
The Annals of Applied Statistics
2019, Vol. 13, No. 2, 1128–1146
https://doi.org/10.1214/18-AOAS1230
© Institute of Mathematical Statistics, 2019

NONPARAMETRIC TESTING FOR DIFFERENCES
IN ELECTRICITY PRICES: THE CASE OF
THE FUKUSHIMA NUCLEAR ACCIDENT

BY DOMINIK LIEBL

University of Bonn

This work is motivated by the problem of testing for differences in the
mean electricity prices before and after Germany’s abrupt nuclear phaseout
after the nuclear disaster in Fukushima Daiichi, Japan, in mid-March 2011.
Taking into account the nature of the data and the auction design of the elec-
tricity market, we approach this problem using a Local Linear Kernel (LLK)
estimator for the nonparametric mean function of sparse covariate-adjusted
functional data. We build upon recent theoretical work on the LLK estima-
tor and propose a two-sample test statistics using a finite sample correction
to avoid size distortions. Our nonparametric test results on the price differ-
ences point to a Simpson’s paradox explaining an unexpected result recently
reported in the literature.

1. Introduction. On March 15, 2011, Germany showed an abrupt reaction
to the nuclear disaster in Fukushima Daiichi, Japan, and shut down 40% of its
nuclear power plants—permanently. This substantial loss of cheap (in terms of
marginal costs) nuclear power raised concerns about increases in electricity prices
and subsequent problems for industry and households. So far, however, empirical
studies are scarce and based on restrictive model assumptions. In this work we add
a nonparametric functional data perspective and compare our test results with the
existing benchmark results. Our results point to a Simpson’s paradox explaining
the unexpected result recently reported by Grossi, Heim and Waterson (2017).

Pricing at electricity exchanges is explained well by the merit-order model. This
model assumes that spot prices are based on the merit-order curve—a monoton-
ically increasing curve reflecting the increasingly ordered generation costs of the
installed power plants. The merit-order model is a fundamental market model (see,
for instance, Burger, Graeber and Schindlmayr (2008), Chapter 4) and is most im-
portant for the explanation of electricity spot prices in the literature on energy eco-
nomics (see Bublitz, Keles and Fichtner (2017), Burger et al. (2004), Cludius et al.
(2014), Grossi, Heim and Waterson (2017), Hirth (2013), Liebl (2013), Sensfuß,
Ragwitz and Genoese (2008)).

The plot in Figure 1 sketches the merit-order curve of the German electricity
market and is in line with Cludius et al. (2014). The interplay of the demand curve
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FIG. 1. Sketch of the merit-order curve and the theoretical price effect of the nuclear power phase-
out. The dashed region signifies the proportion of phased out nuclear power plants.

(dashed line) with the merit-order curve determines the electricity prices, where
electricity demand is assumed to be price-inelastic in the short-term perspective of
a spot market. The latter assumption is regularly found in the literature (see, e.g.,
Sensfuß, Ragwitz and Genoese (2008)) and confirmed in empirical studies (see,
e.g., Lijesen (2007)).

We consider electricity spot prices from the European Power Exchange (EPEX),
where the hourly electricity spot prices of day i are settled simultaneously at 12 am
the day before (see, for instance, Benth, Kholodnyi and Laurence (2014), Chap-
ter 6). Following the literature, we differentiate between “peak-hours” (from 9 am
to 8 pm) and “off-peak-hours” (all other hours) and focus on the m = 12 peak-
hours, since these show the largest variations in electricity prices and electricity
demand.

The daily simultaneous pricing scheme at the EPEX results in a daily varying
merit-order curve (or simply “price curve”) Xi . However, we do not directly ob-
serve the price functions Xi , but only their noisy discretization points (Yij ,Uij ),
with j = 1, . . . ,m = 12 (see black points in Figure 2). This data situation with
only a few, that is, m = 12, irregularly spaced evaluation points, Ui1, . . . ,Uim, per
function is referred to as sparse functional data (see, e.g., Yao, Müller and Wang
(2005)). The smoothness of the underlying price curve Xi induces a high correla-
tion between electricity prices Yij and Yik with similar values of electricity demand
Uij ≈ Uik . Ignoring these correlations when doing inference can result in serious
size distortions and invalid test decisions (see Liebl (2019a)).

Therefore, we model the electricity spot price Yij ∈ R of day i and peak-hour j

as a discretization point of the underlying (unobserved) daily merit-order curve Xi

evaluated at the corresponding value of electricity demand Uij ∈ R,

Yij = Xi(Uij ,Zi) + εij , j = 1, . . . ,m, i = 1, . . . , n,(1.1)
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FIG. 2. Scatter plots of the price-demand data pairs (Yij ,Uij ) and the the additional covariate
of daily mean air temperature Zi (measured in ◦C). The upper panel shows the data from one year
before Germany’s partial nuclear phaseout, that is, from March 15, 2010 to March 14, 2011; the
lower panel shows the data from one year after, that is, from March 15, 2011 to March 14, 2012.

where Zi ∈ R denotes the daily mean air temperature—a covariate of fundamental
importance for the shape and the location of the random function Xi(·,Zi). The
statistical error term εij is assumed to be independently and identically distributed
(i.i.d.) with mean zero and finite variance and assumed to be independent from Xi ,
Uij , and Zi .

