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Tumor cells acquire different genetic alterations during the course of evo-
Iution in cancer patients. As a result of competition and selection, only a few
subgroups of cells with distinct genotypes survive. These subgroups of cells
are often referred to as subclones. In recent years, many statistical and com-
putational methods have been developed to identify tumor subclones, leading
to biologically significant discoveries and shedding light on tumor progres-
sion, metastasis, drug resistance and other processes. However, most existing
methods are either not able to infer the phylogenetic structure among sub-
clones, or not able to incorporate copy number variations (CNV). In this arti-
cle, we propose SIFA (tumor Subclone /dentification by Feature Allocation),
a Bayesian model which takes into account both CNV and tumor phylogeny
structure to infer tumor subclones. We compare the performance of SIFA with
two other commonly used methods using simulation studies with varying se-
quencing depth, evolutionary tree size, and tree complexity. SIFA consistently
yields better results in terms of Rand Index and cellularity estimation accu-
racy. The usefulness of SIFA is also demonstrated through its application to
whole genome sequencing (WGS) samples from four patients in a breast can-
cer study.

1. Introduction. During cancer evolution in a patient, cancer cells acquire
different genetic alterations, including single nucleotide variations (SNV?), copy
number variations (CNV), and other more complex changes. Tumor micro-
environment and treatments received by cancer patients pose selection pressure on
tumor cells. As a consequence, tumor cells undergo Darwinian-like evolution, and
only a few subgroups that possess better fitness survive (Nowell (1976), Greaves
and Maley (2012), Gerlinger et al. (2012), Burrell et al. (2013)). Each of these sub-
groups is called a subclone and has a unique genetic alteration profile. Numerous
studies in different cancer types have shown that tumor subclone expansion is as-
sociated with metastasis (Ruiz et al. (2011), Yachida et al. (2010), Gerlinger et al.
(2014)) and drug treatment (Kreso et al. (2013), Ojamies et al. (2016), Wang et al.
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(2016)). Identification of subclones’ genotypes and reconstruction of their evolu-
tion paths can help identify possible cancer driver mutations, and bring significant
insights into individualized cancer treatment (Aparicio and Caldas (2013)).

Some of the most crucial questions in the study of subclone evolution are:
(1) How many subclones exist in a tumor tissue, and what are their genotypes?
(2) What is the prevalence of each subclone? and (3) What is the phylogenetic
structure among subclones? In recent years, researchers have devoted great efforts
to answer these questions using a variety of techniques, including whole genome
sequencing (WGS) (Schuh et al. (2012), Yates et al. (2015)), whole exome se-
quencing (WES) (Carter et al. (2012)), and targeted deep sequencing (Schuh et al.
(2012), Campbell et al. (2008)).

Figure 1 illustrates how tumor subclone information is conveyed in sequence
data. The left panel in the figure displays a tumor evolutionary tree with four sub-
clones, where the green node (S7) represents normal cells and the others are can-
cerous subclones. We focus on three mutation loci A, B, and C. They start with
normal allele status in S7 (two copies of normal alleles). In subclone S;, the tu-
mor cells gain one copy of mutated allele at loci A and B. Then S, subsequently
branches to form two more subclones: S3 where locus B loses one normal copy,
and S4 where locus C gains one mutated copy. Suppose we have four sequencing
samples from this tumor, each being a mixture of the four subclones following
mixing coefficients F in the middle panel. From the sequence data, we can calcu-
late the variant allele frequency (VAF) of A, B, C in each sample as shown in the
right panel. The VAF for a mutation is defined as the percentage of alleles with that
mutation. Note how the phylogenetic structure and subclone genotypes affect the
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FI1G. 1. Overview of how sequence data inform tumor heterogeneity. The left panel displays a tumor

evolutionary tree with four subclones, where the green node represents normal cells and the pink
nodes are cancerous subclones. The letters A, B, and C are mutation loci. The bars under each
letter represent alleles, and the bars with red stars are mutated. The middle panel shows matrix
representations of SNV and CNV status of each subclone, and F represents subclone fractions in
each of the four sequencing samples. The right panel shows the variant allele frequency (VAF) of
mutations A, B, and C in each sequencing sample.
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shape of the VAF figure: mutation C emerges later than A, B and thus has smaller
cellularity (the percentage of cells in the sequenced tumor tissue that harbor the
mutation), resulting in a VAF line that lies below A’s and B’s; although mutations
A and B emerge at the same time, B later undergoes a copy loss in S3, which leads
to significantly higher VAF than A in samples where S3 takes a large fraction. With
appropriate statistical modeling and inference, we can utilize the rich information
hidden in tumor sequence data to study intra-tumor heterogeneity.

1.1. Subclone inference methods. Many popular computational tools have
been developed to extract information from tumor sequence data and decipher ge-
netic profiles for each tumor subclone.

SciClone (Miller et al. (2014)) and PyClone (Roth et al. (2014)) are among
the earliest efforts in subclone analysis. They both identify subclones by grouping
SNVs using VAF information and Bayesian clustering models. Their applications
are limited to copy neutral regions, but with allele-specific copy number informa-
tion available, they can also be extended to CNV regions. In addition, SciClone
employs a variational Bayesian technique, which gives it computational advan-
tages in large scale implementation. Instead of clustering VAF, Lee et al. (2015)
proposed a nonparameteric Bayesian latent feature allocation model, Bayclone,
to directly infer subclone SNV status. They later extended the model in (Lee et al.
(2016)) to handle SNVs in CNV-regions by adding a latent matrix to model CNV
status of each locus.

One major limitation of the above methods is that they fail to incorporate phy-
logeny in the inference which may offer insights on the temporal order of the
SNVs’ and CNVs’ emergence. Although it is possible to mannually recover an
evolutionary tree after getting subclone genotypes, such attempts will likely fail
if the inference model does not explicitly enforce a phylogenetic structure. Sev-
eral recent methods encompass phylogeny as a key component in subclone in-
ference (Jiao et al. (2014), Yuan et al. (2015), Deshwar et al. (2015), Marass
et al. (2016), Jiang et al. (2016)). Phylosub (Jiao et al. (2014)) is a nonpara-
metric Bayesian model that infers subclone lineages and fractions using a tree-
structured stick-breaking (TSSB) process. However it only works on copy-neutral
genome regions. The later work Phy1oWGS (Deshwar et al. (2015)) extends it
to CNV-regions when estimates for allele-specific copy numbers are available.
Cloe (Marass et al. (2016)) can be viewed as a tree-guided latent feature allo-
cation model (similar to Bayclone). It samples posterior phylogenetic trees for
each tree size within a pre-specified range, and uses model selection criterion to
choose the best model. Canopy (Jiang et al. (2016)) models tumor progression
as a bifurcating tree, where SNVs and CNVs emerge along the branches and form
subclones at leaf nodes. All of the phylogeny-based methods above either cannot
model CNVs, or require user-provided major and minor allele number estimates,
in order to incorporate copy number information.
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In this article, we introduce SIFA (tumor Subclone /dentification by Feature
Allocation), an extension of the methods developed by Lee et al. (2016) and Marass
et al. (2016), to model SNV, CNV, and phylogenetic tree under a unified frame-
work.

