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INFINITELY RAMIFIED POINT MEASURES AND BRANCHING
LÉVY PROCESSES

BY JEAN BERTOIN AND BASTIEN MALLEIN

Universität Zürich and Université Paris 13

We call a random point measure infinitely ramified if for every n ∈ N,
it has the same distribution as the nth generation of some branching ran-
dom walk. On the other hand, branching Lévy processes model the evolution
of a population in continuous time, such that individuals move in space in-
dependently, according to some Lévy process, and further beget progenies
according to some Poissonian dynamics, possibly on an everywhere dense
set of times. Our main result connects these two classes of processes much
in the same way as in the case of infinitely divisible distributions and Lévy
processes: the value at time 1 of a branching Lévy process is an infinitely
ramified point measure, and conversely, any infinitely ramified point measure
can be obtained as the value at time 1 of some branching Lévy process.

1. Introduction. The classical works of Lévy, Khintchin, Kolmogorov and
Itô have unveiled the fine structure of infinitely divisible distributions on R

d , and
their connections with processes with independent and stationary increments. In
short, the purpose of this work is to develop an analogous theory in the setting
of point measures and branching processes. Let us start by recalling some of the
well-known connections between infinitely divisible laws, random walks and Lévy
processes. The formulation is tailored to fit our purposes; we also refer to [13] for
a textbook treatment of this topic.

For the sake of simplicity, we focus on the dimension d = 1 and work with
[−∞,∞) as state space, where the boundary point −∞ serves as cemetery state.
We call a discrete time process (Sn : n ∈ Z+) with values in [−∞,∞) and started
from S0 = 0 a random walk, if for every integers n, k ≥ 0, one can express Sn+k

in the form Sn+k = Sn + S′
k , where S′

k has the same law as Sk and is further in-
dependent of σ(Si : 0 ≤ i ≤ n). A distribution on [−∞,∞), say �, is then called
infinitely divisible if for every n ∈ N, there is a random walk such that Sn has the
law �.

This naturally leads us to consider random walks indexed by dyadic rational
times. Specifically, we write

D = {
k2−n : n, k ∈ Z+

}
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for the set of dyadic rational times and consider a process (ξt : t ∈ D) such that
for every s, t ∈ D, one has ξt+s = ξt + ξ ′

s , where ξ ′
s has the same law as ξs and is

independent of σ(ξr : r ∈ D,r ≤ t). Equivalently, the discrete time skeletons [i.e.,
the processes (ξk2−n : k ∈ Z+) for all integers n] are random walks. Excluding
implicitly the degenerate case when ξ1 = −∞ a.s., ξ1 then has an infinitely divis-
ible distribution, and conversely, any infinitely divisible distribution on [−∞,∞)

which is not degenerate (i.e., not the Dirac mass at −∞) can be obtained in this
setting. Further, one can extend the process ξ to nonnegative real times and get a
process (ξt : t ∈ R+) with càdlàg paths a.s. The latter is a Lévy process, possibly
killed at some constant rate, and its structure is described by the celebrated Lévy–
Itô decomposition. This identifies the continuous part of ξ as a Brownian motion
with constant drift and its jumps as a Poisson point process whose intensity is
determined by the so-called Lévy measure of ξ .

We next turn our attention to random point measures, and first introduce some
notation in this setting. We write P for the space of point measures on R that
assign a finite mass to semi-infinite intervals. Specifically, μ ∈ P if and only if μ

is a measure on R with integer-valued tail:

μ(x) := μ
(
(x,∞)

) ∈ Z+ for every x ∈R.

Repeating the atoms of μ according to their multiplicity and ranking them in the
nonincreasing order yields a sequence x = (xn : n ∈ N), called the ranked sequence
of atoms of μ, where we set xn = −∞ for n > μ(R). We shall therefore often
identify μ with the ranked sequence of its atoms, and thus P with the space of
nonincreasing sequences x in [−∞,∞) with limn→∞ xn = −∞. That is, we shall
use indifferently the notation μ or x, in the sense that then

μ =
∞∑

n=1

δxn,

with the convention that the possible atoms at −∞ are discarded, that is, δ−∞ = 0.
In particular, the zero measure is identified with the sequence ∅ := (−∞, . . .). We
further denote by τ the translation operator on P , setting

τyx = x + y = (xn + y : n ∈ N)

for every y ∈ [−∞,∞), and equivalently

τyμ = ∑
n≥1

δxn+y.

Observe that for y = −∞, by our convention, τ−∞μ = ∅ for any μ ∈ P .
A branching random walk is a process in discrete time (Zn : n ∈ Z+) with val-

ues in P and Z0 = δ0 a.s., such that for every n, k ≥ 0, the point measure Zn+k can
be expressed in the form

Zn+k =
∞∑
i=1

τxi
Zi

k where x = Zn,
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with (Zi
k : i ∈ N) i.i.d. copies of Zk which are independent of σ(Zj : 0 ≤ j ≤ n).

This condition is referred to as the (simple) branching property.
In order to ensure that the number of particles in semi-infinite intervals never ex-

plodes in finite time, that is, Zn ∈ P a.s. for all n ≥ 1, one usually further requests
nondegeneracy of the Laplace transform of the intensity. Namely, one assumes that

(1.1) there exists θ ≥ 0 such that 0 < E
(〈Z1, eθ 〉) < ∞,

with the notation

〈μ,f 〉 =
∫
R

f dμ = ∑
i∈N

f (xi) and eθ : y ∈ R 
→ eθy,

and the convention that f (−∞) = 0. The requirement that θ ≥ 0 in (1.1) is of
course just a matter of convenience, since the case θ < 0 follows by reflexion
with obvious modifications. There exist nonexploding branching random walks
for which (1.1) fails; however, most works in that field rely on such nondegeneracy
assumption. The condition E(〈Z1, eθ 〉) > 0 is equivalent to Z1 �= ∅ with positive
probability, which is simply a nondegeneracy assumption.

Our first object of interest in the present work is the family of infinitely ramified
point measures, formed by the random point measures Z which have the prop-
erty that for every n ∈ N, Z has the same distribution as the nth generation of
some branching random walk. Throughout this article, we restrict our attention to
random point measures satisfying (1.1).

Our second object of interest is the family of branching Lévy processes that we
introduce only informally here, postponing the rigorous construction to Section 5.
Loosely speaking, a branching Lévy process is a particle system in real time, start-
ing from a single particle located at 0, where particles evolve in [−∞,∞) in-
dependently and according to some (possibly killed) Lévy process. They further
beget children in a Poissonian manner, where the location of birth of each child
is given by some random shift of the location of its parent at the time of the birth
event. Branching Brownian motions with constant drift (see, for instance, Chap-
ter 5 in Bovier [4]) form the class of branching Lévy processes with continuous
ancestral trajectories. Some fairly general instances of branching Lévy processes
with discontinuous ancestral trajectories have appeared the study of so-called ho-
mogeneous fragmentations [3] and compensated fragmentation [2].

Similar to Lévy processes, the distribution of a branching Lévy process is char-
acterized by a triple (σ 2, a,�), where:

• σ 2 ≥ 0 is the variance of the Brownian component of the motion of typical
individuals;

• a ∈ R is the drift coefficient of that motion;
• � is a sigma-finite measure on P , referred to as the Lévy measure (of the

branching Lévy process).
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Further, the Lévy measure � has to satisfy certain requirements that are better
understood if we view a generic ranked sequence x = (xn : n ∈ N) in P as a
pair x = (x1,x2), where x2 := (xn+1 : n ∈ N). Recall also that ∅ = (−∞, . . .),
so (0,∅) = (0,−∞, . . . ) is the ranked sequence of atoms of the Dirac point mass
at 0. The first requirement for � to be a Lévy measure is

(1.2) �
({

(0,∅)
}) = 0 and

∫
P

(
1 ∧ x2

1
)
�(dx) < ∞.

Next, for some parameter θ ≥ 0, � has to fulfil a pair of integrability conditions,
namely

(1.3)
∫
P

1{x1>1}eθx1�(dx) < ∞,

and

(1.4)
∫
P

∞∑
k=2

eθxk�(dx) < ∞,

with the convention that eθx = 0 when x = −∞.
The first requirement enables us to view the image measure �1 of � by the

first projection x 
→ x1 as the Lévy measure of a Lévy process. We stress that �1
may have an atom at −∞: �1({−∞}) = �({∅}) is always finite by (1.2), but may
be strictly positive, and then should be viewed as a pure death rate. The possibly
killed Lévy process that governs the motion of particles has Gaussian coefficient
σ 2 and Lévy measure �1. Note also from (1.3) that this Lévy process has a fi-
nite exponential moment of order θ . In turn, the image measure �2 of � by the
second projection x 
→ x2 and restricted to the space of nonzero point measures,
describes the intensity of the relative positions at birth of the newborn children.
We will prove later on that assumptions (1.3) and (1.4) are in fact equivalent to
the requirement that the one-dimensional marginals of the branching Lévy process
satisfy the condition (1.1).

More precisely, given a Brownian motion B and an independent Poisson point
process N on R+ ×P with intensity dt�(dx), the initial individual in the branch-
ing Lévy process moves as a Lévy process with Brownian component B . For each
atom (t,x) of N , this individual makes a jump of size x1 at time t , and simul-
taneously produces1 offspring around its pre-jump position according to the se-
quence x2. The full trajectory of the ancestor is a Lévy process with characteristics
(σ 2, a,�1).

We say that a branching Lévy process has finite birth intensity if (1.4) holds
with θ = 0. In that case, this process can be seen as a special case of a branching
Markov process in continuous time, as introduced by Hering [7]: each individual

1We stress that, alike Crump–Mode–Jagers generalized branching processes, and contrary to de-
scriptions of Galton–Watson type, individuals do not die at the times when they beget children.
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moves independently according to a Lévy process, and at independent exponential
times, they are replaced by a family of children positioned around their parent
according to an i.i.d. copy of a point measure. Roughly speaking, branching Lévy
processes with infinite birth intensity can be constructed as the increasing limit of
a sequence of branching Lévy processes with finite birth intensity; the condition
(1.4) ensures that no explosion in finite time occurs.