The shape of Xi(·,Zi) and its location, that is, Xi(·,Zi) ∈ L2[a(Zi), b(Zi)],
with [a(Zi), b(Zi)] ⊂ R, are both allowed to be functions of the covariate temper-
ature Zi . The scatter plot of the data triplets (Yij ,Uij ,Zi) is shown in Figure 2.
Note that electricity demand Uij is observed within temperature-specific subin-
tervals, that is, Uij ∈ [a(Zi), b(Zi)] and that the discretization points (Yij ,Uij )

suggest steeper functions Xi(·,Zi) for cold days than for warm days. These obser-
vations motivate our modeling assumption that Xi(·,Zi) ∈ L2[a(Zi), b(Zi)]; see
Horváth and Kokoszka (2012), Chapter 2, for fundamental properties of random
functions in the space L2.

Germany’s (partial) nuclear phaseout means a shift of the mean merit-order
curve resulting in higher electricity spot prices—particularly at hours with large
values of electricity demand (see Figure 1). This effect is obvious in the data for
very cold days (see Figure 2), though not obvious on other days. Therefore, the
objective of this article is a two-sample test of the pointwise null hypothesis of
equal means against the alternative of larger mean values after Germany’s nuclear
phaseout, that is,

H0 : μA(u, z) = μB(u, z) vs H1 : μA(u, z) > μB(u, z),
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where μA(u, z) = E(XA
i (u, z)) and μB(u, z) = E(XB

i (u, z)) are the mean func-
tions of the random price functions After, XA

i (·, z), and Before, XB
i (·, z), Ger-

many’s nuclear phaseout.
We estimate the mean functions μA and μB separately for each period P ∈

{A,B} from the observed data points {(YP
ij ,UP

ij ,ZP
i );1 ≤ i ≤ nP ,1 ≤ j ≤ m} us-

ing the Local Linear Kernel (LLK) estimator for sparse functional data suggested
by Jiang and Wang (2010). Recently, it has been demonstrated that the asymptotic
results of Jiang and Wang (2010) neglect an additional functional-data-specific
variance term which is asymptotically negligible, but typically not negligible in
practice. Neglecting this additional variance term leads to a too small variance
component resulting in size distortions of the test statistic and in invalid test deci-
sions (Liebl (2019a)). Therefore, we take into account the small sample correction
proposed by Liebl (2019a) and propose a two-sample test statistic, which guaran-
tees valid test decisions in practical finite samples as well (see also the in-depth
simulation study in Liebl (2019a)).

In order to control for the effects of the remaining fundamental market fac-
tors, that is, the price of natural gas, CO2 emission allowances, and coal (see, e.g.,
Maciejowska and Weron (2016)) we use what is called an event study approach.
Event studies are essentially two-sample test problems comparing a “control” sam-
ple, from the period just before the event, with a “treatment” sample, from the
period just after the event. The time period before the event is called “estimation
window” and the time period after the event is called “event window”. The idea
is to choose small enough time windows for which the noncontrolled, but less im-
portant, market factors do not have confounding effects (McWilliams and Siegel
(1997)). The event study method used today was introduced by Ball and Brown
(1968) and Fama et al. (1969). A well-known introductory survey article is writ-
ten by MacKinlay (1997). We are not the first to use the event study approach
for analyzing effects that are due to Germany’s unexpected nuclear phaseout after
the Fukushima Daiichi nuclear disaster. Ferstl, Utz and Wimmer (2012) analyze
the stock prices of energy companies using an event study. Betzer, Doumet and
Rinne (2013) use an event study to test for differences in the shareholder wealth of
German nuclear energy companies. Thoenes (2014) considers the effect on futures
prices.

In terms of the research question, our paper is closely related to the recent work
of Grossi, Heim and Waterson (2017), who consider differences in the electricity
spot prices before and after Germany’s nuclear phaseout. Therefore, we use the
approach of Grossi, Heim and Waterson (2017) as a benchmark for comparing our
nonparametric test approach. While Grossi, Heim and Waterson (2017) estimate
the price differences conditionally on demand, we additionally allow for an interac-
tion effect with temperature. This way our nonparametric test result demonstrates
that a Simpson’s paradox (Wagner (1982)) can explain the unexpected structure of
the parametric price differences reported by Grossi, Heim and Waterson (2017).
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The literature on covariate-adjusted functional data is fairly scarce. Cardot
(2007) considers functional principal component analysis for covariate-adjusted
random functions, though he focuses on the case of dense functional data and
does not derive inferential results for his mean estimate. Jiang and Wang (2010)
show many theoretical results of fundamental importance for sparse covariate-
adjusted functional data and we use their pointwise asymptotic normality result
for the mean function as a benchmark. Li, Staicu and Bondell (2015) consider a
copula-based model and Zhang and Wei (2015) propose an iterative algorithm for
computing functional principal components, though neither contributes inferential
results for the covariate-adjusted mean function. For the case without covariate
adjustments there are several papers considering inference for the mean function
(see, for instance, Benko, Härdle and Kneip (2009), Cao, Yang and Todem (2012),
Fogarty and Small (2014), Gromenko and Kokoszka (2012), Hall and Van Keile-
gom (2007), Horváth, Kokoszka and Reeder (2013), Vsevolozhskaya, Greenwood
and Holodov (2014), Zhang and Chen (2007), Zhang and Wang (2016)). We em-
phasize, however, that the existing results for functional data without covariate
adjustments cannot easily be generalized to account for additional covariate adjust-
ments. Related to our work is also that of Serban (2011) and Gromenko, Kokoszka
and Sojka (2017), who consider covariate-adjusted, namely, spatio-temporal func-
tional data; however, they do not focus on a sparse functional data context. Two re-
cent works on modeling and forecasting electricity data using methods from func-
tional data analysis are Shah and Lisi (2018) and Lisi and Shah (2018). Readers
with a general interest in functional data analysis are referred to the textbooks of
Ferraty and Vieu (2006), Horváth and Kokoszka (2012), Ramsay and Silverman
(2005), and Hsing and Eubank (2015).

