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DIFFERENTIAL SUBORDINATION UNDER CHANGE OF LAW

BY KOMLA DOMELEVO AND STEFANIE PETERMICHL1,2

Université Paul Sabatier

We prove optimal L2 bounds for a pair of Hilbert space valued differen-
tially subordinate martingales under a change of law. The change of law is
given by a process called a weight and sharpness, and in this context refers to
the optimal growth with respect to the characteristic of the weight. The pair
of martingales is adapted, uniformly integrable and càdlàg. Differential sub-
ordination is in the sense of Burkholder, defined through the use of the square
bracket. In the scalar dyadic setting with underlying Lebesgue measure, this
was proved by Wittwer [Math. Res. Lett. 7 (2000) 1–12], where homogeneity
was heavily used. Recent progress by Thiele–Treil–Volberg [Adv. Math. 285
(2015) 1155–1188] and Lacey [Israel J. Math. 217 (2017) 181–195] inde-
pendently resolved the so-called nonhomogenous case using discrete in time
filtrations, where one martingale is a predictable multiplier of the other. The
general case for continuous-in-time filtrations and pairs of martingales that
are not necessarily predictable multipliers, remained open and is addressed
here. As a very useful second main result, we give the explicit expression of
a Bellman function of four variables for the weighted estimate of subordinate
martingales with jumps. This construction includes an analysis of the regu-
larity of this function as well as a very precise convexity, needed to deal with
the jump part.

1. Introduction. The paper by Nazarov–Treil–Volberg [24] has set the
groundwork for the early advances in modern weighted theory in harmonic analy-
sis and probability that started around twenty years ago. In their paper, the authors
show necessary and sufficient conditions for a dyadic martingale transform to be
bounded in the L2 two-weight setting. The methodology of their proof could be
used to get the first sharp result in the real valued one-weight setting, for the dyadic
martingale transform [35]. Sharpness in this setting means best control on growth
with respect to the A2 characteristics

QF
2 [w] = sup

τ
ess . sup

ω
E(w|Fτ )E

(
w−1|Fτ

)
,

where the underlying filtration F is dyadic and the supremum is taken over all
adapted stopping times τ . Equivalently, without the use of stopping times, the A2
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characteristic can be defined by

QF
2 [w] = sup

I

(
1

|I |
∫

w

)(
1

|I |
∫

w−1
)
,

where the supremum runs over all dyadic intervals.
The area of sharp weighted estimates has seen substantial progress with new,

beautiful proofs of Wittwer’s result and its extensions to the time shifted mar-
tingales referred to as “dyadic shift” [22, 32]. Related, important questions in
harmonic analysis, such as boundedness of the Beurling–Ahlfors transform [28],
Hilbert transform [26], general Calderon–Zygmund operators [19, 21, 23] and be-
yond [6, 19] have been solved, beautifully advancing profound understanding of
the objects at hand.

During the early days of weighted theory in harmonic analysis, before opti-
mal weighted estimates were within reach, say, for the maximal operator or the
Hilbert transform [18] similar questions were asked in probability theory, concern-
ing stochastic processes with continuous-in-time filtrations [7, 20]. The difficulty
that arises in the nonhomogenous setting, typically seen when these processes have
jumps, were already observed back then and this restriction was made in one form
or another in these papers. Certain basic facts about weights do not hold true for
all jump processes, such as the classical self improvement of the A2 characteristic
of the weight [7]. Another obstacle typical for working with weights is the non-
convexity of the set inspired by the A2 characteristic: {r, s ∈ R+ : 1 ≤ rs ≤ Q}
with Q > 1. Such continuity-in-space assumptions still appear regularly for these
or other reasons when addressing weights; see [4, 25].

Wittwer’s proof also uses the homogeneity that arises from the dyadic filtra-
tion where the underlying measure is Lebesgue in a subtle but crucial way. This
homogeneity assumption has only recently been removed in the papers [31] and
[21]. These authors work with discrete-in-time general filtrations with arbitrary
underlying measure, where one martingale is a predictable multiplier of the other.
The definition of differential subordination for discrete-time martingales was in-
troduced by Burkholder [8]. It was later generalised by Bañuelos–Wang [5] to
arbitrary continuous-time martingales where it reads as follows:

Y differentially subordinate to X

:⇔ [X,X]t − [Y,Y ]t nonnegative and nondecreasing
(1.1)

is only possible in very special cases, such as predictable multipliers of stochas-
tic integrals—this passage is standard and explained in one of the early works
of Burkholder on Lp estimates for pairs of differentially subordinate martingales
[8]. (In full generality, this unweighted Lp problem was only much later resolved
in [5].)

In this article, we tackle the sharp weighted estimate in full generality, using the
notion of differential subordination of Bañuelos and Wang (1.1) and the martingale
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A2 characteristic

QF
2 [w] = sup

τ
ess . sup

ω
(w)τ

(
w−1)

τ .

We prove that for L2 integrable Hilbert space valued martingales X,Y with Y

differentially subordinate to X there holds

‖Y‖L2(w) �QF
2 [w]‖X‖L2(w),

where the implied constant is numeric and does not depend upon the dimension,
the pair of martingales or the weight. The linear growth in the quantity QF

2 (w) is
sharp.

The proof in this paper is different from the proofs in [21] and [31]. In [21],
so-called sparse operators are used while in [31] the authors reduce the estimate
through the use of the so-called outer measure space theory.

Our approach is the following. We derive an explicit Bellman function of four
variables adapted to the problem. It has certain conditions on its range, a contin-
uous sub-convexity as well as discrete one-leg convexity, such as seen in [31] for
two smaller Bellman functions (their functions make up a part of ours). We heavily
use the explicit form of the Bellman function and its regularity properties in sev-
eral parts in our proof to handle the delicacy of the continuous-in-time processes
with values in Hilbert space. The resulting function is in the “dualized” or “weak
form”, which is in a contrast to the “strong form” of a Burkholder-type functional
often seen when using the strong subordination condition (1.1). (The explicit form
of a Burkholder-type functional for this weighted question is still open.) Indeed,
the form of the strong differential subordination condition is adapted to work well
for Burkholder-type functionals and arises naturally in this setting. The passage
to its use in the weak form is accomplished through the use of the so-called el-
lipse lemma and requires a Bellman function solving the entire problem at once as
opposed to splitting the problem into pieces. This is the first use of this strategy
for problems in probability and should allow generalisations of numerous existing
results as well as an alternative (allbeit more complicated) proof of Wang’s exten-
sion to Burkholder’s famous estimates using [33] or [3]. Note that for these Lp

problems, fewer difficulties arise, even in the presence of jumps. This is thanks to
the convexity of the domain in the Lp problem. The one-leg-convexity required to
control the jumps is almost free in the Lp case, when using a trick from [11]. This
trick is not available here because of the nonconvex domain.

Our result gives through the formula in [2] a probabilistic proof of the weighted
estimate for the Beurling–Ahlfors transform with its implication, a famous bor-
derline regularity problem for the Beltrami equation, solved in [28]. Other appli-
cations are discussed in the last section. They include a dimensionless weighted
bound for discrete and semi-discrete second-order Riesz transforms. The Bell-
man function constructed here has already been used to obtain a dimensionless
weighted bound of the Bakry Riesz vector on Riemannian manifolds under a con-
dition on curvature.
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1.1. Differentially subordinate martingales. Consider first discrete-in-time
martingales. For that, let (�,F∞,P) be a probability space with a nondecreasing
sequence F = (Fn)n≥0 of sub σ -fields of F∞ such that F0 contains all F∞-null
sets. We are interested in H-valued martingales, where H is a separable Hilbert
space with norm | · |H and scalar product 〈·, ·〉H: if f = {fn}n∈N is a H-valued
martingale adapted to F , we note fn = ∑n

k=0 dfk , with the convention df0 := f0,
and dfk := fk − fk−1, for k ≥ 1. Similarly, if g is another adapted H-valued mar-
tingale, we note gn = ∑n

k=0 dgk with the same conventions. One says that g is
differentially subordinate to f if one has almost surely for k ≥ 0, |dgk|H ≤ |dfk|H.

In this paper, we consider continuous-in-time filtrations. Let us introduce again
(�,F∞,P) a probability space with a nondecreasing right continuous family F =
(Ft )t≥0 of sub σ -fields of F∞ such that F0 contains all F∞-null sets. We are
interested in H-valued càdlàg martingales, where H is a separable Hilbert space.
In order to clearly define differential subordination in this setting, we make use of
the square bracket or quadratic variation process.