Our main result can be stated as follows.

THEOREM 1.1. (i) Let Z be an infinitely ramified point measure. Assume that

(1.5) 0 < E
(〈Z1, eθ 〉) < ∞

holds for some θ ≥ 0. Then there exists a branching Lévy process (Zt : t ≥ 0) with

Z (d)= Z1.

(ii) Reciprocally, let (Zt : t ≥ 0) be a branching Lévy process with character-
istics (σ 2, a,�) satisfying (1.2), (1.3) and (1.4). Then Z1 is an infinitely ramified
point measure that fulfills (1.1). Further, for every t ≥ 0 and z ∈ C with 
z = θ ,
one has

E
(〈Zt, ez〉) = exp

(
tκ(z)

)
,

where

κ(z) := σ 2

2
z2 + az +

∫
P

( ∞∑
j=1

ezxj − 1 − zx11|x1|<1

)
�(dx).

The proof of Theorem 1.1(i) relies on the construction of an intermediary pro-
cess in dyadic rational times, (Zt : t ∈ D), called a nested branching random walk,
meaning that each discrete-time skeleton is a branching random walk. We prove
that to each infinitely ramified point measure is associated a nested branching ran-

dom walk such that Z (d)= Z1, and that for each nested branching random walk,
there exists a unique triplet (σ 2, a,�) such that the restriction of a branching Lévy
process with these characteristics to dyadic rational times has the law of that nested
branching random walk.

There are two aspects of Theorem 1.1 that may seem unsatisfactory when one
compares with the classical analog for infinitely distributions and Lévy processes.
First, this result holds under the nondegeneracy assumption (1.5); we have already
argued that this is however a very natural and common hypothesis in the framework
of branching random walks. Second, we have been unable to establish uniqueness
of the distribution of branching Lévy processes associated to an infinitely rami-
fied point measure. In the classical framework, it is known that the characteristic
function of an infinite divisible law is never 0, and thus possesses a unique con-
tinuous complex nth root, which is then the characteristic function of the unique
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nth root of that law in the sense of the convolution operation. Unfortunately, this
argument cannot be transferred to the framework of point measures. We were only
able to prove the existence of an nth root2 of an infinitely ramified point measure
Z using a compactness argument that relies again crucially on (1.5). The lack of
a handy characterization of such an nth root in terms of the law of Z hindered
us from tackling the issue of uniqueness. We stress that nonetheless, uniqueness
of the characteristic triplet (σ 2, a,�) of a branching Lévy process holds; see the
forthcoming Remark 6.7.

Organisation of the paper. The existence of an embedding of an infinitely ram-
ified point measure into a nested branching random walk is proven in Section 2.
Roughly speaking, the key issue is to establish that every infinitely ramified point
measure has the same law as the second generation of a branching random walk
whose reproduction law is also given by an infinitely ramified point measure. This
will be achieved by compactness arguments on the space of probability distribu-
tions on P .

In Section 3, we shall start by proving that a nested branching random walk Z

always possesses an a.s. càdlàg extension in real time. We also establish a many-
to-one formula for one-dimensional distributions in this framework, and extend the
simple branching property to stopping times.

Section 4 is devoted to nested branching random walks with finite birth intensity.
Analyzing the first branching time naturally yields the notion of branching Lévy
process in this simple case, and Theorem 1.1 is then easily checked in this setting.

General branching Lévy processes are constructed in Section 5 as increasing
limits of branching Lévy processes with finite birth intensity, adapting arguments
in [2]. One readily observes that these processes satisfy the branching property as
well as (1.1), which establishes Theorem 1.1(ii).

Our main task in Section 6 is to equip nested branching random walks with
a natural genealogy. This enables us to define ancestral lineages and establish a
pathwise version of the many-to-one formula. This further allows us to introduce
a censoring procedure, by killing certain individuals depending on the behavior of
their ancestral lineage. The upshot is that this yields an approximation of a nested
branching random walk by a sequence of nested branching random walks with
finite birth intensities, which in turn enables us to complete the proof of Theo-
rem 1.1.

2. From infinitely ramified point measures to nested branching random
walks. A nested branching random walk is a P-valued process (Zt : t ∈ D) with
Z0 = δ0 that satisfies the simple branching property:

2In the sense induced by the branching operation, that is, an nth root of Z is the reproduction law

of a branching random walk (Zn : n ≥ 0) such that Zn
(d)= Z .
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(B) For every s, t ∈ D, we have

Zt+s =
∞∑

n=1

τxnZ
n
t where x = Zs,

with (Zn
t : n ∈ N) a family of i.i.d. copies of Zt , independent of Fs ,

where Fs := σ(Zr : r ∈ D,r ≤ s) denotes the natural filtration of Z. The termi-
nology refers to the fact that (B) is equivalent to the requirement that the discrete
time skeletons (Zk2−n : k ∈ Z+) of Z are branching random walks.

The main purpose of this section is to establish the following embedding prop-
erty of infinitely ramified point measures into nested branching random walks. We
will then prove that nested branching random walks possess a unique càdlàg ex-
tension to real times (Zt : t ∈ R+), and that the branching property holds more
generally at stopping times.

PROPOSITION 2.1. Let Z be an infinitely ramified point measure satisfying
(1.5). There exists a nested branching random walk (Zt : t ∈ D) with

Z (d)= Z1.

Let Z be an infinitely ramified point measure [recall that we always assume that
(1.5) holds]. In words, for every n ∈ N there exists a branching random walk such
that the nth generation of that process has same law as Z . In this section, we fix
θ ≥ 0 such that (1.5) is fulfilled, so

κ(θ) := lnE
(〈Z, eθ 〉) ∈ R.

We introduce the θ -exponentially weighted intensity of Z , say mθ , which is the
probability measure on R defined by

〈mθ,f 〉 := e−κ(θ)
E

(〈Z, eθf 〉),
where f ∈ L∞(R) denotes a generic bounded measurable function.

One of the key tools for the study of branching random walks is the well-known
many-to-one formula, that can be traced back at least to the early work of Kahane
and Peyrière [8, 12]; see Theorem 1.1 in [14]. This result enables us to identify
mθ as the distribution of a real-valued random walk evaluated after n steps. Hence,
the assumption that Z is an infinitely ramified point measure implies that mθ is
infinitely divisible. We write 
 for its characteristic exponent, that is, 
 : R → C

is the unique continuous function with 
(0) = 0 such that

(2.1) 〈mθ, eir〉 = e−κ(θ)
E

(〈Z, eθ+ir〉) = e
(r), r ∈ R.

This enables us to introduce a Lévy process (without killing) ξ = (ξt : t ∈ R+)

with characteristic exponent 
 , that is, satisfying E(eirξt ) = et
(r) for all r ∈ R
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and t ≥ 0. Note that the law of ξ is determined by the law of Z . In the sequel, it
will be convenient to use the notation

κ(θ + ir) := κ(θ) + 
(r) for every r ∈ R,

and refer to κ as the cumulant of Z .
A special case of the many-to-one formula for Z , which will be useful in this

section, can be stated as follows.

LEMMA 2.2 (Many-to-one formula). For any n ∈ N, if (Z
(n)
k : k ∈ Z+) is a

branching random walk such that Z
(n)
n has same law as Z , then for all measurable

functions f :R →R+ and all integers j ∈N, we have

E
(〈
Z

(n)
j , f

〉) = eκ(θ)j/n
E

(
e−θξj/nf (ξj/n)

)
.

PROOF. Applying the many-to-one formula to the branching random walk
Z(n), there exists a random walk S(n) such that

E
(〈
Z(n)

n , eθf
〉) = eκ(θ)

E
(
f

(
S(n)

n

))
,

for all measurable positive functions f . Therefore, S
(n)
n has the same law as ξ1,

from which we conclude that S
(n)
j has same law as ξj/n. Using again the many-to-

one formula, we have

E
(〈
Z

(n)
j , f

〉) = eκ(θ)j/n
E

(
e−θξj/nf (ξj/n)

)
for all nonnegative measurable functions f , concluding the proof. �

The rest of this section is devoted to establish Proposition 2.1. The proof relying
on compactness arguments, we carefully introduce the topological spaces we will
be using. To start with, let

Pθ := {
μ ∈ P : 〈μ, eθ 〉 < ∞}

be the subspace of point measures μ such that eθμ is a finite measure; we hence-
forth view Z as a process with values in Pθ . The space of finite measures on
R is naturally endowed with the topology of weak convergence, and the set
{eθμ : μ ∈ Pθ } is a closed subset thereof. We thus say that a sequence (μn : n ∈ N)

in Pθ converges to μ ∈ Pθ and write

lim
n→∞μn = μ in Pθ

if and only if

∀f ∈ Cb, lim
n→∞〈μn, eθf 〉 = 〈μ, eθf 〉,

where Cb is the set of continuous bounded functions on R. Plainly, convergence
in Pθ is stronger than vague convergence, or convergence of tail functions (point-
wise, except possibly at discontinuity points of the limit). In turn, the latter is also
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equivalent to the simple convergence of the ranked sequence of the atoms. As a
point measure μ ∈ Pθ can be identified with the finite measure eθ .μ on R, we note
that Pθ can be seen as a closed subspace of the set of finite measures on R endowed
with the topology of the weak convergence. Therefore, the space Pθ endowed with
this topology is a Polish space (see, for instance, Lemma 4.5 in Kallenberg [9]).

We write Pθ for the set of probability measures on Pθ , which is also endowed
with the topology of the weak convergence. We give a simple condition for a subset
of Pθ to be compact. We call that a continuous function f : R→ (0,∞) norm-like
if

lim
x→∞f (x) = lim

x→−∞f (x) = ∞,

and observe that any family F of finite measures on R is tight if and only if
there exists a norm-type function f with supm∈F 〈m,f 〉 < ∞; see, for example,
Lemma D 5.3 in Meyn and Tweedie [11].

LEMMA 2.3. Let K be a closed nonempty subset of Pθ . If there exists a con-
tinuous norm-like function f satisfying

sup
P∈K

∫
〈ν, eθf 〉P(dν) < ∞,

then K is compact.