The rest of the paper is organized as follows. The next section introduces the
LLK estimator and our two-sample test statistic. Section 3 introduces approxima-
tions to the unknown bias, variance and bandwidth components. Section 4 contains
the real data study. The paper concludes with a discussion in Section 5. The proofs
of our theoretical results are based on standard arguments in nonparametric statis-
tics and can be found in the Supplementary Material (Liebl (2019b)).

2. Nonparametric two-sample inference. In the following, we use a com-
mon notation for both samples (A and B) unless a differentiation is required
by the context. Without loss of generality, we consider a standardized domain
where (Uij ,Zi) ∈ [0,1]2 such that Xi(·,Zi) ∈ L2([0,1]). The standardization

can be achieved as Unew
ij = (U

orig
ij − a(Z

orig
i ))/(b(Z

orig
i ) − a(Z

orig
i )) and Znew

i =
(Z

orig
i − min1≤i≤n(Z

orig
i ))/(max1≤i≤n(Z

orig
i ) − min1≤i≤n(Z

orig
i )). The functional

interval borders a(·) and b(·) are unobserved, but can be estimated from the data
points (Uij ,Zi) using the LLK estimators of Martins-Filho and Yao (2007).

Let Xc
i denote the centered function Xc

i (u, z) = Xi(u, z) − E(Xi(u, z)).
Model (1.1) can then be rewritten as a nonparametric regression model with
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the conditional mean function μ(Uij ,Zi) = E(Xi(Uij ,Zi)|U,Z), given U =
(U11, . . . ,Unm)� and Z = (Z1, . . . ,Zn)

�, that is,

Yij = μ(Uij ,Zi) + Xc
i (Uij ,Zi) + εij ,(2.1)

where Xc
i (·, z), Uij , and Zi are assumed to be a stationary weakly dependent func-

tional and univariate time series. The error term εij is a classical i.i.d. error term
with mean zero, finite variance V(εij ) = σ 2

ε , and assumed to be independent from
Xc

s , Us�, and Zs for all s = 1, . . . , n and � = 1, . . . ,m.
Note that Model (2.1) has a rather unusual composed error term consisting of

a functional Xc
i (Uij ,Zi) and a scalar component εij . The functional error compo-

nent introduces very strong local correlations, since

Corr
(
Xc

i (Uij ,Zi),X
c
i (Uik,Zi)|Uij = u1,Uik = u2,Zi = z

)
= Corr

(
Xc

i (u1, z),X
c
i (u2, z)

) ≈ 1 for u1 ≈ u2,

which leads to the above mentioned functional-data-specific variance term that
makes it necessary to use the finite sample correction proposed by (Liebl (2019a)).

We estimate the mean function μ(u, z) using the same LLK estimator as con-
sidered in Jiang and Wang (2010). In the following we define the estimator based
on a matrix notion:

μ̂(u, z;hμ,U ,hμ,Z)

= e�
1

([1,Uu,Zz]�Wμ,uz[1,Uu,Zz])−1[1,Uu,Zz]�Wμ,uzY,(2.2)

where the vector e1 = (1,0,0)� selects the estimated intercept parameter and
[1,Uu,Zz] is a nm × 3 dimensional data matrix with typical rows (1,Uij − u,

Zi − z). The nm × nm dimensional diagonal weighting matrix Wμ,uz holds
the bivariate multiplicative kernel weights Kμ,hμ,U ,hμ,Z

(Uij − u,Zi − z) =
h−1

μ,Uκ(h−1
μ,U (Uij − u))h−1

μ,Zκ(h−1
μ,Z(Zi − z)), where κ is a usual second-order

kernel such as, for example, the Epanechnikov or the Gaussian kernel, hμ,U

denotes the bandwidth in U direction, and hμ,Z the bandwidth in Z direc-
tion. The kernel constants are denoted by ν2(Kμ) = (ν2(κ))2, with ν2(κ) =∫
[0,1] u2κ(u)du, and R(Kμ) = R(κ)2, with R(κ) = ∫

[0,1] κ(u)2 du. All vec-
tors and matrices are filled in correspondence with the nm dimensional vector
Y = (Y11, Y12, . . . , Yn,m−1, Ynm)�.

The following theorem is an adjusted version of Corollary 3.1, part (b) in Liebl
(2019a) and takes into account the finite sample correction for the variance com-
ponent:

THEOREM 2.1 (Asymptotic normality). Let m/n1/5 → 0, let (u, z) be an
interior point of [0,1]2, and assume optimal bandwidth rates hμ,U 	 hμ,Z 	
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(nm)−1/6. Then the LLK estimator μ̂(u, z) in equation (2.2) is asymptotically nor-
mal, that is,(

μ̂(u, z;hμ,U ,hμ,Z) − Bμ(u, z;hμ,U ,hμ,Z) − μ(u, z)√
V I

μ(u, z;hμ,U ,hμ,Z) + V II
μ (u, z;hμ,Z)

)
a∼ N(0,1),

where μ ∈ {μA,μB},
Bμ(u, z;hμ,U ,hμ,Z) = 1

2
ν2(Kμ)

(
h2

μ,Uμ(2,0)(u, z) + h2
μ,Zμ(0,2)(u, z)

)
,

V I
μ(u, z;hμ,U ,hμ,Z) = 1

nm

[
R(Kμ)

hμ,Uhμ,Z

γ (u,u, z) + σ 2
ε

fUZ(u, z)

]
,

V II
μ (u, z;hμ,Z) = 1

n

[(
m − 1

m

)
R(κ)

hμ,Z

γ (u,u, z)

fZ(z)

]
, and

μ(k,l)(u, z) = (
∂k+l/

(
∂uk∂zl))μ(u, z).