Recall that the quadratic variation process of a real-valued semimartingale X

is the process denoted by [X,X] := ([X,X]t )t≥0 and defined as (see, e.g., Protter
[29])

[X,X]t = X2
t − 2

∫ t

0
Xs− dXs,

where we have set X0− = 0. Similarly, the quadratic covariation of two real-valued
semimartingales X and Y is the following process also known as the bracket pro-
cess:

[X,Y ]t := XtYt −
∫ t

0
Xs− dYs −

∫
Ys− dXs.

In the Hilbert-space-valued setting, one identifies H with �2 and defines [X,X] =∑∞
n=1[Xn,Xn], where Xn is the nth coordinate of X.

DEFINITION 1 (Differential subordination). Let X and Y two adapted càdlàg
semimartingales taking values in a separable Hilbert space. We say that Y is dif-
ferentially subordinate by quadratic variation to X iff

[X,X]t − [Y,Y ]t
is a nondecreasing and nonnegative function of t ≥ 0.

Let us denote by Xc the unique continuous part of X with

[X,X]t = |X0|2 + [
Xc,Xc]

t + ∑
0<s≤t

|�Xs |2,

where �Xt := Xt − Xt−. There holds [X,X]ct = [Xc,Xc]t and �[X,X]t =
|�Xt |2. We have the following characterisation distinguishing the continuous and
jump parts proved by Wang in [34], Lemma 1.
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LEMMA 1. If X and Y are semimartingales, then Y is differentially subor-
dinate to X if and only if (i) [X,X]ct − [Y,Y ]ct is a nonnegative and nonde-
creasing function of t , (ii) the inequality |�Yt | ≤ |�Xt | holds for all t > 0 and
(iii) |Y0| ≤ |X0|.

1.2. Martingales in nonhomogeneous weighted spaces. Let again (�,F∞,P)

be a probability space with a nondecreasing right continuous family F := (Ft )t≥0
of sub σ -fields of F∞ such that F0 contains all F∞-null sets. If X and Y are
adapted càdlàg square integrable H-valued martingales and Y is P-differentially-
subordinate to X, then it is obvious that

(1.2) ‖Y‖L2 ≤ ‖X‖L2 .

Recall here that ‖X‖L2 := supt ‖Xt‖L2 , where

(1.3) ‖Xt‖2
L2 := E|Xt |2 =

∫
�

∣∣Xt(ω)
∣∣2 dP(ω).

Assume again that Y is differentially subordinate to X. We might insist on
the underlying probability space at hand by saying in short that X and Y are P-
martingales and that Y is P-differentially-subordinate to X. The main concern of
this paper is to obtain sharp inequalities similar to (1.2) under a change of law in
the definition of the L2-norm according to [10]. To be more precise, we ask the
following.

QUESTION 1. Let P and Q such that (�,F∞,P) and (�,F∞,Q) are two
filtered probability spaces as described above. Does there exist a constant CP,Q >

0 depending only on (P,Q) such that if X and Y are uniformly integrable P-
martingales adapted to F and Y is P-differentially-subordinate to X, then

‖Y‖L2(dQ) ≤ CP,Q‖X‖L2(dQ)?

For this purpose, let w be a positive, uniformly integrable martingale (that we
often identify with its closure w∞) that we call a weight. This allows us to consider
the weighted norms L2(w) with ‖X‖L2(w) := (E(X2∞w))1/2. Given X and Y two
P-martingales as in the question above, we will seek a constant Cw such that

(1.4) ‖X‖L2(w) ≤ Cw‖Y‖L2(w).

In the case where dQ = w dP is a new probability measure, that is, the P-mean of
w equals 1, the inequality above answers the question with CP,Q = Cw . It is well
known that the class of weights allowing such estimates is the so-called A2 class.

DEFINITION 2 (A2 class). Let (�,F, (Ft )t≥0,P) be a filtered probability
space. We say that the weight w > 0, a locally integrable function, is in the A2
class, iff the A2 characteristic of the weight w, noted QF

2 [w] and defined as

QF
2 [w] := sup

τ
ess . sup

ω
(w)τ

(
w−1)

τ

with the first supremum running over all adapted stopping times, is finite.
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We often write QF
2 [w] := supτ ess . supω wτuτ where u := w−1 is the inverse

weight. Notice finally that both inequality (1.4) and the A2 characteristic QF
2 [w] of

the weight w are insensitive to the scaling w 
→ λw by an arbitrary factor λ > 0.
This is the reason why in the sequel we will prove (1.4) only assuming that the
weight is in the A2 class.

2. Statement of the main results.

THEOREM 1 (Differential subordination under change of law). Let X and Y

be two adapted uniformly integrable càdlàg H-valued martingales such that Y is
differentially subordinate to X. Let w be a weight in the A2 class. Then

‖Y‖L2(w) �QF
2 [w]‖X‖L2(w)

and the linear growth in QF
2 [w] is sharp.

The upper estimate of this result will be a consequence of the following bilinear
estimate.

PROPOSITION 1 (Bilinear estimate). Let X and Y be two adapted uniformly
integrable càdlàg H-valued martingales such that Y is differentially subordinate
to X. Let w an admissible weight in the A2 class. Then

E

∫ ∞
0

∣∣d[Y,Z]t
∣∣ �QF

2 [w]‖X‖L2(w)‖Z‖L2(u).

The proof of the above proposition will be based on the Bellman function
method. Let us fix some notation. Let us denote by V the quadruplet

V := (x, y, r, s) ∈ H×H×R∗+ ×R∗+ =: S.

The variables (x, y) will be associated to H-valued martingales whereas the vari-
ables (r, s) to R-valued martingales for the weights. We introduce the domain

DQ := {V ∈ S : 1 ≤ rs ≤ Q}.
We will often restrict our attention to truncated weights, that is given 0 < ε < 1,
we consider weights w such that ε ≤ w ≤ ε−1. This means the variables r and s

are bounded below and above and the domain becomes

Dε
Q := {

V ∈ DQ : ε ≤ r ≤ ε−1, ε ≤ s ≤ ε−1}
.

LEMMA 2 (Existence and properties of the Bellman function). There exists a
function B(V ) = BQ, that is, C1 on Dε

Q, and piecewise C2, with the estimate

B(V ) � |x|2
r

+ |y|2
s
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and on each sub-domain where it is C2 there holds

d2B ≥ 2

Q
|dx||dy|.

Whenever V and V0 are in the domain, the function has the property

B(V ) − B(V0) − dB(V0)(V − V0) ≥ 2

Q
|x − x0||y − y0|.

Moreover, we have the estimates∣∣(∂2
xB dx,dx

)∣∣ � ε−1|dx|2, ∣∣(∂2
yB dy,dy

)∣∣ � ε−1|dy|2

with the implied constants independent of V and (dx,dy).

We have an explicit expression of the function described in Lemma 2. This is,
aside from Theorem 1, one of the main results of this paper.

3. Existence and properties of the Bellman function.

PROOF OF LEMMA 2 (Existence and properties of the Bellman function). We
give an explicit expression for such a function. Let V = (x, y, r, s) and W = (r, s).
We first consider

B1(x, y, r, s) = 〈x, x〉
r

+ 〈y, y〉
s

.

Then trivially 0 ≤ B1 ≤ 〈x,x〉
r

+ 〈y,y〉
s

and

(
d2B1 dV,dV

) = 2

r
〈dx,dx〉 + 2〈x, x〉

r3 (dr)2 − 4
〈x,dx〉

r2 dr

+ 2

s
〈dy,dy〉 + 2〈y, y〉

s3 (ds)2 − 4
〈y,dy〉

s2 ds

= 2

r

〈
dx − x

r
dr,dx − x

r
dr

〉

+ 2

s

〈
dy − y

s
ds,dy − y

s
ds

〉
≥ 0.

Letting V0 = (x0, y0, r0, s0) and V = (x, y, r, s) we also calculate

−(
B1(V0) − B1(V ) + dB1(V0)(V − V0)

)
= −

(
x2

0

r0
− x2

r
+ 2x0

r0
(x − x0) − x2

0

r2
0

(r − r0)

)
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−
(

y2
0

s0
− y2

s
+ 2y0

s0
(y − y0) − y2

0

s2
0

(s − s0)

)

= r

〈
x

r
− x0

r0
,
x

r
− x0

r0

〉
+ s

〈
y

s
− y0

s0
,
y

s
− y0

s0

〉
.

