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LOW-DIMENSIONAL LONELY BRANCHING RANDOM WALKS
DIE OUT

BY MATTHIAS BIRKNER1 AND RONGFENG SUN2

Johannes-Gutenberg-Universität Mainz and National University of Singapore

The lonely branching random walks on Z
d is an interacting particle sys-

tem where each particle moves as an independent random walk and undergoes
critical binary branching when it is alone. We show that if the symmetrized
walk is recurrent, lonely branching random walks die out locally. Further-
more, the same result holds if additional branching is allowed when the walk
is not alone.

1. Model and result. We consider systems of (critical binary) lonely branch-
ing random walks: Particles move as independent continuous-time irreducible ran-
dom walks on Z

d with jump rate 1, jumps are taken according to a probability
kernel pxy = py−x , x, y ∈ Z

d . In addition, whenever a particle is alone at its site,
it undergoes critical binary branching at rate γ . We will denote the particle config-
uration at time t by η(t) := (ηx(t))x∈Zd , with ηx(t) being the number of particles at

site x at time t . For η = (ηx)x∈Zd ∈ N
Z

d

0 and (suitable) test functions f :NZ
d

0 →R,
the generator is (formally) given by

Lf (η) = ∑
x,y

ηxpxy

(
f

(
ηx→y) − f (η)

)
(1.1)

+ γ
∑
x

1{ηx=1}
1

2

(
f

(
η+x) + f

(
η−x) − 2f (η)

)
,

where

ηx→y := η + δy − δx, η+x := η + δx, η−x := η − δx(1.2)

(from η, ηx→y arises by moving a particle from x to y, η+x arises by adding a
particle at site x and η−x arises by removing a particle at x).

Using monotonicity and approximations with finite initial conditions, one can
start the process (η(t))t≥0 from any initial condition η(0) ∈ N

Z
d

0 . It is then—
analogous to systems of independent random walks—in principle possible that the
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system explodes in finite time in the sense that the number of particles at some site
becomes infinite. However, we will only consider (possibly random) initial condi-
tions for which the system is well defined and locally finite for all times (this is
amply guaranteed by Assumption (1.3) in Theorem 1.2). We discuss the rigorous
construction of the process with pointers to the literature in Remark 1.4 below.

ASSUMPTION 1.1. The probability kernel (px)x∈Zd is irreducible and the ran-
dom walk with the symmetrized jump kernel p̂x := (px + p−x)/2 is recurrent.

Note that if p has finite second moments, the recurrence in Assumption 1.1 is
equivalent to d ≤ 2.

THEOREM 1.2. If p = (px)x∈Zd satisfies Assumption 1.1, the branching rate
γ > 0, and

(1.3) sup
x∈Zd

E
[
ηx(0)

]
< ∞

holds, then the lonely branching random walks die out locally in probability, that
is,

lim
t→∞P

(
ηx(t) = 0

) = 1 for all x ∈ Z
d .(1.4)

REMARK 1.3. A simple coupling argument (see [1], Lemma 1, Chapter 2.2)
shows that η is a monotone process, thanks to the binary branching. Therefore, it
suffices to prove Theorem 1.2 under the assumption that E[ηx(0)] is constant in
x ∈ Z

d . We assume this from now on.

REMARK 1.4 (Construction of the process and suitable state spaces). The
Markov process (η(t))t≥0 can be obtained in a fairly straightforward way as a
solution to an infinite system of Poisson-process driven stochastic equations; see
[1], Chapter 2.2, for a rigorous construction.

(η(t))t≥0 is locally finite and well defined for any initial configuration η(0) from

Smax :=
{
η ∈ N

Z
d

0 : ∑
y∈Zd

ηypyx(t) < ∞ for all t ≥ 0, x ∈ Z
d

}
,(1.5)

where (pxy(t))x,y∈Zd is the transition kernel of the random walk at time t : Com-
parison with supercritical binary branching random walks (particles split in two at
rate γ ) shows that then E[ηx(t)|η(0)] ≤ eγ t ∑

y ηy(0)pyx(t) < ∞ for any x ∈ Z
d ,

t ≥ 0; in particular, there is no explosion. Assumption (1.3) implies η(0) ∈ Smax
a.s.

If (1.5) is violated for a certain initial condition η(0), that is,
∑

y ηy(0)pyx0(t0) =
∞ for some t0 and x0, then by irreducibility, the system will explode everywhere
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by time t0+. (Note that the number of particles at x0 at time t ′ which did not un-
dergo any branching in the time interval [0, t ′] is bounded from below by the sum
of independent indicators with total mean e−γ t ′ ∑

y ηy(0)pyx0(t
′).)

For computations involving the generator (1.1), it is more convenient to restrict
to a smaller set of allowed initial conditions, which is still large enough for the pur-
poses of this article: Pick some reference weight sequence (wx)x∈Zd ⊂ (0,∞)Z

d

with the property∑
x∈Zd

wx < ∞ and
∑

y∈Zd

pxywy ≤ Mwx, x ∈ Z
d(1.6)

for some M < ∞, which implies
∑

y∈Zd pxy(t)wy ≤ eMtwx for t ≥ 0, x ∈ Z
d .

(A simple choice, following [17] is wx = ∑∞
n=0 M−n ∑

y p
(n)
xy vy for some M > 1

and a summable and strictly positive sequence (vx)x∈Zd ⊂ (0,∞)Z
d
, where p

(n)
xy

denotes entry (x, y) of the nth power of p.)
Let

Sw := {
η ∈ N

Z
d

0 : ‖η‖w < ∞}
where ‖η‖w := ∑

x∈Zd

ηxwx.(1.7)

Sw is (a closed subset of) a weighted �1-space, equipped with ‖·‖w it is a complete
and separable metric space; Sw ⊂ Smax for any such choice of (wx).

Write Lip(Sw) for the Lipschitz continuous functions on Sw . It follows from the
computations in [1], Section 2.2, that for f ∈ Lip(Sw) there exists cf < ∞ such
that ∣∣Lf (η)

∣∣ ≤ cf ‖η‖w for all η ∈ Sw(1.8)

and that Lip(Sw) is a core for L from (1.1). In particular (see, e.g., [1], Lemma 3)
there is a constant C = C(w) < ∞ such that

(1.9) E
[∥∥η(t)

∥∥
w

] ≤ eCt
E

[∥∥η(0)
∥∥
w

]
for all t ≥ 0

and so

(1.10) E
[∥∥η(0)

∥∥
w

]
< ∞

implies that η(t) ∈ Sw for all t . Note that (1.3) implies (1.10).

1.1. Discussion. The system (1.1) is a special case of self-catalytic critical
binary branching random walks (SCBRWb) on Z

d where each particle indepen-
dently performs a random walk with kernel p and in addition while there are
k − 1 other particles at its site, it splits in two or disappears with rate b(k), where
b : N0 → [0,∞) is the branching rate function, that is, the second sum on the
right-hand side of (1.1) is replaced by L

(b)
br f (η) = ∑

x b(ηx)
1
2(f (η+x)+f (η−x)−

2f (η)). The choice b = γ 1{k=1} leads to (1.1).
By the comparison result from [1], Theorem 1 and Corollary 1, Chapter 2.7

(a discrete particle analogue of the main result from [4]), Theorem 1.2 implies the
following.
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COROLLARY 1.5. If p satisfies Assumption 1.1 and supx∈Zd E[η(b)
x (0)] < ∞,

then the SCBRWb (η(b)(t))t≥0 with branching rate function b will die out locally
whenever b(1) > 0.

This confirms [1], Conjecture 1, Chapter 2.8, which was also formulated by
Alison Etheridge (personal communication). SCBRWb can be viewed as a spa-
tial stochastic population model with a particular type of local regulation, which
extends the classical model of critical branching random walks by making the
branching rate but not the offspring law depend on the local population size. Corol-
lary 1.5 shows that in this class, “clustering”—local extinction combined with in-
creasingly rare regions of diverging particle density—is unavoidable in “low di-
mensions”, that is, when the underlying symmetrized random walk is recurrent.
Our original motivation for this study came from a question posed by Ted Cox,
who—in view of similar findings for a continuous-mass model in [4]—invented
the lonely branching model to investigate whether an “arbitrarily small” amount
of critical branching would suffice to drive such a discrete particle system to local
extinction.

What remains open in Corollary 1.5 are the cases b(k) = γ 1{k=k∗} for some
γ > 0 and k∗ ≥ 2, where branching can only occur when there are exactly k∗
walks at the same site. We will discuss where our proof fails for these cases in
Remark 3.7. Of course, when b(k) ≡ 0, (ηt )t≥0 consists simply of independent
random walks and there will generically be no local extinction; such systems have
(mixtures of) homogeneous Poisson fields as nontrivial equilibria and will con-
verge towards them under fairly broad conditions; see [16].

The case b(k) = ck for some c > 0 corresponds to classical systems of inde-
pendent branching random walks (IBRW). For IBRW, local extinction in “low
dimensions”, is well known, [5, 7, 13]. In fact, the low-dimensional IBRW exhibit
“clustering”. See also [18] for references and discussion concerning persistence
versus local extinction for independent branching random walks in various con-
texts.