2. Model. Subclone identification is essentially a mixture deconvolution
problem. A latent phylogenetic tree and the locations where each SNV or CNV
emerges jointly determine genotypes of subclones. The subclones form a mixture
in tumor tissue and influence what we observe from sequence data (see Figure 1).

Assume we observe J mutation loci in 7 WGS samples from the same patient.
For each locus j, let d;; denote the number of sequence reads that cover this locus,
and x j; denote the number of reads harboring a mutation at j. We use D and X as
the matrix form representations for the total reads and mutant reads, respectively.
For notation brevity, we use M; to refer to the ith column of matrix M, and M)
to denote the transpose of the jth row.

We use a latent integer K to denote the number of subclones (normal cells
included) in a tumor tissue. Then the phylogenetic tree can be represented by a
vector T of length K, where T; = i indicates that the parent of subclone & is
i (if node k is root, Ty = 0). We also fix the root subclone to be normal cells
(i.e., 71 = 0). The phylogenetic tree structure is assumed to be shared among all
sequencing samples from the patient.

For modeling SNVs and CNVs, we make the following assumptions: (1) Each
mutation occurs only once in a specific subclone, and is inherited by all descendant
subclones (a.k.a infinite sites assumption (Jiao et al. (2014), Kimura (1969))); and
(2) Each CNYV occurs at most once in a specific subclone, and is also inherited by
descendant subclones. We are therefore able to characterize SNV and CNV status
of all loci using J x 2 matrices Z° and L°, which we call SNV and CNV origin ma-
trix, respectively. For locus j, Z‘(’j) = (k, ¢) indicates that the locus gains c copies
of the mutant allele in subclone k. Similarly, we define L‘(’j) = (k, c) to represent a
gain (or loss if ¢ is negative) of ¢ copies of the normal alleles in subclone k. Ad-
ditionally, we use J x K matrices Z and L to represent the number of mutant and
total alleles for each locus in each subclone. The middle panel of Figure 1 gives
examples of matrix representations of SNV and CNV status corresponding to the
phylogenetic tree on its left.

WGS data also provide location information of loci. Since CNV occurs in sec-
tions of base pairs, we can harness this information to better infer CNV status. We
sort the loci in the order of chromosomal positions, and divide the genome into S
segments, Ay, Ao, ..., Ag. For any loci i and j in the same segment, we assume
they share the same CNV status (i.e., L‘(’i) = L‘(’j)). In our implementation, we use
R package copynumber (Nilsen et al. (2012)) to determine genome segments.
Details of this method can be found in Appendix A. Another important latent pa-
rameter is the K x T matrix F, where the tth column F; characterizes the fractions
of each subclone in sample ¢.
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Our goal is to estimate the parameters Z°, L°, F, and the evolutionary tree 7,
from the observed reads data D and X. We begin by proposing a probablistic model
and a Bayesian sampling algorithm for parameter inference.

2.1. Likelihood. 1In this section, we describe the statistical framework of
SIFA. The subclone mixture, if considered as a single subclone, would have an
averaged mutant allele copy number  ; 7k fkr = Z’( j)Ft, and averaged total al-
lele copy number ) ;. Ljx fir = L’( j)Ft, for locus j in sample ¢. Thus the theoretical
VAF, which is also the probability for a sequenced read to be mutant if it covers
locus j, can be calculated as the ratio of the two copy numbers:

7 .F
2.1) pir =T
(M1

We assume a Binomial distribution for mutant reads x;, conditional on total

reads dj;:

ind . .
(2.2) xjildjs, pjr ~ Binomial(djs, pjr).

Moreover, the number of total reads of a locus is known to be positively corre-
lated with its averaged total copy number in WGS. We therefore use a Poisson
distribution to model dj; (Lee et al. (2015), Klambauer et al. (2012)) such that

. ’ . F
2.3) 16 Ly B % Poisson (=5
where ¢, is the designed WGS coverage (or sequencing depth) specified when
conducting sequencing. It is formally defined as the average number of times each
base is sequenced. Notice that when the average total copy number L’( j)Ft is equal
to 2, the distribution has mean and variance equal to ¢;.

2.2. Prior specifications.

2.2.1. Clonal fractions. We introduce an additional parameter, 6y, for each
fxt, and denote the matrix of 6;’s as ®. We assign each 6; an independent
Gamma(y, 1) prior distribution, and let

Ok
fkt = d

-
i=1 th

This is equivalent to assigning F; a Dirichlet(y, y, ..., y) prior distribution. The
prior distribution has mean and mode (1/K,1/K, ..., 1/K), which gives no pref-
erence to any subclones. The advantage of introducing 6;’s is that we can sample
one O element at a time, while sampling fi; requires updating the entire vector of
F; due to the constraint that the fi; need to sum (over k) to one. The former ap-
proach usually leads to improved mixing using the Metropolis—Hastings sampling
algorithm, thus we work with 6;;’s instead of fi;’s.
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2.2.2. SNV and CNV origin matrices. For SNV, we specify a positive integer
Mg to be the maximum number of possible mutant copies. We utilize the following
prior for Z°:

P28 =.0) ¢  Q<k<K.l1<c<My).

The above specification makes it equally likely for the SNV to originate from any
subclone (except the normal subclone). Since gaining multiple copies of mutant
alleles is a less likely event, our prior sets the probability of acquiring ¢ copies
of the 3mutant alleles to be proportional to €, where ¢ is a pre-specified value in
O, 1).

Likewise, for CNV status, we specify a value M¢ for the maximum total allele
copies. Let (0, 0) represent the event of no CNV. For each genome segment Ay,
we specify the prior of its copy number status as

p(Ly;, =(0,0) forall j € A,) =,

and uniform on other possible values. The hyper-parameter 7 is given a Beta(ay,
by ) prior.

2.2.3. Phylogenetic tree. We have previously introduced a K-vector repre-
sentation 7 of the tree structure, where the root node is fixed to be normal
cells. We add one additional constraint: for any 2 < k < K, we require that
Tr € {1,2, ...,k — 1}. Note that under this constraint 7, can only be 1, which
implies that the second subclone is a direct descendant of normal cells. It can be
shown that any vector 7 satisfying these constraints is a tree, and for any tree of
size K, we can find a corresponding representation satisfying the constraints (see
Appendix B). We use a discrete uniform distribution on all possible tree structures
as the prior distribution.