We now consider the two functions from [31],

K(r, s) =
√

rs√
Q

(
1 −

√
rs

8
√

Q

)
,

N(r, s) =
√

rs√
Q

(
1 − (rs)3/2

128Q3/2

)

in the domain 1 ≤ rs ≤ Q. We have

0 ≤ K ≤
(

1 − 1

8
√

Q

)√
rs√
Q

<

√
rs√
Q

≤ 1,

0 ≤ N ≤
(

1 − 1

128Q3/2

)√
rs√
Q

<

√
rs√
Q

≤ 1,

so in particular rs ≥ rs − K2 > rs(1 − 1
Q

). One calculates that

−(
d2K dW,dW

) ≥ 1

8Q
|dr||ds|,

−(
d2N dW,dW

)
� 1

Q2 s2(dr)2,

−(
d2N dW,dW

)
� 1

Q2 r2(ds)2.

Furthermore, if W and W0 belong to the domain of K or N , then one also has

K(W0) − K(W) + dK(W0)(W − W0)�
1

Q
|r − r0||s − s0|,

N(W0) − N(W) + dN(W0)(W − W0)�
1

Q2 s0s|r − r0|2,

N(W0) − N(W) + dN(W0)(W − W0)�
1

Q2 r0r|s − s0|2.

These remarkable one-leg concavity properties were proven in [31].
Let now

B2 = 〈x, x〉
2r − 1

s(N(r,s)+1)

+ 〈y, y〉
s

= 〈x, x〉
r + M(r, s)

+ 〈y, y〉
s

,
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where

M(r, s) = r − 1

s(N(r, s) + 1)
.

We will need an appropriate lower bound for the Hessian of B2. One easily checks
that the functions

F(x, r,M) = 〈x, x〉
r + M

,

G(r, s,N) = 1

s(N + 1)

are convex, directly from the analysis of their Hessians. In order to estimate the
Hessian of B2 from below, one merely requires estimates of derivatives:

−∂MF = 〈x, x〉
(r + M)2 ≥ 〈x, x〉

4r2 and −∂NG = 1

s(N + 1)2 ≥ 1

4s
.

Since 0 ≤ r − 1
s(N(r,s)+1)

≤ r , we know 0 ≤ B2 ≤ |x|2
r

+ |y|2
s

. Therefore,

(
d2B2 dV,dV

)
� 〈x, x〉

4r2

1

s(N + 1)2

1

Q2 |dr|2s2 + 2

s

〈
dy − y

s
ds,dy − y

s
ds

〉

� |x|2s
Q2r2 |dr|2 + 2

s

〈
dy − y

s
ds,dy − y

s
ds

〉

� |x|
Qr

|dr|
∣∣∣∣dy − y

s
ds

∣∣∣∣.
The function B2 has the additional property

−(
B2(V0) − B2(V ) + dB2(V0)(V − V0)

)
� 〈x0, x0〉

Q2r2
0

s(r − r0)
2 + s

〈
y

s
− y0

s0
,
y

s
− y0

s0

〉
.

Indeed, write

〈x, x〉
2r − 1

s(N(r,s)+1)

= H
(
x, r, s,N(r, s)

)
with H(x, r, s,N) = 〈x, x〉

2r − 1
s(N+1)

.

Observe that H is convex and that

−∂NH � 〈x, x〉
Q2r2s

.
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Setting P0 = (x0, r0, s0,N0) and P = (x, r, s,N), we have by convexity of H that
H(P ) ≥ H(P0) + dH(P )(P − P0). Equivalently,

H(P ) − H(P0)

− ∂xH(P0)(x − x0) − ∂rH(P0)(r − r0) − ∂sH(P0)(s − s0)

≥ −∂NH(P0)(N0 − N).

Recall the one-leg concavity property of N :

N(r0, s0) − N(r, s) + ∂rN(r0, s0)(r − r0) + ∂sN(r0, s0)(s − s0)

� 1

Q2 s0s|r − r0|2.
Setting N0 = N(r0, s0), N = N(r, s) and using the lower derivative estimate of H

and the chain rule, we obtain the following one-leg convexity for B2:

B2(V ) − B2(V0) − dB2(V0)(V − V0)

� 〈x0, x0〉
Q2r2

0

s|r − r0|2 + s

〈
y

s
− y0

s0
,
y

s
− y0

s0

〉
.

Analogously,

B3 = 〈x, x〉
r

+ 〈y, y〉
2s − 1

r(N(r,s)+1)

has the same size estimates as well as(
d2B3 dV,dV

)
� |y|

Qs
|ds|

∣∣∣∣dx − x

r
dr

∣∣∣∣
and one-leg convexity

B3(V ) − B3(V0) − dB3(V0)(V − V0)

� 〈y0, y0〉
Q2s2

0

r|s − s0|2 + r

〈
x

r
− x0

r0
,
x

r
− x0

r0

〉
.

Let us now consider

H4(x, y, r, s,K) = sup
a>0

β(a, x, y, r, s,K) = sup
a>0

( 〈x, x〉
r + aK

+ 〈y, y〉
s + a−1K

)
.

Testing for critical points gives

∂aβ = − 〈x, x〉K
(r + aK)2 + 〈y, y〉K

(as + K)2 .

So ∂aβ = 0 if and only if

a = a′ = |y|r − |x|K
|x|s − |y|K .



906 K. DOMELEVO AND S. PETERMICHL

Since only a > 0 are admissible, we require that |y|r −|x|K and |x|s −|y|K have
the same sign. To determine sign change of ∂aβ at a′, consider

− |x|
r + aK

+ |y|
as + K

= (|y|r − |x|K) − a(|x|s − |y|K)

(r + aK)(as + K)
.

If the signs are negative, then the sign change is from negative to positive otherwise
from positive the negative. For a maximum to be attained at a′ > 0, we require
that both numerator and denominator be positive. Then, if K is relatively small,
meaning |y|r − |x|K and |x|s − |y|K are positive, we have

H4(x, y, r, s,K) = β
(
a′, x, y, r, s

)
= 〈x, x〉(|x|s − |y|K)

r(|x|s − |y|K) + (|y|r − |x|K)K

+ 〈y, y〉(|y|r − |x|K)

s(|y|r − |x|K) + (|x|s − |y|K)K

= 〈x, x〉s − 2|x||y|K + 〈y, y〉r
rs − K2 .

Observe that by the above considerations on K , the denominator is never 0. The
case |x| = 0 or |y| = 0 corresponds to other parts of the domain, so when K is
small in the above sense, this function is in C2.

When |y|r − |x|K ≤ 0 or |x|s − |y|K ≤ 0, the supremum is attained at the
boundary and H4 = 〈y,y〉

s
or H4 = 〈x,x〉

r
. Thanks to the size restrictions on K , we

never have both |x|s − |y|K ≤ 0 and |y|r − |x|K ≤ 0 unless x, y = 0. Indeed

|x|(|x|s − |y|K) + |y|(|y|r − |x|K)
= |x|2

r
− 2

|x||y|
rs

K + |y|2
s

=
( |x|√

r
− |y|√

s

)2
+ 2|x||y|√

rs

(
1 − K√

rs

)
.

With 1 − K√
rs

> 0, we see that the above is never negative and the vanishing of the

quantity implies x = y = 0. If |x|s − |y|K ≤ 0 and |y|r − |x|K > 0, then 〈x,x〉
r

<
〈y,y〉

s
and H4 = 〈y,y〉

s
, if |y|r − |x|K ≤ 0 and |x|s − |y|K > 0 then H4 = 〈x,x〉

r
.

Notice that when 〈x,x〉
r

= 〈y,y〉
s

and x, y �= 0 then |y|r − |x|K > 0 and |x|s −
|y|K > 0. Indeed, we have seen |x|2

r
− 2 |x||y|

rs
K + |y|2

s
> 0. Thus 〈x,x〉

r
= 〈y,y〉

s
>

|x||y|
rs

K and |y|r − |x|K > 0 and |x|s − |y|K > 0.
Thus H4 ∈ C2 for these parts of the domain. We also see from these considera-

tions that in order to see H4 ∈ C1 we only need to check the cuts |x|s − |y|K = 0
and |y|r − |x|K ≥ 0 as well as |y|r − |x|K = 0 and |x|s − |y|K ≥ 0.
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When |y|r −|x|K > 0 and |x|s −|y|K > 0 (we call this part of the domain R1),

(∂xH4,dx) = 2
〈dx, x〉

|x|
|x|s − |y|K

rs − K2 ,

∂rH4 = −(|x|s − |y|K)2

(rs − K2)2 ,

∂KH4 = −2
(|x|s − |y|K)(|y|r − |x|K)

(rs − K2)2 .