These papers do make use of the independence properties inherent in IBRW
(different families evolve independently), which is not the case in our system(s).
In particular, our arguments do not (and cannot) rely on explicit computations or
estimates for Laplace transforms.

Our proof technique for Theorem 1.2 is insofar inspired by [13] that we show
clustering by analysing a suitable stochastic representation of the Palm distribution
(see Section 2.1 below). In the context of IBRW and its relatives, related “Kallen-
berg tree” constructions for critical spatial systems have been used, for example,
in [8–11] and similarly, “spine” constructions for supercritical branching processes
have been considered in the literature, for example, [6] and references therein (see
also [19] and discussion of references on page 1129). Arguably, the present article
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highlights the robustness and usefulness of this type of stochastic representation,
especially when more analytic tools are unavailable because of inter-dependence
of different families. In the construction of the family tree of a sampled individual
ego for IBRW as in [13], this tree consists of ego’s ancestral line, which forms a
random walk “backwards” in time, and its side-branches of “relatives”, which are
independent branching trees, embedded in space via independent random walks
along their branches. The independence of the side-branches allows to argue via
Borel–Cantelli that in the recurrent case, infinitely many “relatives” will come
back to the position of the sampled individual, causing the clustering. In our situ-
ation, we have an analogous genealogical representation (see Section 2.2 below),
but side-branches are no longer independent. We address this new situation by con-
sidering the system relative to the ancestral line up to time horizon T , which then
becomes a variant of the lonely branching walks with additional “lonely immi-
gration” and “frame shifts”; see (2.18) in Section 2.3 below. This system is (still)
monotone, and using the Markov property together with a re-start argument, we
can show that it must either diverge in probability or converge to a nontrivial equi-
librium as T → ∞. The latter possibility is then ruled out in the recurrent case via
estimates on the first two moments and the Paley–Zygmund inequality.

Even under Assumption 1.1, one can set up initial conditions η(0) such that
(1.4) and (1.3) both fail. For example, take for p symmetric simple random walk
on Z1 and make ηx(0) ≈ ec|x| grow to ∞ as |x| → ∞ so that η(0) ∈ Smax but the
number of particles which reach 0 at time t without having branched before does
not converge to 0 in probability. Obviously, such initial conditions are not station-
ary in space and it seems highly doubtful whether η(t) would then converge to an
equilibrium concentrated on Smax. Still, while Theorem 1.2 shows in particular that
under Assumption 1.1 there can be no nontrivial equilibria with finite intensity, it
does not rule out the possibility of equilibria with infinite intensity. It is known that
this possibility is ruled out for IBRW; see [3] (there, literally proved for branching
Brownian motion and super-Brownian motion, using comparison arguments for
the Laplace transforms). For SCBRW, this question remains open at the moment.

When p̂ is transient, there is a family of nontrivial equilibria, parametrised by
the average particle density, analogous to the case of IBRW; see [1], Proposition 3.

In Section 2, we will introduce a stochastic representation of the locally size-
biased (or “Palm”) law of η; its behaviour is then analysed in Section 3, which
completes the proof of Theorem 1.2.

In the stochastic representation of the locally size-biased law of η, a special
random walk path is chosen as the immigration source. The process viewed from
this immigration source is what we will call the ξ process in Section 2.3. In [2], we
considered the following caricature of the ξ process, originally proposed by Anton
Wakolbinger. We simply replace the special random walk path by a constant path
as the immigration source and disallow branching away from the special path but
keep the immigration mechanism along it unchanged (“random walks with self-
blocking immigration”). The main results from [2] corroborate Theorem 1.2 in a
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quantitative way, and in fact lead to the conjecture that in d = 1 and assuming that
p has finite second moments, the typical number of particles at the origin under the
Palm distribution of the lonely branching random walks should diverge like log t .
However, undoing the caricature steps to convert our findings into an actual proof
of this conjecture will require new arguments.

2. The locally size-biased process. The key to proving Theorem 1.2 is to
study the locally size-biased law of η, which we introduce below.

2.1. The locally size-biased process η̂(x,T ) as a main ingredient for the proof of
Theorem 1.2. For x ∈ Z

d and T ≥ 0, assume that

(2.1)
∑
y

E
[
ηy(0)

]
pyx(T ) < ∞.

This follows in particular from the assumption (1.3) in Theorem 1.2 but this is the
“correct” (and somewhat milder) assumption for the following construction since
the term in (2.1) equals E[ηx(T )].

Let η̂(x,T ) := (η̂(x,T )(t))0≤t≤T have the locally size-biased [w.r.t. ηx(T )] distri-
bution of η := (η(t))0≤t≤T , that is,

(2.2) E
[
f

(
η̂(x,T ))] = E[ηx(T )f (η)]

E[ηx(T )]
for any (say, bounded or nonnegative) test function f . We will show that for every
x ∈ Z

d ,

inf
K≥0

lim inf
T →∞ P

(
η̂(x,T )

x (T ) ≥ K
) = 1,(2.3)

that is, η̂
(x,T )
x (T ) → ∞ in distribution. The fact that the branching law is critical

yields that

E
[
ηx(t)

] = ∑
y

E
[
ηy(0)

]
pyx(t) for x ∈ Z

d, t ≥ 0,(2.4)

that is, expected particle numbers are given by transport with the p-heat flow as
for the case of independent random walks (which corresponds to γ = 0). For-
mula (2.4) can be proved by applying (1.1) to test functions fx(η) = ηx and
observing that the functions gx(t) := E[fx(η(t))] = E[ηx(t)] solve ∂

∂t
gx(t) =∑

y pyx(gy(t) − gx(t)); see [1], Lemma 4(a), for details.
Thus, under the assumptions of Theorem 1.2, we have

sup
t≥0

E
[
ηx(t)

] = sup
t≥0

∑
y

E
[
ηy(0)

]
pyx(t) ≤ sup

y
E

[
ηy(0)

]
< ∞.
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The statement (2.3) implies Theorem 1.2 by a standard argument. Indeed, by (2.2)
with f (η) = 1{ηx (T )≥1}

ηx(T )
,

P
(
ηx(T ) ≥ 1

) = E
[
ηx(T )

] ×E

[1{η̂(x,T )
x (T )≥1}

η̂
(x,T )
x (T )

]

≤
(
sup
t≥0

E
[
ηx(t)

]) ×
(
P

(
1 ≤ η̂(x,T )

x (T ) ≤ K
) + 1

K

)

for every K > 1. Taking T → ∞ followed by K → ∞ then implies
limT →∞ P(ηx(T ) ≥ 1) = 0.

2.2. A stochastic representation of η̂(x,T ). Given the locally size-biased pro-
cess η̂(x,T ), we can select uniformly at random one of the particles at x at time T —
note that η̂

(x,T )
x (T ) ≥ 1 a.s.—and denote its ancestral path by X := (Xt)0≤t≤T .

The pair (η̂(x,T ),X) admits the following alternative representation (see Figure 1),
which will be the starting point of our analysis.

Pick X(0) with distribution

(2.5) P
(
X(0) = y

) = E[ηy(0)]pyx(T )

E[ηx(T )] , y ∈ Z
d .

Given X(0) = y, let (X(t))0≤t≤T be a random walk (with kernel p) conditioned
to be at x at time T , and let ξ̃ (x,T )(0) have the law of η̂(y,0)(0). Given the path

FIG. 1. Representation of the locally size-biased system η̂(0,T ).
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(X(t))0≤t≤T , the system (̃ξ (x,T )(t))0≤t≤T evolves according to the dynamics of
the lonely branching random walks, except that one of the particles at X(0) at time
0 becomes the “selected particle” and follows the path X. Whenever a branching
event occurs for the selected particle, which happens with rate γ while the selected
particle is alone, it produces an offspring (i.e., it never dies).

PROPOSITION 2.1. The pair (̃ξ (x,T ),X) has the same distribution as (η̂(x,T ),

X). In particular,

E
[
f

(̃
ξ (x,T ))] = E[ηx(T )f (η)]

E[ηx(T )](2.6)

holds for any nonnegative measurable test function f :NZ
d

0 → [0,∞).

Proposition 2.1 is [1], Proposition 5, a proof via a time-discretisation approxi-
mation was sketched there (the analogous result in the discrete-time case can be
achieved by a straightforward calculation; see [1], Lemma 8).

Let us explain heuristically why such a representation holds. The discussion in
[1] is more detailed; we also present in Section 2.2.1 below an alternative proof of
Proposition 2.1 by interpreting the local size-biasing of η(T ) as a Doob transfor-
mation.

