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The Eurovision Song Contest is a popular TV singing competition held
annually among country members of the European Broadcasting Union. In
this competition, each member can be both contestant and jury, as it can par-
ticipate with a song and/or vote for other countries’ tunes. During the years,
the voting system has repeatedly been accused of being biased by tactical vot-
ing; votes would represent strategic interests rather than actual musical pref-
erences of the voting countries. In this work, we develop a latent space model
to investigate the presence of a latent structure underlying the exchange of
votes. Focusing on the period from 1998 to 2015, we represent the vote ex-
change as a multivariate network: each edition is a network, where countries
are the nodes and two countries are linked by an edge if one voted for the
other. The different networks are taken to be independent replicates of a con-
ditional Bernoulli distribution, with success probability specified as a func-
tion of a common latent space capturing the overall relationships among the
countries. Proximity denotes similarity, and countries close in the latent space
are more likely to exchange votes. If the exchange of votes depends on the
similarity between countries, the quality of the competing songs might not
be a relevant factor in the determination of the voting preferences, and this
would suggest the presence of some bias. A Bayesian hierarchical modelling
approach is employed to estimate the parameters, where the probability of a
connection between any two countries is a function of their distance in the
latent space, network-specific parameters and edge-specific covariates. The
estimated latent space is found to be relevant in the determination of edge
probabilities, however, the positions of the countries in such space only par-
tially correspond to their actual geographical positions.

1. Introduction. The Eurovision Song Contest is a popular TV show, held
since 1956, that takes place every year with participants from the countries mem-
bers of the European Broadcasting Union. The competition has undergone several
modifications through years and the number of participants has increased, together
with the popularity of the show. Since its beginning, countries had to express their
preferences for the competing songs through a voting system; representatives vote
only for the songs that meet their tastes. Despite that, many issues of bias in the
voting system have been raised during the years (Yair (1995)). In the press and
the literature, it has often been claimed that votes are not only the expression of
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preferences for the songs, but for the performing countries themselves. Therefore,
it has been claimed that the exchange of votes is not random but rather it is deter-
mined by some kind of similarity: the more two countries are close according to
an unknown proximity measure, the more they will tend to vote for each other.

The exchange of votes in the Eurovision contest can be represented by means of
a network, where the countries represent the nodes and the votes are recorded as
edges. More specifically, within each annual edition of the Contest, the data may
be represented in the form of an adjacency matrix Y, with generic element yij = 1
if a representative of country i votes for a song by a performer from the j th coun-
try and 0 otherwise, where i, j = 1, . . . , n indexes countries. Network data can
be represented by means of graph theory. More formally, a network is thought to
be the realization of a graph G(N,E), where N denotes the set of nodes and E

the set of edges. The number of observed nodes and edges will be denoted, re-
spectively, by |N | = n and |E| = e. Generally, the law generating the observed
networks is unknown and several different models have been proposed to describe
such complex structures. Erdős and Rényi (1959, 1960) modelled arch formation
in a network as arising from a random process: each dyad (i, j) is independent
and the probability of forming a link is constant over the network. This first model
was generalized, both relaxing the assumption of constant edge probability over
the network and the assumption of independence of the dyads. Holland and Lein-
hardt (1981) with models p1 and p2 kept the assumption of independence among
the dyads but increased the number of parameters describing edge probabilities,
to take into account the attractiveness of a node (the highest the value the highest
the probability for this node to be connected with others) and the mutuality (the
propensity of forming symmetric relations). The independence assumption on the
dyads was then relaxed via the introduction of Markov graphs by Frank and Strauss
(1986), attempting to model triangular relations in a network. Later on p∗ models
or ERGMs (Exponential Random Graph models) have extended the work done by
Frank and Strauss (1986) introducing differnet summary statistics, see for exam-
ple Krivitsky et al. (2009) and Robins et al. (2007). A different approach is the
so-called stochastic block model, which attempts to decompose the nodes in dif-
ferent subgroups, see Holland, Laskey and Leinhardt (1983), Airoldi et al. (2008).
In its basic formulation, nodes within a group have the same probability of forming
edges, while this probability changes among groups. Hoff, Raftery and Handcock
(2002) added an extra layer of dependence: the observed edge formation process
is assumed to be a function of nodes’ coordinates in a (low-dimensional) latent
space. Two different specifications are considered, the distance model, where the
latent space is euclidean, and the projection model, where it is bilinear. The model
by Hoff, Raftery and Handcock (2002) has been extended to perform clustering on
the latent nodes’ coordinates by Handcock, Raftery and Tantrum (2007). A gen-
eralization of the projection model by Hoff, Raftery and Handcock (2002) is the
multiplicative latent space model by Hoff (2005), designed to capture certain types
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of third-order dependence patterns in the network. Another approach that makes
use of latent variables has been proposed by Snijders and Nowicki (1997). This
model is based on the stochastic block model by Holland, Laskey and Leinhardt
(1983), where latent variables are introduced in the determination of the nodes’
group memberships. A more exhaustive review of models for statistical network
analysis can be found in Goldenberg et al. (2010), Salter-Townshend et al. (2012)
and Murphy (2016).