We first prove that ∂xH4 is continuous throughout. Recall that we have to treat
three regions: R2, where |y|r − |x|K > 0 and |x|s − |y|K ≤ 0, R3, where |x|s −
|y|K > 0 and |y|r − |x|K ≤ 0 and R1. Inside R2, we have H4 = 〈y,y〉

s
, and thus

∂xH4 = 0. Inside R3, we have H4 = 〈x,x〉
r

and thus, ∂xH4 = 2〈x,dx〉
r

. Inside R1, we
have

∂xH4 = 2
〈dx, x〉

|x|
|x|s − |y|K

rs − K2

= 2〈x,dx〉 |x|s − |y|K
r(|x|s − |y|K) + (|y|r − |x|K)K

.

Consider three cases, first, let us first approach a boundary point of R1 from within
R1 such that |y|r − |x|K = a > 0 and |x|s − |y|K = 0. Let 0 < ε < a/2 and
assume a − ε < |y|r − |x|K < a + ε and 0 < |x|s − |y|K < ε. There holds
|〈∂xH4,dx〉| ≤ 2|dx| ε

rs−K2 � ε|dx| since rs − K2 is bounded below. Letting
ε → 0 shows continuity at this point. Second, let us approach a boundary point
such that |x|s −|y|K = a > 0 and |y|r −|x|K = 0 from within R1. Assume there-
fore again 0 < ε < a/2, a − ε < |x|s −|y|K < a + ε and 0 < |y|r −|x|K < ε. We
show there holds (∂xH4, dx)� ε

a
|dx|. Since

1

r
− (|y|r − |x|K)

K
|x|s − |y|K

r2(|x|s − |y|K)2

≤ (|x|s − |y|K)

r(|x|s − |y|K) + (|y|r − |x|K)K

≤ 1

r
,

we have ∣∣∣∣ 2〈x,dx〉(|x|s − |y|K)

r(|x|s − |y|K) + (|y|r − |x|K)K
− 2〈x,dx〉

r

∣∣∣∣
≤ 2

∣∣〈x,dx〉∣∣ (|y|r − |x|K)K

r2(|x|s − |y|K)

� |x||dx| ε
a
.
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Since 0 < |y|r − |x|K < ε and s, r,K controlled, one can deduce from |x|s −
|y|K ∼ a that |x| ∼ a. Last, let us approach |y|r − |x|K = 0 and |x|s − |y|K = 0.
To this end, one can see that if 0 < |y|r − |x|K < ε and 0 < |x|s − |y|K < ε then
|x|, |y|� ε, establishing continuity in the third case.

The derivative ∂rH4 is similar since the term |x|s−|y|K
rs−K2 reappears as a square and

in R3 notice that H4 = 〈x,x〉
r

so ∂rH4 = −〈x,x〉
r2 . It is easy to see that the derivative

∂KH4 is zero in R2 and R3 as well as when approaching the boundary of R1.
By symmetry in the variables, the function is in C1. As a consequence,

B4(x, y, r, s) = H4
(
x, y, r, s,K(r, s)

) ∈ C1.

Function H4 is a supremum of convex functions and, therefore, convex. It has been
shown indirectly in [24] that −∂KH4 ≥ 0 everywhere and that in R′

1 ⊂ R1 where
|y|r − 2|x|K > 0 and |x|s − 2|y|K > 0 we have −∂KH4 � |x||y|

rs
. We present an

easier argument. Recall that

−∂KH4

= 2
(|x|s − |y|K)(|y|r − |x|K)

(rs − K2)2

= 2
(|x|s − |y|K)(|y|r − |x|K)|x||y|

(r(|x|s − |y|K) + K(|y|r − |x|K))(s(|y|r − |x|K) + K(|x|s − |y|K))
.

So −∂KH4 ≥ c
|x||y|

rs
if

rs

c
≥ K2 + rs + Kr(|x|s − |y|K)

|y|r − |x|K + Ks(|y|r − |x|K)

|x|s − |y|K .

Now K2 ≤ 1 ≤ rs and when |y|r −2|x|K ≥ 0 then |y|r −|x|K ≥ |x|K . Similarly,
|x|s − |y|K ≥ |y|K . So the last two terms are bounded by Kr|x|s

|x|K + Ks|y|r
|y|K = 2rs.

So c = 1/4 works. In R′
1,

(
d2B4 dV,dV

) ≥ 4
|x||y|
8rsQ

|dr||ds| = |x||y|
2rsQ

|dr||ds|.

We need to add more functions with the good concavity for other K . Let

B5 = 〈x, x〉
2r − 1

s(K(r,s)+1)

+ 〈y, y〉
s

.

Since 0 ≤ r − 1
s(K(r,s)+1)

≤ r , we know 0 ≤ B5 ≤ |x|2
r

+ |y|2
s

. Now the Hessian
estimate becomes

(
d2B5 dV,dV

) ≥ 〈x, x〉
4r2

1

s(K + 1)2

1

8Q
|dr||ds| ≥ |x|2

128Qsr2 |dr||ds|.



CHANGE OF LAW 909

So the function B5 is convex and when 2|x|K ≥ |y|r , then

(
d2B5 dV,dV

) ≥ |x||y|
256KQsr

|dr||ds| ≥ |x||y|
256Qsr

|dr||ds|.
If we set

B6 = 〈x, x〉
r

+ 〈y, y〉
2s − 1

r(K(r,s)+1)

,

then B6 is convex, 0 ≤ B6 ≤ |x|2
r

+ |y|2
s

and when 2|y|K ≥ |x|s then

(
d2B6 dV,dV

) ≥ |x||y|
256Qsr

|dr||ds|.
Putting the above facts together, we see that the function B7 = B4 + B5 + B6
satisfies (

d2B7 dV,dV
)
� |x||y|

Qsr
|dr||ds|.

Through similar considerations as above, we have discrete one-leg convexity

B7(V ) − B7(V0) − dB7(V0)(V − V0)�
|x0||y0|
Qs0r0

|r − r0||s − s0|.
Letting for appropriate fixed ci ,

(3.1) B = c1B1 + c2B2 + c3B3 + c7B7,

we obtain 0 ≤ B � |x|2
r

+ |y|2
s

and d2B ≥ 2
Q

|dx||dy| in the regions where B ∈ C2.
Indeed,(

d2B1 dV,dV
) ≥ 4

Q
|dx||dy| + 4|x||y|

Qrs
|dr||ds| − 4|y|

Qs
|dx||ds| − 4|x|

Qr
|dy||dr|,

(
d2B2 dV,dV

) ≥
√

3|x|
2Qr

|dy||dr| −
√

3|x||y|
2Qrs

|dr||ds|,

(
d2B3 dV,dV

) ≥
√

3|y|
2Qs

|dx||ds| −
√

3|x||y|
2Qrs

|dr||ds|,
(
d2B7 dV,dV

) ≥ |x||y|
256Qrs

|dr||ds|,

where the last inequality holds in the regions where the function B4 ∈ C2. The
weighted sum of these inequalities according to (3.1) yields the desired inequality
on convexity. Now,

B1(V ) − B1(V0) − dB1(V0)(V − V0)

� rs

Q

∣∣∣∣xr − x0

r0

∣∣∣∣
∣∣∣∣ys − y0

s0

∣∣∣∣ ≥ rs

Q

∣∣∣∣
〈
x

r
− x0

r0
,
y

s
− y0

s0

〉∣∣∣∣,
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B2(V ) − B2(V0) − dB2(V0)(V − V0)

� s

Q

|x0|
r0

|r − r0|
∣∣∣∣ys − y0

s0

∣∣∣∣ ≥ s

Q

∣∣∣∣
〈
x0

r0
,
y

s
− y0

s0

〉∣∣∣∣|r − r0|,
B3(V ) − B3(V0) − dB3(V0)(V − V0)

� r

Q

|y0|
s0

|s − s0|
∣∣∣∣xr − x0

r0

∣∣∣∣ ≥ r

Q

∣∣∣∣
〈
x

r
− x0

r0
,
y0

s0

〉∣∣∣∣|s − s0|,
B7(V ) − B7(V0) − dB7(V0)(V − V0)

� 1

Q
|x0||y0||r − r0||s − s0| ≥ 1

Q
|〈x0, y0〉||r − r0||s − s0|.

Notice that the last inequalities also remain true when we replace x by �x and x0
by �x0 where the rotation � is chosen so that �(x −x0) and y −y0 have the same
direction, and thus we may assume that 〈x − x0, y − y0〉 = |x − x0||y − y0|.