For simplicity, assume that
∑

y ηy(0) < ∞ (the general case requires an addi-
tional approximation argument). Note that the particle configurations (η(t))0≤t≤T

can be obtained from the family trees of all the ancestral particles at time 0, where
the family tree T of an ancestral particle records the times of branching/death and
the jumps of all its descendants. Let T̂ := {T̂y,i}y∈Zd ,1≤i≤η̂

(x,T )
y (0)

be the set of fam-

ily trees generated by the size-biased lonely branching random walks η̂(x,T ), and
let T̃ := {T̃y,i}y∈Zd ,1≤i≤ξ̃

(x,T )
y (0)

be the set of family trees generated by the ξ̃ (x,T )

process. To show that (̃ξ (x,T ),X) has the same distribution as (η̂(x,T ),X), it suf-
fices to show that (T̃ ,X) and (T̂ ,X) have the same distribution. We refrain from
formally defining the family trees. For a formalisation of a space of marked trees
that could be used here see, for example, [12] and the references therein.

Given the family tree S of an ancestral particle at time 0, let b(S), d(S) and
j (S) denote respectively the set of times in (0, T ) when the ancestral particle or
any of its descendants undergoes a branching, death or a jump. For each t ∈ j (S),
let �(t) ∈ Z

d denote the associated jump increment. Let l(S) denote the total time
length of the family tree S up to time T . For a selected path X in the family tree S,
let b(X) and j (X) denote the set of times in (0, T ) when X undergoes a branching
or a jump.

Note that the probability density (w.r.t. product Lebesgue measure for the times
of branching, death and jumps) of T̂ being equal to a given set of family trees
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S = {Sz,i}z∈Zd ,1≤i≤ηz(0), and X following a given path Y in Sy,1 with Y(T ) = x,
is equal to

f (S,Y ) = 1Adm(S,Y )
1

ηx(T )

P(η(0))ηx(T )

E[ηx(T )]
∏

z∈Zd

ηz(0)!
ηz(0)∏
i=1

ρ(Sz,i)

with ρ(Sz,i) = e−l(Sz,i )−γ llon(Sz,i ,S)

(
γ

2

)b(Sz,i )+d(Sz,i )

2b(Sz,i )
∏

t∈j (Sz,i )

p
(
�(t)

)
,

where (η(t))0≤t≤T is the particle configuration generated by the family trees S,
llon(Sz,i, S) is the total “lonely length” of the family tree Sz,i w.r.t. the whole set
S = {Sz′,i′ }z′∈Zd ,1≤i′≤ηz(0) (i.e., the length of all those parts of the branches of the
tree Sz,i which correspond to a particle which is currently alone at its site), 1Adm
ensures that (S,Y ) is an admissible configuration for the lonely branching random
walks, the factor 1/ηx(T ) accounts for the probability of selecting Y among all
ηx(T ) paths ending at x at time T , the factor ηz(0)! accounts for the symmetry
in assigning the family trees (Sz,i)1≤i≤ηz(0) to the ηz(0) individuals at z at time
0, the exponential factor accounts for the absence of branching, death and jumps
in Sz,i except at the specified times, the factor γ /2 is the probability density of a
branching or death occurring at a specified time, and a factor 2 is assigned to each
branching to account for the symmetry in assigning sub-family trees to the two
descendants.

Similarly, we find that the probability density of (T̃ ,X) being equal to (S,Y ) is
given by

g(S,Y ) = 1Adm(S,Y )
E[ηy(0)]pyx(T )

E[ηx(T )] · e−T −γ llon(Y,S)γ b(Y ) ∏
t∈j (Y ) p(�(t))

pyx(T )

× ηy(0)P(η(0))

E[ηy(0)] e−(l(Sy,1)−T )−γ (llon(Sy,1,S)−llon(Y,S))

×
(

γ

2

)b(Sy,1)−b(Y )+d(Sy,1)

2b(Sy,1)−b(Y )
∏

t∈j (Sy,1)\j (Y )

p
(
�(t)

)

× (
ηy(0) − 1

)! ηy(0)∏
i=2

ρ(Sy,i) × ∏
z∈Zd ,z =y

ηz(0)!
ηz(0)∏
i=1

ρ(Sz,i).

Observe that f (S,Y ) = g(S,Y ), and hence (̃ξ (x,T ),X) has the same distribution
as (η̂(x,T ),X).

2.2.1. Local size-biasing as a Doob-transform: Another proof of Proposi-
tion 2.1. Proposition 2.1 can be proved “directly” (and in a sense, “purely al-
gebraically” using computations with the generator) without approximation argu-
ments, that is, not using time-discretisation nor approximation by finite systems.
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This can be formulated in terms of a “filtering problem” for an enriched Markov
process that we briefly sketch here, with more detailed computations relegated to
Appendix B.

Fix x0 ∈ Z
d , T > 0. The function

(2.7) h(η, t) := ∑
z∈Zd

ηzpz,x0(T − t), η ∈ Sw,0 ≤ t ≤ T

solves (L+ (∂/∂t))h(η, t) ≡ 0 with L from (1.1), that is, h is space-time harmonic
for (ηt )0≤t≤T ; see (B.4) in Appendix B. Thus, we can define the h-transformed
process (η̂(t))0≤t≤T with (time-inhomogeneous) generator

(2.8) L̂tf (η, t) = 1

h(η, t)

((
L + ∂

∂t

)
hf

)
(η, t)

for 0 ≤ t < T , η ∈ Sw . With reference to Remark 1.4, we can use, for example,
test functions f : Sw × [0, T ] → R such that f (·, t) and ∂

∂t
f (·, t) are both Lip-

schitz continuous uniformly in t ∈ [0, T ]. Note that by definition, for any (say,
nonnegative or bounded) test function f

E
[
f

((
η̂(t)

)
0≤t≤T

)] = 1

E[h(η(0),0)]E
[
h
(
η(T ), T

)
f

((
η(t)

)
0≤t≤T

)]
(2.9)

= 1

E[ηx0(T )]E
[
ηx0(T )f

((
η(t)

)
0≤t≤T

)]
,

that is, we have η̂
d= η̂(x0,T ) from (2.2).

Straightforward computation (see Appendix B) yields

L̂tf (η, t) = ∑
x,y∈Zd

ηxpxy

(
1 − sx(η, t) + sx(η, t)

py,x0(T − t)

px,x0(T − t)

)

× (
f

(
ηx→y, t

) − f (η, t)
)

(2.10)
+ γ

2

∑
x

1{ηx=1}
((

1 + sx(η, t)
)(

f
(
η+x, t

) − f (η, t)
)

+ (
1 − sx(η, t)

)(
f

(
η−x, t

) − f (η, t)
)) + ∂

∂t
f (η, t),

where

(2.11) sx(η, t) = px,x0(T − t)

h(η, t)
= px,x0(T − t)∑

z ηzpz,x0(T − t)
= 1

ηx

ηxpx,x0(T − t)∑
z ηzpz,x0(T − t)

can be interpreted as the probability that, given η̂(t) = η, the selected particle is a
particular particle at site x at time t .
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Enriched process including a selected path. Note that the formulation of η̂ as a
time-inhomogeneous Markov process with generator (2.8) does not literally con-
tain a particle with a “privileged status”, in contrast to our formulation at the be-
ginning of Section 2.2.

The statement in Proposition 2.1 includes the path X of the selected particle,
and we can keep track of the “tagged position” X(t) where the selected particle
currently sits in a Markovian way. Indeed, the process (̃ξ ,X) = (̃ξ (t),X(t))0≤t≤T

from Proposition 2.1 is a time-inhomogeneous Markov process with values in
Sw × Z

d [more precisely, only pairs (ξ, z) with ξz ≥ 1 are possible] and gener-
ator

L̃tf (ξ, z, t) = ∑
x,y∈Zd

(ξx − δxz)pxy

(
f

(
ξx→y, z, t

) − f (ξ, z, t)
)

+ ∑
y∈Zd

pzy

py,x0(T − t)

pz,x0(T − t)

(
f

(
ξz→y, y, t

) − f (ξ, z, t)
)

(2.12)

+ γ

2

∑
x =z

1ξx=1
(
f

(
ξ+x, z, t

) + f
(
ξ−x, z, t

) − 2f (ξ, z, t)
)

+ γ 1ξz=1
(
f

(
ξ+z, z, t

) − f (ξ, z, t)
) + ∂

∂t
f (ξ, z, t).

Here, we can use test functions f : Sw ×Z
d × [0, T ] → R such that f (·, z, t) and

∂
∂t

f (·, z, t) are both Lipschitz uniformly in z ∈ Z
d and t ∈ [0, T ]. Strictly speaking,

since some jump rates can become ∞ at t = T − (namely, for z = x0), we should
restrict to subintervals [0, T ′] with T ′ < T first and then let finally T ′ ↗ T ; we
will skip these details in the presentation.