Figure 2 presents the parameters’ dependencies in the STFA model. The dark
grey nodes represent the observed data, while the light grey nodes represent
the latent parameters. Our ultimate goal is to make inference about ®, L°, Z°,
and T from the posterior distribution p(®,L° Z° T, 7 |D, X, ®), where & =
(¢1, P2, ..., ¢7) represents the read depths of the sequencing samples.

2.3. Posterior sampling. For brevity of description, we let €2 denote the set of
all unknown parameters, and 2_,, denote all unknown parameters except .

We employ Gibbs sampling to acquire posterior samples, and therefore need to
sample from the full conditional distributions for each parameter. However, since
the full conditional distributions for some parameters are in forms from which
direct sampling is difficult, we also employ the Metropolis—Hastings sampling in
such cases.

3We set ¢ = 0.01 in our implementations. Sampling results are in general robust against different
choices of ¢ if we do not use extremely small values, which pose strong penalty on multiple mutant
copies.
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FI1G. 2. lIllustration of the parameters’ dependency. The dark grey nodes in the figure stand for the
observed data, and the light grey ones represent the latent parameters.

2.3.1. Subclone fractions. Subclone fractions can be fully represented by ©.
We update one entry of ® at a time. Since the full conditional distribution
PO |D, X, ®, Q2_g,,) cannot be directly sampled, we employ the Metropolis—
Hastings sampling at this step.

Let 6, be the current sample in our Markov chain. A new value 6/, is proposed
from the transition function h(@,’; |Okt, ), where h(-|6;, s) is the density function
for distribution Gamma(s6y;, s), which is centered at 6;; and has variance 6;/s.
The tuning parameter s controls the proposing step-length, and a larger s value
usually leads to a higher acceptance rate. In our implementation, we adaptively
tune its value to keep acceptance rate in a reasonable range* in order to ensure
efficient mixing of the Markov chain.

2.3.2. SNV, CNV origin matrices. Since the sampling spaces for CNV status
L°, SNV status Z° are discrete and relatively small, we can perform Gibbs sam-
pling by calculating the probability for every possible status.

Because loci are independent when sampling SNV status, we update Z° row
by row. For each j, we calculate p(Z?j) =(k,o)|D, X, D, Q—Z‘(’j)) for all possible
combinations of (k, c), and use them as weights to sample a new Z‘(’j). Sampling
of L° follows a similar procedure, but instead of updating one locus at a time, one
segment of loci is updated together.

We also apply Gibbs sampling to L.°’s hyper-parameter 7, because its full con-
ditional distribution directly takes the form of a Beta distribution

p(7|L®) ~Beta(n + ar, S —n + by),
where § is the number of genome segments and n is the number of segments

without CN'V.

4We used range [0.4, 0.65] in our implementation.
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original tree proposed tree

FI1G. 3. Example of the Metropolis—Hastings tree proposal. Node D is the randomly selected tree
leave to be rewired.

2.3.3. Phylogenetic tree. The sample space for the phylogenetic tree T is dis-
crete as well, including all possible tree structures of size K. The size of this space
is however much larger than L°’s and Z°’s, and grows fast as K increases. It is
computationally impractical to calculate all possible outcome probabilities in this
case. Instead, we propose a mixed sampling approach, where we randomly choose
to perform the Metropolis—Hastings sampling or slice sampling (Neal (2003)).

For the Metropolis—Hasting sampling, we employ a simple proposal method:
randomly select a leaf node and rewire it to a randomly selected parent node. How-
ever, this kind of proposal is likely to be rejected, since changes in tree structure
have strong impact on model likelihood. To illustrate this, we create a toy exam-
ple phylogenetic tree with four subclones in the left panel of Figure 3. The capital
letters A, B, C, D are SNVs or CNVs, and the subclones they reside in are their
origin subclones. We use the lowercase letters a, b, c, d to represent subclone frac-
tions. If we change the tree structure by rewiring node D from its original parent
B to a new parent C, then the cellularity of C increases from c to ¢ + d, while cel-
lularity for B decreases from b + d to b. If many loci are involved in B and C, the
proposal will lead to dramatic change in the full conditional likelihood. Since the
parameters have been sampled in favor of the original tree structure, the change
in likelihood is most likely in the decreasing direction, which will lead to poor
acceptance rate.

To address this issue, we introduce the following procedure:

1. Randomly select a leaf subclone k£ (whose current parent is p), and a valid
target parent subclone ¢g. Rewire k to ¢ to get the new tree 7.
2. Change the previous parent’s fractions:

9;¢=9pt+9/<t t=12,...,7).
3. Change the new parent’s fractions:

Q;Ft: gt — Okt N Oge t=1,2,...,7).
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4. Assign new fractions to subclone k:
0f =0 NOy  (t=1,2,...,T),

where x A y stands for the minimum of x and y. Then 7* and ®* can be used
to calculate acceptance probability and perform sampling. It can be shown that,
under the condition that 6,, > 6, for all #, the proposed tree has exactly the same
likelihood as the original tree. The proof is provided in Appendix C. Following
this sampling strategy, the proposed tree in the previous example takes the form as
displayed in the right panel of Figure 3. Notice that only the cellularity for D is
changed, while B and C remain intact.

Although the above Metropolis—Hastings algorithm is tuned to achieve an im-
proved acceptance rate, current trees can only change to trees differing by one sub-
clone. It is possible that the algorithm will be stuck at a locally optimal tree struc-
ture. Therefore, we also include the slice sampling technique (see Appendix D) as
an option in the tree sampling scheme. In each iteration, we:

1. Sample a nuissance parameter u™ ~ Uniform(0, p(7|D, X, ®, Q_7)).
2. Randomly and repeatedly propose 7* from all possible tree structures and
accept the proposal if p(T*|D, X, ®, Q_7) > u*.

Slice sampling enables our sampler to make bigger jumps and avoids getting
trapped at local modes. In our empirical analysis, a combination of slice sampling
and the Metropolis—Hastings sampling increased our sampler’s mobility, yielded
improved sampling performance, and was robust in different simulation scenarios.

Derivations of the full conditional distributions for all model parameters are
provided in Appendix E.

2.3.4. Parallel tempering. In MCMC sampling, the technique of parallel tem-
pering is often adopted to make it easier to jump from one mode to another
(Gelman et al. (2004)).