This theorem is valid under Assumptions A1–A5, which are listed in the Supple-
mentary Material (Liebl (2019b)).

Theorem 2.1 generalizes the corresponding result in Liebl (2019a) by addition-
ally allowing for a time series context with weakly dependent auto-correlation
structure; a proof can be found in the Supplementary Material (Liebl (2019b)).
The theorem implies the standard optimal convergence rate (nm−1/3) for bivariate
LLK estimators. The finite sample correction is accomplished by the additional
second variance term V II

μ (u, z;hμ,Z) which could be dropped from a pure asymp-
totic view. However, this second variance term is typically not negligible in prac-
tice and serves as a very effective finite sample correction (Liebl (2019a)). Note
that the variance effects due to the autocorrelations from our time series context
are not first-order relevant. The reason for this is that we localize with respect to
the variables U and Z and not with respect to time i. The resulting decorrelation
effect is referred to as the “whitening window” property (see, for instance, Fan and
Yao (2003), Chapter 5.3).

Theorem 2.1 without the variance term V II
μ (u, z;hμ,Z), that is, without finite

sample correction, is essentially equivalent to Theorem 3.2 in Jiang and Wang
(2010), who, however, consider the case where m is bounded, that is, 1 < m ≤ c

for some small c < ∞ (e.g., c = 4 or c = 5), as typically assumed in the literature
on sparse functional data analysis (cf. Yao, Müller and Wang (2005), Zhang and
Wang (2016), and many others). In contrast, our asymptotic normality result allows
for bounded m < ∞ as well as nonbounded m → ∞, such that m/n1/5 → 0. This
explains the empirical finding in Liebl (2019a) that our asymptotic normality result
with finite sample correction provides very good finite sample approximations for
practical small-m (e.g., m = 5) as well as moderate-m cases (e.g., m = 15)—by
contrast to the corresponding results in Jiang and Wang (2010).
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The following corollary follows directly from Theorem 2.1 and contains the
asymptotic normality result for our two-sample test statistic:

COROLLARY 2.1 (Two-sample test statistic). Under the same conditions as in
Theorem 2.1 and under the null hypothesis H0: μA(u, z) = μB(u, z), the following
two two-sample test statistic is asymptotically normal:

Zu,z =
(

μ̂A(u, z) − BμA
(u, z) − μ̂B(u, z) + BμB

(u, z)√
V I

μA
(u, z) + V II

μA
(u, z) + V I

μB
(u, z) + V II

μB
(u, z)

)
a∼ N(0,1),

where the dependencies on the bandwidth parameters hμ,U and hμ,Z are sup-
pressed for readability reasons.

The test statistic Zu,z is infeasible as it depends on the unknown bias, variance,
and bandwidth expressions, Bμ, V I

μ, V II
μ , hμ,U, and hμ,Z . In our application, we

use the practical rule-of-thumb bandwidth, bias and variance approximations as
described in the following section.

REMARK. A common number m (m: number of discretization points per
function Xi) may be unrealistic for some applications. However, our estimators can
be directly applied to data-scenarios with function-specific numbers of discretiza-
tion points mi with i = 1, . . . , n. To adjust our asymptotic analysis for this situa-
tion, one can consider the case where m → ∞ with m ≤ mi for all i = 1, . . . , n

(cf. Zhang and Chen (2007)). As Hall, Müller and Wang (2006), Zhang and Chen
(2007), and Zhang and Wang (2016) we do not consider random numbers mi , but
if mi are random, our theory can be considered as conditional on mi .

3. Practical approximations. We approximate the unknown bias term Bμ(u,

z;hμ,U ,hμ,Z) by

B̂μ(u, z;hμ,U ,hμ,Z)

= ν2(Kμ)

2

(
h2

μ,U μ̂(2,0)(u, z;gμ,U , gμ,Z) + h2
μ,Zμ̂(0,2)(u, z;gμ,U , gμ,Z)

)
,(3.1)

where the estimates of the second-order partial derivatives μ̂(2,0) and μ̂(0,2) are
local polynomial (order 3) kernel estimators. That is,

μ̂(2,0)(u, z;gμ,U , gμ,Z)

= 2!e�
3

([
1,U1:3

u ,Z1:3
z

]�Wμ,uz

[
1,U1:3

u ,Z1:3
z

])−1[
1,U1:3

u ,Z1:3
z

]�Wμ,uzY

with e�
3 = (0,0,1,0,0,0,0), U1:3

u = [Uu,U2
u,U3

u], Z1:3
z = [Zz,Z2

z,Z3
z], and di-

agonal matrix Wμ,uz with weights g−1
μ,Uκ(g−1

μ,U (Uij − u))g−1
μ,Zκ(g−1

μ,Z(Zi − z))

on its diagonal, where gμ,U and gμ,Z are the bandwidths in U and Z direc-
tion. The estimator μ̂(0,2) is defined correspondingly, but with e�

3 replaced by
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e�
6 = (0,0,0,0,0,1,0). For estimating the bandwidths gμ,U and gμ,Z we use

bivariate GCV based on second-order differences. We follow the procedure of
Charnigo and Srinivasan (2015), but use a GCV-penalty instead of the (asymp-
totically equivalent) Cp-penalty proposed there.

