 0} has zero Lebesgue measure: this is a deterministic property for Loewner
chains (see, e.g., [24], Lemma 2.5). This imply that Xt can be deterministically
recovered from the ordered set of its excursions away from 0.

• When Xt is away from 0, the tip of the curve γ (t) is away from the boundary arc
[a, b]. This corresponds in the discrete to a time t when the curve γδk

(t) is away
from the boundary arc [aδk

, bδk
], and hence the domain yet to be explored �t,δk

has ‘macroscopic Dobrushin conditions in the sense that both the wired and
free boundary arcs are macroscopic. By [8], Theorem 2, the curve λ behaves as
chordal SLE(16/3) headed toward Ot until the first hitting time of [Ot,+∞),
which is the same, by SLE coordinate change [30], as an SLE16/3(−2/3) with
force point at Ot until the first hitting time of [Ot,+∞). Hence, the law of
the ordered set of excursions of Xt away from 0 is that of the ordered set of
excursions of a Bessel process of dimension d = 3/2 away from 0.

Let us now identify the process Ot . By integrating the Loewner equation, we find
that

Ot =
∫ t

0

2√
16/3Xs

ds + At,

where At is constant when Xt is away from 0. The following argument yields that
At is constant equal to zero:

• The process Xt is (1
2)−-Hölder continuous, as a Bessel process.

• Since d = 3/2 > 1, we have that

It =
∫ t

0

2√
16/3Xs

ds

is almost surely finite, and moreover, It is (1
2)−-Hölder continuous (as can be

seen from the fact that Xt − It is a standard Brownian motion).
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• By the tightness result of [21] (see [21], Theorems 3.4 and 3.12), the driving
function Ut must be a.s. (1

2)−-Hölder continuous.
• As At = √

16/3Xt + Ut − It , we see that At must be (1
2)−-Hölder continuous.

• Since At can only vary on the set {t : Xt = 0}, whose dimension is 2−d
2 = 1

4 < 1
2 ,

At must be constant (as in [4], Lemma 9, or [19], Section 5.4).

This characterizes the law of the pair (Xt ,Ot), and hence the law of the driving
function Ut : the curve λ is an SLE16/3(−2/3) process, with force point starting
at 0+. �

A.2. Special points of FK interfaces. The goal of Section A.3 will be to
describe a conformally invariant exploration procedure which for any ε > 0, with
high probability as δ → 0, gives ε-approximations of all the level one FK loops of
diameter larger than ε.

In order to do so, we need to control the formation of continuous cut-out do-
mains, that is, we need to understand what happens on the lattice level when the
scaling limit of the interface has a double point or touches the boundary. We only
need to control what happens on the right side of the curve γδ , as the arguments
needed to control the left side are similar. Let us now introduce the following sub-
sets of γδ (resp., γ ):

• The set PB of right boundary points is the set of points x where the interface γδ

comes as close as possible to the counterclockwise boundary arc from a to b,
that is, a bi-medial mesh size δ/2 away (resp., γ touches the boundary arc [a, b]
in the continuous).

• The set PD of clockwise double points is the set of points x where γδ comes
within distance δ/2 of a point x′ of its past (resp., x is a double point of γ ), and
such that the interface winds clockwise from x′ to x.

We call points of PB ∪ PD special points. For a special point x ∈ PB ∪PD of γδ

(resp., γ ), we define the subpath K(x) of γδ (resp., of γ ) as follows:

• If x ∈ PB , K(x) is the whole part of the curve running from the origin a to x

(excluding a and x).
• If x ∈PD , K(x) is the loop the curve forms at x (excluding x), that is, the part of

the curve γδ (resp., γ ) running from x′ to x, where x′ is as above. Note that this
is well defined in the continuum, as the FK interface does not have triple points:
this would indeed imply a six-arm event primal-dual-primal-dual-primal-dual
that is ruled out by [7], Remark 1.6.

Note that for any special points x, y ∈ PB ∪PD , if K(x) ∩ K(y) �= ∅, then either
K(x) ⊆ K(y) or K(y) ⊆ K(x).