We specify an increasing sequence of temperatures {t, f2, 13, ..., t;}, usually
with equally spaced t;, = 1 + AT (i — 1), where AT is the temperature incre-
ment. For each temperature, we specify a corresponding target function p;(£2) =
p(2|D, X, d>)1/ i, The c target functions share the same set of modes, however,
functions with higher temperature will look more “flat” which makes it easier for
Bayes samplers to explore all modes. We run one independent chain for each tar-
get. At user-specified intervals, we randomly select a chain i < ¢ and propose to
switch chains 7 and i 4 1. This proposal is accepted with the following probability
(Geyer (1991)):

Pi(QD)p; (D)
pi(QD)p; (W)’

where Q) is the latest sample from chain k. In the end, samples from chain 1 are
taken as posterior samples of p(2|D, X, ®).
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2.4. Model selection. After obtaining posterior samples from models with dif-
ferent numbers of subclones, we need to address the issue of model selection. Ob-
viously, choosing the model with the maximum likelihood will lead to overfitting,
because models with more subclones are more likely to yield an improved likeli-
hood. Researchers have utilized a variety of model selection methods for subclone
inference. Marass et al. (2016) used log-posterior likelihood of the Maximum a
posteriori (MAP) sample as the selection criterion. However, this approach largely
depends on the choice of prior distributions. If prior distributions are flat, selection
by posterior distribution and by maximum likelihood are equivalent. Many meth-
ods (Jiang et al. (2016), Parisi et al. (2011), Li and Li (2014), Zare et al. (2014))
adopt the Bayesian information criterion (BIC), which adds a penalty term to the
negative log-likelihood in order to penalize complex models. However, there is
also concern as how to calculate the number of free model parameters, since the
model involves both discrete (SNV/CNYV status and tree structure) and continuous
(subclone fractions) parameters, and they should not contribute equally to model
complexity.

We choose to use a criterion based on Bayes free energy, which is defined as

f:—log/p(X,D|Q,<D)w(Q)dQ,

where 1/ (€2) is the joint prior density of all parameters. F can be understood as
the negative logarithm of the marginal likelihood of a model. Selecting the model
with the largest marginal likelihood is equivalent to choosing the model that mini-
mizes the Bayes free energy. It has been established that, in regular statistical mod-
els, BIC asymptotically approximates /. However, this is not generally true when
the underlying model is singular (e.g., when posterior distribution have multiple
modes) (Watanabe (2013)). A computational way to evaluate F is

2.4) F ==Y logEg " [exp(—(B; — Bi+)L(D)],
j=1

where 1 = B > B2 > --- > B.41 =0 are the inverse temperatures (i.e., 8; = 1/t;
for 1 < j <c¢), and L(2) = —log(X, D|2, @) is the negative log-likelihood. The
empirical expectation Eg’ is calculated using MCMC samples from the jth chain
(Watanabe (2013)).

3. Simulation. In order to assess the performance of STFA, we first generated
simulation datasets under different sequencing depths, true subclone numbers, and
tree structures, and compared inference results with Pyclone (Roth et al. (2014)),
one of the most popular intra-tumor heterogeneity analysis methods, and Cloe
(Marass et al. (2016)), one of the most recently published methods.
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FI1G. 4. Simulation parameters. The three rows represent simulation parameters (including tree
structure T, SNV matrix Z, and CNV matrix L) for K = 3,4, 5, respectively. The fist column shows
the underlying phylogenetic trees. The second column presents SNV matrices, where the red blocks
represent one mutant copy gain. The third column presents CNV matrices, where the green blocks
represent one copy loss, the red blocks represent one copy gain, and the black blocks are copy neutral.

3.1. Simulation setup. We compared the methods in 11 simulation scenarios
in total, including 3 x 3 basic simulation scenarios: three values of sequencing
depth = 40, 60, 80 reads per base-pair and three values of true subclone number
K =3,4,5. We used tree structure (0,1, 1) for K =3, (0, 1, 2,2) for K =4, and
0,1,1,2,2) for K = 5. We used the same set of L. and Z matrices for the same K
(see Figure 4). The sequencing depths 40 and 60 are commonly adopted in WGS
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practices, and depth 80 is considered as high coverage. In all simulations, we fixed
the number of loci J = 200, and the number of sequencing samples T = 4, which
also resemble real data from intra-tumor heterogeneity studies.

In order to study the robustness of the methods against different tree structure
specifications, we considered two other scenarios at K =5, depth = 40 reads per
base-pair. Note that the tree (0,1, 1,2,2) for K =5 in the basic scenarios had
three leaf nodes. In order to experiment on trees with different complexities, we
further generated two more tree structures: (0, 1, 2, 2, 3) with two leaf nodes, and
(0,1, 2, 3,4) with one leaf node. More details about simulation setup can be found
in Appendix F.

3.2. Measure of model performance. We evaluated the performance of our
method using different metrics, including the ability to recover true phylogenetic
trees, the ability to recover the correct number of subclones, mutation clustering
accuracy, and mutation cellularity estimation accuracy. Since Pyclone does not
perform inference for the phylogenetic tree, we only used the last two criteria to
compare STFA with Pyclone and Cloe.

The ability to recover true tree structures and subclone numbers can be as-
sessed by directly comparing model selection results with true 7 and K. For
mutation clustering accuracy, we used the Rand Index (Rand (1971)), which mea-
sures the similarity between two partitions. Clustering is basically a partitioning
of the SNV set A = {SNV,SNV3, ..., SNV}, into non-overlapping groups. Let
PO = {Pl(l), Pz(l), el Pr(l)} and P® = {Pl(z), Pz(z), e, Ps(z)} be two partitions
that divide A into r and s groups, respectively. The Rand Index looks at all pairs
of (SNV;, SNV ) and count how many pairs are assigned to the same group. It is
formally defined as

TP +TN

(2)

R(P(l), P(Z)) —

’

where:

1. TP (true possitive): pairs of SN'Vs that are in the same group in P! and also
in the same group in P®,

2. TN (true negative): pairs of SNVs that are in different groups in P and
also in different groups in P,

We calculated this index using posterior partitions acquired from our MCMC
sampler and the true partitions. The Rand Index takes values in [0, 1], with larger
value indicating higher clustering accuracy. The maximum value of 1 is achieved
when the two partitions are exactly the same.