We estimate the unknown first variance term V I
μ(u, z;hμ,U ,hμ,Z) by

(3.2)

V̂ I
μ(u, z;hμ,U ,hμ,Z,hγ,U ,hγ,Z)

= 1

nm

[
R(Kμ)

hμ,Uhμ,Z

γ̂ ND(u,u, z;hγ,U ,hγ,Z)

f̂UZ(u, z)

]
.

The Noisy Diagonal (ND) LLK estimator γ̂ ND(u,u, z;hγ,U ,hγ,Z) of γ (u,u, z)+
σ 2

ε is defined as follows:

(3.3)

γ̂ ND(u,u, z;hγ,U ,hγ,Z)

= e�
1

([1,Uu,Zz]�Wγ,uz[1,Uu,Zz])−1[1,Uu,Zz]�Wγ,uzĈND,

with hγ,U and hγ,Z denoting the bandwidths in U and Z direction and with
ĈND = (Ĉ111, . . . , Ĉijj , . . . , Ĉnmm)� consisting only of the noisy diagonal raw-
covariances ĈND

ijj = (Yij − μ̂(Uij ,Zi;hμ,U ,hμ,Z))2 for which E(Ĉijj |U,Z) ≈
γ (Uij ,Uik,Zi) + σ 2

ε . Note that γ̂ ND is equivalent to the LLK estimator “V̂ ” in
Jiang and Wang (2010). The estimate f̂UZ(u, z) is computed using the bivariate
kernel density estimation function kde2d() of the R-package MASS (Venables
and Ripley (2002)), where the involved bandwidths are selected using the R-
function width.SJ() of the R-package MASS containing an implementation of
the method of Sheather and Jones (1991).

The unknown second variance term V II
μ (u, z;hμ,Z) is estimated by

(3.4) V̂ II
μ (u, z;hμ,Z,hγ,U ,hγ,Z) = 1

n

[(
m − 1

m

)
R(κ)

hμ,Z

γ̂ (u,u, z;hγ,U ,hγ,Z)

f̂Z(z)

]
.

The estimate f̂Z(z) is computed using the R-function density() for uni-
variate kernel density estimation, where the involved bandwidth is selected us-
ing the R-function width.SJ() of the R-package MASS. The LLK estimator
γ̂ (u1, u2, z;hγ,U ,hγ,Z) of γ (u1, u2, z) is defined as follows:

(3.5)

γ̂ (u1, u2, z;hγ,U ,hγ,Z)

= e�
1

([1,Uu1,Uu2,Zz]�Wγ,u1u2z[1,Uu1,Uu2,Zz])−1

× [1,Uu1,Uu2,Zz]�Wγ,u1u2zĈ.

Here, e1 = (1,0,0,0)� and [1,Uu1,Uu2,Zz] is a nM × 4 dimensional data ma-
trix with typical rows (1,Uij − u1,Uik − u2,Zi − z) and M = m2 − m. (The
latter explains the requirement of Assumption A1 that m ≥ 2.) The nM × nM



TESTING DIFFERENCES IN ELECTRICITY PRICES 1137

dimensional diagonal weighting matrix Wγ,u1u2z holds the trivariate multiplica-
tive kernel weights Kγ,hγ,U ,hγ,Z

(Uij − u1,Uik − u2,Zi − z) = h−1
γ,Uκ(h−1

γ,U (Uij −
u1))h

−1
γ,Uκ(h−1

γ,U (Uik − u2))h
−1
γ,Zκ(h−1

γ,Z(Zi − z)). All vectors and matrices are

filled in correspondence with the nM dimensional vector Ĉ = (Ĉ112, . . . , Ĉijk, . . . ,

Ĉnm,m−1)
� consisting only of the off-diagonal raw-covariances

Ĉijk = (
Yij − μ̂(Uij ,Zi;hμ,U ,hμ,Z)

)(
Yik − μ̂(Uik,Zi;hμ,U ,hμ,Z)

)

with j = k ∈ {1, . . . ,m} for which E(Ĉijk|U,Z) ≈ γ (Uij ,Uik,Zi). We use bivari-
ate GCV in order to estimate the bandwidth parameters hμ,U , hμ,Z , hγ,U , and
hγ,Z .

4. Application. On March 15, 2011, just after the nuclear meltdown in
Fukushima Daiichi, Japan, Germany decided to switch to a renewable energy econ-
omy and initiated this by an immediate and permanent shutdown of about 40%
of its nuclear power plants. This substantial loss of nuclear power with its low
marginal production costs raised concerns about increases in electricity prices and
subsequent problems for industry and households. Energy economists typically
use Monte Carlo simulations in order to approximate the price effect of Germany’s
nuclear phaseout (see, for instance, Bruninx et al. (2013)). Empirical data-based
evidence, however, is scarce. Thoenes (2014) uses an event study approach to es-
timate the effect of Germany’s nuclear phaseout on electricity futures prices. The
work of Grossi, Heim and Waterson (2017) considers the less speculative electric-
ity spot prices and can be seen as a parametric counterpart to our work. Therefore,
we use the approach of Grossi, Heim and Waterson (2017) as a benchmark for our
nonparametric approach.

