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POLY-LOGARITHMIC LOCALIZATION FOR RANDOM WALKS
AMONG RANDOM OBSTACLES1

BY JIAN DING AND CHANGJI XU

University of Pennsylvania and University of Chicago

Place an obstacle with probability 1 − p independently at each vertex of
Z

d , and run a simple random walk until hitting one of the obstacles. For d ≥ 2
and p strictly above the critical threshold for site percolation, we condition
on the environment where the origin is contained in an infinite connected
component free of obstacles, and we show that the following path localization
holds for environments with probability tending to 1 as n → ∞: conditioned
on survival up to time n we have that ever since o(n) steps the simple random
walk is localized in a region of volume poly-logarithmic in n with probability
tending to 1. The previous best result of this type went back to Sznitman
(1996) on Brownian motion among Poisson obstacles, where a localization
(only for the end point) in a region of volume to(1) was derived conditioned
on the survival of Brownian motion up to time t .

1. Introduction. For d ≥ 2, we consider a random environment where each
vertex of Zd is occupied by an obstacle independently with probability 1 − p ∈
(0,1). Given this random environment, we then consider a discrete time simple
random walk (St )t∈N started at the origin and killed at the first time τ when it hits
an obstacle. In this paper, we study the quenched behavior of the random walk
conditioned on survival for a large time, and we prove the following localization
result. For convenience of notation, throughout the paper we use P (and E) for the
probability measure with respect to the random environment, and use P (and E)
for the probability measure with respect to the random walk.

THEOREM 1.1. For any fixed d ≥ 2 and p > pc(Z
d) (the critical threshold for

site percolation), we condition on the event that the origin is in an infinite cluster
(i.e., infinite connected component) free of obstacles. Then there exists a constant
c = c(d,p) and a collection of P-measurable subsets Dn ⊂ Z

d of cardinality at
most (logn)c and of distance at least n(logn)−100d2

from the origin, such that the
following holds.

There exists a random time T ∈ [0, cn(logn)−2/d ] such that

(1.1) P
(
T ≤ c|ST |, S[T ,n] ⊂ Dn|τ > n

) → 1 in P-probability.

Here, S[T ,n] is used to denote for {St : t ∈ [T ,n]}.
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We say a vertex is open if it is free of obstacle, and thus each vertex is open with
probability p. In this paper, we have chosen p > pc(Z

d) to make sure that with
positive probability the open cluster containing the origin is infinite. A variation of
the model is to place obstacles on edges rather than on vertices, and one can easily
verify that our result as well as the its proof extend to that case. In addition, in
this paper, the obstacles are chosen to be hard, that is, killing a random walk with
probability 1. One could alternatively consider soft obstacles. That is, every time
the random walk hits an obstacle it has a certain fixed probability (which is strictly
less than 1) to be killed. Further, one could also consider the continuous analogue,
that is, Brownian motion with Poissonian obstacles as in [34]. While we believe
our methods useful in these settings, we leave these for future study.

1.1. Background and related results. Random walks among random obstacles
has been studied extensively in literature. In the annealed case, the logarithmic
asymptotics for survival probabilities are closely related to the large deviation es-
timates for the range of the random walk [10, 11, 28, 31]. Indeed, it boils down to
the following optimization problem:

(1.2) max
k

P
(|S[0,n]| = k

)
pk,

where the key to determining the optimizer is an estimate on P(|S[0,n]| ≤ k) when
k is substantially smaller than typical |S[0,n]|. The localization problem has also
been studied in the annealed case, where in [8, 29] it was proved that in dimension
two the range of the random walk/Wiener sausage is asymptotically a (Euclidean)
ball and in [26] it was shown that in dimension three and higher the range of the
Brownian motion is contained in a ball; in both cases, the asymptotics of the ra-
dius for the balls were determined. The behavior that the range of the random
walk/Wiener sausage is asymptotically a ball, is fundamentally determined by the
celebrated Faber–Krahn inequality (which states that among sets in R

d with given
volume balls are the only sets which minimize the first Dirichlet eigenvalue). In-
deed, in [8] a key ingredient was a quantitative version of this type of inequality
in Z

2 which was proved in the same paper; in [33] another quantitative version of
Faber–Krahn was proved independently; in [26] a quantitative version of isoperi-
metric inequality (related to Faber–Krahn inequality) from [18] was a key ingre-
dient in the proof. Provided that the range is asymptotically a ball, in order to
determine the radius of the ball one just need to solve (1.2) with P(|S[0,n]| = k)

replaced by P(S[0,n] is contained in a ball of volume k)—this is then a relatively
straightforward computation.

The localization problem in the quenched case was far more challenging: in
the Brownian setting it was studied first in [30, 33] and its logarithmic asymp-
totics for the survival probability was first derived in [30] (see also the celebrated
monograph [34]). In [13], a simple argument for the quenched asymptotics of the
survival probability was given using the Lifshitz tail effect. In the random walk
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setting, the logarithmic asymptotics of survival probability was computed in [1]
which built upon methods developed in the Brownian setting. Stating the result of
[1] in our setting, we have the following: conditioned on the origin being in the
infinite open cluster, one has that with P-probability tending to 1 as n → ∞,

(1.3) P(τ > n) = exp
{−c∗n(logn)−2/d(

1 + o(1)
)}

.

Here, c∗ = μB(
ωd logp

d
)2/d , B is a unit ball in R

d , ωd is the volume of B and μB

is the first eigenvalue of the Dirichlet–Laplacian of B which is formally defined as

μB = 1

2d
min

u∈W
1,2
0 (B)

{∫
B

|∇u|2 dx : ‖u‖L2(B)=1

}

[W 1,2
0 (B) is the closure of C∞

0 (B) in the norm ‖u‖
W

1,2
0 (B)

= (
∫
B |∇u|2 dx)1/2].

We remark that Faber–Krahn inequality also plays a fundamental role in (1.3)—
one strategy to obtain the lower bound in (1.3) is for the random walk to travel (in
minimal possible number of steps) to the largest open ball within chemical distance
(i.e., graph distance in open clusters) n1−o(1) from the origin and stays within that
ball afterwards.

In terms of localization, an analogous result to Theorem 1.1 was obtained in
[32] (see also [34]) with an upper bound of to(1) on the volume of localizing re-
gion. Such region is sometimes called (an union of) islands, where an island is
a connected subset in Z

d . Theorem 1.1 substantially improves the previous best
result of this type [32, 34] in the following two aspects.

• In [32, 34], the author studied Brownian motion (Bt ) among Poissonian obsta-
cles and showed that Bt is localized in to(1) many islands each of which has
volume to(1), conditioned on survival up to time t . In comparison, Theorem 1.1
yields a localization in poly-logarithmic in n many islands each of which has
volume poly-logarithmic in n, conditioned on the random walk surviving up to
time n.

• Path localization was proved in [32, 34] in the one-dimensional case, that is
to say, the trapping time (i.e., the time it takes to reach an island in which the
Brownian motion/random walk stays afterwards) is sublinear in t . But in dimen-
sion two or higher, no path localization was derived. We show that for d ≥ 2
the trapping time is linear in the Euclidean distance between the island (where
the localization occurs) and the origin—this is a strong path localization result
which in particular implies that the trapping time is sublinear in n.

In addition, we believe that the strategy we described below (1.3) to achieve the
(asymptotic) lower bound in (1.3) is essentially the optimal strategy for the ran-
dom walk. Since the largest open ball under consideration has order logn, we thus
believe that the size of Dn should be of order logn. With this belief, our upper
bound is expected to be sharp in the nature of poly-logarithmic but not sharp in
terms of the power.
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Thus far, we have been discussing random walks with Bernoulli obstacles, that
is, at each vertex we kill the random walk with probability either 0 or a certain fixed
number. More generally, one may place i.i.d. random potentials {Wv : v ∈ Z

d}
(where Wv follows a general distribution) and one assigns a random walk path
probability proportional to exp(

∑n
i=0 WSi

). The case of Bernoulli obstacles is a
prominent example in this family. Previously, there has been a huge amount of
work devoted to the study of various localization phenomenon when the potential
distribution exhibits some tail behavior ranging from heavy tail to doubly expo-
nential tail. See [20] for an almost up-to-date review on this subject, also known
as the parabolic Anderson model and the random Schrödinger operators. See also
[5] for a review on random walk among mobile/immobile random traps.

For a very partial review, in the works of [3, 4, 16, 21, 22, 27, 35], much progress
has been made for heavy-tailed potentials. In particular, they proved localization
in a single lattice point [12, 21, 22, 27] for potentials with tails heavier than doubly
exponential. We note that by localization in a single lattice point we meant for a
single large t , as considered in the present article; one could alternatively consider
the behavior for all large t simultaneously as in [21], in which case they showed
that the random walk is localized in two lattice points, almost surely as t → ∞. In
a few recent papers [6, 7] (which improved upon [14]), the case of doubly expo-
nential potential was tackled where detailed behavior on leading eigenvalues and
eigenfunctions, mass concentration as well as aging were established. In particu-
lar, it was proved that in the doubly exponential case the mass was localized in
a bounded neighborhood of a site that achieves an optimal compromise between
the local Dirichlet eigenvalue of the Anderson Hamiltonian and the distance to the
origin.

1.2. Future directions. Provided with the present article, there are a number
of natural future directions (e.g., proving an analogue of our result in the case for
Brownian motion and/or for soft obstacles, as mentioned right after Theorem 1.1).
Here, we list a few problems of substantial interests:

• Show that there exists a (conjecturally) unique island for localization.
• Determine the asymptotic volume and shape for this island.
• Show that maxx∈Zd P(Sn = x|τ > n) = O(1/ logn).
• Determine the order of the distance between this island and the origin [we note

that Theorem 1.1 gives that such distance is between �(n(logn)−100d2
) and

O(n(logn)−2/d)].
• Describe the geometry of the range for the random walk.

Based on our current understanding, we believe that completely solving the afore-
mentioned questions will require a number of new ideas and we expect both results
and techniques of the present paper to play an important role.
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1.3. A word on proof strategy. We will consider small regions whose volume
is polylogarithmic in n, and consider their principal eigenvalues (formally, the
principal eigenvalue for a region is the largest eigenvalue for the transition ker-
nel of the random walk killed upon hitting an obstacle or exiting the region). The
starting point of our proof is the crucial intuition that localization more or less
amounts to the phenomenon that the order statistics for principal eigenvalues in
small regions which are within distance n from the origin have nonsmall spacings
near the edge (i.e., near the extremum). Nonsmall spacings for principal eigenval-
ues near the edge plays an important role in controlling the number of (which turns
out to be at most polylogarithmic in n) small regions where the random walk will
be localized in: Since the spacings are non-small near the edge, this roughly speak-
ing implies that any small region which is not one of the best polylogarithmic in
n regions, is strictly suboptimal compared to the best small region. That is to say,
the random walk would prefer to stay in the best small region instead of the union
of all the suboptimal regions. In other words, the best polylogarithmic in n regions
are the only possible regions for which the random walk would spend a substantial
amount of time. This implies the polylogarithmic localization as desired. Next, we
describe our proof strategy in more detail.