Summing the above inequalities give

Q
(
B(V ) − B(V0) − dB(V0)(V − V0)

)
�

〈(
x

r
− x0

r0

)
r,

(
y

s
− y0

s0

)
s + y0

s0
(s − s0)

〉

+
〈
x0

r0
(r − r0),

(
y

s
− y0

s0

)
s + y0

s0
(s − s0)

〉

=
〈(

x

r
− x0

r0

)
r, y − y0

〉
+

〈
x0

r0
(r − r0), y − y0

〉
= 〈x − x0, y − y0〉 = |x − x0||y − y0|

and we have proved the one-leg convexity. It remains to bound the second deriva-
tives in x and y. Let ε be the cut off of the weights so that ε ≤ r, s ≤ ε−1. We
calculate (

∂2
x

〈x, x〉
r

dx,dx

)
= 2〈dx,dx〉

r
� ε−1〈dx,dx〉;

(
∂2
x

〈x, x〉
r + M(r, s)

dx,dx

)
= 2〈dx,dx〉

r + M(r, s)
≤ 2〈dx,dx〉

r
� ε−1〈dx,dx〉;

(
∂2
x

〈x, x〉s − 2|x||y|K + 〈y, y〉r
rs − K2 dx,dx

)

= 2〈dx,dx〉s
rs − K2 − 2|y|K

rs − K2

(〈dx,dx〉
|x| − 〈x,dx〉2

|x|3
)
� ε−1〈dx,dx〉,

where the lower bound for rs −K2 > rs(1− 1
Q

) ≥ 1− 1
Q

is used in the last implied

constant. We also used 〈x,dx〉2 ≤ 〈x, x〉〈dx,dx〉 which yields 〈dx,dx〉
|x| − 〈x,dx〉2

|x|3 ≥ 0.
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These imply that for V ∈ DQ,ε we have

(3.2)
(
∂2
xB(V )dx,dx

)
� ε−1|dx|2.

This concludes the proof of Lemma 2. �

Convexities of the form d2B(V ) ≥ 2|dx||dy| can be self-improved using the
following interesting lemma.

LEMMA 3 (Ellipse lemma, Dragicevic–Treil–Volberg [15]). Let H be a
Hilbert space with A,B two positive definite operators on H. Let T be a self-
adjoint operator on H such that

(T h,h) ≥ 2(Ah,h)1/2(Bh,h)1/2

for all h ∈ H. Then there exists τ > 0 satisfying

(T h,h) ≥ τ(Ah,h) + τ−1(Bh,h)

for all h ∈ H.

For our specific Bellman function, we will need a quantitative version.

LEMMA 4 (Quantitative ellipse lemma for B). Let V ∈ Dε
Q. Assume moreover

that B is C2 at V . Then there exists τ(V ) > 0 such that

Qd2
V B(V ) ≥ τ(V )|dx|2 + (

τ(V )
)−1|dy|2.

Moreover, we have the bound

Q−1ε � τ(V ) �Qε−1.

PROOF (Quantitative ellipse lemma for B). Let V ∈ Dε
Q. We have already

seen in Lemma 2 that

d2
V B(V ) ≥ 2

Q
|dx||dy|.

The ellipse lemma [15] implies the existence of τ(V ) such that for all vectors dx

and dy there holds

Qd2
V B(V ) ≥ τ(V )|dx|2 + (

τ(V )
)−1|dy|2.

We can estimate τ(V ) by testing the Hessian on any dV of the form dV =
(dx,0,0,0),

τ(V )|dx|2 ≤ Q
(
d2
V B(V )dV,dV

) = Q
(
∂2
xB(V )dx,dx

)
�Qε−1|dx|2,
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where the last inequality follows from (3.2). Hence τ(V )� Qε−1 as claimed. The
same bound holds for (τ (V )−1) by testing against dV = (0,dy,0,0). Finally, we
have proved that for all V ∈ Dε

Q,

Q−1ε � τ(V ) �Qε−1. �

We now address the lack of smoothness of B . All functions aside from H4 that
appear are at least in C2. We apply a standard mollifying procedure via convolu-
tion with ϕ� directly on H4(x, y, r, s,K), now only taking real variables with x, y

positive, 1 < rs < Q and 0 < K < 1. Here, ϕ denotes a standard mollifying kernel
in the five real variables (x, y, r, s,K) ∈R5 with support in the corresponding unit
ball, whereas ϕ�(·) := �−5ϕ(·/�) denotes its scaled version with support of size �.
By slightly changing the constructions, the upper and lower estimate on the prod-
uct rs can be modified at the cost of a multiplicative constant in the final estimate
of the Bellman function. Also take into account that the weights are cut, therefore
bounded above and below. Further, we will assume that the positive variables x

and y be bounded below. These considerations give us enough room to smooth the
function H4. It is important that H4 is at least in C1 and its second-order partial
derivatives exist almost everywhere. So we have d2(H4 ∗ ϕ�) = (d2H4) ∗ ϕ�. Last,
we are observing that as long as the norms of vectors |x| and |y| are bounded away
from 0, our function H4 ∗ ϕ�, mollified in R5 remains smooth when taking vector
variables (observe that the final Bellman function only depends upon |x| and |y|).
It is important that the smoothing happens before the function is composed with K ,
we therefore preserve fine convexity properties, in particular also the much needed
one-leg convexity. Size estimates change slightly, but are recovered when the mol-
lifying parameter goes to 0. These details are either standard and have appeared
in numerous articles on Bellman functions, or an easy consequence of the above
construction.

LEMMA 5 (Regularised Bellman function and its properties). Let ε > 0 given.
Let 0 < � ≤ ε/2. There exists a function B�(x, y, r, s) defined on the domain

Dε,�
Q := {

V ∈ Dε
Q; |x| ≥ �, |y| ≥ �

} ⊂Dε
Q

such that for all V0,V ∈ Dε,�
Q , we have

B� � (1 + �)

( |x|2
r

+ |y|2
s

)
,

d2
V B�(V ) ≥ 2

Q
|dx||dy|,(3.3)

B�(V ) − B�(V0) − dV B�(V0)(V − V0) ≥ 1

Q
|�x||�y|

(3.4)

= 1

Q
|x − x0||y − y0|.
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Moreover, the quantitative ellipse lemma now holds in the form

Qd2
V B�(V ) ≥ τ�(V )|dx|2 + (

τ�(V )
)−1|dy|2,

where τ� := τ�(V ) is a continuous function of its arguments, and where

Q−1ε � τ�(V ) � Qε−1.

4. Dissipation estimates. Let V := (X,Z,u,w) a càdlàg adapted martingale
with values in Dε

Q. In order to bound the H-valued martingale X := (X1,X2, . . .)

away from 0, it is classical to introduce the R × H-valued martingales Xa :=
(a,X1,X2, . . .) where a > 0. It follows that ‖Xa‖2 = ‖X‖2 + a2 and ‖Xa‖ ≥ a,
and the same construction holds for Z. We note V a := (Xa,Za,u,w). Given a
smoothing parameter � > 0, take a ≥ � then it follows that

V ∈ Dε
Q ⇒ V a ∈ Dε,�

Q .

The main result of this section is the following dissipation estimate.

PROPOSITION 2 (Dissipation estimate). Let ε > 0, � > 0 as defined above. Let
V a càdlàg adapted martingale with V ∈ Dε

Q. Let finally Ft := E(|X∞|2wε∞|Ft )

and Gt := E(|Z∞|2uε∞|Ft ). Let finally a ≥ �. We have

Q(1 + �)
(
EFt +EGt + 2a2ε−1)

� 1

2
E

∫ t

0
τ�(Vs−)d[X,X]cs + (

τ�(Vs−)
)−1 d[Z,Z]cs +E

∑
0<s≤t

|�Xs ||�Zs |.

We need the preliminary lemma.