PROOF. Up to multiplying f by a constant, we may assume that f ≥ 1. Let
ε ∈ (0,1), and for any n ∈ N, set

Kn,ε := {
x ∈ R : f (x) ≤ n2n/ε

}
,

which is a compact subset of R, and

Lε = {
ν ∈ Pθ : 〈ν, eθ 〉 ≤ 1/ε,∀n ∈ N, 〈ν, eθ1Kc

n,ε
〉 ≤ 1/n

}
.

By definition, Lε is tight and obviously closed. Hence by Prokhorov’s theorem,
this is a compact subset of Pθ . Moreover, for any P ∈ K, we have

P
(
Lc

ε

) ≤ P
({

ν ∈ Pθ : 〈ν, eθ 〉 > 1/ε
})

+
∞∑

n=1

P
({

ν ∈ Pθ : 〈ν, eθ1Kc
n,ε

〉 > 1/n
})

.

By Markov inequality,

P
({

ν ∈ Pθ : 〈ν, eθ 〉 > 1/ε
}) ≤ ε

∫
〈ν, eθf 〉P(dν),
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and
∞∑

n=1

P
({

ν ∈ Pθ : 〈ν, eθ1Kc
n,ε

〉 > 1/n
}) ≤

∞∑
n=1

n
ε

n2n

∫
Pθ

〈ν, eθf 〉P(dν)

≤ ε sup
Q∈K

∫
〈ν, eθf 〉Q(dν),

which enables us to conclude the proof using again Prokhorov’s theorem. �

We next introduce a convolution-type operation on Pθ , related to the dynamics
of branching random walks. By analogy with the convolution operation associated
to the random walk, for any pair P,Q ∈ Pθ , we denote by P � Q the distribution
of the first generation of a branching random walk with reproduction law Q and
started from a random point measure distributed according to P . In other words,
writing μ for a random point measure with law P , x for its ranked sequence of
atoms, and (νj : j ∈ N) for i.i.d. random point measures with law Q, then P � Q

is the law of the random measure
∑

j∈N τxj
νj . By a straightforward computation,

there is the identity

(2.2)
∫

〈μ, eθ 〉P � Q(dμ) =
∫

〈μ, eθ 〉P(dμ) ×
∫

〈ν, eθ 〉Q(dν),

which ensures that P � Q ∈ Pθ for any P,Q ∈ Pθ such that the right-hand side in
(2.2) is finite. We now study the regularity of this operator.

LEMMA 2.4. Let (Pn : n ∈ N) and (Qn : n ∈ N) be two sequences in Pθ such
that

lim
n→∞Pn = P and lim

n→∞Qn = Q in Pθ .

If

(2.3) sup
n∈N

∫
〈ν, eθ 〉Qn(dν) < ∞,

and further, there exists a continuous norm-like function g such that

(2.4) sup
n∈N

∫
〈μ, eθg〉Pn(dμ) < ∞,

then

lim
n→∞Pn � Qn = P � Q in Pθ .

PROOF. By Skorohod’s representation theorem, we construct random point
measures μn,μ, νn and ν in Pθ , with laws Pn, P , Qn and Q, respectively, and
such that

lim
n→∞μn = μ and lim

n→∞νn = ν a.s. in Pθ .
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We set (((ν
j
n)n∈N, νj ) : j ∈ N) a sequence of i.i.d. copies of ((νn)n∈N, ν) that are

further independent of ((μn)n∈N,μ), and write

�n = ∑
j∈N

τxn
j
νj
n and � = ∑

j∈N
τxj

νj ,

where xn = (xn
j : j ∈ N) and x = (xj : j ∈ N) are the ranked sequence of atoms

of μn and μ, respectively. Then �n has law Pn � Qn, � has law P � Q, and we
aim at proving that limn→∞ �n = � in probability in Pθ . That is, by an argument
of separability, that for every function f ∈ Cb,

(2.5) lim
n→∞〈�n, eθf 〉 = 〈�, eθf 〉 in probability.

Without loss of generality, we may focus henceforth on the case 0 ≤ f ≤ 1.
To start with, recall that convergence in Pθ is stronger than pointwise con-

vergence of the ranked sequences of atoms. Hence, for any fixed k ∈ N and any
f ∈ Cb, we have

(2.6) lim
n→∞

〈
τxn

k
νn
k , eθf

〉 = 〈τxk
νk, eθf 〉 a.s.

Next, fix a large integer N and for every n ∈ N and a > 0, introduce the event
�n(N,a) := {xn

N < −a}. Plainly, on that event, there is the inequality

0 ≤ 〈�n, eθf 〉 −
N∑

k=1

〈
τxn

k
νn
k , eθf

〉 ≤ ∞∑
k=1

〈
τxn

k
νn
k , eθ

〉
1{xn

k <−a}.

By (2.2), the expectation of the right-hand side equals∫
〈μ, eθ1(−∞,−a)〉Pn(dμ) ×

∫
〈ν, eθ 〉Qn(dν).

By the elementary inequality,

〈μ, eθ1(−∞,−a)〉 ≤ 〈μ, eθg〉/ inf
{
g(x) : x < −a

}
,

we see that (2.3), (2.4) and the fact that g is norm-like ensure that for every ε > 0,
we can choose a > 0 sufficiently large such that

E

( ∞∑
k=1

〈
τxn

k
νn
k , eθf

〉
1{xn

k <−a}
)

≤ ε2 for all n ∈ N.

A fortiori, by the Markov inequality, we have

P

( ∞∑
k=1

〈
τxn

k
νn
k , eθf

〉
1{xn

k <−a} > ε

)
≤ ε for all n ∈ N.

We next bound the probability of the complementary event �n(N,a)c using
again Markov’s inequality:

P
(
xn
N ≥ −a

) = P
(
μn

([−a,∞)) ≥ N) ≤ eθa

N
E

(〈μn, eθ 〉).
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So by (2.4), we may choose N large enough so that P(�n(N,a)) ≥ 1 − ε for
all n ∈ N. To summarize, we have shown that for every ε > 0, we can choose N

sufficiently large so that for all n ∈ N,

P

(
〈�n, eθf 〉 −

N∑
j=1

〈
τxn

j
νn
j , eθf

〉
> ε

)
≤ 2ε.

Since (2.6) entails that for each fixed N ,

lim
n→∞

N∑
j=1

〈
τxn

j
νn
j , eθf

〉 = N∑
j=1

〈τxj
νj , eθf 〉 a.s.

and plainly

lim
N→∞

N∑
j=1

〈τxj
νj , eθf 〉 = 〈�, eθf 〉 a.s.,

we conclude that (2.5) holds, which completes the proof. �

We are now able to establish Proposition 2.1.

PROOF OF PROPOSITION 2.1. We denote by P ∈ Pθ the law of the infinitely
ramified point measure Z , and introduce the space of �-roots of P , viz.

R(P ) = {Q ∈ Pθ : Q � Q = P }.
In words, Q ∈ R(P ) if and only if the second generation of a branching random
walk with reproduction law Q has the same distribution as Z . Note that Q is not
necessarily infinitely ramified, but the main step of this proof is to show there
always exists an infinitely ramified law in R(P ).

By the many-to-one formula in Lemma 2.2, for any measurable positive func-
tion f and Q ∈ R(P ), we have∫

〈ν, eθg〉Q(dν) = eκ(θ)/2
E

(
g(ξ1/2)

)
.

Let g be any continuous norm-like function with E(g(ξ1/2)) < ∞, so that

(2.7) sup
Q∈R(P )

∫
〈ν, eθg〉Q(dν) < ∞.

Note that R(P ) is nonempty (as Z is an infinitely ramified point measure), and
closed. Indeed, if (Qn)n∈N is a sequence in R(P ) with limn→∞ Qn = Q in Pθ ,
then from (2.7), we can apply Lemma 2.4, hence Q ∈ R(P ). Further, using again
(2.7), we see that R(P ) is compact by Lemma 2.3.
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More generally, writing Q�k for the distribution of the kth generation of a
branching random walk with reproduction law Q, the same argument shows that
if we define for every n ∈ N

Rn(P ) = {
Q�2n : Q ∈ Pθ and Q�2n+1 = P

}
,

then

R(P ) = R0(P ) ⊇ R1(P ) ⊇ · · · ⊇ Rn(P ) ⊇ · · ·
form a nested sequence of nonempty compact sets in Pθ . By Cantor’s intersection
theorem, their intersection is not empty.

This proves that R(P ) always contains the law of some infinitely ramified point
measure, say P �1/2, and by iteration, we construct for every n ∈ N the law of an
infinitely ramified point measure P �2−n

such that

P �2−n � P �2−n = P �2−n+1
.

For every n ∈ N, we then consider a branching random walk indexed by 2−n
Z+

with reproduction law P �2−n
, say (Z

(n)
t : t ∈ 2−n

Z+). The restriction of Z(n+1)

to 2−n
Z+ has the same law as Z(n), and we can thus construct by Kolmogorov’s

extension theorem a process (Zt : t ∈ D) indexed by dyadic rational times, such
that for every n ∈ N, the restriction of Z to 2−n

Z+ has the same law as Z(n). That
is, Z is a nested branching random walk, and by construction, Z1 has the same law
as Z . �

REMARK 2.5. With a similar reasoning, one can also prove for instance that
an integer-valued random variable having for all n the same distribution as the nth
generation of some Galton–Watson branching process can be viewed as the value
at time 1 of a continuous-time branching process.

We now conclude this section with the analogue of a well-known result in the
theory of infinitely divisible laws: if (S(n) : n ∈ N) is a sequence of random walks
such that S

(n)
n converges, say in distribution, then the limit is infinitely divisible.

This is also the case for branching random walks, when we assume convergence
in the Pθ topology.