Given a finite family of points P ⊂ PB ∪ PD containing the endpoint b, we
define the partition (P (x))x∈P of γδ \ {a, b} (resp. γ \ {a, b}) by

P(x) := K(x) \ ⋃
y∈P:K(y)⊂K(x)

K(y).
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Note that P(x) is always a non self-crossing loop (minus a point) or a nonself-
crossing path joining two boundary points. For x ∈ P , we say that P(x) is an
ε-approximation of a cut-out domain if (at least) one of the following holds:

• The set P(x) is of diameter less than 2ε.
• We can write the set P(x) as

P(x) = (
(∂D ∩ �) \ x

) ∪ ⋃
γ ′∈C

γ ′,

where D is a cut-out domain laying on the right side of γδ (resp., γ ), and C is a
collection of paths of diameter less than ε, with one endpoint on ∂D \ x.

We say that a finite family of special points P ⊂ PB ∪PD is an ε-pinching family
if for each point x ∈ P , P(x) is an ε-approximation of a cut-out domain.

The main statement of this subsection is that double points of the scaling limit
correspond to double points of the discrete interface (and similarly for the bound-
ary points). More precisely, we have the following.

PROPOSITION 21. For all ε, ε′ > 0, there is a mesh size δ0 > 0, such that for
all δ < δ0, the following holds:

We can couple γδ and γ , find an ε-pinching family Pε of γ and parametrize
γδ : [0,1] → �δ and γ : [0,1] → �̄ so that, with probability at least 1 − ε′:

(1) For any special point x ∈ Pε , there is a special point xδ of γδ such that the
subpaths K(xδ) and K(x) are parametrized by the same time intervals.

(2) The parametrized curves γδ and γ are ε-close to each other in the topology
of supremum norm.

PROOF. By contradiction, assume there is ε, ε′ and a sequence of mesh size
δn → 0 such that we cannot do the required construction for any of the values
δn. By Skorokhod embedding theorem, and the convergence in law of γδ → γ ,
we can construct a coupling of γδn and γ such that γδn → γ almost surely. Let
us construct discrete ε/2-pinching families Pε

δn
, and show that we can extract a

subsequence (δk) ⊂ (δn) such that (γδk
,Pε

δk
) converges almost surely to (γ,Pε),

where Pε is a finite ε-pinching family [and convergence of pinching points is in
the sense of (1) in the statement of the theorem]. This will provide a contradiction,
and hence imply the claim.

Let us now consider the finite family (wk(δ) = γδ(sk))k=0,...,n of points on γδ in
chronological order, with:

• w0(δ) = a and wn(δ) = b

• for any 0 < i < n, si is the first time after si−1 when γδ exits the ball of radius
ε/4 around wi−1(δ),

• diam(γδ[sn−1, sn]) ≤ ε/4.
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FIG. 7. A cut-out domain D of diameter larger than ε (the scale is given in orange). It is bounded
by pieces of γ , and clockwise double points, shown in red. Some of these double points disconnect
pieces of diameter less than 2ε (the domain D3 is one of these). The other (macroscopic) double
points are controlled on the discrete level by purple pinching points (disconnecting D1, D2 and D4).
Note that in this picture the point x2

2 is equal to x2
1 .

We then define a finite ε/2-pinching family Pε
δ of points x

j
i (δ) = γδ(t

j
i (δ)) (that

may not be distinct) in the following way:

• Let x0
i (δ) be the first point of PB ∪PD coming after wi(δ) such that K(x0

i (δ))

contains wi(δ) and is of diameter at least ε/2.
• For j ≥ 0, we define x

j+1
i (δ) as the first point after x

j
i (δ) such that K(x

j
i (δ)) ⊂

K(x
j+1
i (δ)) and such that the diameter of K(x

j+1
i (δ))\K(x

j
i (δ)) is at least ε/2.

Let us explain why Pε
δ is an ε/2-pinching family (see Figure 7).

• Suppose y is a special point of γδ such that diamK(y) ≥ ε/2. Then K(y) con-
tains at least one point wi(δ). Let j be the highest index such that x

j
i (δ) ∈ K(y).