In Section 4.1 we introduce the benchmark models. In Section 4.2 we compare
the benchmark results with the results of our nonparametric two-sample test statis-
tic and demonstrate that a Simpson’s paradox can explain the unexpected finding
in Grossi, Heim and Waterson (2017).

Data. The data for our analysis come from different sources that are de-
scribed in detail in the Supplementary Material (Liebl (2019b)). The German
electricity market, like many others, provides purchase guarantees for renew-
able energy sources. Therefore, the relevant variable for pricing is electricity
demand (or “load”) minus electricity infeeds from RES and an additional cor-
rection for the net imports of electricity from neighboring countries (see, e.g.,
Paraschiv, Erni and Pietsch (2014)). Correspondingly, in our application Uij

refers to residual electricity demand defined as Uij = Dij − Rij + Nij , with
Rij = Wij + Sij and Nij = Iij − Eij , where Dij denotes electricity demand, Rij

denotes infeeds from renewable energy sources, Wij denotes wind-power, Sij de-
notes solar-power, Nij denotes net-imports, Iij denotes electricity imports, and
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Eij denotes electricity exports. The effect of further renewable energy sources
such as biomass is still negligible for the German electricity market. Very few
(0.2%) of the data tuples (Yij ,Uij ,Zi) with prices Yij > 200 EUR/MWh are
considered as outliers and set to Yij = 200 EUR/MWh. Such extreme prices
are often referred to as “price spikes”; they are caused by market speculations
involving potential capacity scarcities and need to be modeled using different
approaches (see, for instance, Burger et al. (2004), Chapter 4). Our data set
consists of the peak-hour prices (m = 12; from 9 am to 8 pm) of the work-
ing days from one year before (nB = 242) and one year after (nA = 239) Ger-
many’s partial nuclear phaseout on March 15, 2011. We consider only working
days, since for weekends there are different compositions of the power plant
portfolio. The same reasoning applies to holidays and so-called Brückentage,
which are extra days off that bridge single working days between a bank hol-
iday and the weekend. Therefore, we remove also all holidays and Brückent-
age from the data. The temporal gaps in the data due to weekend days, holi-
days, and Brückentage do not violate our theoretical assumptions on the auto-
covariance structure, since such gaps do not increase the auto-correlations. The
main fundamental market factors (i.e., temperature, gas, CO2 allowance, and coal
prices) are available at a daily sampling scheme. Legal issues do not allow us
to publish the original data sets, however, simulated data sets that closely resem-
ble the original data can be found in the online Supplementary Material (Liebl
(2019b)).

4.1. Parametric benchmark models. As a benchmark case study for our non-
parametric approach, we use the following two increasingly complex parametric
regression models:

Yi = α1 + α2di + α3Zi +
K∑

k=1

βkXik + εi,(4.1)

Yi = α1 + α2Ui + α3U
2
i + di

(
α4 + α5Ui + α6U

2
i

)

+ α7Zi +
K∑

k=1

βkXik + εi,(4.2)

where Yi = 12−1 ∑12
j=1 Yij denotes the daily mean (peak-hours) electricity spot

price, Ui = 12−1 ∑12
j=1 Uij denotes the daily mean (peak-hours) Residual Demand

(RD), di is a dummy variable which equals zero for all time points before Ger-
many’s nuclear phaseout and equals one for all other time points, Zi denotes air
temperature, Xik contains further control variables, and εi is a classical Gaussian
statistical error term. As control variables Xik we use the same fundamental market
factors as in the fundamental electricity market model of Maciejowska and Weron
(2016), that is, temperature, CO2 emission allowance prices, coal prices, and natu-



TESTING DIFFERENCES IN ELECTRICITY PRICES 1139

FIG. 3. Time series of Germany’s hourly electricity spot prices.

ral gas prices. For lignite and nuclear energy resources there are no relevant market
prices (Grossi, Heim and Waterson (2017)).

Model (4.1) estimates a possible price effect using a simple dummy variable
approach. Model (4.2) corresponds to the regression model of Grossi, Heim and
Waterson (2017), who estimate the price effect of Germany’s nuclear phaseout us-
ing the quadratic dummy-interaction function di(α4 +α5xi +α6x

2
i ); see Table 4 in

Grossi, Heim and Waterson (2017). We cannot consider all of the control variables
proposed by Grossi, Heim and Waterson (2017), since we do not have access to the
data used in their case study (missing variables: export congestion index, residual
supply index (i.e., a market power index), and low/high river level). In order to rec-
tify this shortcoming, we use the event study approach with short estimation and
event windows each containing 24 days (see Figure 3). Our window size is one day
smaller than the window size in the related event study of Thoenes (2014), since
we want to exclude the strong price jump one day before our estimation window.
Our estimation results are robust to smaller window sizes.