COROLLARY 2.6. Let (Z(n) : n ∈ N) be a sequence of branching random
walks such that for some θ ≥ 0, the law of Z

(n)
n converges in Pθ towards the law of

some random point measure Z . If further

(2.8) lim
n→∞E

(〈
Z(n)

n , eθ

〉) = E
(〈Z, eθ 〉) ∈ (0,∞),

then Z is an infinitely ramified point measure.
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PROOF. Convergence in law of Z
(n)
n towards Z implies that for all f ∈ Cb,

limn→∞ 〈Z(n)
n , eθf 〉 = 〈Z, eθf 〉 in distribution, and by standard arguments of uni-

form integrability, (2.8) then ensures that

lim
n→∞E

(〈
Z(n)

n , eθf
〉) = E

(〈Z, eθf 〉).
We set A = E(〈Z, eθ 〉) > 0 and introduce a random variable ξ such that

AE
(
f (ξ)

) = E
(〈Z, eθf 〉) for all f ∈ Cb.

On the other hand, using the many-to-one formula, we get that for every n ∈ N,
there exists κn(θ) ∈R and a random walk S(n) such that

E
(〈Zn, eθf 〉) = enκn(θ)

E
(
f

(
S(n)

n

))
.

Hence we have limn→∞ nκn(θ) = lnA and limn→∞ S
(n)
n = ξ in law. In particular,

it follows that ξ is infinitely divisible, hence there exists a Lévy process (ξt : t ≥ 0)

such that ξ1 = ξ in law.
This also yields that for all k ∈ N,

(2.9) lim
n→∞nκnk(θ) = lnA

k
and lim

n→∞S(kn)
n = ξ1/k in law.

In particular, by Prohorov’s theorem, the sequence (S
(kn)
n : n ∈ N) is tight, and

there exists a positive continuous norm-like function g such that

sup
n∈N

E
(〈
Z(nk)

n , eθg
〉) ≤ sup

n∈N
enκnk(θ) × sup

n∈N
E

(
g
(
S(nk)

n

))
< ∞.

Therefore, (Z
(nk)
n : n ∈ N) is tight in Pθ , thanks to Lemma 2.3, and we can extract

a subsequence that converges in law, say towards Z̃k . Moreover, by Lemma 2.4,
writing P k

n for the law of Z
(nk)
n , P̃ k for the law of Z̃k and P for the law of Z , we

get that

P = lim
n→∞

(
P k

n

)�k = (
P̃ k)�k

.

This result being true for all k ∈N, we conclude that Z is infinitely ramified. �

3. Càdlàg extension of nested branching random walks and the strong
branching property. Throughout this section, Z = (Zt : t ∈ D) denotes a nested

branching random walk with Z (d)= Z1. In particular, its discrete time skeletons are
branching random walks; recall also that we assume (1.1). As in the previous sec-
tion, we denote by ξ a Lévy process with characteristic exponent 
 and reformu-
late Lemma 2.2 as follows.

LEMMA 3.1 (Many-to-one formula). For all t ∈ D and f : R → R+ measur-
able, we have

E
(〈Zt, f 〉) = E

(
e−θξt+tκ(θ)f (ξt )

)
.
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We now prove that the nested branching random walk Z possesses a càdlàg
extension. Recall that (Ft )t∈D denotes its canonical filtration, and introduce its
right-continuous enlargement

F+
t := ⋂

s∈D,s>t

Fs, t ∈ R+.

PROPOSITION 3.2. Almost surely, there exists a unique extension of (Zt : t ∈
D) to a càdlàg process (Zt : t ∈ R+) with values in Pθ , and which is further
adapted to the filtration (F+

t )t≥0.
The many-to-one formula of Lemma 3.1 holds more generally for t ∈ R+.

PROOF. Recall from Lévy’s theorem that a sequence (mn : n ∈ N) of finite
measures converges weakly if and only if the sequence of Fourier transforms m̂n :
r 
→ 〈mn, eir〉 converges pointwise to some continuous function m̂. Then m̂ is
the Fourier transform of a finite measure m and limn→∞ mn = m weakly. This
shows that a sequence (μn : n ∈ N) in Pθ possesses a limit in Pθ if and only if
the sequence (〈μn, eθ+ir〉 : n ∈ N) converges for every r ∈ R and the limit is a
continuous function of r .

Recall also that for every t ∈ D, we have

E
(〈Zt, eθ+ir〉) = exp

(
tκ(θ + ir)

)
.

Using the branching property (B), we see that the process

Mt(r) = e−tκ(θ+ir)〈Zt, eθ+ir〉, t ∈ D

is a martingale in dyadic rational times, that is,

E
(
Mt(r)|Fs

) = Ms(r) a.s. for every s ≤ t, s, t ∈ D.

Further, for each fixed t ∈ D, Mt(·) is the Fourier transform of a random finite
measure on R and is thus continuous a.s.

Fix K > 0 arbitrary, and write MK
t for the restriction to r ∈ [−K,K] of the

function r 
→ Mt(r). So (MK
t : t ∈ D) is a martingale in dyadic rational times,

taking values in the separable Banach space C([−K,K],C), endowed with the
topology of the uniform convergence, and thus possesses a.s. a unique càdlàg ex-
tension (MK

t : t ∈ R+), which is then a martingale in real time for the filtration
F+

t ; see, for instance, Theorem 3 in [5].
Plainly, for K < K ′, MK

t coincides with the restriction of MK ′
t to [−K,K],

thus we can define unequivocally Mt(r) = MK
t (r) for an arbitrary K > |r|. The

resulting process (Mt(·) : t ∈ R+) has a.s. càdlàg paths in C(R,C), endowed with
the topology of uniform convergence on compact intervals. This establishes our
first claim.

Finally, by the martingale property of (Mt(r) : t ∈ R+), we have that, for every
t ∈ R+:

E
(〈Zt, eθ+ir〉) = etκ(θ+ir)

E
(
Mt(r)

) = et (κ(θ)+
(r)).
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Hence the many-to-one formula of Lemma 3.1 holds with f = eθ+ir , for all t ∈ R+
and r ∈ R. The proof is completed by Fourier inversion. �

Our next goal is to establish a stronger version of the branching property.

PROPOSITION 3.3. Let T be an a.s. finite (F+
t )-stopping time. On a suitable

enlargement of the underlying probability space, there exists an i.i.d. sequence
(Zn

t : t ∈ R+)n∈N of copies of (Zt : t ∈ R+), which is independent of F+
T , such

that almost surely

∀t ∈ R+, ZT +t =
∞∑

n=1

τxnZ
n
t ,

with ZT = x = (x1, x2, . . .).

REMARK 3.4. This result, while significantly stronger than assumption (B),
is however not the strongest version of the branching property one can look for. In
fact, one could establish a version for “stopping lines,” in the vein of Chauvin [6].
But to state this result, one first needs a precise description of the genealogy and
the trajectory of individuals, which we are lacking so far. Nonetheless, this result
can be proved for branching Lévy processes, therefore Theorem 1.1 implies such
stronger version of the branching property holds for Z.

The rest of this section is devoted to the proof of Proposition 3.3, which relies
on a variation of Feller property that we now state. Let (Zn

t : t ∈ R+)n∈N denote
a sequence of i.i.d. copies of (Zt : t ∈ R+). For each point measure μ ∈ Pθ and
t ∈R+, we consider the random point measure

Yt (μ) := ∑
n∈N

τxnZ
n
t ,

where x = (xn : n ∈ N) = μ. One checks immediately that E(〈Yt (μ), eθ 〉) < ∞, so
Yt (μ) ∈ Pθ a.s., and it follows readily from Lemma 2.4 that the dependence in μ

is continuous.

LEMMA 3.5. With the notation above, for every fixed t ∈ R+, the process
(Yt (μ) : μ ∈ Pθ ) is continuous in probability.

PROOF. Let (μn : n ∈ N) be point measures such that limn→∞ μn = μ in
Pθ , that is eθμn =⇒ eθμ as n → ∞, in the sense of weak convergence of fi-
nite measures on R. By Prohorov’s theorem, (eθμn : n ∈ N) is tight, and thus
there exists a positive continuous norm-like function g : R → (0,∞) such that
supn∈N 〈μn, eθg〉 < ∞. This enables us to apply Lemma 2.4 and our conclusion
follows. �
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We are now able to establish Proposition 3.3.

PROOF OF PROPOSITION 3.3. Let T be an a.s. finite (F+
t )-stopping time. For

every k ∈ N, we set

Tk := 2−k⌈2kT + 1
⌉
.

So Tk ≥ T + 2−k , Tk is an (Ft )-stopping time with values in 2−k
N, and Tk de-

creases to T as k → ∞. Next, consider an event A ∈ F+
T , and f : Pθ → R a

continuous bounded function. By right-continuity (see Proposition 3.2), we have
that for every fixed t ∈ R+

E
(
1Af (ZT +t )

) = lim
k→∞E

(
1Af (ZTk+t )

)
.

Let (Zn
t : t ∈ R+)n∈N be a sequence of i.i.d. copies of (Zt : t ∈ R+), which is

further independent of (Zs : s ∈ D), and set

Yt (ZTk
) := ∑

n∈N
τxnZ

n
t , t ∈ R+,

where (xn : n ∈ N) denotes the ranked sequence of the atoms of ZTk
. One checks

readily that A ∈ FTk
for every k ∈ N. Applying (B) on the event {Tk = n2−k} and

summing over n, we get, provided that t is a dyadic rational number, that

E
(
1Af (ZTk+t )

) = E
(
1Af

(
Yt (ZTk

)
))

.

We then let k → ∞ and use Lemma 3.5 to conclude that

E
(
1Af (ZT +t )

) = E
(
1Af

(
Yt (ZT )

))
.

In other words, we have shown that the one-dimensional dyadic rational
marginals of the conditional distribution of the process (ZT +t : t ∈ R+) given F+

T

are the same as those of (Yt (ZT ) : t ∈ R+) given ZT . By induction, it follows that
the same holds for the finite-dimensional dyadic rational marginals, and since both
processes are càdlàg a.s., we conclude that the conditional distribution of the pro-
cess (ZT +t : t ∈ R+) given F+

T coincide with that of (Yt (ZT ) : t ∈ R+) given ZT .
This in turn entails our claim. �

4. Process with finite birth intensity. We say that a nested branching random
walk Z has a finite birth intensity if (1.1) is fulfilled for θ = 0. Observe that in this
situation, e0 = 1, and P0 is simply the space of finite point measures on R, or,
equivalently, the space of finite sequences of atoms in R.