LEMMA 6 (Comparison of quadratic forms in stochastic integrals). Let Q de-
note the set of quadratic forms from Rm ×Rm → R and A := (Aαβ)1≤α,β≤m and
B := (Bαβ)1≤α,β≤m two Q-valued càdlàg processes. Assume for all t ≥ 0 and a.s.
that A(t) ≥ B(t) [resp., A(t) ≥ |B(t)|], in the sense that

(AdV,dV ) ≥ (B dV,dV )
[
resp., (AdV,dV ) ≥ ∣∣(B dV,dV )

∣∣]
for all dV ∈Rm. Abbreviating As− : d[V,V ]s = ∑

α,β(Aαβ)s− d[Vα,Vβ]s we have
for all t ≥ 0,

E

∫ t

0
As− : d[V,V ]s ≥ E

∫ t

0
Bs− : d[V,V ]s(

resp.,E
∫ t

0
As− : d[V,V ]s ≥ E

∫ t

0

∣∣Bs− : d[V,V ]s
∣∣).
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PROOF (Comparison of quadratic forms in stochastic integrals). Under the
hypotheses above, let us consider the case A(t) ≥ B(t), the case A(t) ≥ |B(t)|
being treated in the same manner. Given t ≥ 0, assume that∫ t

0
As− : d[V,V ]s = ∑

α,β

∫ t

0
(Aαβ)s− d[Vα,Vβ]s < ∞,

otherwise the claim is proved. Given the process V , let σn := (0 ≤ T n
0 ≤ T n

1 ≤
· · · ≤ T n

i ≤ · · · ≤ T n
kn

≤ t) denote a random partition of stopping times tending to
the identity as n tends to infinity. Given α and β , we have that Aαβ is a R-valued
càdlàg process. It follows (see, e.g., Protter [29]) that the stochastic integral

(4.1)
∫ t

0
Aαβ(s−)d[Vα,Vβ]s

is the limit in u.c.p. (uniform convergence in probability) as n tends to infinity of
sums

SA
αβ :=

kn−1∑
i=0

Aαβ

(
T n

i

)(
V

T n
i+1

α − V
T n

i
α

)(
V

T n
i+1

β − V
T n

i

β

)

involving the stopping times defined above. Since A ≥ B , summing w.r.t. α,β

yields, for any s ∈ [0, t],
(∑

α,β

SA
αβ

)
(s) := ∑

α,β

kn−1∑
i=0

Aαβ

(
T n

i

)(
V

T n
i+1

α,s − V
T n

i
α,s

)(
V

T n
i+1

β,s − V
T n

i

β,s

)

=
kn−1∑
i=0

∑
α,β

Aαβ

(
T n

i

)(
V

T n
i+1

α,s − V
T n

i
α,s

)(
V

T n
i+1

β,s − V
T n

i

β,s

)

≥
kn−1∑
i=0

∑
α,β

Bαβ

(
T n

i

)(
V

T n
i+1

α,s − V
T n

i
α,s

)(
V

T n
i+1

β,s − V
T n

i

β,s

)

≥
(∑

α,β

SB
αβ

)
(s)

with an obvious definition for SB
αβ . Passing to the limit in the sums

∑
α,β gives the

result. �

PROOF OF PROPOSITION 2 (Dissipation estimates).
Step 1. We first pass to a finite dimensional case. Let V a càdlàg adapted

martingale with V ∈ Dε
Q. Then V a ∈ Dε,�

Q . We note Xa,m the projection of
Xa ∈ R × H onto R × Rm, and introduce accordingly Za,m and V a,m. Notice



CHANGE OF LAW 915

that [Xa,Xa] = a2 + [X,X] and similarly [Xa,m,Xa,m] = a2 + [Xm,Xm]. Since
V a,m ∈ Dε,�

Q where B� is C2 and we can apply Itô’s formula and obtain, for all
t > 0, almost sure paths,

B�

(
V

a,m
t

) = B�

(
V

a,m
0

)
+

∫ t

0+
dV B

(
V

a,m
s−

)
dV m

s + 1

2

∫ t

0+
d2
V B�

(
V

a,m
s−

) : d
[
V m,V m]c

s

+ ∑
0<s≤t

{
B�

(
V a,m

s

) − B�

(
V

a,m
s−

) − dV B�

(
V

a,m
s−

)
�V m

s

}
.

Thanks to Lemma 4 and Lemma 6, the concavity properties (3.3) of B� imply for
the continuous part

1

2

∫ t

0+
d2
V B�

(
V

a,m
s−

) : d
[
V m,V m]c

s

≥ 1

2Q

∫ t

0+
τ�

(
V

a,m
s−

)
d
[
Xm,Xm]c

s + (
τ�

(
V

a,m
s−

))−1 d
[
Zm,Zm]c

s .

Also, the concavity properties (3.4) of B� for the jump part

B�

(
V a,m

s

) − B�

(
V

a,m
s−

) − dV B�

(
V

a,m
s−

)
�V m

s ≥ 1

Q

∣∣�Xm
s

∣∣∣∣�Zm
s

∣∣.
Plugging the continuous and jump dissipation estimates into Itô’s formula yields
for all times, almost sure paths,

B�

(
V

a,m
t

) ≥ B�

(
V

a,m
0

) +
∫ t

0+
dV B�

(
V

a,m
s−

)
dV m

s

+ 1

2Q

∫ t

0
τ�

(
V

a,m
s−

)
d
[
Xm,Xm]c

s + (
τ�

(
V m

s−
))−1 d

[
Zm,Zm]c

s

+ 1

Q

∑
0<s≤t

∣∣�Xm
s

∣∣∣∣�Zm
s

∣∣.
Step 2. For technical reasons in the proof, we work with bounded martingales

that we obtain through a usual stopping procedure. Recall that V is a càdlàg
adapted martingale with V ∈ Dε

Q and V a ∈ Dε,�
Q . For all M ∈ N, define the stop-

ping time TM := inf{t > 0; |V a|2t + [V a,V a]t > M2}, so that TM is a stopping
time that tends to infinity as M goes to infinity. It follows that V a,TM is a local
martingale, and that V a,TM− and [V a,V a]TM− are bounded semimartingales. Let
m ∈ N� and V a,m the projection of V a onto Rm ⊂ H. For each M , there exists a
sequence {TM,k}k≥1 of stopping times such that TM,k ↑ TM as k ↑ ∞, and such
that (V a,m)TM,k is a martingale. Since |V a,m| ≤ |V a|, it follows that (V a,m)TM,k−
is a bounded semimartingale, to which we can apply the dissipation estimate of
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Step 1 above and obtain

B�

(
V

a,m
t∧TM,k−

)
≥ B�

(
V

a,m
0

) +
∫ t∧TM,k−

0+
dV B�

(
V

a,m
s−

)
dV m

s

+ 1

2Q

∫ t∧TM,k−
0

τ�

(
V

a,m
s−

)
d
[
Xm,Xm]c

s + (
τ�

(
V

a,m
s−

))−1 d
[
Zm,Zm]c

s

+ 1

Q

∑
0<s<t∧TM,k

∣∣�Xm
s

∣∣∣∣�Zm
s

∣∣

= B�

(
V

a,m
0

) +
∫ t∧TM,k

0+
dV B�

(
V

a,m
s−

)
dV m

s

+ 1

2Q

∫ t∧TM,k−
0

τ�

(
V

a,m
s−

)
d
[
Xm,Xm]c

s + (
τ�

(
V

a,m
s−

))−1 d
[
Zm,Zm]c

s

+ 1

Q

∑
0<s<t∧TM,k

∣∣�Xm
s

∣∣∣∣�Zm
s

∣∣ − dV B�

(
V

a,m
t∧TM,k−

)
�V m

t∧TM,k
.

Taking expectation and then letting k → ∞, the dominated convergence theorem
yields

EB�

(
V

a,m
t∧TM−

)
≥ EB�

(
V

a,m
0

)
+ 1

2Q
E

∫ t∧TM

0
τ�

(
V

a,m
s−

)
d
[
Xm,Xm]c

s + (
τ�

(
V

a,m
s−

))−1 d
[
Zm,Zm]c

s

+ 1

Q
E

∑
0<s<t∧TM

∣∣�Xm
s

∣∣∣∣�Zm
s

∣∣ −E
{
dV B�

(
V

a,m
t∧TM−

)
�V m

t∧TM

}
.

(4.2)

Observe that we used size properties of B�, the definition of the stopping time
TM,k , the estimate of the τ� provided by Lemma 5 and the size control of the
weights.

Step 3. Now, we wish to return to the infinite dimensional case. First, recall
that 0 ≤ B�(V ) � (1 + �)(X2/u + Y 2/w). Let Ft := E(|X∞|2w∞|Ft ), Gt :=
E(|Z∞|2u∞|Ft ) and Fa

t := E(|Xa∞|2w∞|Ft ), Ga
t := E(|Za∞|2u∞|Ft ). Notice that

Fa
t = E((|X∞|2 + a2)w∞|Ft ) ≤ Ft + E(a2wε∞|Ft ) ≤ Ft + a2ε−1. It follows,

thanks to Jensen inequality, that

B�

(
V a

t

) ≤ C0(1 + �)
(
Fa

t + Ga
t

)
� (1 + �)

(
Ft + Gt + 2a2ε−1)

.