Then we have that either y = x
j
i (δ), or that K(y) \ K(x

j
i (δ)) is of diameter less

than ε/2. In particular, for any special point y, we have that either y ∈ Pε
δ or

that the diameter of

K(y) \ ⋃
x

j
i (δ)∈Pε

δ :K(x
j
i (δ))⊂K(y)

K
(
x

j
i (δ)

)

is less than ε/2.
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• Every special point x of γδ is the closing point of a (possibly degenerate, that is,
of diameter δ/2) cut-out domain Dx . Moreover, the set

K(x) \ ⋃
y∈PB∪PD :K(y)⊂K(x)

K(y)

corresponds to the parts of γδ that trace the boundary of the cut-out domain Dx .
• By the two previous items, for any x

j
i (δ) ∈ Pε

δ , we have that

P
(
x

j
i (δ)

) = D
x

j
i (δ)

∪
( ⋃

y∈∂D
x
j
i

(δ)
∩(PB∪PD\Pε

δ )

(
K(y) \ ⋃

xl
k(δ)∈Pε

δ ∩K(y)

K
(
xl
k(δ)

)))

can be obtained by attaching to D
x

j
i (δ)

paths of diameter less than ε/2 and hence

is an ε/2-approximation of a cut-out domain.

Note that the number of points in Pε
δ is tight, as the almost sure limit γ of the

γδn is a continuous curve. By compactness, we can assume that the family Pε
δ

converges to a finite family Pε of points x
j
i = γ (t

j
i ) on the curve γ (at least by

taking a subsequence γδk
) in the following sense: we can parametrize γδk

and γ

such that for these parametrizations ‖γδk
− γ ‖∞ → 0 almost surely, such that the

limit t
j
i := lim t

j
i (δk) exists for all i, j , and such that for any x ∈ Pε , there exists

a point xδ ∈ Pε
δ such that the subpaths K(xδ) and K(x) are parametrized by the

same time intervals. The claim of the proposition hence reduces to proving that
the family Pε is an ε-pinching family for γ , namely that for any x

j
i = γ (t

j
i ) ∈Pε ,

the set P(x
j
i ) is an ε-approximation of a cut-out domain. In the following, we will

assume that x
j
i ∈ PD . The case x

j
i ∈ PB follows from similar arguments and is

simpler.
To prove this, let us first introduce approximations x

j
i (δ, η) = γδ(t

j
i (δ, η)) of

the ε-pinching points x
j
i (δ) for η > 0. The point x

j
i (δ, η) is defined to be the first

point after x
j−1
i (δ) [or after wi(δ) if j = 0] to beη-close to being a macroscopic

pinching point, that is, such that if γδ were to continue along a (hypothetical) path
γ̃ of length at most η, the pinching point x

j
i (δ) would be located at the end of γ̃ .

Consider the family of points y
j
i located at times u

j
i := limηm→0 limδk→0 t

j
i (δk,

ηm) (where the double limit δk � ηm � 1 is taken through a diagonal extraction
if necessary). It remains to show that with high probability, each point y

j
i = γ (u

j
i )

appears chronologically right before the point x
j
i , in the sense that diam(K(x

j
i ) \

K(y
j
i )) ≤ ε/2. This will readily imply that P(x

j
i ) is an ε-approximation of a cut-

out domain, thus concluding the proof of the proposition.
Let us now fix a point y

j
i . We want to find a quad (i.e., a topological rectangle)

Qδ that contains (with high probability) FK crossings ensuring that the set K(x
j
i )\
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FIG. 8. The quad Qδ in striped purple. Primal and dual FK crossings in this quad will force the

appearance of the pinching point x
j
i (δ) before γδ touches the arc [r, �].

K(y
j
i ) is small. For α > 0, let us define the ball Bα := {z ∈ �δ : |z−x

j
i (δ, η)| < α}

of radius α around x
j
i (δ, η), and let Tα be the set of times when γδ visits this ball:

Tα(δ, η) := {
t ∈ [

0, t
j
i (δ, η)

] : γδ(t) ∈ Bα

}
.