Since principal eigenvalues in small regions are more or less i.i.d., such spac-
ings near the edge are determined by the tail behavior of principal eigenvalues:
the heavier the tail is, the larger the spacing is near the edge. To implement this
intuition, we consider the survival probability after a polylogarithmic number of
steps starting from each vertex in the box of size n—such survival probabilities
are closely related to principal eigenvalues in a region of polylogarithmic diam-
eter (see Lemma 3.2). Here, we have to choose the number of steps kn at least
logarithmic in n, otherwise we will have too many starting points with survival
probability 1. What is important to us, is the fact that by choosing kn polyloga-
rithmic in n, we already get a tail on such survival probabilities which is heavy
enough for our purpose.

In light of the above discussions, a key task is to prove that the survival proba-
bility, viewed as a random variable measurable with respect to the random environ-
ment, has nonlight tails. This is incorporated in Section 2. Note that there are many
balls of radius 10−3(log1/p n)1/d which are free of obstacles, and thus have atypi-
cally high survival probabilities for random walks started inside. Thus, in light of
our interest in spacings only near the edge of the order statistics, it suffices to con-
trol the right tail of the survival probability that is far away from its typical value.
For vertices started from which the survival probabilities in kn steps are high, we
can then a priori prove that the random walk spends at least a positive fraction of
steps in a set of cardinality O(logn) near this vertex (see Proposition 2.5). This
implies that there exists at least one vertex with large local times conditioned on
survival in kn steps. Therefore, by removing the closest obstacle near this vertex we
will be able to add a significant fraction of paths, and thus significantly improve the
survival probability. Finally, by controlling the cardinality of the preimage of this
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operation of removing an obstacle, we obtain the desired tail behavior on survival
probability, as shown in the proof of Proposition 2.3.

With Proposition 2.3 at hand, we can then show in Lemma 3.3 that there
are polylogarithmic many local regions that are candidates for localization, and
any other regions have significantly lower survival probabilities compared to the
best candidate regions. Combined with well-known tools from percolation theory,
a positive fraction of the candidate regions are connected to the origin by open
paths of lengths which are linear in their Euclidean distances from the origin. This
is the content of Section 3.

Using ingredients from Section 3, we prove in Lemma 4.2 that conditioned on
survival the random walk with probability close to 1 visits one of the candidate
regions, for the reason that moving to the best reachable candidate region quickly
and staying there afterwards yields a much larger survival probability than never
visiting any of the candidate regions. Next, we prove in Proposition 4.3 that once
the random walk reaches a candidate region it is not efficient to move far away
without entering another candidate region. Up to this point, we have derived the
polylogarithmic localization as desired.

Finally, it remains to show that the amount of time for the random walk to reach
the region in which it is localized afterwards is at most linear in the Euclidean
distance of this region from the origin. To this end, we employ the notion of loop
erasure for the random walk, and show that the size of the loop erasure is at most
linear and that the total size of (erased) loops is also at most linear. This is the
content of Section 5.

1.4. Comparison to earlier works. In previous works on localization for
parabolic Anderson models, one way to derive localization was from rather precise
information on leading eigenvalues; see, for example, [7]. However, it is usually
nontrivial to compute the asymptotics for leading principal eigenvalues. It occurs
to us that with this approach in order to derive a polylogarithmic localization, one
would have to compute the principal eigenvalues in substantially higher precision
than that in [13, 34], which seems to be challenging.

Another way is to derive localization from (lower bound on) fluctuations of
principal eigenvalues, and such method was used in [33, 34] to control the distance
of the localization region from the origin. In particular, in [33] the author studied
the following variational problem (for large t):

(1.4) Ft(�) = � + tλ�,

where λ� is the principal Dirichlet eigenvalue of −1
2� + V (where V encodes

the configuration for random obstacles) in (−�, �)d . In [33], Theorem 3.2, a lower
bound on the fluctuation of principal eigenvalues averaging over many scales was
derived, from which information on minimizers of � for (1.4) was derived in [33],
Theorem 5.1. In addition, a similar variational problem has been studied in [34]
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(see [34], p. 281, equation (3.1)), via which a localization phenomenon was de-
rived. However, along the arguments of [33, 34], the total volume of the localiza-
tion region one could derive was of order to(1) as implied in [34]. One of a few
reasons is that the number of minimizers for (1.4) could potentially be large.

Our method shares the same underlying philosophy which emphasizes the cru-
cial role of fluctuations of principal eigenvalues, as discussed in Section 1.3. How-
ever, our proof is mostly self-contained and in particular does not borrow from [1,
33, 34]. Somewhat surprisingly, our proof does not rely on the estimate (1.3) ei-
ther. In comparison with [33, 34], the following features of our method are crucial
for deriving a polylogarithmic localization:

• We directly work with principal eigenvalues of small regions. In comparison,
working with principal eigenvalues in the big box (−�, �)d would need an addi-
tional step to show the localization of the principal eigenfunctions.

• We derive a tail estimate on principal eigenvalues of small regions, which al-
lows us to control spacings near the edge of their order statistics in every scale
(instead of averaging over many scales as in [33]).

• We directly compare the probabilities for different set of paths instead of work-
ing with variational problems such as (1.4), which avoids introducing extra error
factors in the analysis.

1.5. Notation convention. For notation convenience, we denote by O the col-
lection of all obstacles (sometimes referred to as closed vertices) and C(v) the open
cluster containing v.

For A ⊂ Z
d , write ∂A = {x ∈ Ac : y ∼ x for some y ∈ A}, where x ∼ y means

that x is a neighbor of y and ∂iA = {x ∈ A : y ∼ x for some y ∈ Ac}. We denote
by ξA = inf{t ≥ 0 : St /∈ A} the first time for the random walk to exit from A, and
by τA = inf{t ≥ 0 : St ∈ A} the hitting time to A. As having appeared earlier, we
write τ = τO for the survival time of the random walk.

For m ∈ N
∗ = {1,2,3, . . .}, we denote by S[0,m] = {S0, . . . , Sm} the range of

the first m steps of the random walk. A path is a sequence of vertices ω =
[ω0,ω1, . . . ,ω|ω|] where |ω| is its length and ωi , ωi+1 are adjacent for 0 ≤ i ≤
|ω| − 1. We say a path is open if all of its vertices are open. For u, v ∈ Z

d , we say
u ↔ v if there exists an open path that connects u and v. We define the chemical
distance by

(1.5) D(u,v) = inf
{|ω| : ω0 = u,ω|ω| = v,ω is open

}
.

We denote the �2-distance by |u − v| = (
∑d

i=1(ui − vi)
2)1/2. We denote discrete

�2-ball by Br(v) = {x ∈ Z
d : |x − v| ≤ r}.

We write An � Bn if there exits a constant C > 0 depending only on (d,p) such
that An ≤ CBn for all n, and An � Bn if Bn � An. If An � Bn and An � Bn, we
write An 
 Bn.

Here is a list of the rest of the symbols used in this paper, followed by the place
of their definition.
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Xv (2.1) kn (2.2) c-good DEF. 2.4
ε-fair DEF. 2.6 K(·, ·) (2.16) pα’s (3.1)
Uα’s (3.2) CR(v) DEF. 3.1 λv,R DEF. 3.1
D∗, D’s (3.5) V (3.10) Dn (3.11)
v∗ DEF. 4.1 T (·) (4.1) η (5.1)
M(t) DEF. 5.1 At(ω) DEF. 5.1

2. Tail behavior of survival probabilities. The main goal of this section is
to prove right tail bounds on the survival probability, as incorporated in Proposi-
tion 2.3 below (see also the discussions below Proposition 2.3 for its proof strat-
egy). To this end, for each vertex v ∈ Z

d , we let

(2.1) Xv = Pv(τ > kn)

be the probability that the random walk started at v survives for at least kn steps,
where kn is set as (we denote by �x� the greatest integer less than or equal to x for
x ∈ R)

(2.2) kn =
{⌊

(logn)3(log logn)2⌋
if d = 2;⌊

(logn)4−2/d⌋
if d ≥ 3.

We remark that there is no fundamental reason for our choice of kn: it has to be
polylogarithmic in n so that it is “small,” and it has to be at least substantially larger
than (logn)2/d so that maxv∈Bn(0) Xv = o(1). We made our particular choice of kn

for convenience of analysis. Note that Xv is a P-measurable random variable. As
mentioned in the Introduction, it suffices to consider the right tail of Xv far away
from its typical value. For reasons that will become clear soon, it is convenient to
set the threshold as

βχ = χkn/(logn)2/d

,

where χ is a positive constant to be selected.

LEMMA 2.1. There exists χ = χ(d,p) > 0 such that

(2.3) P(Xv ≥ βχ) � n−d+1.

PROOF. Since |Br(v)| 
 rd , there exists cd,p depending only on (d,p) such
that

(2.4) P
(
Bcd,p(logn)1/d (v) ⊂Oc) � n−d+1.

When all vertices in Bcd,p(logn)1/d (v) are open, the random walk with initial point
v will survive in kn steps if it stays in Bcd,p(logn)1/d (v). Next, we estimate the prob-
ability for the random walk to stay in a ball. This is a fairly simple and stan-
dard argument, which we give only for completeness. It is clear that there exists
c = c(d) > 0 such that

min
x∈Br

P
(
St ∈ B2r for 0 ≤ t < r2, Sr2 ∈ Br

) ≥ c
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for all r ≥ 1. Now, set r = �2−1cd,p(logn)1/d�. By having the random walk to stay
within B2r and to end in Br for every block of r2 steps, we obtain

(2.5) Pv(
St ∈ B2r (v), t = 0,1, . . . , kn

) ≥ ckn/(r2)+1.

Now, we can choose χ = χ(d,p) > 0 small enough so that ckn/(r2)+1 ≥ βχ . Com-
bining (2.4) and (2.5), we complete the proof of the lemma. �

REMARK 2.2. A sharp version of (2.5) with the exact large deviation rate was
derived in [11], but we do not need such sharp estimate here.

Lemma 2.1 justifies our choice of considering the right tail of Xv only above the
threshold βχ for some small χ > 0, since there is at least one site v ∈ Bn(0) with
Xv ≥ βχ , and thus the extremal level set is above βχ . In what follows, we always
choose χ > 0 such that (2.3) holds [and it will become clear that eventually we
will choose a χ > 0 depending only on (d,p)].

PROPOSITION 2.3. For all χ > 0 and β ≥ βχ , we have

(2.6) P(Xv ≥ β) ≤ c1k
d
nP(Xv ≥ c2β logn) + n−(2d+1),

where c1, c2 are positive constants only depends on (d,p, χ).

The proof of Proposition 2.3 consists of two main ingredients:

(a) The random walk spends a positive fraction of steps in a subset of size
O(logn) conditioned on survival (in the case when the survival probability is at
least βχ ). Thus, there exists at least one vertex x which is visited for many times
on average conditioned on survival.

(b) If we change the environment by removing the closest obstacle around x we
will increase the survival probability substantially, and this will lead to the desired
tail estimate (2.6).