Calculation of cellularity estimation error is straight-forward. Given SNV and
subclone fraction matrix, cellularity of SNV j insample ¢ is ¢j; = Y ycr. fki, Where
I'j = {k : zjx > 0} is the set of subclones that bear mutation j. Let C be the J x T
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true cellularity matrix and C be the cellularity estimation calculated from a single
draw from the posterior distribution. Cellularity estimation error is defined as the
mean of absolute elementwise difference between C and C:

_ Zj,t |Cjt - éjt|
e JT '

3.3. Simulation results. When running STFA, we used the first 2000 iterations
to tune the adaptive parameter s which controls the step size for proposals in sam-
pling © (see Section 2.3.1), 4000 iterations for burn-ins, and the next 4000 samples
for inference. We also ran Pyclone and Cloe for 10,000 iterations and kept the
last 4000 samples for inference. When implementing Pyclone, we provided the
true minor and major copy numbers for each locus. Convergence of the MCMC
samples was tested using the Geweke statistic (Brooks and Gelman (1998); see
Figure 28 of Zeng, Warren and Zhao (2019)).

SIFA successfully recovered the true phylogenetic structures in all 11 simula-
tion scenarios. Figure 5 presents the comparison between SIFA, Pyclone, and
Cloe, in terms of Rand Index and Ce.. Results for the two additional scenarios are
shown in Appendix F. Rows in Figure 5 represent scenarios with different num-
bers of underlying subclones, and columns represent different sequencing depths.
Within each scenario, the three boxes display the posterior distributions of the two
criteria calculated using the posterior samples from each method. As expected, for
each fixed K, all three methods yielded better performances as simulation sequec-
ing depth increased from 40 to 80. Under scenario K =5, depth = 40 and tree
structure 3, STFA did not outperform Pyclone, because one CNV segment was
not correctly identified, leading to incorrect mutation assignments in subclones 2
and 3 (see Figure 4 of Zeng, Warren and Zhao (2019) and Appendix F). In all other
settings, SIFA had the best results in both Rand Index and cellularity estimation.
Pyclone also yielded smaller error than C1loe in most cases, but note that Py -
clone took the ground truth minor and major copy number as input, which gave
it certain prior advantages in comparison.

We also plot the ground truth Z matrix and its point estimates from the three
methods in Figure 6 (take scenario K =5 and depth = 60 as example). For STFA
and Cloe, point estimates were calculated using the posterior median from a se-
lected K. Since Pyclone yielded varying K in posterior samples, we manually
picked the K with the largest posterior frequency, and calculated the median Z ma-
trix using the corresponding subset of samples. Full details on calculating the pos-
terior point estimates are described in Appendix H. From Figure 6, we can see that
all three methods can correctly detect the overall clustering pattern. Pylcone did
not perform phylogeny inference, thus the subclones have no overlapping SNVs.
Cloe correctly inferred genotypes of four out of five subclones, except subclone
2 whose parent should be the normal subclone.

More detailed results for each simulation are available in Figures 1-8 in Zeng,
Warren and Zhao (2019).
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F1G. 5. Comparisons of method performance using the Rand Index and cellularity estimation error
(Cerr). The upper panel and lower panel respectively show results for Rand Index and Ceyy in the nine
basic simulation scenarios. Rows represent scenarios with different numbers of underlying subclones,
and columns represent different sequencing depths. Within each scenario, the three boxes display
posterior distributions of the two criteria calculated using posterior samples from SIFA, Pyclone,
and Cloe, respectively.

4. Application: Breast cancer. In this section, we apply our method to a
breast cancer dataset (Yates et al. (2015)). This study involved 50 breast cancer
patients, where researchers applied WGS and targeted sequencing to multiple sam-
ples from each of the 50 patients’ tumors. We applied SIFA to patients PD9694,
PD9771, PD9777, and PD9849, who have greater or equal to three WGS samples.

To obtain genome segmentation estimates, we sorted the patients’ loci by their
chromosomal locations, and ran the multipcf segment calling method using the
loci’s total reads information. In WGS, the loci may give false mutated reads due
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FIG. 6. Point estimates of the SNV matrix Z from the three methods under scenario K =5,
depth = 60. The first panel represents the gold-standard Z. matrix, and the other three are point
estimates from SIFA, Pyclone, and Cloe, respectively.

to technical errors in the sequencing process. In order to screen out “noise” loci
and only keep those that were shared among samples, we performed a few steps
of quality control using criteria including locus coverage and average VAF across
samples (see Appendix G). An overview of the final input data is presented in
Table 1.

We applied STFA with K = 3,4, ..., 7 to the four patients’ sequence data, and
selected the models that minimized J,,. We present the results for patients PD9694
and PD9777, and leave the others’ results in the supplementary materials (Zeng,
Warren and Zhao (2019)). The STFA parameters we used for the implementations
can be found in Appendix G.

Patient PD9694 developed multifocal breast cancer. Three WGS samples were
acquired from the patient, with designed sequencing depths 41, 48, and 43, respec-
tively. Two out of three samples (PD9694a and PD9694c) were from invasive foci,
and PD9694d was from an area of DCIS (ductal carcinoma in situ), which was
noninvasive.

Results for PD9694 are presented in the upper row of Figure 7. Our model
selection criterion recommended K =5 as the best model. The left panel displays
the inferred phylogenetic tree structure and corresponding genes for each subclone.
The genes presented are among the 184 most mutated driver genes in breast cancer

TABLE 1
Overview of the breast cancer dataset

Patients Number of loci Number of segments
PD9694 301 56
PD9771 549 152
PD9777 742 83

PD9849 641 56
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FI1G. 7. Breast cancer analysis results for PD9694 (first row) and PD9777 (second row). The left
panels present the inferred phylogenetic tree, with breast cancer related genes listed on its right.
Red gene names indicate loci with copy gain, green names indicate loci with copy loss, and the
others are copy neutral loci. The middle panels show fractions of each subclone in all WGS samples.
Subclones are represented by colors, and the lengths of each colored segment are proportional to
their estimated fractions. The right panels present the Bayes free energy values calculated in the
model selection step.

as reported by the IntOGen-mutation platform (Gonzalez-Perez et al. (2013)). We
use different colors to indicate copy number status: green for copy loss, red for
copy gain, and black for copy neutral genes. Gene SF3B1 is involved in RNA
splicing process, and has been found to be a hotspot mutation gene in breast cancer.
Knowing that it originated from an early phase subclone, we could use targeted
therapy for treatment, such as Spliceostatin A, which is reported to be effective
on SF3B1 mutated cell lines (Maguire et al. (2015)). The middle panel presents
the composition of the subclones in each sample. The major components of the
DCIS sample (PD9694d) are subclones 2 and 3, and both were formed in the early
stage of evolution. The two invasive samples each developed a new major subclone
(subclone 5 for PD9694c¢ and subclone 4 for PD9694a). It is possible to identify
gene alterations related to tumor invasiveness from these subclones.