The curve γ does not have triple points, as this would produce a six-arm event
prevented by [7], Remark 1.6. In particular y

j
i is not a triple point for γ . As a

result, we can pick ε1 > 0 small enough such that for all δ � η � ε1, we have that
Tε1(δ, η) is included in two connected components of Tε/4 with high probability:

one of the connected components containing t
j
i (δ, η), and the other one containing

the end ỹ of the (hypothetical) curve γ̃ considered above (see Figure 8).
Let us now define the quad Qδ , with boundary marked points r, �, x

j
i (δ, η) and

ỹ (in counterclockwise order):

• the segment [r, �] is the connected component of ∂Bε1 \ γδ[0, t
j
i (δ, η)] ∩ ∂Bε1

that disconnects x
j
i (δ, η) from the endpoint b of γδ in the domain �δ \

γδ[0, t
j
i (δ, η)];

• the segments [�, xj
i (δ, η)] and [ỹ, r] follow γδ ;

• the segment [xj
i (δ, η), ỹ] is simply γ̃ .

By choosing η small enough (and δ � η), we can make the extremal distance (see
[7] for a definition) between the arcs [�, xj

i (δ, η)] and [ỹ, r] in Qδ arbitrarily small.
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By the RSW estimate of [7], we can ensure that with arbitrarily high probability
(for any δ small enough), there is a dual FK crossing separating [xj

i (δ, η), ỹ] from
[r, �] and furthermore a primal FK crossing separating the dual crossing from [r, �].
As a result, there is a point z� ∈ [�, xj

i (δ, η)] and a point zr ∈ [ỹ, r] between which
γδ has to travel while staying within Qδ . In particular, zr is a special point of γδ

such that K(x
j−1
i (δ)) ⊂ K(zr) [resp., such that wi(δ) ∈ K(zr) if j = 0] and such

that K(zr) \K(x
j−1
i (δ)) encloses γ̃ and hence is of diameter larger than ε/2. This

ensures that the point x
j
i (δ) is found before the point zr , in particular before γδ

crosses the arc [r, �]. As y
j
i is not a triple point for the curve γ , and as the quad

Qδ is of diameter less than ε/2, we see that with high probability, γ [tji (η), t
j
i ] is

of diameter less than ε/2 and hence with high probability the set K(x
j
i ) \ K(y

j
i )

is of diameter less than ε/2.
By taking the successive limits δ � η � ε1 � ε, we obtain that all P(x

j
i ) are

ε-approximations of a cut-out domain, and hence that Pε is an ε-pinching family,
thus proving the proposition. �

A.3. Convergence of FK loops. In this subsection, we identify the scaling
limit of the outermost FK loops by a recursive exploration procedure (see Fig-
ure 9), analogous to the exploration procedure introduced in [5].

PROPOSITION 22. The set of all level 1 FK loops in the discrete approxima-
tion �δ of a Jordan domain � with wired boundary conditions converges to a
conformally invariant scaling limit.

PROOF. Let us fix ε > 0 and define an exploration procedure (see [5] for a
similar construction) that will discover all the level one FK loops of diameter at
least ε. Note that, in order to see that the dX distance is smaller than ε, only the
loops of diameter at least ε matter.

Let us choose boundary bi-medial points aδ, bδ ∈ ∂�b
δ converging to points

a, b ∈ ∂�, and consider the exploration path γδ from aδ to bδ , as in Lemma 20.
Let us condition on γδ and consider the connected components of �δ \ γδ :

• The connected components on the left side of γδ have wired boundary condi-
tions.

• The components on the right side of γδ that touch the boundary of �δ have
mixed boundary conditions.

• All other components stay on the right-hand side of γδ and have free boundary
conditions.