A similar inequality holds for V a,m and in particular

B�

(
V

a,m
t∧TM−

)
� (1 + �)

(
Ft∧TM− + Gt∧TM− + 2a2ε−1)

.
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Hence, the dominated convergence theorem implies that EB�(V
a,m
t∧TM−) converges

when m goes to infinity towards EB�(V
a
t∧TM−).

Let us consider the first term in the last integral of step 2, the second term
integral in inequality (4.2). We write

E

∫ t∧TM

0
τ�

(
V

a,m
s−

)
d
[
Xm,Xm]c

s = E

∫ t∧TM

0
τ�

(
V a

s−
)

d[X,X]cs

+E

∫ t∧TM

0

(
τ�

(
V

a,m
s−

) − τ�

(
V a

s−
))

d[X,X]cs

+E

∫ t∧TM

0
τ�

(
V

a,m
s−

)
d
([

Xm,Xm]c − [X,X]c)s .
The uniform boundedness and continuity of τ�, the square integrability of X and
the Dominated convergence theorem imply that the second term of the right-hand
side converges to zero. The last term can be bounded above using the estimates for
τ�, ∣∣∣∣E

∫ t∧TM

0
τ�

(
V

a,m
s−

)
d
([

Xm,Xm]c − [X,X]c)s
∣∣∣∣

� Q

ε
E

∫ t∧TM

0

∣∣ d
([

Xm,Xm]c − [X,X]c)s ∣∣
� Q

ε
E

∫ t∧TM

0
d
([X,X]c − [

Xm,Xm]c)
s

� Q

ε

(
E[X,X]ct∧TM

−E
[
Xm,Xm]c

t∧TM

)
,

where we used that for a fixed m, [X,X]c − [Xm,Xm]c is a nonnegative nonde-
creasing process. The last expression in the last line tends to zero when m → ∞ by
the monotone convergence theorem. We prove in a similar manner the convergence

E
∑

0<s<t∧TM

∣∣�Xm
s

∣∣∣∣�Zm
s

∣∣ −−−−→
m→∞ E

∑
0<s<t∧TM

|�Xs ||�Zs |.

Finally, since |V a,m
t∧TM−| ≤ |V a

t∧TM−| for all m, dV B� is continuous and bounded

on compacts, |�V m
t∧TM

|2 ≤ |�Vt∧TM
|2 ≤ [V,V ]t and E[V,V ]t = E|Vt |2 < ∞, the

dominated convergence theorem ensures that

−E
{
dV B�

(
V

a,m
t∧TM−

)
�V m

t∧TM

} → −E
{
dV B�

(
V a

t∧TM−
)
�Vt∧TM

}
.

Collecting all terms,

EB�

(
V a

t∧TM−
)

≥ 1

2Q
E

∫ t∧TM

0
τ�

(
V a

s−
)

d[X,X]cs + (
τ�

(
V a

s−
))−1 d[Z,Z]cs
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+ 1

Q
E

∑
0<s<t∧TM

|�Xs ||�Zs |

−E
{
dV B�

(
V a

t∧TM−
)
�Vt∧TM

}
.

Step 4. Now we add the contribution of the possible jumps occurring at TM . We
have seen in Step 1 the dissipation estimate along one jump

B�

(
V a

t∧TM

) − B�

(
V a

t∧TM−
) − dV B�

(
V a

t∧TM−
)
�Vt∧TM

≥ 1

Q
|�Xt∧TM

||�Zt∧TM
|.

Taking expectation and adding the contribution of Step 3 yields

EB�

(
V a

t∧TM

) ≥ 1

2Q
E

∫ t∧TM

0
τ�

(
V a

s−
)

d[X,X]cs + (
τ�

(
V a

s−
))−1 d[Z,Z]cs

+ 1

Q
E

∑
0<s≤t∧TM

|�Xs ||�Zs |.
(4.3)

Step 5. We will pass to the limit M → ∞. Recall again that 0 ≤ B�(V ) �
(1+�)(X2/u+Y 2/w). Using Doob’s inequality for square integrable martingales,
we have for all M ,

EB�

(
V a

t∧TM

)
� ε−1(1 + �)

(
EX2 +EY 2)

< ∞.

So, by the dominated convergence theorem, EB�(V
a
t∧TM

) → EB�(V
a
t ) as M → ∞.

The monotone convergence theorem for the integral in the right-hand side of the
inequality (4.3) therefore yields

(1 + �)
(
EFt +EGt + 2a2ε−1)

≥ EB�

(
V a

t

)
� 1

2Q
E

∫ t

0
τ�

(
V a

s−
)

d[X,X]cs + (
τ�

(
V a

s−
))−1 d[Z,Z]cs

+ 1

Q
E

∑
0<s≤t

|�Xs ||�Zs |.

This concludes the proof of Proposition 2. �

5. Truncation of the weights. Due to several technicalities in the proof, we
have used weights bounded from above and away from 0. In order to pass to the
general case, we cut a possibly unbounded weight above and below and show that
this operation does not increase the characteristics of the weight. This is convenient
and has been used in several places; here, we extend [30] to the martingale setting.
We need the following preliminary lemmas.
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LEMMA 7 (Truncation from above). For a > 0, let M = {w ≤ a}, H = {w >

a} and set wā = wχM + aχH . Then QF
2 [wā] ≤ QF

2 [w].

PROOF. Let τ be a stopping time and let us decompose

E(w|Fτ ) = E(wχM |Fτ ) +E(wχH |Fτ )

= E(χM |Fτ )EM(w|Fτ ) +E(χH |Fτ )EH (w|Fτ ),

where, for example, EM(w|Fτ ) means expectation is taken with respect to the
measure χM dP. Write as usual E(χM |Fτ ) = (χM)τ . We have

E(w|Fτ )E
(
w−1|Fτ

) −E(wā|Fτ )E
(
w−1

ā |Fτ

)
= (

(χM)τEL(w|Fτ ) + (χH )τEH(w|Fτ )
)(

(χM)τEL

(
w−1|Fτ

)
+ (χH )τEH

(
w−1|Fτ

)) − (
(χM)τEL(w|Fτ )

+ (χH )τ a
)(

(χM)τEL

(
w−1|Fτ

) + (χH )τ a
−1)

= (χM)τ (χH )τ
(
EM(w|Fτ )EH

(
w−1|Fτ

) +EM

(
w−1|Fτ

)
EH (w|Fτ )

−EM(w|Fτ )a
−1 −EM

(
w−1|Fτ

)
a
)

+ (χH )2
τ

(
EH(w|Fτ )EH

(
w−1|Fτ

) − 1
)
.

The last term is positive thanks to Jensen inequality. Let us observe that also

EM(w|Fτ )EH

(
w−1|Fτ

) +EM

(
w−1|Fτ

)
EH(w|Fτ )

−EM(w|Fτ )a
−1 −EM

(
w−1|Fτ

)
a

= EM(w|Fτ )EH

(
w−1 − a−1|Fτ

) +EM

(
w−1|Fτ

)
EH(w − a|Fτ )

= EH

(
w − a

wa

(
waEM

(
w−1|Fτ

) −EM(w|Fτ )
)∣∣∣Fτ

)
≥ 0.

Here, the last inequality uses EM(w−1|Fτ ) ≥ a−1 and EM(w|Fτ ) ≤ a also w −
a ≥ 0 on H . This proves the lemma. �

LEMMA 8 (Two-sided truncation). For a > 0, let M = {a−1 ≤ w ≤ a}, L =
{w < a−1}, H = {w > a} and set wa = a−1χL + wχM + aχH . Then we have
QF

2 [wa] ≤ QF
2 [w].

PROOF. Let wā be the weight obtained in the previous lemma. Apply now the
previous lemma to w−1

ā , truncating above by the same a. �
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6. Proof of the main results.

PROOF OF PROPOSITION 1 (Bilinear estimate). Let λ > 0. If Y differentially
subordinate to X, then λY is differentially subordinate to λX. Let w a weight in
the A2 class. Let wε denote the ε-truncation of w. Use Proposition 2 with V ε,λ :=
(λX,λ−1Z,uε,wε) and Q = QF

2 [w]. Recalling that QF
2 [wε] ≤ QF

2 [w], noticing
that V ε,λ ∈ Dε,�

Q and using the differential subordination of λY w.r.t. λX, we have
for all t > 0,

QF
2 [w](1 + �)

(
Eλ2Ft +Eλ−2Gt + 2a2ε−1)

� 1

2
E

∫ t

0
τ�

(
V a

s−
)

d[λX,λX]cs + (
τ�

(
V a

s−
))−1 d

[
λ−1Z,λ−1Z

]c
s

+E
∑

0<s≤t

|λ�Xs |
∣∣λ−1�Zs

∣∣

� 1

2
E

∫ t

0
τ�

(
V a

s−
)

d[λY,λY ]cs + (
τ�(Vs−)

)−1 d
[
λ−1Z,λ−1Z

]c
s

+E
∑

0<s≤t

|�Ys ||�Zs |.