We now describe how we prove (a), that is, to control the support of the local times
for the random walk.

• We first show in Proposition 2.5 that conditioned on survival (in the case when
the survival probability is at least βχ ), the random walk spends at least kn/2
steps on c-good vertices (cf. Definition 2.4).

• Next, we show in Lemma 2.8 that each c-good vertex has to be contained in a
“connected” component of ε-fair boxes (cf. Definition 2.6) of volume at least
�(logn).

• Since ε-fair only occurs with small probability by Lemma 2.7, we use a perco-
lation type of argument in Lemma 2.9 to show that c-good occurs very rarely,
and then in Lemma 2.10 that the number of c-good vertices is O(logn).

The “environment changing” argument as in (b) is carried out in the Proof of
Proposition 2.3, which itself is divided into three steps. One can see the discussions
at the beginning of Proof of Proposition 2.3 for an outline of its implementation.
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2.1. Support of local times. This subsection is devoted to proving (a), follow-
ing the three steps outlined above.

DEFINITION 2.4. A site v in Z
d is called c-good if

(2.7) Pv(
τ >

⌊
(logn)2/d⌋) ≥ c.

We first show that the random walk tends to spend many steps on c-good ver-
tices.

PROPOSITION 2.5. For any χ > 0, there exists c = c(χ) > 0 such that for all
environments:

P
(
τ > kn,

∣∣{t ≤ kn : St is a c-good site}∣∣ ≤ kn/2
) ≤ βχ/2.

PROOF. Let ζ0 = −1 and for m ≥ 1 recursively define

ζm = inf
{
t ≥ ζm−1 + (logn)2/d;St is not c-good site

}
.

Write jn = �kn/(2(logn)2/d)�. By strong Markov property, we get that

P(ζjn ≤ kn < τ) ≤ P(S[ζm,ζm+�(logn)2/d�] is open ∀1 ≤ m ≤ jn − 1) ≤ cjn−1.

Note that on the event E = {τ > kn, |{t ≤ kn : St is a c-good site}| ≤ kn/2}, we
have ζjn ≤ kn < τ . Thus, we have P(E) ≤ cjn−1. Choosing an appropriate c =
c(χ) completes the proof of the proposition. �

Next, we control the size of c-good vertices. For this purpose, we consider dis-
joint boxes

(2.8) Kr(x) := {
y ∈ Z

2 : ‖x − y‖∞ ≤ r
}

for x ∈ (v + (2r + 1)Zd) and r > 0 to be selected.

DEFINITION 2.6. A box Kr(x) is called ε-fair if there exist u ∈ Kr(x) such
that

(2.9) Pu(
τ ≥ r2 or τ > ξK2r (x)

) ≥ ε.

In what follows, we carry out the last two steps in the outline of proving (a): we
show in Lemma 2.7 that the ε-fair boxes are rare provided r = r(ε) large enough,
and in Lemma 2.8 we show that a c-good point has to be in a cluster consisting of
�(logn) many ε-fair boxes. Combining these two lemmas, we can then bound the
probability for a vertex to be c-good as in Lemma 2.9, which leads to Lemma 2.10
on the O(logn) bound for the number of c-good vertices in a box of radius kn.
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LEMMA 2.7. For any ε > 0, there exists r = r(ε, d,p) such that

(2.10) P
(
Kr(x) is ε-fair

) ≤ ε.

PROOF. Let y be an arbitrary vertex in Kr(x). By the independence of the
environment and random walk, we have

E
[
Py(|S[0,r2]| > r1/2, τ > r2)]

= P⊗ Py(|S[0,r2]| > r1/2, τ > r2) ≤ pr1/2−1
(2.11)

and

E
[
Py(τ > ξK2r (x))

] = P⊗ Py(τ > ξK2r (x)) ≤ pr .(2.12)

In addition, note that in every r steps the random walk has a positive probability
to visit at least r1/2 distinct sites. Thus, there exists a constant c > 0 such that

Py(|S[0,r2]| ≤ r1/2) ≤ e−cr .

Combined with (2.11) and (2.12), it implies that∑
y∈Kr(x)

P
(
Py(

τ ≥ r2 or τ > ξK2r (x)

) ≥ ε
) ≤ (2r + 1)dε−1(

pr1/2−1 + pr + e−cr).
Choosing r = r(ε, d,p) large enough completes the proof of the lemma. �

We will always choose

(2.13) ε = min
(
c/2, (2d)−3d+1)

and r = r(d, ε,p)

such that (2.10) holds. We fix v ∈ Z
d and define the adjacency relation for ε-fair

boxes {Kr(x), x ∈ (v + (2r + 1)Zd) to be the following:

(2.14) Kr(x) ∼ Kr(y) ⇐⇒ ∃x′ ∈ Kr(x), y′ ∈ Kr(y) s.t. x′ ∼ y′.

We next show that in order for a vertex v to be c-good, it requires v to be in a
cluster consisting of �(logn) many ε-fair boxes—here, a cluster is a connected
component where each “vertex” corresponds to an ε-fair box and the neighboring
relation is given by (2.14). Thus, c-good is a rare event. To this end, let Lv be the
subset of (v + (2r + 1)Zd) such that {Kr(x), x ∈ Lv} is the cluster of ε-fair boxes
in Bh(logn)1/d (v) which contains v.

LEMMA 2.8. For any c > 0 and ε satisfying (2.13), there exist l = l(d, c, ε)

and h = h(d, c, ε) such that v is not a c-good vertex if |Lv| ≤ l logn.

PROOF. For any d ≥ 2, there exists a constant θ = θ(d) such that

sup
x∈Zd

Pv(St = x) ≤ θt−d/2 for all t ≥ 1.
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Let m = �(logn)2/d� − r2. For all 0 < � < 1, there exists a constant h = h(�)

such that

(2.15) Pv(
S[0,m] ⊂ B2−1h(logn)1/d (v)

) ≥ 1 − �.

In addition, if |Lv| ≤ l logn we have

Ev

[
m∑

i=1

1{Si∈⋃
x∈Lv

Kr(x)}
]

=
m∑

i=1

Pv

(
Si ∈ ⋃

x∈Lv

Kr(x)

)

≤ ��m� +
m∑

i=��m�+1

∣∣∣∣ ⋃
x∈Lv

Kr(x)

∣∣∣∣θi−d/2

≤ �m + θ
(
m − ��m�)(2r + 1)d |Lv|��m + 1�−d/2

≤ �m + θ�−d/2(2r + 1)d2d/2ml,

where the last inequality holds when logn ≥ (2r)d . Setting

0 < � < (c − ε)/(3 − 3ε) and l = 2−d/2�1+d/2θ−1(2r + 1)−d,

we get that

Ev

[
m∑

i=1

1{Si∈⋃
x∈Lv

Kr(x)}
]

≤ 2�m.

This implies that Pv(ξ ′ > m) ≤ 2�, where ξ ′ = inf{t ≥ 0 : St /∈ ⋃
x∈Lv

Kr(x)}.
Combined with (2.15), it yields that with probability at least 1 − 3� the event
{S[0,m] ⊂ B2−1h(logn)1/d (v), ξ ′ ≤ m} occurs. Further, on this event, we have that Sξ ′

is not in an ε-fair box, and thus PSξ ′ (τ > r2) ≤ ε. Therefore,

Pv(
τ >

⌊
(logn)2/d⌋) ≤ 1 − (1 − 3�)(1 − ε) < c. �

LEMMA 2.9. There exists δ = δ(c, d,p) > 0 such that

P
(|Lv| > l logn

) ≤ n−δ.

PROOF. For all x ∈ Lv , the number of points y ∈ Lv such that K2r (x) ∩
K2r (y) �= ∅ is at most 3d . Therefore, there exists a subset I of Lv , such that
|I | ≥ |Lv|/3d and that K2r (x) ∩ K2r (y) = ∅ for different x, y ∈ Lv . Hence events
{Kr(x) is ε-fair} for x ∈ I are independent of each other. In addition, the number
of connected components of |Lv| boxes is no more than (2d)2|Lv |—this is a fairly
standard combinatorial computation and one could see, for example, [36] for a
reference. Therefore,

P
(|Lv| > l logn

) ≤ ∑
j≥l logn

(2d)2j · εj/3d ≤ 2nl log(4d2ε1/3d
).

Combined with Lemma 2.8 and (2.13), it completes the proof of the lemma. �
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LEMMA 2.10. For all v ∈ Z
d and κ > 0,

P
(
Kkn(v) contains more than κ logn c-good points

) ≤ n−κδ/(4h)d .

PROOF. Write q = 2�h(logn)1/d + 2r�. Let Ki = Kkn(v) ∩ (i + qZd) for i ∈
{1, . . . , q}d . For any fixed i, the events {|Lv| ≥ l logn} for v ∈ Ki are independent.
Thus, for large n

P
(
Kkn(v) contains more than κ logn c-good points

)
≤ ∑

i∈{1,...,q}d
P

(∣∣{v ∈ Ki : |Lv| ≥ l logn
}∣∣ ≥ κ/(3h)d

)

≤ qd
P

(
Bin

(
kd
n, n−δ) ≥ κ/(3h)d

)
,

where the last inequality follows from Lemma 2.9 and Bin(kd
n, n−δ) is a binomial

random variable with probability n−δ and kd
n trials. At this point, the desired bound

follows from a standard large deviation estimate for Binomial random variables.
�

LEMMA 2.11. For v ∈ Z
d , let Gv = Gv(α, κ) be the event that:

(1) For every u ∈ Kkn(v), there exists a closed site within distance α(logn)1/d .
(2) The number of c-good points in Kkn(v) is at most κ logn.

Then there exist κ,α > 0 depending only on (c, d,p) such that

P(Gv) ≥ 1 − n−(2d+1).

PROOF. Since |Bα(logn)1/d (x)| ≥ (α/d)d logn, we have that

P
(
There exists x ∈ Kkn(v) such that Bα(logn)1/d (x) ∩O = ∅

)
≤ (2kn + 1)dp(α/d)d logn.

This addresses the first requirement for the event Gv . The second requirement
for Gv is addressed in Lemma 2.10. Altogether, we conclude that P(Gv) ≥ 1 −
n−(2d+1) with appropriate choices of α and κ , as desired. �

2.2. Environment changing argument. We now prove Proposition 2.3.

PROOF OF PROPOSITION 2.3. We choose c = c(χ) as in Proposition 2.5. The
proof of Proposition 2.3 consists of three steps as follows:

1. For each c-good point x, removing its closest obstacle would enlarge
the survival probability by a factor at least �x(logn)2/d−2(log logn)−1 (where
the log logn terms only appears when d = 2). Here, we denote by �x =
E[∑kn

t=0 1{St=x}|τ > kn] the expected number of visits to x conditioned on sur-
vival.
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2. Combining Step 1 with Proposition 2.5, we show that there exists at least one
c-good point x such that removing the closest obstacle near x enlarge the survival
probability by a factor of order logn.

3. The operation of removing the closest obstacle has preimage with multiplic-
ity bounded by O(kd

n), which leads to the term of c1k
d
n in (2.6).