Markov mapping. Define the projection πSw
: Sw ×Z

d → Sw with πSw
((ξ, z)) =

ξ . Proposition 2.1 follows from the distributional identity(
πSw

(̃
ξ(t),X(t)

))
0≤t≤T

d= (
η̂(t)

)
0≤t≤T .(2.13)

In fact, we have

P
(
X(t) ∈ ·|σ (̃

ξ(s) : s ≤ t
)) = αt

(̃
ξ(t), ·),

where for 0 ≤ t ≤ T , the probability kernels αt from Sw to M1(Sw × Z
d) are

defined via

αt

(
ξ,

{
(ξ, z)

}) = ξzpz,x0(T − t)

h(ξ, t)
= ξzsz(ξ, t), ξ ∈ Sw, z ∈ Z

d(2.14)

with h(ξ, t) = ∑
x ξxpx,x0(T − t) from (2.7). Obviously, αt(ξ,π−1

Sw
({ξ})) = 1 for

each ξ .
We can view this as a “filtering problem” for the process with a tagged site and

(2.13) is a consequence of (a time-inhomogeneous version of) a Markov mapping
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theorem; see, for example, [15], Theorem A.15 or [14], Corollary 3.3. Note that
these results are literally formulated for time-homogeneous Markov processes, but
the time-inhomogeneous case can be easily included by considering time as an ad-
ditional coordinate of the process. (For the function ψ in [15], Theorem A.15/[14],
Corollary 3.3, we can use ψw(η, z) := 1 + ‖η‖w with ‖η‖w from (1.7)).

Consider suitable test functions f : Sw ×Z
d × [0, T ] → R, define a function g

[= g(f )] on Sw via

g(η, t) :=
∫
S×Zd

f (ξ, z, t)αt

(
η, d(ξ, z)

)
.(2.15)

Note that πSw
(̃ξ(0), X̃(0)) = ξ̃ (0)

d= η̂(0) by construction. To conclude (2.13) for
T > 0, we need to verify that∫

Sw×Zd
L̃tf (ξ, z, t)αt

(
η, d(ξ, z)

) = L̂tg(η, t).(2.16)

It suffices to consider functions f of the form

f (ξ, z, t) = f1(ξ, t)1z=z0(2.17)

for some suitable f1 : Sw × [0, T ] → R and z0 ∈ Z
d . The proof that (2.16) holds

for such functions is a lengthy but straightforward computation with the generators
and is delegated to Appendix B.

2.3. The size-biased process viewed from the immigration source. We have
just shown that the locally size-biased process (η̂(x,T ))0≤t≤T , together with the
randomly chosen path X, has the same distribution as (̃ξ (x,T ),X), where X can
be interpreted as the immigration source. When η(0) is translation invariant, it
is easily seen that the process ξ = (ξz(t))z∈Zd ,0≤t≤T with ξz(t) := ξ̃

(x,T )
X(t)+z(t) − δ0,

where the immigration source is shifted to the origin and removed from the particle
configuration, is a time-homogeneous Markov process with (formal) generator

L = Lrw + Lbr + Lim + Lmf

with

(2.18)

Lrwf (ξ) = ∑
x,y

ξxpxy

(
f

(
ξx→y) − f (ξ)

)
,

Lbrf (ξ) = γ
∑
x =0

1{ξx=1}
1

2

(
f

(
ξ+x) + f

(
ξ−x) − 2f (ξ)

)
,

Limf (ξ) = γ 1{ξ0=0}
(
f (ξ + δ0) − f (ξ)

)
,

Lmff (ξ) = ∑
x

px

(
f (θxξ) − f (ξ)

)
,

which encode respectively the random walk motions of the particles, the lonely
critical binary branching of the particles, the immigration of particles at the origin
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and the spatial shift (θxξ)y = ξx+y to compensate the jumps of the immigration
source.

The process ξ is clearly a well-defined Markov process on the space of finite
configurations

Sfin :=
{
ξ ∈N

Z
d

0 : ∑
x∈Zd

ξx < ∞
}
.(2.19)

Let us equip Sfin with the partial order � such that ξ � ξ ′ if and only if ξx ≤ ξ ′
x

for all x ∈ Z
d . It is then easily seen that ξ is monotone in the sense that: given

two initial configurations ξ(0) � ξ ′(0), there is a coupling such that almost surely,
ξ(t) � ξ ′(t) for all t ≥ 0. For this, one can use, for example, a small adaptation of
the construction in [1], Section 2.2.

Using this monotonicity, we can further extend the state space of ξ to

(2.20) S := (
N0 ∪ {∞})Zd

,

equipped with the same partial order �. More precisely, for any ξ(0) ∈ S, let
ξ (n)(0) ∈ Sfin be any sequence which increases monotonically to ξ(0). We then de-
fine (ξ(t))t≥0 to be the monotone limit of (ξ (n)(t))t≥0 under the afore-mentioned
coupling of (ξ (n))n∈N. Note that the law of (ξ(t))t≥0 does not depend on the choice
of ξ (n)(0) ↑ ξ(0). It is in principle possible that ξx(0) grows so quickly as |x| → ∞
that ξx′(t ′) = ∞ occurs at some point t ′ ≥ 0 for some x′ and then ξ·(t ′′) ≡ +∞ for
all t ′′ > t ′; however, this will not be the case for the initial conditions we consider
below.

Inspection of the construction of ξ̃ (x,T ) and its relation with ξ shows that if
E[ηy(0)] is constant in y ∈ Z

d (which we can assume by the remark after Theo-
rem 1.2), then the shifted path (X(t) − X(0))0≤t≤T from (2.5) is a random walk
with transition kernel p, and for any T > 0, we have the stochastic domination
relation

(2.21) L
(
ξ(T )|ξ(0) ≡ 0

) � L
(̃
ξ (0,T )(T )

) = L
(
η̂(0,T )(T )

)
.

Indeed, when E[ηx(0)] ≡ θ > 0, we see from (2.5) and (2.4) that P(X(0) = y) =
py0(T ), so that (X(t) − X(0))0≤t≤T is an unconditioned p-random walk. Com-
paring the dynamics of (ξ(t))t≥0 given by (2.18) with the definition of ξ̃0,T from
Section 2.2, we see that we can couple (ξ(t))0≤t≤T starting from ξ·(0) ≡ 0 and
(̃ξ0,T (t))0≤t≤T such that ξx(t) ≤ ξ̃

0,T
X(t)+x(t) holds for all t ∈ [0, T ] and x ∈ Z

d .
This implies (2.21) since at t = T , X(T ) = 0. We can think of ξ·(t) with ξ(0) ≡ 0
as describing a subset of the particles in ξ̃

(0,T )
X(t)+·(t), namely only the relatives of the

selected particle following path X.
To prove (2.3) and conclude the proof of Theorem 1.2, it then suffices to show

that given ξ(0) ≡ 0, ξx(t) → ∞ in probability for all x ∈ Z
d .
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3. Proof of Theorem 1.2. As noted above after (2.21), to prove Theorem 1.2,
it suffices to show that ξ , the locally size-biased process viewed from the immi-
gration source introduced in Section 2.3 above, diverges locally with probability 1.
We will accomplish this by first establishing a dichotomy between (ξx(t))t≥0 be-
ing tight and ξx(t) → ∞ in probability for every x ∈ Z

d , formulated in Lemma 3.1
below. We will then rule out tightness by contradiction, using first and second mo-
ment bounds for ξ and the Paley–Zygmund inequality.

3.1. Dichotomy between tightness and unbounded growth.

LEMMA 3.1. The process ξ := (ξ(t))t≥0 is monotone on the state space S.
Furthermore, starting from ξ(0) ≡ 0, the law L(ξ(t)) is stochastically nondecreas-
ing in t , and the following dichotomy holds:

(i) either {L(ξx(t)) : t ≥ 0} is tight for every x ∈ Z
d ;

(ii) or ξx(t) → ∞ in probability as t → ∞ for every x ∈ Z
d .

In case (i), we have ξ(t) ⇒ ξ (∞) ∈N
Z

d

0 in the sense of finite-dimensional distribu-

tions, where L(ξ (∞)) is a stationary law for the process, with P(ξ
(∞)
0 = 0) > 0.

PROOF. The monotonicity of ξ on the state space S is inherited from its
monotonicity on the space of finite configurations, Sfin, defined in (2.19). Given
ξ(0) ≡ 0, we have ξ(0) � ξ(s) for any s ≥ 0. It then follows that the law of ξ(t)

is stochastically nondecreasing in t ≥ 0, and as t → ∞, ξ(t) converges in finite-
dimensional distribution to a limit ξ (∞) ∈ S.

We first assume (i), that {L(ξx(t)) : t ≥ 0} is tight for every x ∈ Z
d . Then ξ (∞) ∈

N
Z

d

0 almost surely. We claim that the law L(ξ (∞)) is stationary for the process ξ .
Indeed, let ξ ′ start with ξ ′(0) = ξ (∞). For any s, t > 0, since L(ξ(s)) � L(ξ ′(0)),
we must have L(ξ(s + t)) � L(ξ ′(t)). Letting s → ∞ then shows that L(ξ (∞)) �
L(ξ ′(t)). On the other hand, ξ ′(t) can be constructed as the monotone limit of
ξ ′(n)(t) with initial condition ξ

′(n)
x (0) := ξx(n)1{|x|≤n}, where ξ ′(n)(0) ∈ Sfin and

ξ ′(n)(0) ↑ ξ ′(0) = ξ (∞) under a suitable coupling of (ξ(n))n∈N and ξ (∞). Note that
for all n ∈ N, L(ξ ′(n)(t)) � L(ξ(n+ t)) � L(ξ (∞)). It then follows that L(ξ ′(t)) �
L(ξ (∞)). Therefore, L(ξ ′(t)) = L(ξ (∞)) for all t ≥ 0, and L(ξ (∞)) is a stationary
law for ξ .