The F statistics in the lower panel of Table 1 show that the simple bench-
mark Model (4.1) is insufficient for describing the price effect of Germany’s
nuclear phaseout, expect if the temperature-component is added to the con-
trol variables (III and IV). In contrast to this, Model (4.2), which contains the
quadratic dummy-interaction function, describes the price effect with a signifi-
cantly strong explanatory power in all model-specifications I-IV. Comparing the
different model-specifications reveals that the resource prices (CO2, coal, and
gas) are jointly insignificant control variables: neither adding them to the small-
est model-specification (I vs II), nor removing them from the larges model-
specification (III vs IV) has a significant impact on the fit of the models. That
is, our event study approach successfully minimizes the confounding effects of
the control variables CO2, coal, and gas, which are known to be less important
in the short run. Furthermore, it demonstrates the importance of including the
temperature-component.
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TABLE 1
Event study estimation results for the parametric benchmark Models (4.1) and (4.2)

Model (4.1) Model (4.2)

I II III IV I II III IV

RD 0.0 0.0 0.0 0.0
RD2 −0.0 −0.0 −0.0 −0.0
Dummy −1.1 1.9 5.7∗ 2.6∗ 63.3 88.2 61.3 42.1
Dummy × RD −0.0 −0.0 −0.0 −0.0
Dummy × RD2 0.0 0.0 0.0 0.0
Temperature −1.3∗ −1.2∗ −0.8∗ −0.8∗
Temperature2 0.1∗ 0.0 0.0 0.0∗
CO2 price 0.4 −1.4 2.2 0.7
Coal price −0.7 −0.2 0.2 0.4
Gas price 0.8 0.2 −0.9 −1.3

R2 0.0 0.1 0.4 0.3 0.5 0.6 0.6 0.6
Adj. R2 0.0 0.0 0.3 0.3 0.5 0.5 0.5 0.5

F statistics 1.1 1.5 4.2∗ 7.6∗ 9.0∗ 6.0∗ 6.4∗ 8.6∗
I vs II 1.6 1.0
II vs III 8.8∗ 4.1∗
III vs IV 0.9 1.1

Note: ∗p < 0.05.

The graph of the estimated quadratic dummy-interaction function of bench-
mark Model (4.2-IV) together with its 95% confidence interval is shown in
Figure 4. The confidence interval covers the dummy-interaction function re

FIG. 4. LEFT: Contour plot of the price difference surface μ̂A(u, z) − μ̂B(u, z); (N) denotes in-
significant results. RIGHT: Comparisons of the results from benchmark Model (4.2-IV), the original
result of Grossi, Heim and Waterson (2017), and our nonparametric result.



TESTING DIFFERENCES IN ELECTRICITY PRICES 1141

ported1 by Grossi, Heim and Waterson (2017). The dummy-interaction function
of our benchmark Model shows slightly larger values than reported by Grossi,
Heim and Waterson (2017), since the market reactions to Germany’s unexpected
nuclear phaseout are less moderated in the short time frame of our event study
than in the long time frame (±2 years) considered by Grossi, Heim and Waterson
(2017).

4.2. Nonparametric testing. In contrast to the parametric benchmark models,
we do not assume any specific functional form for the price effect of Germany’s
nuclear phaseout. Additionally, we allow for interactions between residual demand
and temperature. As for any nonparametric model, however, we need to deal with
the curse of dimensionality which prevents us from considering all control vari-
ables of potential relevance. Therefore, we focus on the two most important control
variables (residual demand and temperature) and use the event study approach in
order to minimize the confounding effects of the remaining less important control
variables as in our benchmark study.

Residual demand and temperature are the two most important market funda-
mental control variables within the short term of an event study. First, because
the interplay of residual demand with the merit-order curve determines electric-
ity spot prices (see Figure 1). Second, because the merit-order curve itself de-
pends on temperature. For the latter dependency, there are multiple reasons, both
fundamental and speculative. The most important fundamental reason is that the
merit-order curve is determined by the generation costs of the conventional (i.e.,
nuclear, lignite, coal, and gas) power plants. These conventional power plants
are thermal-based electricity generators using river water as their primary cool-
ing resource. The resulting thermal pollution is substantial and environmentally
hazardous and, therefore, strictly regulated by public institutions. This regulation
affects the cost structure, that is, the merit-order curve (McDermott and Nilsen
(2014)). For given values of electricity demand, the merit-order curve is higher
(lower) on warm (cold) days, when the river water has a smaller (larger) cooling
capacity2 (see Figure 2, for middle to high temperatures). However, there is also
a reverse interaction effect between residual demand and temperature which can
revert the fundamental price component described above. Due to the use of heat-
ing and cooling devices, cold and hot days are associated with the large amounts
of electricity demand resulting in market situations where the electricity produc-
tion capacities become scarce.3 In these situations of market stress, one observes

1The data for this graph are extracted from Figure 6 in Grossi, Heim and Waterson (2017) using
the WebPlotDigitizer of Rohatgi (2018).

2McDermott and Nilsen (2014) propose to use river temperature as a control variable. However,
we do not have access to their data and therefore use air temperature as a proxy which is known to
correlate strongly with river temperature (see Rabi, Hadzima-Nyarko and Šperac (2015)).

3The use of air conditioning systems is, however, less extensive in Germany than, for instance, in
the US.
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the high electricity prices (see Figure 2 for cold temperatures), since the electricity
producers demand additional scarcity premiums (see Burger, Graeber and Schindl-
mayr (2008), Chapter 4).

To conclude, the effects of residual demand and temperature and their inter-
action effects are quite complex and it is easy to end up with a misspecified
model, particularly when using a parametric approach. Despite these complexi-
ties, the parametric benchmark Model (4.2), proposed by Grossi, Heim and Water-
son (2017), does not consider interaction effects between electricity demand and
temperature. In the following, we compare our nonparametric test results with our
parametric benchmarks and demonstrate the importance of this interaction effect.