Let us consider the macroscopic domains cut-out by γδ , that is, the connected
components of �δ \ γδ of diameter at least ε. As δ → 0, the interface γδ converges
to a continuous curve, namely an SLE16/3(−2/3) (Lemma 20) and as all double
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FIG. 9. In red, the first exploration path. It cuts out k = 2 domains with mixed boundary conditions
and large diameter, as well as five domains R1, . . . ,R5 with wired boundary conditions and large
diameter. The mixed boundary conditions domain are further cut by two blue explorations λ1 and λ2.
These cut out four more large domains with wired boundary conditions, and allows us to recover two
FK loops: the three domains R6,R7,R8 and the loop �1 for λ1; and the domain R9 and the loop �2
for λ2. The purple dots are special discrete points with very high probability (as they are ε-pinching
points).

points of this limit correspond to discrete double points of γδ (Proposition 21), we
see that, uniformly in the mesh size δ, with high probability there are at most N

macroscopic domains cut-out by γδ , for N large enough.
In each of these macroscopic domains D

j
δ (for j = 1, . . . , k ≤ N ) that have

mixed boundary conditions, we consider the FK interface λ
j
δ that separates the

wired and the free boundary arcs. We obtain k FK loops �
j
δ by concatenating each

interface λ
j
δ with the arc of γδ joining its endpoints. Moreover, each of the λ

j
δ

cuts the mixed domain into a collection of domains with free boundary conditions
(these are the cut-out domains of �

j
δ ) and domains with wired boundary conditions.

The interface γδ converges to SLE16/3(−2/3) as δ → 0 (Lemma 20). As we

control special points of γδ (Proposition 21), the domains D
j
δ converge to continu-

ous connected components Dj of �γ (in the sense that their boundaries converge
as curves for the supremum norm up to reparametrization). Furthermore, for each
j , the interface λ

j
δ converges to an SLE16/3 curve in Dj as δ → 0 ([8], Theorem 2).
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With high probability, the complement of the interior of the loop �j in the domain
Dj has less than M connected component (carrying wired boundary conditions)
of diameter larger than ε.

We have hence explored a batch of (at most N ) level 1 FK loops and with high
probability (with N fixed and δ → 0), the region outside of these loops contains at
most N + NM wired domains of diameter larger than ε.

Each of these domains can be further explored by iterating the exploration we
used for �: starting with an interface between two far away points on the bound-
ary of these new domains, and starting secondary explorations in all the resulting
mixed domains of diameter larger than ε.

Each step of the exploration scheme reduces the maximum diameter of domains
in the collection of wired domains yet to be explored (which are connected compo-
nents of the set of points laying outside all FK loops currently discovered), and so,
by choosing a number of step n large enough, we can ensure, with arbitrarily high
probability, that after n iterations of this scheme, we are left with only domains of
diameter less than ε.

Note that when this is the case, any level 1 FK loop that has not been found
needs to stay in one of the small wired domains cut out, and so is of diameter less
than ε. �

REMARK 23. Note that the argument of Proposition 21 tells us that all double
points, contact points or boundary touching points of the scaling limits of FK loops
are limits of discrete double points, contact points and boundary touching points.

A.4. The boundary of cut-out domains are disjoint simple curves. We
conclude this appendix by a qualitative property of continuous FK loops.

PROPOSITION 24. The boundary of continuous cut-out domains are disjoint
simple curves.

PROOF. By construction, the cut-out domains do not have “internal” double
points, that is, double points that would disconnect their interior. Now, the pres-
ence of an “external” double point (i.e., a point that would disconnect the interior of
their complement) would imply the presence of a six-arm event (dual-dual-primal-
dual-dual-primal, in cyclic order) for the FK model as in Figure 10, case (A). In
the scaling limit, this is ruled out by [7], Theorem 1.5 (using the same argument as
in Remark 1.6 there). Moreover, the boundaries of macroscopic cut-out domains
do not touch each other by a similar argument. If there were a point of intersec-
tion, this would again imply a six-arm event (dual-dual-primal-dual-dual-primal,
in cyclic order), which is again ruled out: see Figure 10 for the two subcases (B)
and (C) of this case. �
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FIG. 10. Double-points and contact points of FK cut-out domains cannot happen in the scaling
limit, as they correspond to six-arm events. Two FK loops, in black and blue. Part of the primal
configuration is drawn in green, part of the dual configuration in red. Six-arm events are marked by
orange circles at four different locations. From left to right: cases (B), (A), (C), (C) of the proof of
Proposition 24.
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