In order to show that if (i) fails, (ii) must hold, we use monotonicity and a
simple “re-start” argument. One can alternatively prove that claim via an explicit,
though lengthy to formulate, coupling construction and the Hewitt–Savage-0-1-
law, analogous to [1], Section 3.2.

Let us now assume that (i) fails, so that {L(ξx(t)) : t ≥ 0} is not tight for some
x ∈ Z

d . Then P(ξ
(∞)
x = ∞) = ε for some ε ∈ (0,1]. Since for any y ∈ Z

d , there is
a fixed positive probability that a particle from x will move to y in unit time without
undergoing any branching or death, we conclude that we must have P(ξ

(∞)
y =
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∞) ≥ ε for all y ∈ Z
d . Switching x and y then shows that P(ξ

(∞)
x = ∞) = ε for

all x ∈ Z
d . We will prove ε = 1 by contradiction.

First note that since ξ0(t) converges in law to ξ
(∞)
0 , for any δ > 0 and K > 0,

we have

(3.1) P
(
ξ0(t) > K

) ≥ ε − δ for all t large enough.

Let ξ ′(n) be a sequence of the ξ process with initial condition ξ ′(n)(0) = ξ(n),
coupled in such a way that almost surely, ξ ′(n)(0) ↑ ξ (∞). Conditioned on a se-
quence of initial conditions ξ ′(n)(0) satisfying ξ

′(n)
0 (0) ↑ ξ

(∞)
0 < ∞, which occurs

with probability 1−ε, by monotonicity, we have L(ξ(t)) � L(ξ ′(n)(t)|ξ ′(n)(0)) for
all n ∈ N and t > 0. In particular, by (3.1), we can choose t large enough such that
uniformly in n ∈ N and ξ ′(n)(0),

P
(
ξ

′(n)
0 (t) ≥ K|ξ ′(n)(0)

) ≥ ε − δ.

On the other hand, conditioned on a sequence of initial conditions ξ ′(n)(0) satisfy-
ing ξ

′(n)
0 (0) ↑ ξ

(∞)
0 = ∞, which occurs with probability ε, we have ξ

′(n)
0 (t) → ∞

as n → ∞ in probability, since there is a fixed positive probability for a particle to
start from the origin and return to the origin at time t without undergoing branch-
ing or death along the way. Combining the above two cases, we conclude that for
all n large enough,

P
(
ξ0(n + t) ≥ K

) = P
(
ξ

′(n)
0 (t) ≥ K

) ≥ (1 − ε)(ε − δ) + ε(1 − δ).

In particular, P(ξ
(∞)
0 ≥ K) ≥ (1 − ε)(ε − δ) + ε(1 − δ) > ε if ε ∈ (0,1) and δ is

chosen sufficiently small. Since K can be chosen arbitrarily large, this implies that
P(ξ

(∞)
0 = ∞) > ε, which is a contradiction. Therefore, when i) fails, we must have

ε = 1, that is, ξx(t) → ∞ in probability for all x ∈ Z
d .

Lastly, we show that in case (i), P(ξ
(∞)
0 = 0) > 0. Recall that pxy(t) denotes the

transition probability kernel of a random walk with jump kernel p. First we claim
that

(3.2) For all t > 0,
∑
z

pz0(t)ξ
(∞)
z < ∞ almost surely.

Let us consider the stationary process ξ ′ with ξ ′(0) = ξ (∞). If (3.2) fails, then
for some t0 > 0,

∑
z pz0(t0)ξ

(∞)
z = ∞ with positive probability. Let us fix an

initial configuration ξ ′(0) with
∑

z pz0(t0)ξ
′
z(0) = ∞. With probability e−(1+γ ),

the immigration source X in the locally size-biased system ξ̃ ′ does not move and
has no immigration during the time interval [0,1]. Conditioned on this event, we
have ξ ′(t) = ξ̃ ′(t) − δ0 for t ∈ [0,1], and the ξ ′ system is easily seen to stochasti-
cally dominate a collection of independent random walks ξ ′′ with initial condition
ξ ′′(0) := ξ ′(0), where each walk jumps with rate 1 and kernel p and dies with
rate γ , regardless of whether it is alone or not. A Borel–Cantelli argument then
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shows that given
∑

z pz0(t0)ξ
′′
z (0) = ∞, we must have ξ ′′

0 (t0) = ∞ a.s., and hence

ξ ′
0(t0) = ∞ a.s. It follows that P(ξ ′

0(t0) = ∞) = P(ξ
(∞)
0 = ∞) > 0, which is a

contradiction. Therefore, (3.2) must hold.
Given ξ ′(0) with

∑
z pz0(1)ξ ′

z(0) < ∞, we now show that P(ξ ′
0(1) = 0|ξ ′(0)) >

0, which implies P(ξ
(∞)
0 = 0) > 0 by the stationarity of ξ ′. Again, let us restrict

to the event that the immigration source does not move or have immigration dur-
ing the time interval [0,1]. Conditioned on this event, the ξ system is easily seen
to be stochastically dominated by a collection of independent branching random
walks ξ ′′′ with initial condition ξ ′′′(0) := ξ ′(0), where each walk jumps with rate
1 and kernel p and branches into two with rate γ . We can choose L large enough
such that the expected number of particles that originate from outside [−L,L]
at time 0 and are at 0 at time 1, is less than 1, so that with positive probabil-
ity, no particle originating from outside [−L,L] will be at the origin at time 1.
Clearly, there is also positive probability that none of the particles originating
from [−L,L] will have an offspring at the origin at time 1. Therefore, we have
P(ξ ′′′

0 (1) = 0|ξ ′′′(0)) > 0, and the same holds for ξ ′. �

3.2. Moment computations for ξ . We now derive bounds on the first and sec-
ond moments of ξx(t). Note that we require the results discussed in this section
only for ξ(0) ∈ Sfin (in fact, only for ξ·(0) ≡ 0), so that ξ(t) ∈ Sfin for all t ≥ 0 and
the expressions involving the generator will always be well defined.

To keep track of the joint positions of two particles in the ξ system, we introduce
two dependent random walks (X̂(t))t≥0 and (X̂′(t))t≥0 on Z

d , such that

(3.3)
(
X̂(t), X̂′(t)

) = (
Ŷ (t) − Ŷ (0)(t), Ŷ ′(t) − Ŷ (0)(t)

)
,

where Ŷ (0), Ŷ , Ŷ ′ are three independent random walks with jump rate 1 and jump
kernel (pz)z∈Zd . The walks Ŷ and Ŷ ′ represent the independent motions of two
particles in the ξ̃ system, which is the stochastic representation of the locally size-
biased branching random walks with a moving immigration source, while Ŷ (0)

represents the motion of the immigration source in ξ̃ .
Note that individually, both (X̂(t))t≥0 and (X̂′(t))t≥0 are random walks with

jump rate 2 and jump kernel (
p−z+pz

2 )z∈Zd . Its generator is given by(
L̂(1)f

)
x := ∑

z

(p−z + pz)(fx+z − fx).

Let p̂xy(t) := Px(X̂(t) = y) denote its transition probability kernel, with p̂0 :=
p̂00. Let L̂(1),∗ denote the generator of the time-reversed random walk for X̂, which
has the same distribution as −X̂ if X̂(0) = 0, with transition kernel q̂xy(t) :=
p̂yx(t) = p̂xy(t) by symmetry.

Note that jointly (X̂(t), X̂′(t))t≥0 is a random walk on Z
2d with generator(

L̂(2)f
)
x,y := ∑

z

pz(fx+z,y + fx,y+z + fx−z,y−z − 3fx,y).
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Let

(3.4) p̂
(2)
(x,y),(w,z)(t) := P(x,y)

((
X̂(t), X̂′(t)

) = (w, z)
)

denote its transition probability kernel. Let L̂(2),∗ denote the generator for the time-
reversal of (X̂, X̂′), which has the same distribution as (−X̂,−X̂′), with transition
kernel q̂

(2)
(x,y),(w,z)(t) := p̂

(2)
(w,z),(x,y)(t).