The left plot in Figure 4 shows a contour plot of the price difference surface
μ̂B − μ̂A of the mean estimates before and after Germany’s nuclear phaseout. The
support of the difference surface equals the intersection supp(μ̂B) ∩ supp(μ̂A) of
the supports of the mean functions μ̂B and μ̂A,

supp(μ̂B) = {
(u, z) : âB(z) ≤ u ≤ b̂B(z) with ẑmin,B ≤ z ≤ ẑmax,B

}
, and

supp(μ̂A) = {
(u, z) : âA(z) ≤ u ≤ b̂A(z) with ẑmin,A ≤ z ≤ ẑmax,A

}
,

where the empirical boundary functions âP (·) and b̂P (·), P ∈ {A,B}, are com-
puted using the LLK boundary estimator of Martins-Filho and Yao (2007).

In order to test the pointwise null hypothesis H0: μA(u, z) = μB(u, z) against
the alternative H1: μA(u, z) > μB(u, z), we use our finite sample corrected two-
sample test statistic Zu,z described in Section 2 with plugged-in empirical bias
and variance expressions and GCV-optimal bandwidths as described in Section 3.
The test statistic is evaluated at G = 18 regular grid-points (uj , zj ), j = 1, . . . ,G,
within the intersection supp(μ̂B) ∩ supp(μ̂A). These test-points are shown by the
points in the plots of Figure 4, where the different point shapes correspond to
different temperature values. In order to account for the multiple testing we use
a Bonferroni-adjusted significance level α/G where we set α = 0.05. Significant
differences at the chosen test-points are depicted by the numerical values in the left
plot of Figure 4; nonsignificant differences are marked by “(N)”. We are interested
in pointwise hypotheses as we would like to identify significant and nonsignificant
test-points. The Bonferroni adjustment is known to be conservative, but works
well for our application. Practitioners seeking for an alternative to the Bonferroni
adjustment are referred, for instance, to the work of Cox and Lee (2008).

The plots in Figure 4 show that the price differences are large (moderate) for
large (moderate) values of electricity demand. This is in line with our expecta-
tions, since the merit-order curve is known to be steep (relatively flat) for large
(moderate) values of electricity demand resulting in large (moderate) price differ-
ences (see Figure 1). Furthermore, there is a clear interaction effect in the price
differences. If temperature increases, the thermal power plans loose cooling ca-
pacities which increases the production costs—particularly for the less efficient
power plants. The latter results in a steeper merit-order curve and, therefore, larger
price differences.
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5. Discussion. On March 15, 2011, the German government showed a dras-
tic reaction to the nuclear disaster in Fukushima Daiichi, Japan, and permanently
shut down 40% of its nuclear power plants. This political decision raised con-
cerns about increases in electricity prices and subsequent problems for industry
and households. Empirical studies on possible price effects, however, are scarce
and existing studies are based on restrictive parametric model assumptions.

In this work we add a functional data perspective based on the merit-order
model, the most important model for explaining electricity spot prices (see Bublitz,
Keles and Fichtner (2017), Burger et al. (2004), Cludius et al. (2014), Grossi, Heim
and Waterson (2017), Hirth (2013), Liebl (2013), Sensfuß, Ragwitz and Genoese
(2008)). We extend the work of Liebl (2013) and additionally control for nonfunc-
tional covariate adjustments.

In order to test for a possible price effect, we compare the multivariate nonpara-
metric local linear kernel estimates of the mean price functions before and after
Germany’s nuclear phase out on March 15, 2011, using a pointwise test statistic.
Nonparametric smoothing of the pooled data is used, since the underlying daily
price functions are only observed at 12 noisy discretization points (“sparse func-
tional data”). The existing asymptotic results on this nonstandard smoothing prob-
lem only consider the leading variance term and neglect an additional functional
data specific variance term, which is asymptotically negligible, but typically not
practically negligible. Ignoring this additional variance term can result in serious
size distortions and invalid test decisions (see Liebl (2019a)). Therefore, we pro-
pose a finite sample correction that considers also the second functional data spe-
cific variance term (see Theorem 2.1 and Corollary 2.1). Theorem 2.1 generalizes
the main result in Liebl (2019a) by allowing for a time series context with weak
dependency structure.

We compare our nonparametric test results with parametric benchmark results
replicating the results recently reported by Grossi, Heim and Waterson (2017).
Our results confirm the existence of a price effect due to Germany’s abrupt nu-
clear phase out, but our price effect is structured quite differently to the results in
Grossi, Heim and Waterson (2017). While our nonparametric price differences are
highest for large values of residual demand, the parametric benchmark models es-
timate the highest price differences for small values of residual demand (see right
panel in Figure 4). One of the fundamental differences between our approach and
the approach of Grossi, Heim and Waterson (2017) is that we take into account
interactions with the important temperature factor, while Grossi, Heim and Wa-
terson (2017) do not allow for this kind of interaction effect. Such a reversal of
effects that is due to introducing an additional conditioning variable is known as
Simpson’s paradox (see, for instance, Wagner (1982)). Grossi, Heim and Waterson
(2017) concede that their result is “unexpected” and present different market ex-
planations for their unexpected result; however, a possible model-misspecification
is not taken into account. Our nonparametric case study points at such a possible
model-misspecification and demonstrates that a Simpson’s paradox can explain
their unexpected finding.
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SUPPLEMENTARY MATERIAL

Supplement A: R-codes and data (DOI: 10.1214/18-AOAS1230SUPPA;
.pdf). This supplementary material contains the R codes of the real data appli-
cation and simulated data which closely resembles the original data set.

Supplement B: Supplementary paper (DOI: 10.1214/18-AOAS1230SUPPB;
.zip). This supplementary paper contains the proofs of our theoretical results and a
detailed description of the data sources.
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