The second row of Figure 7 presents the results for a triple negative breast can-
cer patient PD9777. The three WGS samples, PD9777a, PD9777¢c, and PD9777d,
have designed sequencing depths 30, 30, and 57, respectively. Sample PD9777d
was collected from the tumor tissue after neo-adjuvant chemotherapy, and the other
two were from pretreatment tumor mass. The fraction plot in the middle panel de-
picts a contraction of the normal subclone and an expansion of a cancerous sub-
clone (subclone 3) in the post-therapy sample, indicating the tumor has developed
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chemotherapy-resistance. Gene RB1 might explain the resistance and the expan-
sion of subclone 3 in PD9777d. It is a negative regulator of the cell cycle and is the
first tumor suppressor gene found. It has also been reported to be associated with
drug sensitivity in triple negative breast cancer (Robinson et al. (2013)). Another
interesting finding is that, three out of six driver genes (PIK3R1, SOS1, SOS2)
originated from subclone 2 can be mapped back to the PIK3 pathway, suggesting
that this pathway was severely mutated in the early stage of tumor development.
PIK3 is a major intracellular signaling pathway, and there are rich literatures study-
ing its association with cell growth and tumor proliferation. This finding provides
strong evidence that the PIK3 pathway mutations played an important role in the
tumor progression of PD9777.

CNV estimation is generally more reliable for larger segments than smaller
ones. When a segment is short, there is a higher probability that the observed
reads of the segment are higher (or lower) than average (the designed sequencing
coverage) just by chance, and subsequently this leads to false positives in CNV in-
ference. For example, a 3-loci-segment showing below average reads may happen
randomly, but a 50-loci-segment showing below average reads is a strong indicator
of copy loss. To control for false positive CNV calls, we set the prior distribution
of m (the prior probability of a segment being copy neutral) close to one, thus a
CNV is not assigned unless it provides considerable increase in model likelihood.

The inferred CN'Vs of the previous two patients are demonstrated in Figure 8.
The Y-axis shows the log-transformed normalized reads, and segments without
CNVs should contain points centered around zero. The orange points in the figure
are loci without estimated CNV, while other colors indicate CNVs on different
chromosomes. From Figure 8, we observe that most of the segments that have
consistent deviations from zero are colored, which manifests the ability of STFA
to successfully capture the major CNV regions. In patient PD9694, a copy loss
was detected in a segment that covers gene PTEN, a known tumor suppressor gene
on chromosome 10. The copy loss took place in subclone five, which is a major
component of sample PD9694c, and can possibly be the cause of the invasiveness
of this sample. In PD9849, we detected strong evidence of CNV at a mutated
gene FGFR2 on chromosome 10, whose observed reads were 2—4 times above
average (see Figure 14 of the Zeng, Warren and Zhao (2019)). It belongs to the
Fibroblast Growth Factor Receptor family, and is found to be a consistent top hit in
genome-wide association studies of breast cancer (Campbell et al. (2016)). STFA
inference suggested that multiple mutant FGFR?2 alleles were acquired at an early
stage of the tumor, which could be a cause of tumorigenesis. More details on the
CNV inferences for PD9771 and PD9849 are presented in Figures 13—14 of Zeng,
Warren and Zhao (2019).

We also applied Cloe and Pyclone to the dataset, and compared their in-
ferences with the results from SIFA. SIFA and Cloe yielded similar overall

Spyclone was only applied to patients PD9694 and PD9849, since it needed estimated major and
minor allele copy numbers as input. This information was missing for the other two patients.
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chromosomes.

SNV clustering patterns (Figure 21-26 of Zeng, Warren and Zhao (2019)). Py -
clone reported significantly more clusters than the other two methods for patient
PD9694, but many clusters only had smaller than five mutations, which might be
due to overfitting noises.

5. Discussion and conclusion. In recent years, many studies have shown that
intra-tumor heterogeneity plays an important role in tumor metastasis and treat-
ment resistance. It is of great clinical importance to correctly infer patients’ sub-
clonal composition and phylogenetic structure. For this purpose, we proposed
SIFA, which is an extension of (Marass et al. (2016)) and (Lee et al. (2015))
that enables simultaneous inference of subclone SNV, CNV status and phyloge-
netic tree. SIFA achieved satisfactory results in our simulation studies, and its
application to four patients from a breast cancer study also provided interesting
insights.

In the Metropolis—Hastings sampling step of tree structures in SIFA, we em-
ployed a novel tree proposal method which includes changing the tree structure
and the subclone fraction parameters at the same time. The method successfully
led to improved acceptance rate and better mixing efficiency. We also provided
proof that, under certain constraints, the proposed tree has equivalent likelihood as
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the original one. Note that the constraints can also serve as conditions for unidenti-
fiability: if the underlying true fractions for subclone D are indeed smaller than C
in all samples (see Figure 3), then the original tree and the proposed tree are indis-
tinguishable in terms of likelihood. In this case, our method is able to produce both
trees in posterior samples, and the users can incorporate other prior information to
decide which tree structure is more likely to be true.

Our model runs one chain for each candidate K and uses the Bayes free en-
ergy as the model selection criterion. BIC is used as model selection criterion by
some other methods. Although BIC is simpler in form, it requires users to provide
the number of free model parameters. Calculating this number is not trivial as we
cannot simply count the number of parameters in the model, when there are both
continuous (F) and discrete (L, Z, 7) parameters that do not contribute equally to
model complexity. Moreover, the Bayes free energy criterion utilizes all posterior
samples to assess model predictive accuracy, which should give more comprehen-
sive results compared to criteria using pointwise estimates (such as AIC, BIC, and
DIC), which are known to have issues when the posterior distributions have mul-
tiple modes.

In SIFA, we make several assumptions about the tumor evolution process, which
may limit the application in real data. For example, the infinite sites assumption
states that a locus can only be mutated once. While this is true for most muta-
tion loci in practice, users may encounter several loci with multiple mutation types
(e.g., A — C and A — G). Such cases indicate violation of the infinite sites as-
sumption, and we suggest users exclude such mutation loci from the analysis. Sec-
ond, when modeling the subclone fractions parameter ®, we assume the samples
are independent, and therefore can update ® column by column. However, con-
sidering that the samples are sometimes from the same tissue, dependence among
samples may exist. Especially when the biopsy sites are close to each other, the
subclone fractions may appear to be similar as well. In such cases, modeling the
dependency among samples will likely provide improved inference of subclone
fractions. Third, STFA is only suitable for analysis of WGS data. It may not be
applicable to samples from other sequencing technologies, such as WES and tar-
geted deep sequencing, because the Poisson distribution assumption in equation
(2.3) may not hold. Under such circumstances, other analysis tools should be con-
sidered.