LEMMA 3.2. The first two moments of ξ·(t) admit the following representa-
tion:

(1) Assume that E[ξy(0)] < ∞ for all y ∈ Z
d . Then for t ≥ 0, x ∈ Z

d

E
[
ξx(t)

]
= ∑

y

Py

(
X̂(t) = x

)
E

[
ξy(0)

] + γ

∫ t

0
P0

(
X̂(t − s) = x

)
P

(
ξ0(s) = 0

)
ds(3.5)

= ∑
y

E
[
ξy(0)

]
p̂yx(t) + γ

∫ t

0
P

(
ξ0(s) = 0

)
p̂0x(t − s) ds.(3.6)

(2) Assume that E[ξy(0)2] < ∞ for all y ∈ Z
d . Then for t ≥ 0, x, y ∈ Z

d

E
[
ξx(t)

(
ξy(t) − δxy

)]
= ∑

x′,y′
P(x′,y′)

((
X̂(t), X̂′(t)

) = (x, y)
)
E

[
ξx′(0)

(
ξy′(0) − δx′y′

)]

+ γ

∫ t

0

∑
z′ =0

P(z′,z′)
((

X̂(t − s), X̂′(t − s)
) = (x, y)

)
P

(
ξz′(s) = 1

)
ds

+ γ

∫ t

0

∑
y′ =0

P(0,y′)
((

X̂(t − s), X̂′(t − s)
) = (x, y)

)
E

[
1{ξ0(s)=0}ξy′(s)

]
ds

+ γ

∫ t

0

∑
x′ =0

P(x′,0)

((
X̂(t − s), X̂′(t − s)

) = (x, y)
)
E

[
1{ξ0(s)=0}ξx′(s)

]
ds(3.7)

= ∑
x′,y′

E
[
ξx′(0)

(
ξy′(0) − δx′y′

)]
p̂

(2)
(x′,y′),(x,y)(t)

+ γ

∫ t

0

∑
z =0

P
(
ξz(s) = 1

)
p̂

(2)
(z,z),(x,y)(t − s) ds

+ γ

∫ t

0

∑
z =0

E
[
1{ξ0(s)=0}ξz(s)

]{
p̂

(2)
(0,z),(x,y)(t − s) + p̂

(2)
(z,0),(x,y)(t − s)

}
ds.(3.8)
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REMARK 3.3. Note that ξx(t)(ξy(t) − δxy) counts the number of pairs of par-
ticles, with the first particle from position x and the second from position y at
time t . The terms in the sum in (3.7) are respectively contributions from the fol-
lowing cases: the pair of particles sampled from x and y at time t come from
distinct ancestors at time 0; the pair of particles come from the same ancestor; the
pair of particles come from distinct ancestors with at least one ancestor being a
particle added at the immigration source at the origin, which accounts for the last
two terms in (3.7).

PROOF OF LEMMA 3.2. (1) Let fx(t) := E[ξx(t)]. It is easily seen that (cf.
(A.1) below) f solves

∂

∂t
fx(t) = (

L̂(1),∗f·(t)
)
x + γ δx0P

(
ξ0(t) = 0

)
.(3.9)

Applying Duhamel’s principle for semilinear equations (e.g., [20], Theorem 6.1.2)
and using the fact that the random walk with generator L̂(1),∗ has the same distri-
bution as the time reversal of X̂, we obtain (3.5).

(2) Let fx,y(t) := E[ξx(t)(ξy(t) − δxy)], which is easily seen to solve (cf. (A.2)
below)

(3.10)

∂

∂t
fx,y(t) = (

L̂(2),∗f·,·(t)
)
x,y + γ δxy(1 − δx0)P

(
ξx(t) = 1

)
+ γ

(
δx0E

[
1{ξ0(t)=0}ξy(t)

] + δy0E
[
1{ξ0(t)=0}ξx(t)

])
.

Again, applying Duhamel’s principle and using the fact that the random walk with
generator L̂(2),∗ has the same distribution as the time reversal of (X̂, X̂′), we obtain
(3.7). �

Using Lemma 3.2, we now bound the first two moments of ξ·(t).

LEMMA 3.4. Let ξ·(0) ≡ 0. We have

E
[
ξx(t)

] ≤ γ

∫ t

0
p̂0x(u) du,(3.11)

E
[
ξx(t)

(
ξy(t) − δxy

)] ≤ γ 2
∫ t

0

∫ s

0

∑
z =0

p̂0z(u)
{
p̂

(2)
(z,z),(x,y)(t − s)

(3.12)
+ p̂

(2)
(0,z),(x,y)(t − s) + p̂

(2)
(z,0),(x,y)(t − s)

}
duds.

PROOF. Note that (3.11) follows from (3.6) in Lemma 3.2, using the trivial
bound P(ξ0(s) = 0) ≤ 1.

To verify (3.12), we simply insert the bounds P(ξz′(s) = 1) ≤ E[ξz′(s)],
E[1{ξ0(s)=0}ξy′(s)] ≤ E[ξy′(s)], E[1{ξ0(s)=0}ξx′(s)] ≤ E[ξx′(s)], together with the
bound (3.11), into (3.8) in Lemma 3.2. �
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LEMMA 3.5. We have

E
[(

ξ0(t)
)2|ξ·(0) ≡ 0

] ≤ 3γ 2
(∫ t

0
p̂0(s) ds

)2

(3.13)

+ γ

∫ t

0
p̂0(s) ds for all t > 0.

PROOF. Recall the following well-known fact about symmetric, continuous-
time random walks:

p̂0,z(v) ≤ p̂0(v) ≤ p̂0(u) for all z ∈ Z
d,0 ≤ u ≤ v < ∞.(3.14)

For completeness and lack of a point reference, this follows from Fourier inversion:
For k ∈ [0,2π) let ϕ(k) := ∑

x∈Z eikx(px +p−x)/2 ∈ [−1,1] be the characteristic
function of the jump distribution of X̂, then ϕt(k) := E0[eikX̂(t)] = exp(−2t (1 −
ϕ(k))) ∈ [0,1] and (3.14) follows from p̂0,z(t) = 1

2π

∫ 2π
0 e−ikzϕt (k) dk = 1

2π
×∫ 2π

0 cos(kz)ϕt (k) dk.
Recalling the definition of p̂(2) from (3.4) and the representation of X̂ and X̂′

in (3.3), and using the second inequality in (3.14) in the second line, we find∑
z =0

p̂
(2)
(z,z),(0,0)(v) ≤ ∑

z

p̂
(2)
(z,z),(0,0)(v)

= ∑
z

q̂
(2)
(0,0),(z,z)(v) = P

(−X̂(v) = −X̂′(v)
)

= P
(
Ŷ (v) − Ŷ ′(v) = 0

) = p̂0(2v) ≤ p̂0(v),∑
z =0

(
p̂

(2)
(0,z),(0,0)(v) + p̂

(2)
(z,0),(0,0)(v)

) ≤ ∑
z

(
p̂

(2)
(0,0),(z,0)(v) + p̂

(2)
(0,0),(0,z)(v)

)

= 2p̂0(v).

Using this and the first inequality in (3.14), we can bound (3.12) from Lemma 3.4
for x = y = 0 as follows:

E
[
ξ0(t)

(
ξ0(t) − 1

)] ≤ 3γ 2
∫ t

0

∫ s

0
p̂0(u)p̂0(t − s) duds

≤ 3γ 2
∫ t

0

∫ t

0
p̂0(u)p̂0(v) dudv.

Combining with (3.11) yields (3.13). �

3.3. Long-time behaviour of ξ . We now conclude the proof of Theorem 1.2
by ruling out tightness in Lemma 3.1.

LEMMA 3.6. If p satisfies Assumption 1.1, then starting from ξ·(0) ≡ 0, we
have ξx(t) → ∞ in probability as t → ∞ for any x ∈ Z

d .
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PROOF. By Lemma 3.1, it suffices to show that the family (ξ0(t))t≥0 is not
tight. We argue by contradiction: Assume that this is not the case, then we obtain
from Lemma 3.1 that (ξx(t))t≥0 must be tight for every x ∈ Z

d , and ξ(t) converges
in distribution to a nontrivial equilibrium ξ (∞) ∈ N

Z
d

0 . In particular, we have

lim
t→∞P

(
ξ0(t) = 0

) = P
(
ξ

(∞)
0 = 0

) =: b > 0.(3.15)

Straightforward computation using (3.15) (and (3.6) in Lemma 3.2) then yields

E
[
ξ0(t)

] ∼ bγ

∫ t

0
p̂0(s) ds → ∞ as t → ∞.

Combined with (3.13) from Lemma 3.5 and applying the Paley–Zygmund inequal-
ity, we have

inf
t≥0

P

(
ξ0(t) ≥ 1

2
E

[
ξ0(t)

]) ≥ inf
t≥0

1

4
· E[ξ0(t)]2

E[ξ0(t)2] > 0.(3.16)

It follows that (ξ0(t))t≥0 can not be tight because our assumption implies that
E[ξ0(t)] → ∞. �

REMARK 3.7. A natural generalisation of the lonely branching random walks
is to consider SCBRWb (as defined in Section 1.1) with branching rate function
b(j) = γ 1j=j∗ for some j∗ ≥ 2 and γ > 0. It turns out that the arguments from
Sections 2 and 3.2 can be adapted in a fairly straightforward way to this case.
However, it seems not obvious how to then obtain the dichotomy between tightness
and growth as in Section 3.1. Obviously, one could now not simply start the ξ

system from the empty configuration and starting from some other initial condition
it is not a priori clear how to implement a restart argument.