Since for any 0 < κ < ∞ and any x ∈H, y ∈ H, we have κx2 +κ−1y2 ≥ 2|〈x, y〉|;
it follows easily that

1

2
E

∫ t

0
τ�(Vs−)d[λY,λY ]cs + (

τ�(Vs−)
)−1 d

[
λ−1Z,λ−1Z

]c
s

+E
∑

0<s≤t

|�Ys ||�Zs |

≥ E

∫ t

0

∣∣d[
λY,λ−1Z

]c
s

∣∣ +E
∑

0<s≤t

|�Ys ||�Zs |

≥ E

∫ t

0

∣∣d[Y,Z]cs
∣∣ +E

∑
0<s≤t

|�Ys ||�Zs |

≥ E

∫ t

0

∣∣d[Y,Z]s
∣∣,

where all integrals and sums converge. Hence for all λ > 0,

QF
2 [w](1 + �)

(
λ2EFt + λ−2EGt + 2a2ε−1)

� E

∫ t

0

∣∣d[Y,Z]s
∣∣.

We let now successively � → 0 then a → 0. Also, choosing the specific value
λ2 = (EGt)

1/2(EFt)
−1/2, we can assume λ > 0 (otherwise the claim is trivial).

We have

E

∫ t

0

∣∣d[Y,Z]s
∣∣ �QF

2 [w](EFt)
1/2(EGt)

1/2 � QF
2 [w]‖X‖2,wε‖Z‖2,uε .
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The inequality above remains valid in the limit t → ∞. Since the left-hand side
does not depend on the truncation of the weight, it remains to observe that

lim
ε→0

‖X‖2,wε = ‖X‖2,w and lim
ε→0

‖Z‖2,uε = ‖Z‖2,u.

Indeed, since X ∈ L2(�;dP) ∩ L2(�;dPw), we have for all 0 < ε < 1, a.s.
X2∞wε∞ ≤ X2∞ + X2∞w∞ and the limits above are a consequence of the domi-
nated convergence theorem. The same reasoning applied to Z completes the proof
of the bilinear embedding. �

PROOF OF THEOREM 1 (Differential subordination under change of law). The
proof of the main result is now straightforward since the proposition above allows
us to estimate, for any test function Z∞ ∈ L2(�,dP) ∩ L2(�,dPu),

∣∣(Y∞,Z∞)
∣∣ =

∣∣∣∣
∫ ∞

0
d[Y,Z]s

∣∣∣∣ ≤
∫ ∞

0

∣∣d[Y,Z]s
∣∣ �QF

2 [w]‖X‖2,w‖Z‖2,u,

that is exactly

‖Y‖2,w � QF
2 [w]‖X‖2,w.

This concludes the proof of Theorem 1. �

7. Sharpness and applications.

7.1. Sharpness. Sharpness means that the linear power in the martingale A2
characteristic cannot be improved.

7.1.1. Discrete time. That the result is sharp in the dyadic, discrete-in-time
filtration case is well known and follows from the sharpness of the linear estimate
for the dyadic square function in this setting (see [17] for an explicit calculation).
Notice that the norm of the square function is no larger than that of a predictable
dyadic multiplier—given the dyadic square function is obtained by taking expec-
tation of a σ = ±1 predictable multiplier Tσ . Indeed Sf 2(t) = E|Tσf (t)|2; see,
for example, [27].

7.1.2. Continuous time. To see an example with continuous-in-time filtration,
we use the Hilbert transform as an intermediary. We briefly summarize the flow of
the argument; see [13] for details.

Let f (x) be a compactly supported integrable function, defined on R and
f̃ (z) = f̃ (x, y) its harmonic extension to the upper half-space. Let Wt = (xt , yt )

be background noise (see [16]).
Then the martingales

M
f̃
t = f̃ (Wt) and M

H̃f
t = H̃f (Wt)
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(H the Hilbert transform) are a pair of differentially subordinate martingales. To
see this, use the formula by Gundy–Varopoulos [16] applied to the Hilbert trans-
form,

M
H̃f
t =

∫ t

−∞
A∇f̃ (Ws)ds,

where A is the counter-clockwise rotation matrix by π/2, stemming from the
Cauchy–Riemann relations. Further, it is easy to see that the deterministic Pois-
son A2 characteristic and the martingale A2 characteristic driven by background
noise are comparable.

These facts enable us to obtain certain martingale estimates from Hilbert trans-
form bounds and vice versa. But for the critical index p = 2 there is no explicit
example that exhibits sharpness of the linear growth of the weighted bound for the
Hilbert transform with respect to the Poisson characteristic.

However, for 1 < p < 2, there are explicit examples that show the optimal be-
haviour for the Hilbert transform with respect to the Poisson Ap characteristic.
This allows one to pass to the exponent p = 2 through an extrapolation argument
using again the martingale setting.

7.2. Applications.

7.2.1. Discrete-in-time predictable multipliers. The Bellman function in this
paper and in particular its one-leg convexity can give a direct proof of the results in
[21] and [31], a weighted estimate for predictable multipliers in the case of discrete
in time filtrations.

7.2.2. Dimension-free weighted bounds on discrete operators. Through the
recent stochastic integral formula for second-order Riesz transforms [1] on com-
pact multiply-connected Lie groups G, our result gives dimension-free weighted
L2 estimates in this setting, too, using the semi-discrete heat characteristic of the
weight. The second-order Riesz transforms take the form

R2
α = ∑

i

αiR
2
i + ∑

j,k

αijR
2
ij ,

where the first diagonal sum are second-order Riesz transforms in discrete direc-
tions of the space and the second sum are continuous second-order Riesz trans-
forms on the connected part; see [1] for more precise definitions. The process con-
sidered is deterministic in one variable and is Brownian in continuous directions
together with a compound Poisson jump process in the other discontinuous direc-
tions. It was proved in [1] that R2

αf (z) can be written as the conditional expectation

E(M
α,f
0 |Z0 = z) where M

α,f
t is a martingale transform of M

f
t associated to f and

Zt a suitable random walk. One obtains the estimate

(7.1) ‖Rαf ‖L2(w) �Q2(w)‖f ‖L2(w)
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with implied constant independent of dimension and where Q2(w) is the semi-
discrete heat characteristic. An important special case are the second-order discrete
Riesz transforms on products of integers. Notice that both the continuous-in-time
filtrations and the consideration of jump processes are important to get this esti-
mate.

It is also possible to get a deterministic proof of this application (7.1), using the
Bellman function we construct in this paper in combination with part of the proof
strategy in [12]. Notice though, that the trick used in [12] to overcome the difficulty
of the jumps, does not work in the weighted setting, due to nonconvexity of the
domain of the Bellman function. For a deterministic Bellman proof to give the
weighted estimate (7.1), it is instrumental to have the one-leg convexity property
proved here.

7.2.3. Probabilistic proof for estimate of the weighted Beurling operator. Our
result gives a probabilistic proof of the weighted estimate for the well-known
Beurling–Ahlfors transform that solved a famous borderline regularity problem
in [28] previously proved by Bellman functions and other means. To see this, one
invokes the stochastic integral identity formula [2] for the Beurling–Ahlfors oper-
ator using heat flow martingales. The comparability of heat flow A2 characteristic
and martingale characteristic obtained when using the filtration in [2] is not hard
to see. In turn, in [28] it was seen that the heat flow characteristic compares lin-
early to the classical characteristic. The standard extrapolation result for sub-linear
operators in [14] gives the sharp weighted result in Lp .

7.2.4. Dimension-free weighted bound, Riemannian setting. Dahmani [9]
used the continuous properties of the Bellman function constructed in this paper to
prove a dimensionless weighted bound for the Bakry Riesz vector. Her result gives
an optimal estimate in terms of the Poisson characteristic. She considers a large
class of manifolds with nonnegative Bakry–Emery curvature, such as, for exam-
ple, the Gauss space. The explicit expression of the Bellman function is essential
to her argument.
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