Throughout this section, (Zt : t ∈ R+) denotes the càdlàg extension of a nested
branching random walk with finite birth intensity. Our goal is to show that the
law of this process can be characterized in terms of some basic parameters, and to
describe its genealogy.
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4.1. The first branching time. The process of the total mass,

〈Z,1〉 = (〈Zt,1〉 : t ∈ R+
)
,

takes finite integer values and has càdlàg paths a.s. The branching property of Z

easily transfers to 〈Z,1〉, in the sense that for every s, t ∈ R+, conditionally on
〈Zs,1〉 = k, 〈Zt+s,1〉 is independent of F+

s and has the law of the sum of k i.i.d.
copies of 〈Zt,1〉. Using the terminology of Athreya and Ney [1], 〈Z,1〉 is a one-
dimensional continuous time Markov branching process, that is, a Galton–Watson
process in continuous time.

In particular, the first branching time

TB := inf
{
t > 0 : 〈Zt,1〉 �= 1

}
has an exponential distribution with finite parameter, denoted by β ∈ R+. For every
0 ≤ t < TB , Zt possesses a single atom in R; we denote its location by ζt (i.e.,
Zt = δζt ), and declare that ζt = −∞ for t ≥ TB . Because Z has càdlàg paths in
P0, ζ has also càdlàg paths during its lifetime [0, TB). At the branching time TB ,
we further record the relative positions of the children with respect to that of their
parent as the point measure � defined by

� := τ(−ζTB−)ZTB
= (xn − ζTB− : n ∈ N),

where x = ZTB
. We agree for definiteness that � = ∅ (the zero point measure)

when β = 0, that is, when TB = ∞ a.s. Note also that TB is an (F+
t )-stopping

time.

LEMMA 4.1. In the notation above, the following holds:

1. The process (ζt : t ∈ R+) is a Lévy process killed at rate β ≥ 0, which is
further independent of �.

2. The mass of �, that is, the number of its atoms in R,

#� := Card{i ≥ 1 : �i ∈ R} = 〈�,1〉
fulfills

P(#� = 1) = 0 and E(#�) < ∞.

PROOF. As (〈Zt,1〉 : t ∈ R+) is a Galton–Watson process in continuous time,
either TB < ∞ a.s. or 〈Zt,1〉 = 1 a.s. for all t > 0. We observe that Lemma 4.1
holds trivially when TB = ∞ a.s. Indeed the branching property (B) then simply
translates into independence and stationarity of the increments of the trajectory of
the only atom ζ . This proves that ζ is a Lévy process, and the other property comes
from � = ∅ a.s. Therefore, we assume in the rest of the proof that TB < ∞ a.s.

1. The extended version of the branching property in Proposition 3.3 shows in
particular that for every t ∈ R+, conditionally on t < TB , the translated process
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(τ−ζt Zt+s : s ∈ R+) is independent of F+
t and has the same law as (Zs : s ∈ R+).

Since on that event, � only depends on the translated process, we deduce that for
every bounded measurable functionals F and G, there is the identity

E
(
F(ζs : 0 ≤ s ≤ t)G(�), t < TB

) = E
(
F(ζs : 0 ≤ s ≤ t), t < TB

)
E

(
G(�)

)
.

Hence � is independent of (ζt : 0 ≤ t < TB).
The same argument also shows that conditionally on t < TB , ζ is a process with

independent and stationary increments on the time-interval [0, t], which is further
independent of TB − t , as the latter quantity then only depends on the translated
process. This proves our assertion that ζ is a killed Lévy process.

2. Indeed, the first assertion is plain from the definition of the first branching
time TB and the right-continuity of Z. Moreover #� = 〈ZTB

,1〉 is the number
of children produced by an individual in the Galton–Watson branching process
〈Z,1〉. By [1], Chapter 3, Theorem 2, as E(〈Z1,1〉) < ∞, #� has finite expectation
as well. �

The distribution of the process Z up to and including its first branching time,
(Zt : 0 ≤ t ≤ TB), is thus determined by the law of the killed Lévy process ζ and
that of the independent point measure �. We denote the latter by �, that is,

�(dx) := P(� ∈ dx)

and recall that � is never a Dirac point mass. On the other hand, ζ shall be viewed
as a Lévy process ζ ′ = (ζ ′(t) : t ∈ R+) killed at an independent exponential time
TB with parameter β ≥ 0 (recall that β is the branching rate of 〈Z,1〉). In turn,
the law of ζ ′ is classically characterized by a triple (σ 2, a′, ν), where σ 2 ≥ 0 is
the Brownian coefficient, a′ ∈ R the drift coefficient, and ν the Lévy measure.
The latter is a measure on R such that ν({0}) = 0 and

∫
(1 ∧ x2)ν(dx) < ∞. Let

� : R → C denote the characteristic exponent of ζ ′, which is given by the Lévy–
Khintchin formula:

(4.1) �(r) = −σ 2

2
r2 + ia′r +

∫
R

(
eirx − 1 − irx1|x|<1

)
ν(dx),

so that for every t ∈ R+,

E
(
exp

(
irζ ′(t)

)) = exp
(
t�(r)

)
.

Thanks to the strong branching property stated in Proposition 3.3, the law of
the full process (Zt : t ∈ R+) is characterized by that of its restriction to the ran-
dom time-interval [0, TB]. Indeed, for any t > 0, there is almost surely only a
finite number of reproduction events occurring before time t , so using the strong
branching property a finite number of times yields the following description.

During the time interval [0, TB), the point measure Zt consists of a single indi-
vidual which starts from 0 and moves in R according to ζ ′. At time TB , which has
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an exponential distribution with parameter β and is independent of ζ ′, this individ-
ual dies at location ζ ′(TB) and simultaneously gives birth to children at locations
ζ ′(TB) + �(1), ζ ′(TB) + �(2), . . . , where � = (�(i) : i ∈ N) is a random finite
point measure. More precisely, we know from Lemma 4.1 that � is independent
of ζ ′ and the lifetime TB . In turn, conditionally on the birth locations, each child
evolves after its birth according to the same Lévy dynamics, independently of the
other children. At death, these children produce children of their own around their
position just before death, according to independent copies of �, and so on and so
forth.

We stress that this description involves a richer structure than that contained in
the sigma-algebra generated by the sole process Z; namely, it is not always pos-
sible to recover the ancestral lineages from the latter. Indeed, think for instance
of a birth event such that a child is born at the same location as another individ-
ual. Then, in general, one cannot discriminate the trajectory of each of these two
individuals observing only the process Z.

Putting things together, the distribution of a nested branching random walk with
finite birth intensity Z is determined by the parameters (�,β,�), which are hence-
forth called the parameters of Z.

4.2. Branching Lévy processes with finite birth intensity. In this section, we in-
troduce formally branching Lévy processes with finite birth intensity by rephrasing
technically the verbal description of the dynamics of a nested branching random
walk with finite birth intensity. Actually, this is merely an adaptation of Defini-
tion 1 in [2] in a slightly more general setting.

To start with, let � be the characteristic exponent of a Lévy process, β ≥ 0 and
� a probability measure on P∗

0 , where

P∗
0 := {x ∈ P0 : #x �= 1}

denotes the subspace of finite point measures which are not Dirac masses. We
further suppose that ∫

P0

#x�(dx) < ∞,

and that � = δ∅ if β = 0. We stress that we do not assume a priori that (�,β,�)

is the triple that characterizes the law of some nested branching random walk with
finite birth intensity.

We then need to label individuals and therefore introduce the set of all finite
sequences of integers, a.k.a. the Ulam tree,

U = ⋃
n≥0

N
n.

In particular, the empty sequence ∅ represents the ancestor.3 We shall use some
further notation in this setting. If u ∈ N

n, we write:

3Beware that we use a different although seemingly similar notation ∅ for the zero point measure.
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• |u| = n the generation of u;
• u = (u(1), . . . , u(n)), such that u(k) is the kth term of the sequence u;
• uk = (u(1), . . . , u(k)) the ancestor at generation k ≤ n of u;
• for j ∈ N, u.j = (u(1), . . . , u(n), j) the j th child of u.

Each individual has a birth-time bu, a death-time du, and a spatial location
�u(t) ∈ R for t ∈ [bu, du) which are random and constructed as follows. Let
(Tu)u∈U, (ζ ′

u)u∈U and (�u)u∈U are three independent processes such that:

• (Tu)u∈U is a family of i.i.d. exponential variables with parameter β ,
• (ζ ′

u)u∈U is a family of i.i.d. Lévy processes with characteristic exponent � given
by (4.1),

• (�u)u∈U is a family of i.i.d. random point measures in P0, each distributed
according to �.

The variable Tu corresponds to the lifetime of the individual labelled by u. The
birth-time bu and death-time du of this individual are thus given by

(4.2) bu =
|u|−1∑
j=0

Tuj
and du = bu + Tu.

In turn, the process ζ ′
u governs the motion of the individual u during its life, and

�u = (�u(1),�u(2), . . .) specifies the ranked sequence of the relative positions of
the children of u with respect to the location of the individual u at death. Specifi-
cally, we have

�u(t) = ζ ′
u(t − bu) +

|u|−1∑
j=0

(
ζ ′
uj

(Tuj
) + �uj

(
u(j + 1)

))
, bu ≤ t < du.

In particular, for u = ∅, b∅ = 0 and (�∅(t) : 0 ≤ t < d∅) has the same law as
(ζt : 0 ≤ t < TB).

DEFINITION 4.2. The point measure valued process

Zt :=
(∑

u∈U
1bu≤t<duδ�u(t) : t ∈ R+

)
(recall our convention that atoms at −∞ are always discarded), is called a branch-
ing Lévy process with finite birth intensity and parameters (�,β,�).