We believe that a suitable analogue of Theorem 1.2 holds but we defer this to
future research.

APPENDIX A: GENERATOR COMPUTATIONS FOR THE MOMENTS

For completeness, we include here the generator calculations used in the proof
of Lemma 3.2.

Recall the different components of the generator for ξ from (2.18). To derive
(3.9) for fx(t) := E[ξx(t)], let Fx(ξ) := ξx . We have

(Lrw + Lmf)Fx(ξ) =
(∑

y

ξypyx − ξx

)
+ ∑

z

pz(ξx+z − ξx)

= ∑
z

(pz + p−z)(ξx+z − ξx) = (
L̂(1),∗F·(ξ)

)
x,

LimFx(ξ) = γ δx01{ξ0=0}, LbrFx(ξ) = 0,
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hence

LFx(ξ) = (
L̂(1),∗F·(ξ)

)
x + δx0γ 1{ξ0=0},(A.1)

which implies that fx(t) = E[Fx(ξ(t))] satisfies the equation (3.9).
To derive (3.10) for fx,y(t) := E[ξx(t)(ξy(t) − δxy)], let Fx,y(ξ) := ξx(ξy −

δxy). We have

LrwFx,y(ξ)

= ∑
v,w

ξvpvw

[
(ξx + δxw − δxv)(ξy − δxy + δyw − δyv) − ξx(ξy − δxy)

]

= ∑
v,w

ξvpvw

[
ξx(δyw − δyv) + ξy(δxw − δxv)

+ (δxw − δxv)(δyw − δyv − δxy)
]

= ξx

∑
v

ξvpvy − ξx

∑
w

ξypyw + ξy

∑
v

ξvpvx − ξy

∑
w

ξxpxw

+ δxy

∑
v

ξvpvx − ξypyx − δxy

∑
v

ξvpvx − ξxpxy + δxy

∑
w

ξxpxw

+ δxy

∑
w

ξxpxw

= ∑
v

pvy(ξxξv − ξxξy) + ∑
v

pvx(ξvξy − ξxξy) − ξypyx − ξxpxy + 2δxyξx

= ∑
v

pvy

(
ξx(ξv − δvx) − ξx(ξy − δxy)

)
+ ∑

v

pvx

(
ξv(ξy − δvy) − ξx(ξy − δxy)

)
= ∑

v

pvy

(
Fx,v(ξ) − Fx,y(ξ)

) + ∑
v

pvx

(
Fv,y(ξ) − Fx,y(ξ)

)
= ∑

z

py+z,y

(
Fx,y+z(ξ) − Fx,y(ξ)

) + ∑
z

px+z,x

(
Fx+z,y(ξ) − Fx,y(ξ)

)

= ∑
z

p−z

(
Fx,y+z(ξ) + Fx+z,y(ξ) − 2Fx,y(ξ)

)
,

where we used the fact that pxy = py−x , which also implies that p is doubly
stochastic. Furthermore,

LmfFx,y(ξ) = ∑
z

p−z

(
Fx−z,y−z(ξ) − Fx,y(ξ)

)
,

hence

(Lrw + Lmf)Fx,y(ξ) = (
L̂(2),∗F·,·(ξ)

)
x,y.
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We also have

LimFx,y(ξ) = γ 1{ξ0=0}(δx0ξy + δy0ξx),

LbrFx,y(ξ) = γ 1{ξx=1}δxy(1 − δx0)

× 1

2

(
(ξx + 1)ξx + (ξx − 1)(ξx − 2) − 2ξx(ξx − 1)

)
= γ 1{ξx=1}δxy(1 − δx0).

Altogether we obtain

LFx,y(ξ) = (
L̂(2),∗F·,·(ξ)

)
x,y + γ 1{ξx=1}δxy(1 − δx0)

+ γ 1{ξ0=0}(δx0ξy + δy0ξx).
(A.2)

It then follows that that fx,y(t) := E[Fx,y(ξ(t))] satisfies equation (3.10).

APPENDIX B: SOME AUXILIARY COMPUTATIONS

In this section, we include some auxiliary computations for Section 2.2.1.
Proof that h from (2.7) is space-time harmonic for (ηt )0≤t≤T :
Note that

h
(
ηx→y, t

) = h(η, t) + py,x0(T − t) − px,x0(T − t),(B.1)

h
(
η+x, t

) = h(η, t) + px,x0(T − t),
(B.2)

h
(
η−x, t

) = h(η, t) − px,x0(T − t)

and
∂

∂t
h(η, t) = −∑

x

ηx

∂px,x0

∂t
(T − t)

= −∑
x

ηx

∑
z

pxz

(
pz,x0(T − t) − px,x0(T − t)

)(B.3)

by Kolmogorov’s backward equation. Thus∑
x,y

ηxpxy

(
h
(
ηx→y, t

) − h(η, t)
)

+ γ

2

∑
x

1{ηx=1}
(
h
(
η+x, t

) + h
(
η−x, t

) − 2h(η, t)
) + ∂

∂t
h(η, t)

(B.4)
= ∑

x,y

ηxpxy

(
py,x0(T − t) − px,x0(T − t)

) + 0

− ∑
x

ηx

∑
z

pxz

(
pz,x0(T − t) − px,x0(T − t)

) = 0.
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Proof of the form of L̂t given in (2.11):

L̂tf (η, t)

= 1

h(η, t)

((
L + ∂

∂t

)
hf

)
(η, t)

= 1

h(η, t)

{∑
x,y

ηxpxy

(
h
(
ηx→y, t

)
f

(
ηx→y, t

) − h(η, t)f (η, t)
)

+ γ

2

∑
x

1{ηx=1}
(
h
(
η+x, t

)
f

(
η+x, t

) + h
(
η−x, t

)
f

(
η−x, t

)

− 2h(η, t)f (η, t)
) + f (η, t)

∂

∂t
h(η, t) + h(η, t)

∂

∂t
f (η, t)

}

= 1

h(η, t)

{∑
x,y

ηxpxy

((
h(η, t) + py,x0(T − t) − px,x0(T − t)

)
f

(
ηx→y, t

)
− h(η, t)f (η, t)

)
+ γ

2

∑
x

1{ηx=1}
((

h(η, t) + px,x0(T − t)
)
f

(
η+x, t

)
+ (

h(η, t) − px,x0(T − t)
)
f

(
η−x, t

) − 2h(η, t)f (η, t)
)

+ f (η, t)
∂

∂t
h(η, t)

}
+ ∂

∂t
f (η, t)

= ∑
x,y

ηxpxy

{(
1 + py,x0(T − t) − px,x0(T − t)

h(η, t)

)
f

(
ηx→y, t

) − f (η, t)

}

− f (η, t)
∑
x

ηx

∑
z

pxz

pz,x0(T − t) − px,x0(T − t)

h(η, t)

+ γ

2

∑
x

1{ηx=1}
{(

1 + px,x0(T − t)

h(η, t)

)
f

(
η+x, t

)

+
(

1 − px,x0(T − t)

h(η, t)

)
f

(
η−x, t

) − 2h(η, t)f (η, t)

}
+ ∂

∂t
f (η, t)

= ∑
x,y

ηxpxy

(
1 + py,x0(T − t) − px,x0(T − t)

h(η, t)

)(
f

(
ηx→y, t

) − f (η, t)
)

+ γ

2

∑
x

1{ηx=1}
{(

1 + px,x0(T − t)

h(η, t)

)(
f

(
η+x, t

) − f (η, t)
)

+
(

1 − px,x0(T − t)

h(η, t)

)(
f

(
η−x, t

) − f (η, t)
)} + ∂

∂t
f (η, t)
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= ∑
x,y∈Zd

ηxpxy

(
1 − sx(η, t) + sx(η, t)

py,x0(T − t)

px,x0(T − t)

)(
f

(
ηx→y, t

) − f (η, t)
)

+ γ

2

∑
x

1{ηx=1}
((

1 + sx(η, t)
)(

f
(
η+x, t

) − f (η, t)
)

+ (
1 − sx(η, t)

)(
f

(
η−x, t

) − f (η, t)
)) + ∂

∂t
f (η, t)

(recall sx(η, t) from (2.11)).
Proof of (2.16) for functions of the form (2.17): For f (ξ, z, t) = f1(ξ, t)1z=z0

we have

g(η, t) =
∫
S×Zd

f (ξ, z, t)αt

(
η, d(ξ, z)

) = f1(η, t)
ηz0pz0,x0(T − t)

h(η, t)

= f1(η, t)ηz0sz0(η, t)

and∫
S×Zd

L̃tf (ξ, z, t)αt

(
η, d(ξ, z)

)

= ∑
z

ηzpz,x0(T − t)

h(η, t)
L̃tf (η, z, t)

= ηz0pz0,x0(T − t)

h(η, t)

∑
x,y

(ηx − δxz0)pxy

(
f1

(
ηx→y, t

) − f1(η, t)
)

+ ∑
z

ηzpz,x0(T − t)

h(η, t)

× ∑
y

pzy

py,x0(T − t)

pz,x0(T − t)