We now carry out the proof steps outlined as above.
Step 1. For each c-good site x ∈ Kkn(v), let x′ be one of the closed sites nearest

to x (with respect to the Euclidean distance) and let x∗ be one of the neighbors of x′
such that |x −x∗| < |x −x′| (so x∗ is open). Let b = |x −x∗|, ◦

Bb(x) = Bb(x)\{x}.
For u, v ∈ Z

d , A ⊂ Z
d and r ≥ 1, we define

KA,r(u, v) = {
ω = [ω0, . . . ,ωr ] : ω0 = u,ωr = v,ωi ∈ A

for 1 ≤ i ≤ r − 1
}
,

KA(u, v) =
∞⋃

r=1

KA,r(u, v), KA,r(u) = ⋃
v∈Zd

KA,r(u, v).

(2.16)

The key in Step 1 is to construct a collection of paths which does not hit any ob-
stacle except x′, such that the collection is large in comparison with the number
of paths which does not hit any obstacle. To this end, we let Wx be the collection
of paths of form ω1 ⊕ π1 ⊕ [x∗, x′, x∗] ⊕ π2 ⊕ ω2 (here, ⊕ denotes for the nat-
ural concatenation for paths), where ω1, π1, π2,ω2 are ranging over all choices
satisfying

• ω1 ∈ KOc (v, x),ω2 ∈ ⋃
y∈Oc KOc (x, y), |ω1| + |ω2| = kn;

• π1 ∈ K ◦
Bb(x)

(x, x∗),π2 ∈ K ◦
Bb(x)

(x∗, x).

In order to complete Step 1, we need to verify the following two ingredients
(which we check below):

(a) We prove that if γ ∈ Wx , then the above decomposition into four concate-
nated parts is unique, and there exists no γ̃ ∈ Wx which is a continuation of γ

(meaning, that can be written in the form γ ⊕ π for a non trivial π ).
(b) We use this observation to obtain a lower bound on the probability of ob-

serving a path in Wx in the first steps of the random walk.

Step 1(a). As x′ is visited only once, the separation between π1 and ω1 and
that between π2 and ω2 must correspond respectively to the last visit of x before
visiting x and the first visit of x after visiting x ′. This yields uniqueness of the
decomposition. The condition |ω1| + |ω2| = kn implies that the continuation of a
path in Wx cannot belong to Wx .

Step 1(b). We will abuse the notation by writing

Pv(W) = Pv([S0, S1, . . . , S|ω|] = ω for some ω ∈ W
)
,
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FIG. 1. The gray ball is Bb(x) which is open. The black curve is the random walk path ω, which
visits x three times in this picture.

where W is a collection of paths. Then

Pv(Wx) = ∑
ω∈KOc,kn (v)

(2d)−kn−2Pv(
K ◦

Bb(x)

(
x, x∗))

× Pv(
K ◦

Bb(x)

(
x∗, x

)) ·
kn∑

i≥0

1x(ωi),

where we have the factor
∑kn

i≥0 1x(ωi) because we can insert an π1 ⊕[x∗, x′, x∗]⊕
π2 at each visit to x along the random walk path (see Figure 1). In light of
Lemma 2.11, we choose α,κ so that P(Gv) ≥ 1 − n−2d−1. And we suppose Gv

occurs, hence b ≤ α(logn)1/d . By [23], Lemma 6.3.7, we get that

Pv(
K ◦

Bb(x)

(
x, x∗)) = Pv(

K ◦
Bb(x)

(
x∗, x

))

≥
{
C(logn)−1/2(log logn)−1 if d = 2;
C(logn)1/d−1 if d ≥ 3,

where C > 0 only depends on p and d . In fact, [23], Lemma 6.3.7, gives an es-
timate on the harmonic measure when the random walk exits a discrete �2-ball.
Combined with the observation that such harmonic measure is unchanged con-
ditioned on the random walk not returning to the starting point, this yields the
preceding inequality. Thus, we have

P
(
K ◦

Bb(x)

(
x, x∗)) ≥ 2−1Ck−1/2

n logn.
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Therefore (recall that �x = E[∑kn

t=0 1{St=x}|τ > kn]), we obtain that

(2.17) P(Wx) ≥ (2d)−3C2k−1
n (logn)2�xXv.

The preceding inequality can be immediately translated into a bound on the sur-
vival probability after removing the obstacle at x′.

Step 2. Recall Proposition 2.5 and recall that Xv = Pv(τ > kn). We see that on
the event {Xv ≥ βχ } ∑

x∈Kkn(v):x is c-good

�x ≥ kn/4.

At the same time, on the event Gv ∩ {Xv ≥ βχ } there are no more than κ logn

c-good points in Kkn(v). Altogether, it follows that there exists a c-good point x

in Kkn(v) such that �x ≥ kn/(4κ logn). Combined with (2.17), it yields that there
exists x′ ∈ Kkn(v) such that for c2 = c2(p, d) > 0

(2.18) Pv(
τ ′ > kn

) ≥ c2Xv logn where τ ′ = τO\{x′} = inf
{
t : St ∈ O \ {

x′}}.
Step 3. Now, for β ≥ βχ , let Ev be the event that {there exists a closed site x′ ∈

Kkn(v) such that Pv(τ ′ > kn) ≥ c2β logn}. We have shown that Gv ∩ {Xv ≥ β} ⊂
Ev , as in (2.18). Furthermore, note that x′ ∈ Kkn(v) provided Wx �= ∅. Thus, all
environments where Ev occurs can be obtained by closing one open site in Kkn(v)

in one of the environments where Xv ≥ c2β logn. Write On = O ∩ Bkn(v)—we
restrict the consideration of O into a finite set Bkn(v) so that each realization of
On has positive probability. Let A,B be collections of subsets of Bkn(v) such that
Ev = {On ∈ A}, and {Xv ≥ c2β logn} = {On ∈ B}. Let

S = {
(x,O) ∈ Kkn(v) × B : x /∈ O

}
.

We define the map ϕ : S → 2Bn(v) by

ϕ(x,O) = O ∪ {x}.
Then for any (x,O) ∈ S , P(On = ϕ(x,O)) = 1−p

p P(On = O). Thus,

P
(
On ∈ ϕ(S)

) ≤ 1 − p

p

∑
(x,O)∈S

P
(
On = O

) ≤ 1 − p

p

∣∣Kkn(v)
∣∣P(

On ∈ B
)
.

By definition, we have A ⊂ ϕ(S). Hence,

P(Ev) = P
{
On ∈ A

} ≤ (2kn + 1)d
1 − p

p
P{Xv ≥ c2β logn}.

Therefore,
P(Xv ≥ β) ≤ P

(
Gv ∩ {Xv ≥ β}) + P

(
Gc

v

)
≤ P(Ev) + P

(
Gc

v

)
≤ (2kn + 1)d

1 − p

p
P{Xv ≥ c2β logn} + n−2d−1

≤ c1k
d
nP{Xv ≥ c2β logn} + n−2d−1,

where c1 > 0 is a constant depending only on (d,p). �
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3. Candidate regions for localization. Recalling our discussion on proof
strategy in Section 1.3, in order to show localization it is important to show that all
except polylogarithmic many small regions will be suboptimal compared to some
“best” small region. Here, to measure the level of “goodness” for small regions,
we will use principal eigenvalues, which in turn is closely related to survival prob-
abilities for random walk as we show in Lemma 3.1. Thus, it is natural to introduce
the following quantiles which measure goodness from the perspective of survival
probabilities (in kn steps):

p0 := sup
{
β ≥ 0,P(Xv ≥ β) ≥ n−dk2d

n logn
}
,

pα := p0/(c2 logn)α for α ≥ 0,
(3.1)

where c2 is chosen such that (2.6) holds. Denote

(3.2) Uα := {
v ∈ Z

d : Xv ≥ pα

}
.

Thus, we have that U0 = {v ∈ Z
d : Xv ≥ p0}. Heuristically, the hope is that if α is

large enough, all regions outside Uα will be suboptimal compared to U0. In order
to make this intuition rigorous, it turns out more convenient to consider principal
eigenvalues for small regions. To this end, we introduce the following definition.

DEFINITION 3.1. For any site v ∈ Z
d , we let CR(v) be the connected compo-

nent in BR(v) \ O that contains v for R = kn(logn)2, and let λv be the principal
eigenvalue of P |CR(v) where P |CR(v) is the transition matrix of simple random walk
on Z

d restricted to CR(v).

In the next lemma, (as announced earlier) we will relate the survival probability
Xv to the principal eigenvalue λv , and thus relating the survival probability in kn

steps (i.e., Xv) to the survival probability to arbitrary number of steps.

LEMMA 3.2. For any m ≥ 1,

(3.3) λm
v ≤ max

x
Px(ξCR(v) > m) ≤ (2R)d/2λm

v .

In particular,

(3.4)
(
Xv/(2R)d/2)1/kn ≤ λv ≤ max

x∈CR(v)
(Xx)

1/kn.

We set α1 = 3d and α2 = 4d . By definition, there is a clear separation on the
level of goodness (in terms of survival probabilities in kn steps) for typical regions
in U0, Uα1 and Uα2 where U0 contains the “most desirable” regions. The level pα1

will be the threshold of candidate regions, while the spacing between p0 and pα1 is
used in Lemma 4.2 and the spacing between pα2 and pα1 is used in Lemma 4.5. By
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Lemma 3.2, such separation can be translated to that in terms of principal eigen-
values (which then controls survival probabilities for arbitrary number of steps).
This motivates the following definition:

Dλ := {
v ∈ Z

d : λv > λ
}

and D∗ := {
v ∈ Z

d : λv ≥ p1/kn
α1

}
.(3.5)

With preceding definitions, D∗ represents candidate regions for localization: in-
deed, we will show in Section 4 that random walk will eventually be localized in
neighborhoods that are close to D∗ [see (3.11) for a formal definition for the union
of islands for localization]. The remaining section is devoted to proving a number
of structural properties for D∗ (via structure properties of U·), as listed below:

• We prove Lemma 3.3 by a crucial application of Proposition 2.3, which in turn
guarantees that the number of islands in Uα are at most polylogarithmic in n—
this is important for bounding |Dn|.

• We show in Lemma 3.4 that vertices in Uα is either close or far away from each
other—this implies that it is costly for the random walk to travel from one good
region to another (this is important in the proof of Lemma 4.5 later).

• We show in Lemmas 3.5 and 3.6 (whose proof uses results in percolation theory)
that there exists vertices in U0 which are connected to the origin by open paths
with lengths which are linear in their Euclidean distances from the origin—this
implies a lower bound on P(τ > n) by letting the random walk travel to one
vertex in U0 quickly and stays around it afterwards [see (4.10)].

• We use Lemma 3.2 to deduce structural properties on D· from U·—these are
incorporated in Corollary 3.7 and Lemma 3.8.

The proofs of Lemma 3.2 and the following four lemmas are postponed to Sec-
tion 3.1.

LEMMA 3.3. We have

n−dk2d
n logn ≤ P(Xv ≥ p0) ≤ n−dk4d

n and

P(Xv ≥ pα) ≤ n−dk(α+4)d
n .