In all applications, we have used maximum number of mutated alleles Mg =2
and maximum copy number M¢ = 4. The choices of the two numbers may seem
low for modeling extreme cases where loci acquire many copies of mutated alleles
or are subject to strong CNV, but it should be flexible enough to model most mu-
tation loci. Since the subclone inference is dependent on mutation clusters, if most
loci are correctly modeled, the inference results should be robust against a few ex-
treme cases. To further examine the model’s sensitivity to different choices of Mg
and M, we fit STFA on the real dataset with Mg =3 and M = 6. The resulting
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estimation for Z and L were similar to the results reported in Section 4. The pro-
portion of loci with the exact same Z and L estimates are presented in Table 1 of
Zeng, Warren and Zhao (2019). In patients PD9694, PD9777, and PD9849, more
than 98% of the loci yielded the same estimate. In PD9771, the similarity is 89%
for Z and 73% for L, due to a different tree structure estimate from our previous
analysis. However, this new tree was also present in the posterior samples from the
previous analysis as a minority tree. Overall, the results show robustness of SIFA
against different specifications of Mg and M.

Theoretically, STFA can handle sampling for models with any K. However in
practice, the sampler becomes more time consuming as K gets larger. It can take
an unnecessarily long time if a large range of K ’s is used. It is suggested that users
explore smaller ranges first and check the model selection metric. If the metric
suggests the possibility of larger number of subclones, for example when you see
the metric keeps decreasing as K increases, then it is necessary to explore a few
more values for K.

Another limitation of STFA is that users need to run the model for each K in the
prespecified range. It may be preferable to spend less time on less likely K's. One
possible future direction is to enable the sampler to jump between models with
different Ks, for example reconstructing the model with a nonparametric prior
for K. This modification is likely to increase sampling efficiency, and at the same
time bypass the need of model selection.

Source code and instructions for implementation of STFA can be accessed from
https://github.com/zengliX/SIFApackage.

APPENDIX A: SEGMENTATION METHOD

For genome segmentation, we use the multipcf function in R package
copynumber developed by Nilsen et al. (2012). It is a penalized regression model
with penalty placed on the number of segments. Suppose we observe normal-
ized copy number measurements y; = (yi, yé, ey y,i) for the ith sample, where
i=1,2,....,T.LetS={l1, I, ..., I,} be a genome segmentation, where each Ij
contains indices of loci in the kth segment. In each segment, the loci are supposed
to take the same copy number value, thus multipcf minimizes the following
loss function over S:

T
LSIYL Y2 ¥ ) =D > > (v — 702 +y IS,

i=1I1eSkel

where )—/; is the mean copy number of probes in segment I of sample i, |S] is the
number of segments, and y is a penalty parameter. Larger values of y indicate a
larger penalty for opening a new segment. In our implementation, we select the
optimal y using BIC.
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APPENDIX B: TREE REPRESENTATION PROOF

In this section, we will prove that any tree of size K can be represented as a K -
vector satisfying the constraints in Section 2.2.3, and any such vector corresponds
to a tree.

We focus on cases when K > 2.

Given any tree, we sort the nodes in decreasing order of their heights, and index
them by 1,2, ..., K. We then create the vector 7 by assigning 7 to be the index
of node k’s parent. Apparently index 1 refers to the root node, thus 7; = 0. And
for any node k > 2, its parent must have greater height, thus 7, € {1,2, ...,k — 1}
holds true.

Given any K-vector T satisfying the constraints, we let the first entry be root
node, and add an edge between nodes i, k if Ty = i. Apparently any node k > 2
has a path to the root, which impies the graph is connected. The graph also has
only K — 1 edges, thus it must be a tree.

APPENDIX C: EQUIVALENT TREE PROPOSAL PROOF

In this section, we prove that, under the condition that 6, > 6, for all 7, the new
tree proposed in our Metropolis—Hastings sampling step yields the same likelihood
as the original tree structure.

It is easy to check that the proposed ©* leads to the following changes in the
fraction matrix F:

f;t:fpt'i‘fkt,
(C.1) fq*t:fqt_fkt/\fqta
(C.2) fie = faa A fgr (forallt=1,2,...,T).

Figure 9 illustrates the tree structures before (left panel) and after (right panel)
rewiring subclone k to subclone g. To prove both tree structures yield the same
likelihood, we need to show that the theoretical VAF pj; = > 4 zjk fre /D i Ljk fie

original tree proposed tree

FI1G. 9. Left panel: original tree; right panel: proposed tree.
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stays the same for every locus. It suffices to prove that for every SNV and CNYV, its
cellularity does not change in the new tree. Since the proposal only directly affects
subclones k, p, and g, we can focus our proof just in these three subclones.

When the condition 6,; > 6k, holds, fi; A fq: becomes fi;. Thus equations
(C.1) and (C.2) can be simplified to f, = fg: — fir and [} = fia-

— For any SNV or CNV g in subclone k, it has cellularity f; in both trees.

— For any g, in subclone p, it has original cellularity f,; + fx; + cp, where ¢, is
the sum fraction of p’s other descendant sucblones. In the new tree, the value
becomes ;‘t +¢p = fpt + fir + cp, thus the invariance holds.

— For any g, in subclone ¢, its original cellularity is f;; + c4. And cellularity in
the new tree is f; + fi; + ¢4 = fqt + ¢q, Where ¢ is similarly defined as cp.
Cellularity invariance also holds true.

APPENDIX D: SLICE SAMPLING

The method of slice sampling is commonly used to sample distributions with
bounded domain. It enables the sampler to jump between different local modes
even if they are far from each other, thus avoiding getting biased samples.

Suppose our goal is to sample z from distrbution f(z) = Cg(z) and we only
know g(z), which is usually the case in Bayesian models. We introduce a nuisance
random variable u|z ~ Unif(0, g(z)), then u, z have joint distribution

p(z,u) = Cly<g(z)).

We intend to get samples of f(z) by sampling from the joint distribution p(z, u)
using Gibbs Sampling. In each iteration, we:

1. Sample u™* ~ Unif(0, g(z)).

2. Sample z* ~ p(z|u™) o< 1{g(z)>u*}, Which is uniform on area {z : g(z) > u*}.
Therefore, we can randomly propose z* from its support and accept proposal if
8(@") = u*.

One practical issue in computation is that g(z) is usually near 0 when the sample
size is large, which makes it infeasible to sample from Unif(0, g(z)). However, this
can be fixed by working on the log scale. Let n = —log(u), then 1 has a shifted
Exponential distribution: Exp(1) — log g(z), which is much easier to sample from.