(
f1

(
ηz→y, t

)
1y=z0 − f1(η, t)1z=z0

)

+ ∑
z

ηzpz,x0(T − t)

h(η, t)

(
γ

2

∑
x =z

1{ηx=1}
(
f1

(
η+x, t

)
1z=z0

+ f1
(
η−x, t

)
1z=z0 − 2f1(η, t)1z=z0

)
+ γ 1ηz=1

(
f1

(
η+z, t

)
1z=z0 − f1(η, t)1z=z0

))

+ ηz0pz0,x0(T − t)

h(η, t)

∂

∂t
f1(η, t)

(B.5)
= ηz0sz0(η, t)

∑
x,y

(ηx − δxz0)pxy

(
f1

(
ηx→y, t

) − f1(η, t)
)

+ sz0(η, t)
∑
z

ηzpzz0f1
(
ηz→z0, t

) − ηz0

∑
y

pz0ysy(η, t)f1(η, t)
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+ ηz0sz0(η, t)

(
γ 1{ηz0=1}

(
f1

(
η+z0, t

) − f1(η, t)
)

+ ∑
x =z0

1{ηx=1}
(
f1

(
η+x, t

) + f1
(
η−x, t

) − 2f1(η, t)
))

+ ηz0sz0(η, t)
∂

∂t
f1(η, t)

= ηz0sz0(η, t)

(∑
x,y

(ηx − δxz0)pxy

(
f1

(
ηx→y, t

) − f1(η, t)
)

+ ∑
z

ηz

ηz0

pzz0f1
(
ηz→z0, t

) − f1(η, t)
∑
y

pz0y

py,x0(T − t)

pz0,x0(T − t)

+ γ 1{ηz0=1}
(
f1

(
η+z0, t

) − f1(η, t)
)

+ ∑
x =z0

1{ηx=1}
(
f1

(
η+x, t

) + f1
(
η−x, t

) − 2f1(η, t)
) + ∂

∂t
f1(η, t)

)
.

On the other side of (2.16) we have

L̂tg(η, t)

= ∑
x,y

ηx

(
1 − sx(η, t) + sx(η, t)

py,x0(T − t)

px,x0(T − t)

)
pxy

× (
(ηz0 + δyz0 − δxz0)sz0

(
ηx→y, t

)
f1

(
ηx→y, t

) − ηz0sz0(η, t)f1(η, t)
)

+ γ

2

∑
x

1{ηx=1}
((

1 + sx(η, t)
)(

(ηz0 + δx,z0)sz0

(
η+x, t

)
f1

(
η+x, t

)
− ηz0sz0(η, t)f1(η, t)

)
+ (

1 − sx(η, t)
)(

(ηz0 − δx,z0)sz0

(
η−x, t

)
f1

(
η−x, t

)
− ηz0sz0(η, t)f1(η, t)

))
+ ηz0sz0(η, t)

∂

∂t
f1(η, t) + f1(η, t)ηz0

∂

∂t
sz0(η, t)

= ηz0sz0(η, t)
∑
x,y

ηxpxy

(
1 − sx(η, t) + sy(η, t)

)

×
(

(ηz0 + δyz0 − δxz0)sz0(η
x→y, t)

ηz0sz0(η, t)
f1

(
ηx→y, t

) − f1(η, t)

)

+ ηz0sz0(η, t)

× γ

2

∑
x

1{ηx=1}
((

1 + sx(η, t)
)ηz0 + δx,z0

ηz0

sz0(η
+x, t)

sz0(η, t)
f1

(
η+x, t

)
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+ (
1 − sx(η, t)

)ηz0 − δx,z0

ηz0

sz0(η
−x, t)

sz0(η, t)
f1

(
η−x, t

) − 2f1(η, t)

)

+ ηz0sz0(η, t)

(
∂

∂t
f1(η, t) + f1(η, t)

∂
∂t

sz0(η, t)

sz0(η, t)

)
.

Note that(
1 − sx(η, t) + sy(η, t)

)
sz0

(
ηx→y, t

)
=

∑
w ηwpwx0(T − t) − pxx0(T − t) + pyx0(T − t)∑

v ηvpvx0(T − t)

× pz0x0(T − t)∑
w ηwpwx0(T − t) − pxx0(T − t) + pyx0(T − t)

= sz0(η, t)

and (
1 ± sx(η, t)

)sz0(η
±, t)

sz0(η, t)

= px,x0(T − t) ± ∑
w ηwpw,x0(T − t)∑

w ηwpw,x0(T − t)

× pz0,x0(T − t) · ∑
v ηvpv,x0(T − t)

pz0,x0(T − t) · (px,x0(T − t) ± ∑
u ηupu,x0(T − t))

= 1.

Thus

L̂tg(η, t)

ηz0sz0(η, t)

= ∑
x,y

ηxpxy

(
ηz0 + δx,z0

ηz0

ηz0 + δyz0 − δxz0

ηz0

f1
(
ηx→y, t

)

− (
1 − sx(η, t) + sy(η, t)

)
f1(η, t)

)

+ γ

2

∑
x

1{ηx=1}
(

ηz0 + δx,z0

ηz0

f1
(
η+x, t

)

+ ηz0 − δx,z0

ηz0

f1
(
η−x, t

) − 2f1(η, t)

)

+
(

∂

∂t
f1(η, t) + f1(η, t)

∂
∂t

sz0(η, t)

sz0(η, t)

)

= ∑
x,y

ηxpxy

ηz0 − δxz0

ηz0

(
f1

(
ηx→y, t

) − f1(η, t)
)
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+ ∑
x

ηxpxz0

1

ηz0

f1
(
ηx→z0, t

)

+ ∑
x,y

ηxpxy

(
sx(η, t) − sy(η, t) − δxz0

ηz0

)
f1(η, t)

+ γ

2

∑
x =z0

1{ηx=1}
(
f1

(
η+x, t

) + f1
(
η−x, t

) − 2f1(η, t)
)

+ γ 1{ηz0=1}
(
f1

(
η+z0, t

) − f1(η, t)
)

(B.6)

+
(

∂

∂t
f1(η, t) + f1(η, t)

∂
∂t

sz0(η, t)

sz0(η, t)

)

= ∑
x,y

(ηx − δxz0)pxy

(
f1

(
ηx→y, t

) − f1(η, t)
)

+ ∑
x

ηxpxz0

1

ηz0

f1
(
ηx→z0, t

)

+ γ

2

∑
x =z0

1{ηx=1}
(
f1

(
η+x, t

) + f1
(
η−x, t

)

− 2f1(η, t)
) + γ 1{ηz0=1}

(
f1

(
η+z0, t

) − f1(η, t)
)

+ ∂

∂t
f1(η, t)

+ f1(η, t)

( ∂
∂t

sz0(η, t)

sz0(η, t)
+ ∑

x,y

ηxpxy

(
sx(η, t) − sy(η, t) − δxz0

ηz0

))
.

We have

∂

∂t
sz0(η, t) = ∂

∂t

(
pz0x0(T − t)∑

w ηwpwx0(T − t)

)

= −( ∂
∂t

pz0x0)(T − t)∑
w ηwpwx0(T − t)

+ pz0x0(T − t)

(
∑

w ηwpwx0(T − t))2

∑
v

ηv

(
∂

∂t
pvx0

)
(T − t),

so
∂
∂t

sz0(η, t)

sz0(η, t)
= −( ∂

∂t
pz0x0)(T − t)

pz0x0(T − t)

+ 1∑
w ηwpwx0(T − t)

∑
v

ηv

(
∂

∂t
pvx0

)
(T − t)
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= −∑
y

pz0y

pyx0(T − t) − pz0x0(T − t)

pz0x0(T − t)

+
∑

v,u ηvpvu(pux0(T − t) − pvx0(T − t))∑
w ηwpwx0(T − t)

= ∑
y

pz0y − ∑
y

pz0y

pyx0(T − t)

pz0x0(T − t)

+ ∑
v,u

ηvpvu

(
su(η, t) − sv(η, t)

)

(where we used Kolmogorov’s backward equation ∂
∂s

pv,x0(s) =∑
u pvu(pu,x0(s) − pv,x0(s))) and

∂
∂t

sz0(η, t)

sz0(η, t)
+ ∑

x,y

ηxpxy

(
sx(η, t) − sy(η, t) − δxz0

ηz0

)

= −∑
y

pz0y

pyx0(T − t)

pz0x0(T − t)
(B.7)

= −∑
y

pz0y

sy(η, t)

sz0(η, t)
.

Inserting (B.7) into (B.6), we obtain

L̂tg(η, t)

ηz0sz0(η, t)
= ∑

x,y

(ηx − δxz0)pxy

(
f1

(
ηx→y, t

) − f1(η, t)
)

+ ∑
x

ηxpxz0

1

ηz0

f1
(
ηx→z0, t

)

+ ∂

∂t
f1(η, t) − f1(η, t)

∑
y

pz0y

pyx0(T − t)

pz0x0(T − t)

and comparing this with (B.5) yields (2.16).
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