LEMMA 3.4. For any α ∈ N
∗, with P-probability tending to one there exist no

u, v ∈ Uα ∩ B2n(0) such that 2kn ≤ |u − v| ≤ nk
−2(α+5)
n .

LEMMA 3.5. Conditioned on the origin being in an infinite cluster, with P-
probability approaching one

(3.6) U0 ∩ C(0) ∩ Bn/kn(0) �= ∅.

LEMMA 3.6. Let D(u,v) be defined as in (1.5). For p > pc(Z
d), there exists

a constant ρ > 0 which only depends on (d,p) such that the following holds with
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P-probability tending to one. For all u, v ∈ B2n(0),

either C(u) = C(0) or
∣∣C(u)

∣∣ ≤ (logn)3,(3.7)

D(u,v)1{u↔v} ≤ ρ max
(|u − v|, (logn)3)

.(3.8)

COROLLARY 3.7. We have that:

(1) With P-probability tending to one, for any v ∈ B2n(0) ∩ (Uα2 ∪D
p

1/kn
α2

),

(
B

nk−14d
n

(v) \ B3R(v)
) ∩ (Uα2 ∪D

p
1/kn
α2

) = ∅.

(2) k2d
n n−d ≤ P(v ∈ D∗) ≤ kα+6

n n−d .

(3) p
1/kn
α2 ≥ 1 − χ/(logn)2/d for some constant χ depending only on (d,p).

PROOF. It follows from (3.4) that

{v ∈ D
p

1/kn
α2

} ⊂ ⋃
u∈BR(v)

{u ∈ Uα2},

{v ∈ U0} ⊂ {v ∈ D∗} ⊂ ⋃
u∈BR(v)

{u ∈ Uα1}.
(3.9)

Combining with Lemmas 3.4 and 3.3 yields (1) and (2). Combining Lemma 3.3
and Lemma 2.1 gives (3). �

The following structural property for D∗ will be useful.

LEMMA 3.8. With P-probability tending to one, there exists a subset V ⊂D∗∩
C(0) ∩ B2n(0) such that

λv = max
{
λu : u ∈ B3R(v)

} ∀v ∈ V;
D∗ ∩ C(0) ∩ B2n(0) ⊂ ⋃

v∈V

B3R(v);

B
nk−14d

n
(v), v ∈ V ∪ {0} are disjoint.

(3.10)

PROOF OF LEMMA 3.8. Combining (3.9) and Lemmas 3.4, 3.3 yields the de-
sired result. �

We will prove in Section 4 that random walk will eventually be localized in the
union of the following islands for some constant ι > 0 to be selected:

(3.11) Dn = ⋃
v∈V

B(logn)ιkn(v).
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PROOF OF THEOREM 1.1: VOLUME OF THE ISLANDS. Combining Corol-
lary 3.7 (2) and Markov inequality implies that with P-probability tending to one,
|D∗ ∩ B2n(0)| ≤ (logn)100d . Then by Lemma 3.8,

|Dn| ≤ (
2(logn)ιkn

)d ∣∣D∗ ∩ B2n(0)
∣∣ ≤ (logn)ι+200d,

and Dn ∩ B
n(logn)−100d2 =∅. �

3.1. Proof of Lemmas 3.2, 3.3, 3.4, 3.5 and 3.6.

PROOF OF LEMMA 3.2. Recall that P |CR(v) is the transition matrix restricted
to CR(v). Let 1x = (0, . . . ,0,1,0, . . . ,0) ∈ R

CR(v) be the vector which takes
value 1 only in the coordinate corresponding to the site x, and let 1 = (1,1,

. . . ,1) ∈ R
CR(v). We have

Px(ξCR(v) > m) = 1T
x(P |CR(v))

m1 ≤ λm
v

√∣∣CR(v)
∣∣ ≤ (2R)d/2λm

v .

Let μ be the eigenvector of P |CR(v) corresponding to λv , then∑
x∈CR(v)

μ(x)Px(ξCR(v) > m) = μT(P |CR(v))
m1 = λm

v

∑
x∈CR(v)

μ(x).

Hence there exists x ∈ CR(v) such that Px(ξCR(v) > m) ≥ λm
v . �

PROOF OF LEMMA 3.3. By Lemma 2.1, since βχ ≤ nβχ/2 we can choose
χ = χ(d,p) such that for large n,

(3.12) P(Xv ≥ nβχ) ≥ n−d+1.

Thus, by definition of p0 we see that for any fixed α and sufficiently large n,

(3.13) p0 ≥ nβχ and hence pα ≥ βχ .

This allows us to apply Proposition 2.3 with β = p0, yielding that

P(Xv ≥ p0) ≤ c1k
d
nn−dk2d

n logn + n−2d−1 ≤ n−dk4d
n .

The left continuity of P(Xv ≥ x) gives

P(Xv ≥ p0) ≥ n−dk2d
n logn.

Therefore, for β ∈ (βχ ,p0) and sufficiently large n, (2.6) implies

P(Xv ≥ β) ≤ 2c1k
d
nP(Xv ≥ c2β logn).

Since p0 = (c2 logn)αpα , applying the above inequality α times yields

P(Xv ≥ pα) ≤ n−dk(α+4)d
n . �
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PROOF OF LEMMA 3.4. For any u, v ∈ B2n(0) such that |u − v| ≥ 2kn, the
events {Xv ≥ pα} and {Xu ≥ pα} are independent (since in kn steps, the random
walk will not exit the ball of radius kn). Hence Lemma 3.3 yields

P(Xv ≥ pα,Xu ≥ pα) ≤ n−2dk2(α+4)d
n .

Then we complete the proof by enumerating all possible (u, v) ∈ B2n(0) × B2n(0)

such that 2kn ≤ |u − v| ≤ nk
−2(α+5)
n . �

PROOF OF LEMMA 3.6. By [9], Theorem 3, and [17] (see also [19], Corol-
lary 3), there exists C > 0 which only depends on p such that for all m ≥ 1,

P
(∣∣C(v)

∣∣ = m
) ≤ e−Cm1/2

.

Then for any v ∈ Z
d ,

(3.14) P
(
(logn)3 ≤ ∣∣C(v)

∣∣ < ∞) ≤ ∑
m≥(logn)3

e−Cm1/2 = o
(
n−d)

.

This proves (3.7).
By [2], Theorem 1, we know that for u, v with |u − v| ≥ (logn)3 (the main

arguments in [2] were written for bond percolation, but as the authors suggest one
can verify that the proof adapts to site percolation with minimal changes)

P
(
u ↔ v,D(u, v) > ρ|u − v|) ≤ e−C|u−v| ≤ n−C(logn)2

.

Hence the event En that D(u,v)1{u↔v} ≤ ρ|u − v| for all u, v ∈ B3n(0) with |u −
v| ≥ (logn)3 has probability tending to one.

On the event En, we consider any u, v ∈ B2n(0) such that u ↔ v with |u −
v| < (logn)3. In the case C(u) = C(0), we see from the connectivity that there
exists w ∈ C(0) such that min(|w − v|, |w −u|) ∈ [(logn)3, (logn)3 + 2]. Then by
triangle inequality max(|w − v|, |w − u|) ≤ 4(logn)3. Hence

D(u,v) ≤ D(u,w) + D(v,w) ≤ 5ρ(logn)3.

In the case that C(u) �= C(0), It follows from (3.7) that with P-probability tending
to one

D(u,v) ≤ ∣∣C(u)
∣∣ ≤ (logn)3.

The proof is completed by adjusting the value of ρ. �

REMARK 3.9. The work [2] improves earlier results of [15, 17], where the
main objective of [15] is to understand certain parabolic problems for the Anderson
model with heavy potential.
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PROOF OF LEMMA 3.5. We say a site v ∈ Z
d is reachable if the connected

component in Bkn(v) \ O that contains v is of size at least kn. Then by (3.7),
conditioned on origin being in an infinite cluster, with P-probability approaching
one all reachable sites are in C(0). Let U∗

0 = {v ∈ U0 : v is reachable}, it suffices to
prove

P
(
U∗

0 ∩ Bn/kn(0) = ∅
) → 0.

To verify this, we first observe that for each site v ∈ Z
d in an infinite cluster, it

connects to ∂Bkn(v) by an open path. Hence the connected component in Bkn(v) \
O that contains v has at least kn vertices. As a result,

P(v is reachable) ≥ θ(p).

Now by FKG inequality and Lemma 3.3,

P
(
v ∈ U∗

0
) ≥ P(v ∈ U0) · P(v is reachable) ≥ θ(p)n−dk2d

n logn.

Since events {v ∈ U∗
0 } for v ∈ (2kn + 1)Zd are independent of each other, we have

P
(
U∗

0 ∩ Bn/kn(0) =∅
) ≤ (

1 − θ(p)n−dk2d
n logn

)(2d−1�n/kn�(2kn+1)−1−1)d

≤ n−c

for some constant c = c(d,p). This completes the proof of the lemma. �

4. Endpoint localization. In this section, we prove that conditioned on sur-
vival for a long time the random walk will be localized in an island (which we refer
to as target island below) in Dn, where the target island is chosen randomly (from
all the polylogarithmic many islands in Dn) with respect to the random walk. In
addition, the target island will be a neighborhood of v∗ (see Definition 4.1 below
and Figure 2 for an illustration), which is the best island that the random walk ever
visits.

DEFINITION 4.1. On event {S[0,n] ∩D∗ �= ∅}, we let v∗ be the unique site in
V (defined in Lemma 3.8) such that

St∗ ∈ B3R(v∗) for t∗ = min
{
0 ≤ t ≤ n : λSt = max

0≤i≤n
λSi

}
.

Otherwise, we set v∗ := 0, as in such case the random walk never visits any candi-
date regions.

For v ∈ V and constant ι > 0 to be selected, we define the hitting time of a
neighborhood of v by

(4.1) T (v) = min
{
0 ≤ t ≤ n : |St − v| ≤ (logn)ι

}
.
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FIG. 2. The shaded regions are islands in D∗. The site v∗ is the representative of the best island
that the random walk ever visits.

The endpoint localization is proved by combining the following two ingredients:
the random walk will visit D∗ with high probability (as shown in Lemma 4.2); the
random walk will stay in a neighborhood of v∗ after getting close to v∗ (as shown
in Proposition 4.3).

LEMMA 4.2. Conditioned on the event that the origin is in an infinite open
cluster,

P(τD∗ ≤ n|τ > n) → 1 in P-probability.

PROPOSITION 4.3. For ι sufficiently large, conditioned on the event that the
origin is in an infinite open cluster, we have that

(4.2) P
(
S[T (v∗),n] ⊂ B(logn)ιkn(v∗)|τ > n

) → 1 in P-probability.