For instance, a binary branching Brownian motion is a branching Lévy process
with finite birth intensity; its parameters are �(r) = −1

2σ 2r2, β ∈ R+ and � is
the Dirac mass at the point measure μ = 2δ0 [i.e., at x = (0,0,−∞, . . .)]. More
generally, recall that branching random walks in continuous time, as they were
considered first by Uchiyama [15] and then by many authors (see, e.g., [10] and
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references therein), can be constructed as follows. We first endow the edges of the
Ulam tree U with lengths, such that the length of the edge between a parent u and
its child u.j is given by Tu for all j ∈ N, and then assign to that child a weight
�u(j). We assume that the families (Tu)u∈U and (�u)u∈U are random and dis-
tributed as before. The point process obtained at time t by cutting the tree at height
t and summing weights on each branch to the root is then a branching random
walk in continuous time. We now see that branching Lévy processes with finite
birth intensity simply result from the superposition of independent Lévy motions
to a branching random walk in continuous time.

REMARK 4.3. We stress that the structure of a branching Lévy process with
finite birth intensity is richer than that of the sigma-algebra generated by the sole
point measure process in Definition 4.2, in the sense that by construction, it is
equipped with a genealogical tree.

The next two statements essentially rephrase the second part of Theorem 1.1 in
the case of finite birth intensity. The first claim of the proposition below should be
plain from the discussion at the end of the preceding section. In turn, the second
claim should be fairly obvious, even if providing full details of the proof would
unavoidably be tedious and, therefore, is left to scrupulous readers.

PROPOSITION 4.4. 1. The càdlàg extension (Zt : t ∈ R+) of a nested branch-
ing random walk with finite birth intensity and parameters given by (�,β,�) is a
branching Lévy process with finite birth intensity and parameters (�,β,�), and
possibly constructed on some enlarged probability space.

2. Conversely, let � be the characteristic exponent of a Lévy process, β ≥ 0 and
� a probability measure on P∗

0 with∫
P0

#x�(dx) < ∞,

and such that � = δ∅ if β = 0. The restriction to dyadic rational times of a branch-
ing Lévy process with finite birth intensity and parameters (�,β,�) is a nested
branching random walk with finite birth intensity and parameters (�,β,�).

We now conclude this section by connecting the parameter (�,β,�) to the func-
tions κ and 
 of the preceding section.

LEMMA 4.5. Let Z be a branching Lévy process with finite birth intensity and
parameters (�,β,�). For every t ∈ R+ and r ∈ R, we have

E
(〈Zt, eir〉) = exp

(
t

(
�(r) + β

∫
P0

(〈μ, eir〉 − 1
)
�(dμ)

))
.
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PROOF. In the case when individuals do not move during their lifetimes, that
is for branching random walks in continuous time as considered by Uchiyama,
we have � ≡ 0 and the first formula of the statement is easy (it can be read for
instance from [15] on page 898). The general case then follows from the fact that
Z is simply obtained by superposing Lévy motions with characteristic exponent �

to an independent branching random walk in continuous time; see Lemma 2 in [2]
for a closely related argument. �

In the notation of Section 2, we can rephrase Lemma 4.5 by identifying the
cumulant function as

κ(ir) = �(r) + β

∫
P0

(〈μ, eir〉 − 1
)
�(dμ),

or, equivalently,

κ(0) = β

∫
P0

(#x − 1)�(dx),
(r) = �(r) + β

∫
P0

〈μ, eir − 1〉�(dμ).

5. Branching Lévy processes. Our aim in this section is to get rid of the
assumption of finiteness of the birth intensity, that is to consider the case θ > 0.
The idea is similar to that of Section 3 in [2] (which actually bears the same title),
so we shall merely provide here the main steps without going too far into technical
details.

For this purpose, we first consider the case of finite birth intensity treated in the
preceding section and introduce an equivalent parametrization.

5.1. The Lévy measure for finite birth intensities. Throughout this section,
we consider a branching Lévy process with finite birth intensity and parameters
(�,β,�) as in the preceding section, and recall the notation x = (x1,x2) with
x2 = (xn+1 : n ∈ N) and ∅= (−∞, . . .). We then define

�(dx) := ν(dx1)δ∅(dx2) + β�(dx), x ∈P0.

We shall call � the Lévy measure of Z. We further set

a := a′ + β

∫
P0

x11|x1|<1�(dx).

The next statement entails in particular that the parameters (�,β,�) can be
recovered from (σ 2, a,�). Recall that P∗

0 denotes the subspace of finite point
measures which are not Dirac point masses.

LEMMA 5.1. The following assertions hold:

1. The branching rate is given by

β = �
(
P∗

0
)
.
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2. For β �= 0, we have

� = β−11P∗
0
�.

3. The Lévy measure � fulfills

�
({

(0,∅)
}) = 0,

∫
P0

(
1 ∧ x2

1
)
�(dx) < ∞and

∫
P0

|#x − 1|�(dx) < ∞.

4. The characteristic function � is given for every r ∈R by

�(r) = −σ 2

2
r2 + ia′r +

∫
P0\P∗

0

(
eirx1 − 1 − irx11|x1|<1

)
�(dx).

5. Finally, the cumulant function κ is given for every r ∈ R by

κ(ir) = −σ 2

2
r2 + iar +

∫
P0

( ∞∑
n=1

eirxn − 1 − irx11|x1|<1

)
�(dx).

PROOF. The first two assertions follow immediately from the fact that the
restriction of � to P∗

0 is given by β�. The third one then derives from the fact
that ν({0}) = 0 and second point of Lemma 4.1. The fourth comes from the fact
that ν is the projection on the first coordinate of � − β� = 1P0\P∗

0
and the Lévy–

Khintchin formula (4.1). Finally, the fifth is merely a translation of Lemma 4.5.
�

5.2. Nested sequence of branching Lévy processes. We now fix θ > 0 and con-
sider a measure � on Pθ that fulfills the requirements specified in the Introduction,
that are

�
({

(0,∅)
}) = 0,

∫
Pθ

(
1 ∧ x2

1
)
�(dx) < ∞ and(5.1)

∫
Pθ

(
eθx11{x1>1} +

∞∑
k=2

eθxk

)
�(dx) < ∞.(5.2)

Roughly speaking, our goal is to define a branching Lévy process based on the
Lévy measure �. We shall construct the latter as an increasing limit of a nested
sequence of branching Lévy processes with finite birth intensity, whose Lévy mea-
sures are given by a suitable truncation of �.

Specifically, for every integer n ∈ N and point measure μ ∈ Pθ , we write μ(n)

for the restriction of μ to [−n,∞), so the ranked sequence of the atoms of μ(n) is
x(n) = (x

(n)
i : i ∈ N), with

x
(n)
i =

{
xi provided xi ≥ −n,

−∞ otherwise.
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One should view the transformations μ 
→ μ(n) for n ∈ N as compatible trunca-
tions, in particular there is the identity

(5.3)
(
μ(n′))(n) = μ(n) for all n′ ≥ n.

We then denote by �(n) the measure obtained from the image of � by the map
μ 
→ μ(n) by further removing4 from the latter the atom at (0,∅) if it exists, so that
�(n)({(0,∅)}) = 0. We may and will view each �(n) as a measure on the space of
finite point measures P0, rather than on Pθ .

We next observe that for every n ∈ N,∫
P0

(
1 ∧ x2

1
)
�(n)(dx) =

∫
Pθ

(
1 ∧ (

x
(n)
1

)2)
�(dx) ≤

∫
Pθ

(
1 ∧ x2

1
)
�(dx) < ∞,

and ∫
P0

|#x − 1|�(n)(dx) ≤ �(n)({∅}) + eθn
∫
Pθ

∞∑
k=2

eθxk�(dx) < ∞.

Hence, we may view each �(n) as the Lévy measure of a branching Lévy process
with finite birth intensity.

The next result claims that one can construct a nested sequence of branching
Lévy processes with finite birth intensity and Lévy measures �(n). Essentially,
this follows from the genealogical construction discussed in Section 4.1 and the
compatibility relation (5.3). We skip details and refer to Section 3 in [2] (see in
particular Lemma 3 there) where a similar construction is performed in a less gen-
eral setting.

LEMMA 5.2. Let σ 2 ≥ 0, a ∈ R and � a measure on Pθ that fulfills (5.1) and
(5.2). One can construct a sequence (Z(n) : n ∈ N) of branching Lévy processes
with finite birth intensity and characteristics (σ 2, a,�(n)), such that for n ≤ n′,
Z(n) results from Z(n′) by killing an individual u whenever it makes a negative
jump < −n, that is, when �ζ ′

u(t) := ζ ′
u(t) − ζ ′

u(t−) < −n, and also killing the
children u.j which are born at distance greater than n at the left of their parent u,
that is, such that �u(j) < −n.

REMARK 5.3. The killing operation describes above modifies the labelling of
individuals and their trajectories. Typically, a birth event for Z(n′) at which all the
children but one lie at distance greater than n to the left of the parent, is no longer
considered as a birth event for Z(n), but rather as an event when an individual
makes a jump (of size ≥ −n) without generating progeny. Nonetheless, if we keep

4Removing this atom is merely an aesthetic matter: keeping it would simply induce fictive birth
events, at which the parent gives birth to a single child, exactly at the same location. This would
impact the genealogical tree, but not the point measures, and thus can be ignored.
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in mind this relabelling of individuals, the ancestral trajectories for Z(n) of course
coincides with that for Z(n′), and the genealogical tree of Z(n) simply results from
the pruning of the genealogical tree of Z(n′).

Plainly, for every t ≥ 0, the sequence of atoms of Z
(n)
t is a subsequence of that

of Z
(n′)
t , or equivalently, in terms of point measures, Z

(n)
t ≤ Z

(n′)
t . This naturally

leads us to the following.

DEFINITION 5.4. In the notation of Lemma 5.2, the increasing limit

Z
(∞)
t := lim

n→∞Z
(n)
t , t ≥ 0,

is called a branching Lévy process with characteristics (σ 2, a,�).

We easily check that Z
(∞)
t is a point measure in Pθ , a.s. Indeed, if we write κ(n)

for the cumulant function of Z(n), so that for z ∈ C with 0 ≤ 
z ≤ θ ,

E
(〈
Z

(n)
t , ez

〉) = exp
(
tκ(n)(z)

)
,

then by Lemma 5.1.5 and analytic continuation, we have

κ(n)(z) = σ 2

2
z2 + az +

∫
P0

( ∞∑
i=1

ezxi 1xi≥−n − 1 − zx11|x1|<1

)
�(dx).