Therefore, in the actual implementation of slice sampling, we use the following
more practical procedure in each iteration:

1. Sample n* ~ Exp(1) —log g(2).

2. Randomly propose z* from its support and accept proposal if log g(z*) >
*

_n.



1234 L. ZENG, J. L. WARREN AND H. ZHAO

APPENDIX E: DERIVATIONS OF THE FULL
CONDITIONED DISTRIBUTIONS

e Posterior distribution of
Posterior distribution for  is (with prior Beta(a,, by)):
p(wIL°) o p(L°|7) p(mr)
o (1 —m)> " p(r)
x Beta(n + a, S —n+ by),

where § is the number of genome segments and n is the number of segments
without CNV.

e Posterior distribution of ®
Since samples are independent, we can update ® by columns:
p(©:D. X, ®,Q2_g,)
= p(®l|¢l‘5 Dl‘a LO’ Z07 T)
o« p(Dy|¢r, ©;, L) p(X;|Dy, Z, L, ©) p(O;)

Pt
“H (O [(Lj) — Z)) O] ™ 206

O p(O)),

where G; = >} k.
e Posterior distribution of Z°
Z° is sampled row by row:

p(Z¢;)ID.X, &, 2 g0 ) = p(Z¢;)X,D,©,L°, T)

o p(Z¢) [ Trxjeldje, pjo)
t
p(Z) [ 15l (1= pjoydiir
t

it d —Xjt
o< p(20))) [ T(Z Fe) " (L Fr — 25 Fr) 000
t

e Posterior distribution of L°

Rows of L in the same segment are sampled together. Consider loci in segment
A;, and assume they share the same CNV status L(()Ai):

_p(L(A)|D, X, q>,®,Z°,T)
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o p(Lay) T TTp(@jildr, Fr, LY =Lin,). T)

JEA; 1
JEA; 1
’ e g/
o p(Leay) [T Ty = Zy B e ik,
JeEA; 1

where La,) is the length-K subclone copy number vector corresponding to L{,
when tree structure is 7 .

e Posterior distribution of T~
p(TID, X, ®,Q_7)=p(TID.X, ,L° Z° O)

< p(D[]r(djilde, O, L, T)p(xjildjs, ©1, L, Z°, T).
J»t
APPENDIX F: SIMULATION ANALYSIS

F.1. Simulation true parameters. Details of the simulation parameters are
presented in Figure 10.

F.2. Parameter specifications for Bayesian sampling. Model parameter
specifications are presented in Table 2. Markov chain sampling parameters are
presented in Table 3.

F.3. Simulation results on different tree structures. Results are presented
in Figure 11.

APPENDIX G: REAL DATA ANALYSIS

G.1. Data quality control. There were more than 3000 ~ SNV loci in the
raw data for different patients, and many of them were present due to sequencing
noises. To screen out loci that were less useful for our analysis and reduce input
sample size, we went through the following process:

1. Removed loci with total reads < 15 in any samples.

2. Calculated observed VAF, and removed loci with average VAF < 0.1.

3. Performed K-means clustering using loci’s VAF with specified number of
clusters = 60. In each cluster, the loci had highly similar VAF patterns, thus we
randomly removed half of the loci to reduce redundant information.

G.2. Sampling parameters. Model parameter specifications for real data
analysis are presented in Table 4. Markov chain sampling parameters are presented
in Table 5.
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Mutations originated from different subclones are coded with different colors.
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TABLE 2
Prior distribution parameters used in the applications of SIFA to simulations

Parameters Value
Number of samples (T") 4
Number of loci (J) 200
Maximum possible mutant copy (M) 2
Maximum possible total copy (M) 4

® Dirichlet prior parameter () 1.5

7 Beta prior parameter (ay, by ) (10,000, 1)
Z° prior parameter (¢) 10

TABLE 3

MCMC sampling parameters used in the applications of SIFA to simulations

Parameters Value
Number of chains 3
Temperature increment (A7) 0.35
Posterior sample size 4000
Burn-in samples size 4000
Sample size for adaptive parameter tuning 2000
Interval to perform chain swap 30
Probability to perform tree slice sampling 0.15
Probability to perform tree Metropolis—Hastings sampling 0.85
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TABLE 4
Prior distribution parameters used in the applications of SIFA to the breast
cancer dataset

Parameters Value
Number of samples (7') 4
Number of loci (/) 200
Maximum possible mutant copy (Mg) 2
Maximum possible total copy (M) 4

©® Dirichlet prior parameter () 1.5

7 Beta prior parameter (ar, by ) (10,000, 1)
Z° prior parameter () 0.01

APPENDIX H: CALCULATION OF POINT ESTIMATES

It is not trivial to obtain posterior point estimates, because under different tree
structures the parameters Z, L, and F have different interpretations. In this section,
we describe in detail how the point estimates are calculated.

Note that one phylogenetic tree may have different representations. For exam-
ple, if a tree has two leaf subclones with the same parent, we can switch them in the
tree and their corresponding columns/rows in Z, L, and F, and yield an equivalent
representation of the tree. To unify posterior samples with different tree parame-
ters that may refer to the same tree, we employ the following procedure to process
each posterior sample:

1. Let 7, Z be the tree and SNV matrix estimate in the current sample, and
similarly define Tprey, Zprey for its previous sample;

2. If T # Tprey, we list all permutations (of columns) of Z and identify the per-
mutation o that minimizes the average absolute difference between Z and Zpyey;

TABLE 5
MCMC sampling parameters used in the applications of SIFA to the breast
cancer dataset

Parameters Value
Number of chains 8
Temperature increment (A7) 0.35
Posterior sample size 4000
Burn-in samples size 4000
Sample size for adaptive parameter tuning 2000
Interval to perform chain swap 30
Probability to perform tree slice sampling 0.15

Probability to perform tree the Metropolis—Hastings sampling 0.85
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3. Reindex T by permutation o . If the resulting new tree is valid (satisfies the
constraints specified in Section 2.2.3), we also change Z, L, and F according to o.
Otherwise we make no change to this sample.

After the above postprocessing, we typically end up with a single tree structure.
Then we use median Z, L, and mean F as point estimates. However, it is possible
to have more than one tree in the posterior samples. It is not reasonable to combine
samples from essentially different trees to calculate point estimates. In such cases,
we report the point estimates from the majority tree, but it is also suggested to
examine all the tree structures in the samples.

Acknowledgements. We would also like to thank Jiehuan Sun for discussions
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Phylogeny-based tumor subclone identification using a
Bayesian feature allocation model” (DOI: 10.1214/18-A0AS1223SUPP; .pdf).
We put additional plots and tables in the supplementary materials to assist illustra-
tion of simulation and real data results.
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