PROOF OF THEOREM 1.1: ENDPOINT LOCALIZATION. Set ι to be a suffi-
ciently large constant as in Proposition 4.3. Combining Lemma 4.2 and Proposi-
tion 4.3 gives

P(Sn ∈ Dn|τ > n) → 1. �

In order to prove Lemma 4.2 and Proposition 4.3, we first provide upper bound
on the probability for the random walk to survive and also avoid Uα (or respectively
Dλ) as in Lemmas 4.4 (resp., Lemma 4.5). Provided with Lemma 4.5, Lemma 4.2
follows from a lower bound on P(τ > n), which is substantially larger than (the
upper bound on) P(τO∪D∗ > n). The proof of Proposition 4.3 is yet more com-
plicated, which will employ a careful application of Lemmas 4.4 and 4.5 together
with Lemma 3.4.
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4.1. Upper bounds on survival probability.

LEMMA 4.4. For all α ≥ 0 and m ≥ 1, we have that for all v ∈ Z
d ,

Pv(τUα∪O > m) ≤ (2R)d/2pm/kn
α .

PROOF. Write m = jkn + i where 0 ≤ i < kn and j ∈ N
∗. By the strong

Markov property, we see that for all v ∈ Z
d ,

Pv(τUα∪O > m) = ∑
x∈(Uα∪O)c

Pv(τUα∪O > m,Sm−kn = x)

≤ ∑
x∈(Uα∪O)c

Pv(τUα∪O > m − kn, Sm−kn = x)Px(τUα∪O > kn)

≤ Pv(τUα∪O > m − kn) · pα.

Applying the preceding inequality repeatedly, we get that

(4.3) Pv(τUα∪O > m) ≤ pj
α max

x∈(Uα∪O)c
Px(τUα∪O > i).

Write Cα,R(x) = CR(x) \ Uα and let λα,x be the principal eigenvalue of P |Cα,R(x).
Then, by the same arguments as for Lemma 3.2, we deduce that λα,x ≤
(maxx Px(τCα,R(x) > kn))

1/kn ≤ p
1/kn
α and then

Px(τUα∪O > i) ≤ (2R)d/2pi/kn
α .

Combined with (4.3), this completes the proof of the lemma. �

LEMMA 4.5. With P-probability tending to 1 as n → ∞ the following holds.
For any v ∈ Bn(0) and λ > (pα1/ logn)1/kn and for all 1 ≤ m ≤ n, we have

(4.4) Pv(τO∪Dλ > m) ≤ R3dλm.

Here, we recall that Dλ = {u ∈ Z
d : λu > λ} and kn ≥ (logn)2.

PROOF. We consider two scenarios for the random walk. In the first scenario,
the random walk never enter the region Uα2 . In this case, since for any u ∈ Uc

α2
we

have Xu ≤ pα2 , this yields an efficient upper bound. In the second scenario, the
random walk enters Uα2 and possibly exits an enlarged neighborhood around Uα2

and re-enters for multiple times. In this case, we are fighting with the following
two factors:

• The enumeration on the possible times for exiting and re-entering is large [see
(4.5)].
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FIG. 3. The shaded region is Uα2 . Two balls are of radius R. The left ball is centered at Sb1 and
the right one is centered at Sb0 . Random walk stays in BR(Sbj

) during time [bj , aj+1 − 1] and stays
in Uc

α2
during time [aj , bj − 1].

• When we estimate the survival probability, we repeatedly use the relation be-
tween Xv the principal eigenvalues λv as in Lemma 3.2, and each time we use
such a relation we accumulate a certain error factor. As a result, such error fac-
tors will grow in the number of times for the random walk to exit an enlarged
neighborhood around Uα2 and then re-enter Uα2 .

In order to beat the preceding two factors, we note that every time the random walk
exits an enlarged neighborhood of Uα2 and re-enters Uα2 , it has to travel for a fair
amount of steps outside of Uα2 , due to Lemma 3.4. This leads to a decrement on
the survival probability. Such probability decrement, also growing in the number
of “exiting and re-entering,” is sufficient to beat the enumeration factor as well as
the error factors accumulated when switching between Xv and λv .

In what follows, we carry out the proof in details following preceding discus-
sions. We define stopping times:

a0 = 0 and aj = inf
{
t ≥ bj−1 : St /∈ BR(Sbj−1) or t = m

}
for j ≥ 1,

bj = inf{t ≥ aj : St ∈ Uα2 or t = m} for j ≥ 0.

For all j ≥ 0, we have St ∈ CR(Sbj
) for t ∈ [bj , aj+1 − 1] and St /∈ Uα2 for

t ∈ [aj , bj − 1] (see Figure 3). By Lemma 3.4, we see that with P-probability
approaching 1 we have that

aj − bj−1 ≥ R and bj − aj ≥ R − 2kn for 1 ≤ j ≤ L − 1,

where L = inf{j ≥ 0 : bj ≥ m}. We have L ≤ m/R + 1. We denote �0 = {(0,m)}
and for 1 ≤ l ≤ m/R + 1 define

�l = {
(x, y) ∈ Z

(l+1) ×Z
(l+1) : x0 = 0, xl ≤ yl = m,

xj < yj < xj+1, yj − xj ≥ R − 2kn for j = 0,1, . . . , l − 1
}
.
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Here, �l is the collection of all possible entrance times (to Uα2 ) and exit times
(from a ball of radius R centered at the entrance point). Then a straightforward
combinatorial computation gives that

|�l| ≤
(
m

2l

)
≤ m2l .(4.5)

For any m, l ≥ 1 and (x, y) ∈ �l , we get from (3.3) and Lemma 4.4 that

Pv(τO∪Dλ > m,L = l, aj = xj , bj = yj for 1 ≤ j ≤ l)

≤
l∏

j=0

(2R)d(pα2)
(yj−xj−1)/knλ(xj−yj−1−1)

≤ λm
l∏

j=0

(pα2)
−2/kn(2R)d

(
logn · pα2

pα1

)(yj−xj )/kn

.

Note that yj − xj ≥ R − 2kn ≥ kn logn for j = 1,2, . . . , l − 1. Hence for large n

[recalling R = kn(logn)2 and pα2 ≥ χkn/(logn)2/d
as in (3.13)](

pα1

logn · pα2

)(yj−xj )/kn ≥ n10 for 1 ≤ j ≤ l − 1.

Therefore, for l ≥ 2 and sufficiently large n,

Pv(τO∪Dλ > m,L = l, aj = xj , bj = yj for 0 ≤ j ≤ l) ≤ λmn−7(l−1).

Summing over l = 2,3, . . . , �m/R� + 1 and applying (4.5), we obtain that for
m ≤ n

Pv(τO∪Dλ > m,L ≥ 2) ≤ λmn−4.(4.6)

In addition, for l = 1 we have

(4.7) Pv(τO∪Dλ > m,L = 1) ≤ λm(
(pα2)

−2/kn(2R)d
)2 ≤ 2(2R)2dλm,

and by Lemma 4.4 we have

(4.8) Pv(τO∪Dλ > m,L = 0) ≤ Pv(τO∪Uα2
> m) ≤ (2R)d/2λm.

Combining (4.6), (4.7) and (4.8), we complete the proof of the lemma. �

4.2. Proof of Lemma 4.2 and Proposition 4.3.

LEMMA 4.6. The following holds with P-probability tending to 1. For all
u, v,w ∈ B2n(0) such that u ↔ v, v ↔ w and for any positive number t such that
t − |u − w|1 is even, we have

(4.9) Pu(St = w,τ > t) ≥ (2d)−ρ(|u−v|+|v−w|+R)λt
v.
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PROOF. This is an immediate consequence of Lemma 3.6 and (3.3). �

PROOF OF LEMMA 4.2. We first see that reaching U0 quickly and staying
there afterwards gives a lower bound on P(τ > n). By Lemmas 3.5 and (3.8), there
exists a site vf ∈ U0 such that D(0, vf ) ≤ ρn/kn. It follows from (3.4) that

λvf
≥ (

Xvf
/(2R)d/2)1/kn ≥ (

p0/(2R)d/2)1/kn.

Then Lemma 4.6 implies

(4.10) P(τ > n) ≥ (2d)−ρ(n/kn+1+R)λn/kn
vf

≥ (
(2d)−2ρp0/(2R)d/2)n/kn.

By Lemma 4.5, we get that P(τD∗∪O > n) ≤ R3dp
n/kn
α1 . Altogether, we conclude

that

P(τD∗ > n|τ > n) = P(τD∗∪O > n)

P(τ > n)
≤ R3dp

n/kn
α1

((2d)−2ρp0(2Rn)−d/2)n/kn
= o(1). �

PROOF OF PROPOSITION 4.3. Note that

P
(
S[T (v∗),n] �⊂ B(logn)ιkn(v∗), τ > n

)
= ∑

v∈V

P
(
v∗ = v,S[T (v),n] �⊂ B(logn)ιkn(v), τ > n

)
.

(4.11)

Consider v ∈ V ∩ Bn(0). Since T (v) is a stopping time for any fixed v, by strong
Markov property, we have that

P
(
v∗ = v,S[T (v),n] �⊂ B(logn)ιkn(v), τ > n

)
(4.12)

≤ E
[
1{τ>n−T (v)}PST (v)(ξB(logn)ιkn (v) ≤ m,τO∪Dλv

> m)|m=n−T (v)

]
.

We now bound the second term on the right-hand side of (4.12). Suppose that the
random walk escapes the ball B(logn)ιkn(v∗) during time [T (v), n], then there exists
a time interval [ta, tb] ⊂ [T (v), n], such that

tb − ta = ⌈
(logn)ιkn/2

⌉
and St ∈ B(logn)ιkn(v∗) \ B3R(v∗) for t ∈ [ta, tb]

(see Figure 4). Since Corollary 3.7(1) implies that (B(logn)ιkn(v∗) \ B3R(v∗)) ∩
Uα2 = ∅, we get

St ∈ (O ∪ Uα2)
c for t ∈ [ta, tb].

Therefore, for all v ∈ V, u ∈ ∂iB(logn)ι(v) ∩ C(0) and m ∈ N
∗,

Pu(ξB(logn)ιkn (v) ≤ m,τO∪Dλv
> m)

≤
m−�(logn)ιkn/2�∑

ta=0

Pu(
τO∪Dλv

> m,S[ta,tb] ⊂ (O ∪ Uα2)
c).
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FIG. 4. The big ball is B(logn)ιkn
(v∗) and the small ball is B(logn)ι (v∗). If the random walk ever

escapes the big ball (solid curve), then it must go through the annulus B(logn)ιkn
(v∗) \ B3R(v∗)

during time [ta, tb]. But since survival probability in such annulus is very low, the random walk
would prefer to stay in the ball (dotted curve).

Then we get from Lemmas 4.4 and 4.5 that

Pu(
τO∪Dλv

> m,S[ta,tb] ⊂ (O ∪ Uα2)
c) ≤ (2R)10dλm−2−(tb−ta)

v p(tb−ta)/kn
α2

≤ (2R)10dλm−2
v (logn)−(logn)ι/2.

Therefore, we deduce that

Pu(ξB(logn)ιkn (v) ≤ m,τO∪Dλv
> m)

≤ (logn)−(logn)ι/4(2d)−4ρ(logn)ιλm
v ≤ (logn)−(logn)ι/4Pu(τ > m),

where we have used the fact which follows from Lemma 4.6 that

Pu(τ > m) ≥ (2d)−4ρ(logn)ιλm
v ∀u ∈ ∂iB(logn)ι(v) ∩ C(0).