Thanks to (5.1) and (5.2), we may also define for all z ∈C with 
z = θ ,

(5.4) κ(∞)(z) := σ 2

2
z2 + az +

∫
Pθ

( ∞∑
i=1

ezxi − 1 − zx11|x1|<1

)
�(dx),

and observe that

κ(∞)(z) = lim
n→∞κ(n)(z).

In particular, we have

lim
n→∞E

(〈
Z

(∞)
t − Z

(n)
t , eθ

〉) = 0,

and since for any r ∈R

E
(∣∣〈Z(∞)

t , eθ+ir

〉 − 〈
Z

(n)
t , eθ+ir

〉∣∣) ≤ E
(〈
Z

(∞)
t − Z

(n)
t , eθ

〉)
,

we conclude that E(〈Z(∞)
t , eθ+ir〉) = etκ(∞)(θ+ir).

One can further show that (Z
(∞)
t : t ∈R+) possesses a càdlàg version in Pθ and

satisfies the branching property; see Proposition 2 in [2] and its proof for a closely
related argument. Any branching Lévy process is thus also a nested branching
random walk, in the sense that its restriction to dyadic rational times fulfills (1.1)
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and (B); more precisely its cumulant function is given by (5.4). This corresponds
to the second statement of Theorem 1.1.

Our main task in the rest of this work is thus to establish that conversely, every
nested branching random walk can be obtained as the restriction to dyadic rational
times of some branching Lévy process.

6. Genealogical structure of a nested branching random walk. The pur-
pose of this section is to complete the proof of Theorem 1.1, specifically to show
that every nested branching random walk arises as the restriction to dyadic rational
times of a branching Lévy process. More precisely, the main result of the section
is the following.

PROPOSITION 6.1. The càdlàg extension of a nested branching random walk
(Zt : t ∈ D) satisfying (1.1) is a branching Lévy process (possibly constructed on
some enlarged probability space).

Recall that this was established in Section 4 in the case of processes with finite
birth intensity, and that, by construction, a branching Lévy process is the increas-
ing limit of a sequence of branching Lévy processes with finite birth intensity. We
have to show that similarly, every nested branching random walk is the increasing
limit of a sequence of nested branching random walks with finite birth intensities.
This will be achieved by showing first that nested branching random walks can be
endowed with a natural5 genealogical structure. In turn, the genealogical structure
will enable us to kill certain atoms depending on the behavior of their ancestral tra-
jectories, and yields the desired approximation by branching processes with finite
birth intensities.

To start with, let us introduce some definitions in this area. A ranked partition
is a sequence � = (�(j) : j ∈ N) of pairwise disjoint blocks (i.e., subsets) of N.
We do not request the family of blocks {�(j) : j ∈ N} to be a partition of N, the
disjoint union of all the blocks

⊔
�(j) may be a strict subset of N. Next, given

some set of times, say T ⊆ R+, a genealogical structure is a family of ranked
partitions (�s,t : s, t ∈ T with s ≤ t) which is consistent, in the sense that for all
times r ≤ s ≤ t , one has

(6.1) ∀j ∈ N, �r,t (j) = ⊔
i∈�r,s(j)

�s,t (i);

we further request that �t,t is simply the ordered partition into singletons (of N
or {1, . . . , n}). In words, �r,t (j) should be viewed as the block of N formed by
the descent at time t of the individual j at time r , and the consistency requirement

5Beware however that this is by no mean canonical, in the sense that defining the genealogical
structure may require some additional randomness, that is one may have to work on an enlarged
probability space.
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(6.1) just stresses the plain fact that the latter must coincide with the descent at
time t of all individuals at time s which themselves descend from the individual j

at time r .

6.1. Natural genealogy of a branching random walk. The purpose of this
section is to recall some basic features about discrete genealogies for branching
random walks, which will then be useful to construct a genealogical structure in
dyadic rational times for nested branching random walks. The presentation is tai-
lored to fit our purpose. In this direction, we first recall a construction of branching
random walks using for genealogical tree the Ulam tree U.

Let � denote the distribution of a random point measure, so we view � as the
law of some random nonincreasing sequence x = (xi : i ∈ N) in [−∞,∞) with
limi→∞ xi = −∞. We consider (x(u) : u ∈ U) a family indexed by the Ulam tree
of i.i.d. copies of x. For every u ∈ U and j ∈ N, assign weight xj (u) to the vertex
u.j and weight 0 to the ancestor ∅. For every u ∈U, we then write

Xu =
|u|∑

j=1

xu(j)(uj−1),

where we recall that u(j) is the j th letter of the word u and uj the prefix consisting
of the j first letters in u. For every generation n ∈ Z+, we consider the random
point measure,

Zn = ∑
u∈U:|u|=n

δXu.

Further, for all integers 0 ≤ k ≤ �, we define a ranked partition �k,� such that for
every j ∈ N, the block �k,�(j) is given by the ranks at generation � of the atoms
which descend from the j th largest atom at the kth generation.6

This construction yields a branching random walk Z = (Zn : n ∈ Z+) with re-
production law � and endowed with a genealogical structure (�k,� : 0 ≤ k ≤ �)

that we call natural, and any branching random walk Z can be obtained by such a
construction. Even though the construction is not canonical, in the sense that the
family (x(u) : u ∈ U) cannot always be recovered from (Zn : n ∈ Z+) and differ-
ent natural genealogies may sometimes be defined for the same branching random
walk, we stress that if � and �′ are two natural genealogies of the same branching
random walk Z, then the pairs (Z,�) and (Z,�′) have the same distribution.

For every generation 0 ≤ k ≤ n and every j ∈ N, we write zj,n for the j th largest
atom of Zn and zj,n(k) for its ancestor at generation k, defined by

zj,n(k) = zi,k if j ∈ �k,n(i).

In particular zj,n(n) = zj,n.

6If two atoms are at the same position, we order them using the lexicographic order of their index
in the genealogical tree U.
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To sum up, with this notation, every atom in the branching random walk is
uniquely labelled by a couple (j, n) ∈ N × Z+. The genealogical structure � is a
nonanticipative encoding of the genealogical tree of the branching random walk
to this labelling. Using this notation, we next recall the pathwise version of the
many-to-one identity; see Theorem 1.1 in Shi [14].

LEMMA 6.2. Let (Zn : n ∈ Z+) be any branching random walk that fulfills
(1.1) and is endowed with a natural genealogical structure. There exists a random
walk S = (Sn : n ∈ Z+) such that for every k ∈ N and every measurable nonnega-
tive function f :Rk →R, we have

E

(∑
i≥1

f
(
zi,k(1), . . . , zi,k(k)

)) = ekκ(θ)
E

(
e−θSkf (S1, . . . , Sk)

)
.

6.2. Nested genealogies for nested branching random walks. In this section,
we consider a nested branching random walk Z = (Zt : t ∈ D) (in dyadic rational
times) and shall construct, up to a possible enlargement of the probability space,
a natural genealogical structure for this process. Roughly speaking, discrete time
skeletons of a nested branching random walk are branching random walks, and our
aim is to show that these discrete time skeletons can be equipped with compatible
natural genealogies, in the sense that the genealogical structure of a coarser skele-
ton results from the restriction of the genealogical structure of a finer skeleton.

The construction of a natural genealogical structure for Z relies on the following
easy consequence of the branching property (B) combined with the existence of
conditional distributions; the proof is straightforward and therefore omitted.

LEMMA 6.3. Let (X,Y ) be a pair of a random point measures distributed as
(Z2t ,Zt ) for some t ∈ D. Up to enlarging the probability space, one can construct
a sequence Y 1, Y 2, . . . of independent copies of Y = (yk : k ∈ N) such that

X = ∑
k≥1

τyk
Y k.

We start by considering the branching random walk Z0 := (Zn : n ∈ Z+) and
use repeatedly (B) to construct (possibly on some enlarged probability space) a nat-
ural genealogical structure �0 = (�0

k,� : 0 ≤ k ≤ �). Next, using Lemma 6.3 with
t = 1/2 enables us to construct similarly (possibly on some further enlargement
of the probability space), a natural genealogical structure �1 = (�1

k,� : 0 ≤ k ≤ �)

for the branching random walk Z1 := (Zn/2 : n ∈ Z+) such that �1
2k,2� = �0

k,�

for all integers 0 ≤ k ≤ �. By iteration, for each m ∈ N, we can equip the branch-
ing random walk Zm := (Zn.2−m : n ∈ Z+) with a natural genealogical structure
�m such that �m

2k,2� = �m−1
k,� for all integers 0 ≤ k ≤ �. This enables us to define

unambiguously a genealogical structure for the nested branching random walk in
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dyadic rational times � = (�r,s : 0 ≤ r ≤ s and r, s ∈ D) by �r,s = �n
k,� for any

integers k and n with r = k.2−n and s = �.2−n.
We are now able to establish the following pathwise version of the many-to-one

formula for nested branching random walks. For every j ∈ N and dyadic rational
times s, t ∈ D with 0 ≤ s ≤ t , we write zj,t for the j th largest atom of Zt and
zj,t (s) = zk,s with k being the unique integer such that j ∈ �s,t (k). Recall also
the notation used in Lemma 3.1; in particular ξ denotes a Lévy process with char-
acteristic exponent 
 defined by (2.1). Similarly, in this notation, every atom in
Z is uniquely labelled by a pair (j, t) ∈ N × D, and the genealogical structure �

encodes the genealogical tree of this labelling.

LEMMA 6.4 (Pathwise many-to-one formula). The following assertions hold
with probability one for every dyadic rational time t :

1. For every j ∈ N, the trajectory defined for s ∈ [0, t] ∩ D by s 
→ zj,t (s),
possesses a càdlàg extension to s ∈ [0, t].

2. For every nonnegative measurable functional on the space of càdlàg paths
on [0, t], we have the pathwise many-to-one formula:

E

(∑
j∈N

f
(
zj,t (s) : 0 ≤ s ≤ t

)) = E
(
e−θξt+tκ(θ)f (ξs : 0 ≤ s ≤ t)

)
.