Together with (4.12), we get

P
(
v∗ = v,S[T (v),n] �⊂ B(logn)ιkn(v), τ > n

) ≤ (logn)−(logn)ι/4P(τ > n).

Combined with (4.11), this completes the proof of the proposition by summing
over all v ∈ V ∩ Bn(0). �

5. Path localization. This section is devoted to the proof of path localization.
More precisely, we will show that conditioned on survival the amount of time the
random walk spends before getting close to the island in which it is eventually
localized, is at most linear in the Euclidean distance from that island to the origin.
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To this end, we consider the loop erasure for the random walk path, that is, we
consider the following unique decomposition for each path ω ∈ KZd (0, u):

(5.1) ω = l0 ⊕ [η0, η1] ⊕ l1 ⊕ [η1, η2] ⊕ · · · ⊕ [η|η|−1, η|η|] ⊕ l|η|,
where li ∈ KZd\{η0,...,ηi−1}(ηi, ηi) [recall (2.16)] are the loops erased in chronolog-
ical order and η = [η0, . . . , η|η|] is the loop-erasure of ω denoted by η = η(ω) (see
[23], Chapter 9.5, for more details on loop erasure). We first show in Lemma 5.4
that in a typical environment the survival probability for the random walk decays
exponentially in the length of its loop erasure, which then implies that the loop era-
sure of the random walk path upon reaching the target island has at most a linear
number of steps.

In light of the preceding discussion, it remains to control the lengths of the
erased loops which we consider in the following two cases:

• For loops of lengths at most k50d
n : we will first show that for a typical environ-

ment for majority of the vertices on any self-avoiding path, the survival proba-
bility for the random walk started at those vertices up to time t ≤ k50d

n decays
quickly in t (Lemma 5.3); as a consequence we then show in Lemma 5.5 that it
is too costly for the small loops to have a total length super-linear in the length
of the loop erasure |η|.

• For loops of lengths at least k50d
n : we will first show in Lemma 5.6 that ex-

cept near the target island the random walk does not encounter any other vertex
around which the principal eigenvalue is close to that of the target island; as a
result we then show in Lemma 5.8 that it is too costly to have any big loop.

In the rest of the section, we carry out the details as outlined above.

DEFINITION 5.1. Let M(t) be the collection of sites v such that

(5.2) Pv(τ > t) ≥ e−t/(log t)2
.

In addition, we define

(5.3) At(ω) = {
0 ≤ i ≤ |η| : |li | = t, ηi /∈ M(t)

}
.

LEMMA 5.2. There exist positive constants c1, c2 depending only on (d,p)

such that for all t ∈ N
∗,

(5.4) P
(
v ∈ M(t)

) ≤ c1e
−c2(log t)d .

PROOF. By Lemmas 2.8 and 2.9, for n ≥ 2,

P
(
Pv(

τ >
⌊
(logn)2/d⌋) ≥ c

) ≤ n−δ(c).

By a change of variable, there exist constants c1, c2 depending only on (d,p) such
that for all t ∈ N

∗,

P
(
Pv(

τ >
⌊
(log t)2⌋) ≥ 1/10

) ≤ c1e
−c2(log t)d .
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Therefore, by a simple union bound we get that

P
(∃u ∈ Kt(v) s.t. Pu(

τ >
⌊
(log t)2⌋) ≥ 1/10

) ≤ c3 exp
(−c4(log t)d

)
,

where c3, c4 are constants only depends on (d,p).
On the event {Pu(τ > �(log t)2�) ≤ 1/10 for all u ∈ Kt(v)} [recall the definition

in (2.8)], for every �(log t)2� steps the random walk has at most 1/10 probability
to survive. Thus,

Pv(τ > t) ≤ 10−t/(2(log t)2).

This completes the proof of the lemma. �

LEMMA 5.3. There exists a constant t∗1 = t∗1 (d,p) such that the following
holds with probability tending to one. For all self-avoiding path γ started at origin
with length |γ | ≥ n(logn)−100d2

and t ≥ t∗1 ,

(5.5)
∣∣γ ∩M(t)

∣∣ ≤ e−(log t)3/2 |γ |.

PROOF. If m > n(logn)−100d2
and log t ≥ (logm)5/9, Lemma 5.2 yields

P
(
M(t) ∩ Bm(0) �= ∅

) ≤ c1e
−c2(log t)d+d log(2m) ≤ e−2−1c2(log t)d .

Hence, it suffices to prove that for large t and m such that log t ≤ (logm)5/9, we
have

(5.6) P

(
max

γ∈W
Zd ,m

(0)

∣∣γ ∩M(t)
∣∣ ≥ e−(log t)3/2

m
)

≤ exp
(− exp

(−(log t)7/4)
m

)
,

where WZd ,m(0) is the collection of self-avoiding path in Z
d of length m [note that∑

t :log t≤(logm)5/9 exp(− exp(−(log t)7/4)m) ≤ exp(−√
m) for large m].

To this end, we denote Vi = i + (2t + 1)Zd for i ∈ {1,2, . . . , (2t + 1)}d , where
Vi inherits the graph structure from the natural bijection which maps v ∈ Z

d to
i + (2t + 1)v ∈ Vi . Then events {x ∈ M(t)} for x ∈ Vi are independent. For any
self-avoiding path γ , we know that {x ∈ Vi : γ ∩ Kt(x) �= ∅} is a lattice animal
(i.e., a connected subset) in Vi of size at most 3d |γ |/t . Combined with Lemma 5.2
and a result on greedy lattice animals proved in [24], p. 281 (see also [25]), this
implies

P

(
max

γ∈W
Zd ,m

(0)

∣∣γ ∩ Vi ∩M(t)
∣∣ ≥ exp

(−(log t)5/3)
m

)

≤ P

(
max

γ∈W
Zd ,m

(0)

∣∣{x ∈ Vi ∩M(t) : γ ∩ Kt(x) �= ∅
}∣∣ ≥ exp

(−(log t)5/3)
m

)

≤ exp
(−2−1 exp

(−(log t)5/3)
m

)
.

We complete the proof of (5.6) by summing over i ∈ {1,2, . . . , (2t + 1)}d . �
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LEMMA 5.4. There exist constants c ∈ (0,1), c′, r0 > 0 depending only on
(d,p) such that for any r1 > r0, the following holds for with P-probability at least
1 − e−c′r1 . For all r > r1 and m ∈N

∗,

(5.7) P
(∣∣η(S[0,m])

∣∣ ≥ r, τ > m
) ≤ cr .

PROOF. By (5.6), we see that there exist constants C > e10 and c′, r0 > 0
depending only on (d,p) such that for all r1 > r0, with P-probability at least 1 −
exp(−c′r1), for all self-avoiding path γ of length at least r1,

(5.8)
∣∣γ ∩M(C)

∣∣ ≤ e−(logC)3/2 |γ |.
We recursively define stopping times ζ0 = 0,

ζi = inf
{
t > ζi−1 + C : St /∈M(C)

}
.

On the event {|η(S[0,m])| ≥ r}, since we assumed r > r1, we know from (5.8) that∣∣S[0,m] ∩M(C)c
∣∣ ≥ ∣∣η(S[0,m]) ∩M(C)c

∣∣ ≥ ∣∣η(S[0,m])
∣∣(1 − e−(logC)3/2)

.

Let j = �r/(2C)�. By definition of ζi’s and C > e10,

∣∣S[0,ζj ] ∩M(C)c
∣∣ ≤ (C + 1)j + 1 ≤ r

C + 1

2C
+ 1 <

∣∣η(S[0,m])
∣∣(1 − e−(logC)3/2)

.

Therefore, we get ζj ≤ m. Then by strong Markov property,

P
(∣∣η(S[0,m])

∣∣ ≥ r, τ > m
) ≤ P(S[ζm,ζm+C] is open ∀1 ≤ m ≤ j − 1)

≤ [
exp

(−C/(logC)2)]r/(2C)−2
,

completing the proof of the lemma. �

LEMMA 5.5. Recall definitions in (2.16) and (3.5). There exists a constant
t∗2 = t∗2 (d,p) such that the following holds with P-probability tending to one. For
all t∗2 ≤ t ≤ k50d

n , u ∈ ⋃
v∈V(∂iB(logn)ι(v) ∩ C(v)) and m ≤ n,

P
({

ω ∈KOc,m(0, u) : l|η| = ∅,
∣∣At(ω)

∣∣ ≥ |η|t−10})
(5.9)

≤ e−n1/2
P

(
KOc,m(0, u)

)
.

PROOF. For any ω, we denote

(5.10) φ(ω) = l̃0 ⊕ [η0, η1] ⊕ l̃1 ⊕ [η1, η2] ⊕ · · · ⊕ [η|η|−1, η|η|] ⊕ l̃|η|,

where l̃i = li if i /∈ At(ω) and l̃i = ∅ otherwise. Note that for any ω ∈KOc,m(0, u)

such that |At(ω)| ≥ |η|t−10,

m − ∣∣φ(ω)
∣∣ = t

∣∣At(ω)
∣∣ ≥ |η|t−9.
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We consider every γ ∈ φ(KOc,m(0, u)) such that m − |γ | ≥ |η|t−9. For large t ,
since ηi /∈ M(t) for i ∈ At(ω) and |{i : l̃i =∅}| ≤ |η|, we have

P
({

ω ∈ KOc,m(0, u) : φ(ω) = γ, l|η| = ∅
}) ≤ P(γ )

( |η|
m−|γ |

t

)
e−t (log t)−2 m−|γ |

t

≤ P(γ )e−(m−|γ |)(log t)−3
.

In the last inequality, we used the fact that

(
m − |γ |

t

)
! ≥

(
m − |γ |

et

)m−|γ |
t ≥ (|η|t−10e−1)m−|γ |

t .

In addition, it follows from Lemma 4.6 and Corollary 3.7(3) that

(5.11) P
(
KOc,m−|γ |(u,u)

) ≥ (2d)−7ρ(logn)ιe−χ(m−|γ |)(logn)−2/d

.

Note that (log t)3 ≤ (logk50d
n ) � (log logn)3 = o((logn)2/d) and by Lemma 3.8

we have m − |γ | ≥ |η|t−9 ≥ n(logn)−2000d2
. Therefore,

P
({

ω ∈ KOc,m(0, u) : φ(ω) = γ, l|η| = ∅
})

≤ P
(
γ ⊕KOc,m−|γ |(u,u)

)
e−2−1|η|t−10

.

We complete the proof of the lemma by summing over all such γ ’s (where the
pre-factor of e−√

n is a crude bound with room to spare). �

LEMMA 5.6. Recall the definition of v∗ and T (v∗) as in (4.1). For constant
q > 0, let U(t) = ⋃t

i=0 B(logn)q (Si) ∩ C(0). Conditioned on the event that the ori-
gin is in an infinite open cluster, we have that

(5.12) P
(
U(n) \ B3R(v∗) ⊂ Dc

(1−k−20d
n )λv∗

|τ > n
) → 1 in P-probability.

REMARK 5.7. For purpose of the present article, it suffices to take U(t) =⋃t
i=0 Si ; we strengthened the lemma as it may be useful for future application.

PROOF OF LEMMA 5.6. We start with a brief description on the intuition be-
hind (5.12). If the random walk hits some local region with the principal eigenvalue
close to that near v∗ (which is the presumed target island) before time T (v∗), then
the random walk tends to stay around this local region as opposed to travel all the
way to the presumed target island—since by Lemma 3.4 the regions with large
principal eigenvalues are far away from each other, and thus it is costly for the
random walk to travel from one to the other (see Figure 5).

Let a = inf{t ≥ 0 : maxu∈U(t)\B3R(v∗) λu > (1 − k−20d
n )λv∗}. Then there exists

x ∈ (B2(logn)q (Sa)∩C(0))\B3R(v∗) such that and λx ≥ (1−k−20d
n )λv∗ . We restrict
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FIG. 5. The random walk would prefer staying in the neighborhood of x (dotted curve) to going
ahead to v∗ (solid curve), since survival probability during [b, b + nk−15d

n ] is very low.

to the event {τD∗ < n,S[T (v∗),n] ⊂ B(logn)ιkn(v∗), a < n}. Hence, we have

λx ≥ (
1 − k−20d

n

)
λv∗ ≥ (

1 − k−20d
n

)
p1/kn

α1
≥ p1/kn

α2
.

Since |x − v∗| ≥ 3R, Corollary 3.7(1) yields

|x − v∗| ≥ nk−14d
n and

(
B

nk−14d
n

(x) \ B3R(x)
) ∩ Uα2 = ∅.

Let b = sup{t ≤ n : St ∈ B2(logn)q (x)}. Then b + nk−15d
n ≤ n and

S[b,b+nk−15d
n ] /∈ Uα2 and S[b+nk−15d

n ,n] /∈ Dλv∗ .

For any v ∈ V and x such that λx ≥ (1 − k−20d
n )λv , we deduce from the Markov

property and Lemmas 4.4, 4.5 that

P
(
b = m, v∗ = v,Sa ∈ B2(logn)q (x), τ > n,a ≤ n,S[T (v∗),n] ⊂ B(logn)ιkn(v∗)

)
≤ P

(
Sm ∈ ∂iB2(logn)q (x), τ > m

)
(2R)4dp

�nk−15d
n �/kn

α2 λ
n−m−�nk−15d

n �
v(5.13)

≤ P
(
Sm ∈ ∂iB2(logn)q (x), τ > m

)
(2R)4d(logn)−�nk−15d

n �λn−m
v .

Next, we give a lower bound on survival probability. By Lemma 4.6, Pu(τ >

n − m) ≥ (2d)−10ρ(logn)q λn−m
x . Hence

P(τ > n) ≥ P
(
Sm ∈ ∂iB2(logn)q (x), τ > n

)
≥ P

(
Sm ∈ ∂iB2(logn)q (x), τ > m

)
(2d)−10ρ(logn)q λn−m

x .
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Combined with (5.13) and λx ≥ (1 − k−20d
n )λv , since

(λv/λx)
n−m ≤ (λv/λx)

n ≤ exp
(−nk−20d

n

)
,

it yields that

P
(
b = m, v∗ = v,Sa ∈ B2(logn)q (x), a ≤ n,S[T (v∗),n] ⊂ B(logn)ιkn(v∗), τ > n

)
≤ e−nk−16d

n P(τ > n).

Summing over 0 ≤ m ≤ n, v ∈ V and x ∈ Bn(0) such that λx ≥ (1 − k−20d
n )λv , we

complete the proof by Lemma 4.2 and Proposition 4.3. �

LEMMA 5.8. For u ∈ ∂iB(logn)ι(v) ∩ C(v) and λ = (1 − k−20d
n )λv for some

v ∈ V, we have that for all m ≤ n

P
({

ω ∈K(Dλ∪O)c,m(0, u) : l|η| =∅,max
i

|li | ≥ k50d
n

})
(5.14)

≤ e−k20d
n P

(
KOc,m(0, u)

)
.

PROOF. For any ω, we denote

(5.15) φ(ω) = l̃0 ⊕ [η0, η1] ⊕ l̃1 ⊕ [η1, η2] ⊕ · · · ⊕ [η|η|−1, η|η|] ⊕ l̃|η|,
where l̃i = li if |li | ≤ k50d

n and l̃i = ∅ otherwise. Then for any γ ∈
φ(K(Dλ∪O)c,m(0, u)) with |γ | �= m, we deduce from Lemma 4.5 that

P
({

ω ∈K(Dλ∪O)c,m(0, u) : φ(ω) = γ, l|η| = ∅,
∣∣{i : |li | > k50d

n

}∣∣ = j
})

≤ P(γ )

(∣∣{i : l̃i = ∅}∣∣
j

)(
m − |γ |))jR3jdλm−|γ |.

Summing over j ≤ (m − |γ |)/k50d
n , we get

P
({

ω ∈ K(Dλ∪O)c,m(0, u) : φ(ω) = γ, l|η| =∅
})

≤
�(m−|γ |)/k50d

n �∑
j=1

P(γ )
(|η|(m − |γ |))jR3jdλm−|γ |

≤ P(γ )n3(m−|γ |)/k50d
n +2e−(m−|γ |)/k20d

n λm−|γ |
v .

Note that λ ≤ (1 − k−20d
n )λv and that by Lemma 4.6

P
(
KOc,m−|γ |(u,u)

) ≥ R−3ρ(logn)ιλm−|γ |
v .

We then get that

P
({

ω ∈ K(Dλ∪O)c,m(0, u) : φ(ω) = γ, l|η| = ∅
})

≤ P
(
γ ⊕KOc,m−|γ |(u,u)

)
e−k20d

n .

We complete the proof of the lemma by summing over all such γ ’s. �
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COROLLARY 5.9. There exists a constant c = c(d,p) such that the following
holds with P-probability tending to one. If u ∈ ∂iB(logn)ι(v) ∩ C(v) and λ ≤ (1 −
k−20d
n )λv for some v ∈ V, then for all m ∈ N

∗,

(5.16) P
({

ω ∈ K(Dλ∪O)c,m(0, u) : l|η| = ∅,m > c|η|}) ≤ e−k10d
n P

(
KOc,m(0, u)

)
.

PROOF. By Lemma 3.8, with P-probability tending to one, we have |u| ≥
n(logn)−100d2

. Then by Lemma 5.3, there exists t∗1 = t∗1 (d,p) such that for all
self-avoiding path γ from 0 to u and t∗1 ≤ t ≤ k50d

n , we have∣∣γ ∩M(t)
∣∣ ≤ t−10d |γ |.

Now, we consider any ω ∈ K(Dλ∪O)c,m(0, u) such that l|η| =∅. If∣∣At(ω)
∣∣ ≤ |η|t−10 for t∗2 ≤ t ≤ k50d

n and max
0≤i≤|η| |li | ≤ k50d

n ,

for some t∗2 = t∗2 (d,p), then for t∗ = max(t∗1 , t∗2 )

m = |η| + ∑
0≤i≤|η|

|li |

≤ |η| +
t∗−1∑
t=1

t |η| +
k50d
n∑

t=t∗
t
(∣∣At(ω)

∣∣ + ∣∣η ∩M(t)
∣∣)

≤
(

1 +
t∗−1∑
t=1

t +
∞∑

t=t∗
t−9 +

∞∑
t=t∗

te−(log t)3/2

)
|η|.

Combining Lemmas 5.5 and 5.8, we complete the proof of the corollary. �

PROOF OF THEOREM 1.1: PATH LOCALIZATION. We will prove that

P
(
T (v∗) ≤ c min

(∣∣ST (v∗)
∣∣, n(logn)−2/d)

, S[T (v∗),n] ⊂ Dn|τ > n
) → 1.

To this end, applying Lemma 5.4 with r1 = c0n(logn)−2/d and combining with
(4.10), we get that there exists c0 = c0(d,p) such that

(5.17) P
(∣∣η(S[0,n])

∣∣ > c0n(logn)−2/d |τ > n
) → 0,

which implies P(|ST (v∗)| ≤ c0n(logn)−2/d |τ > n) → 1. [One could also use (1.3)
in stead of (4.10).] In light of Proposition 4.3, it remains to prove that there exists
c = c(d,p) such that

(5.18) P
(
T (v∗) ≤ c|ST (v∗)||τ > n

) → 1.

By Lemma 5.6, it suffices to show [we write λ′
v = (1 − k−20d

n )λv below]

(5.19)
∑
v

∑
u

∑
m

P
(
T (v) = m,Sm = u, v∗ = v, τDλ′

v
> m|τ > n

) → 0,
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where the summation is over v ∈ V, u ∈ ∂iB(logn)ι(v) ∩ C(v) and c|u| ≤ m ≤ n. To
this end, we first notice that

P
(
T (v) = m,Sm = u, v∗ = v, τDλ′

v
> m, τ > n

)
≤ P(Sm = u,u /∈ S[0,m−1], τO∪Dλ′

v
> m)Pu(τ > n − m).

(5.20)

At the same time, by Corollary 5.9 and Lemma 5.4 (applied with r1 = m/c′
1), there

exist positive constants c′
1, c

′
2 depending only on (d,p) such that for any v ∈ D∗

and u ∈ ∂iB(logn)ι(v) ∩ C(v),

P
(
Sm = u,u /∈ S[0,m−1],m > c′

1
∣∣η(S[0,m])

∣∣, τO∪Dλ′
v
> m

)
(5.21)

≤ e−k10
n P(Sm = u, τ > m) and

P
(
m ≤ c′

1
∣∣η(S[0,m])

∣∣, τ > m
) ≤ c′

2
m
.(5.22)

Then by Lemma 4.6 and Corollary 3.7(3), we have

P(Sm = u, τ > m) ≥ (2d)−2ρ(logn)ι−ρ|u|e−χm/(logn)2/d

.

Thus, there exists c = c(d,p), such that for all m > c|u|
P(Sm = u, τ > m) ≥ c′

2
m/2

.

Combined with (5.22) and (5.22), this gives that

P(Sm = u,u /∈ S[0,m−1], τO∪Dλ′
v
> m)

≤ P
(
Sm = u,u /∈ S[0,m−1],m > c′

1
∣∣η(S[0,m])

∣∣, τO∪Dλ′
v
> m

)
+ P

(
m ≤ c′

1
∣∣η(S[0,m])

∣∣, τ > m
)

≤ e−2−1k10
n P(Sm = u, τ > m).

Combined with (5.20), this implies

P
(
T (v) = m,Sm = u, v∗ = v, τDλ′

v
> m, τ > n

)
≤ e−2−1k10

n P(Sm = u, τ > m)Pu(τ > n − m)

= e−2−1k10
n P(Sm = u, τ > n).

Summing over u, v and m ≥ c|u|, we complete the verification of (5.19). �
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