PROOF. Consider first a functional f that only depends on the trajectory eval-
uated at finitely many dyadic rational instants. Then the many-to-one formula
in the statement immediately follows from Lemma 6.2. Then an appeal to the
monotone class theorem enables us to extend this to all measurable functionals
f : RDt →R+, where Dt = [0, t]∩D and R

Dt is endowed with the sigma-algebra
generated by the coordinate maps ω 
→ ω(s) for ω ∈ R

Dt and s ∈ Dt .
Since Lévy processes have càdlàg paths a.s., our first claim follows taking for

f the indicator function of {ω ∈ R
Dt : ω has no càdlàg extension} (that this set is

indeed measurable is readily seen by considering the number of up-crossings of a
path ω ∈ R

Dt from a to b with a < b rational numbers). The many-to-one formula
can then be extended to nonnegative measurable functionals on the space of càdlàg
paths on [0, t] by another application of the monotone class theorem. �

REMARK 6.5. Recall from Proposition 3.2 that Z admits a càdlàg extension
on Pθ . The first point of the previous lemma gives a slightly distinct statement: to
each atom can be associated a càdlàg ancestral trajectory.

More generally, a nested branching random walk started from an arbitrary point
measure μ can also be endowed with a natural genealogical structure. The case
when μ = δx is a Dirac point mass is of course trivial, as the process is then
simply obtained by translating by x all the atoms of Z, which does not affect
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its genealogical structure. In the general case μ = ∑∞
i=1 δxi

, one needs to com-
bine the genealogies of independent copies of Z started from a Dirac point mass.
We refrain from giving a precise description as ordering children from different
ancestors would force us to introduce some cumbersome notation.

We now conclude this section by mentioning that the simple branching prop-
erty (B) extends to natural genealogies. Specifically, for every t ∈ D, condi-
tionally on Zt = μ, the process (Zt+s : s ∈ D) equipped with the shifted ge-
nealogical structure (�t+r,t+s : 0 ≤ r ≤ s) is independent of (Zs : 0 ≤ s ≤ t) and
(�r,s : 0 ≤ r ≤ s ≤ t) and has the same distribution as the nested branching ran-
dom walk started from μ and equipped with a natural genealogical structure. In-
deed, the same statement holds in the setting of branching random walks, and this
easily yields the version for dyadic rational times.

6.3. Censoring nested branching random walks. We are now in good shape to
construct censored versions of nested branching random walks, roughly speaking
by killing individuals at the first time when their ancestral trajectory has a large
negative jump. Specifically, fix some threshold n > 0 and consider for every t ∈ D

the random point measure

Z
(n)
t :=

∞∑
k=1

1{�zj,t (s)>−n for all 0≤s≤t}δzj,t
,

where �zj,t (s) := zj,t (s) − zj,t (s−) denotes the possible jump at time s of the
ancestral trajectory of the j th atom at time t .

LEMMA 6.6. For every b > 0, the censored process Z(n) := (Z
(n)
t : t ∈ D) is

a nested branching random walk with finite birth intensity.

PROOF. The branching property extended to natural genealogies that was dis-
cussed at the end of the preceding section readily entails that the branching prop-
erty (B) of Z is transferred to the censored process Z(n).

Next, using Lemma 6.4, we have

E
(〈
Z

(n)
t ,1

〉) = E
(
e−θξt+tκ(θ)1{�ξs>−n for all 0≤s≤t}

)
.

Recall that ξ is a Lévy process and denote its Lévy measure by λ(dx). Killing ξ

at the first instant when it has a negative jump smaller than −n produces a Lévy
process, say ξ†, with Lévy measure λ†(dx) := 1{x>−n}λ(dx) and further killed at
an independent exponential time with parameter λ((−∞,−n)), say T †. Hence we
have

E
(〈
Z

(n)
t ,1

〉) = exp
(
tκ(θ)

)
E

(
e−θξ

†
t , t < T †)

.

The fact that the Lévy measure λ† is zero on (−∞,−n) ensures the finiteness of
the expectation in the right-hand side; see, for instance, Theorem 25.3 in Sato [13],
proving that the censored process Z(n) has finite birth intensity. �

We now have all the ingredients needed to prove of Proposition 6.1.
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6.4. Proof of Proposition 6.1. Let Z = (Zt : t ∈ D) be a nested branching
random walk endowed with a natural genealogy and construct the sequence of
censored processes Z(n) as in the preceding section. Recall from Lemma 6.6 that
the latter are nested branching random walks with finite birth intensity, and thus
their càdlàg extension to real times are branching Lévy processes, as it was shown
in Section 4. We write (σ 2

n , an,�n) for their characteristics.
Next, observe from the construction of the censored processes, that for every

n ≤ n′, Z(n) results from Z(n′) by killing the children (and of course deleting also
their descent) which are born at distance greater than n at the left of their parent,
which is precisely the transformation appearing in Lemma 5.2. This entails that
σ (n) = σ (n′), an = an′ , and that �n coincides with the image of �n′ by the trans-
formation x 
→ x(n) defined in Section 4.2, that is, which consists in sending atoms
in (−∞,−n) to the cemetery state −∞. This enables us to define unambiguously
σ 2 := σ 2

n , a := an and a measure � on P such that, for every n ∈ N, the image of
� by the transformation x 
→ x(n) is �n.

Plainly, Z
(n)
1 ≤ Z1, and (1.1) thus ensures that

sup
n≥0

lnE
(〈
Z

(n)
1 , eθ

〉) = sup
n≥0

κn(θ) < ∞,

where κn denotes the cumulant of Z(n). Recall that the latter is given for purely
imaginary complex numbers by the formula in Lemma 5.1(5), so that by analytic
continuation, we have

κn(θ) = σ 2

2
θ2 + aθ +

∫ ( ∞∑
i=1

eθx
(n)
i − 1 + θx11|x1|<1

)
�(dx).

By letting n → ∞, we now see that the measure � has to fulfill the requirements
(5.1) and (5.2).

From Lemma 5.2 and Definition 5.4, we know that the increasing limit of the
sequence of censored processes

Z
(∞)
t := lim

n→∞Z
(n)
t , t ≥ 0

is a branching Lévy process with characteristics (σ 2, a,�), and it just remains to
identify the latter with Z on dyadic rational times. This follows from the monotone
convergence theorem and the pathwise many-to-one formula, as

E
(〈
Z

(∞)
t , eθ

〉) = lim
n→∞E

(〈
Z(n), eθ

〉)
= lim

n→∞ etκ(θ)
P

(
inf

0≤s≤t
�ξs > −n

)
= E

(〈Zt, eθ 〉),
using that max0≤s≤t |�ξs | < ∞ a.s. and etκ(θ) = E(〈Zt, eθ 〉). Since for all t ≥ 0,
〈Zt, eθ 〉 ≥ 〈Z(∞)

t , eθ 〉 a.s.we conclude that Z = Z(∞) a.s.
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This completes the proof of Proposition 6.1. We now observe that the first part
of Theorem 1.1 follows from Propositions 2.1 and 6.1.

REMARK 6.7. There exists a unique triplet of characteristics (σ 2, a,�) asso-
ciated to a nested branching random walk Z. Indeed, this is the case for branching
Lévy processes with finite birth intensity, hence (σ 2, a,�n) is uniquely defined
for all n ∈N. In particular, it shows that (σ 2, a,�) indeed characterizes the law of
the branching Lévy process.

6.5. Application to infinitely ramified point measures on a half-line. We say
that a random point measure Z is supported on R− if Z((0,∞)) = 0 a.s., and shall
now conclude this article by characterizing infinitely ramified point measures hav-
ing that property. Theorem 1.1 entails that the distribution of an infinitely ramified
point measure is determined by a triple (σ 2, a,�) with σ 2 ≥ 0, a ∈ R and � a
measure on P satisfying (1.2), (1.3) and (1.4), which we call therefore the charac-
teristics of Z . Equivalently, (σ 2, a,�) is the characteristic triple of the branching
Lévy process (Zt : t ∈ R+) such that Z1 has the same law as Z .

COROLLARY 6.8. An infinitely ramified point measure with characteristic
triple (σ 2, a,�) is supported on R− if and only if the following three conditions
are fulfilled:

• σ 2 = 0 and �({x ∈Pθ : x1 > 0}) = 0,
• ∫

Pθ
(1 ∧ |x1|)�(dx) < ∞,

• a + ∫
Pθ

x11{x1>−1}�(dx) ≤ 0.

PROOF. It follows from the many-to-one formula (Lemma 3.1) that Z is sup-
ported on R− if and only if the Lévy process ξ with characteristic exponent

 verifies ξ1 ≤ 0 a.s., that is, if and only if −ξ is a subordinator. Recall that

(r) = κ(θ + ir) − κ(θ), so (5.4) shows that


(r) = −σ 2

2
r2 + iar +

∫
Pθ

( ∞∑
i=1

(
eirxi − 1

)
eθxi − irx11|x1|<1

)
�(dx).

This enables us to identify the Gaussian coefficient of ξ as σ 2, and its Lévy mea-
sure, say λ, as satisfying for any measurable function f :R∗ →R+:∫

R∗
f (x)λ(dx) =

∫
Pθ

∞∑
i=1

f (xi)e
θxi�(dx).

The fact that λ is zero on (0,∞) when −ξ is a subordinator is thus equivalent
to �({x ∈ P : x1 > 0}) = 0. Further, the identity∫

(−1,0)
|x|λ(dx) =

∫
Pθ

∞∑
i=1

eθxi |xi |1{−1<xi<0}�(dx) < ∞,
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and (1.4) show that the condition
∫
(−1,0) |x|λ(dx) < ∞ is then equivalent to the

condition
∫
P(1 ∧ |x1|)�(dx) < ∞. When the preceding two requirements hold,

the drift coefficient of ξ is given by a + ∫
P x11{x1>−1}�(dx), and the statement

then follows from the characterization of subordinators in the larger class of Lévy
processes. �
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