The models presented above refer to single networks, that is, in the present
context, to the modelling of one single edition of the Eurovision Song Contest
or a summary of several editions. If a group of editions of the Contest is con-
sidered, many replications of the adjacency matrices, representing the preferences
expressed by countries towards others, are available. Therefore, the data can be
described by a multidimensional network (or multiplex), Y = (Y(1), . . . ,Y(K)),
which may be thought of as the realization of a collection of graphs G =
(G(1), . . . ,G(K)), where k = 1, . . . ,K indexes editions. The generic graph G(k) =
(N,E(k)) has the same set of nodes N as the others (K − 1) graphs in the collec-
tion (the participants to the group of editions), but potentially different set of edges
E(k) (the preferences expressed in each edition). Hence, a multidimensional net-
work describes different (independent) realizations of a relation among the same
group of nodes. Different models have been developed to deal with this kind of
data. Fienberg, Meyer and Wasserman (2017) adapted a log linear model to the
context of multiplex data. Greene and Cunningham (2013) proposed to summarize
the information coming from all the different networks (views) aggregating them
into a single one. Sweet, Thomas and Junker (2013) proposed a Hierarchical Latent
Space model, which generalizes network latent space models to a collection of net-
works. The joint multiplex distribution factorizes into single network distributions,
which are modelled independently and inference is carried out via MCMC. Gollini
and Murphy (2016) extended the latent space model in Hoff, Raftery and Hand-
cock (2002) to multiplex data, assuming that the edge probabilities are function
of a single latent variable. To estimate the joint latent space coordinates, they pro-
pose to use a variational Bayes algorithm and decompose the posterior distribution,
fitting a different latent space to each network. Then, the separate estimates are
employed to recover the joint latent space. The multiplicative latent space model
was extended by Hoff (2015) to the context of multidimensional networks. In that
case, each network in the multiplex is modelled with its own latent space, inde-
pendently from the others. Salter-Townshend and McCormick (2017) proposed a
method to jointly model the structure within a network and the correlation among
networks via a Multivariate Bernoulli model. Another approach developed to de-
scribe the (marginal) correlation among different networks in a multiplex has been
proposed by Butts and Carley (2005). Hoff (2011) proposed to model multiplex
data as multi-way arrays and applied low-rank factorization to infer the underlying
structure. Durante, Dunson and Vogelstein (2017) proposed a Bayesian nonpara-
metric approach to latent space modelling, where clustering is performed on the
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latent space dimensions in order to discriminate the most relevant ones for each
view.

The present work aims at recovering the similarities among countries, modelling
the exchange of votes during several editions of the Eurovision Song Contest. We
adopt a framework similar to that of Gollini and Murphy (2016) and we consider
the projection of the countries into a common latent space. Similarities among
countries are then expressed in terms of distances in this latent space. We intro-
duce network-specific coefficient parameters to weight the relevance of the latent
space in the determination of edge probabilities in each network. We consider the
editions that took place after the introduction of the televoting system and focus on
the period 1998–2015. Further, we consider geographical and cultural covariates
in the analysis.

The paper is organised as follows. Section 2 summarizes the history of the Euro-
vision Song Contest together with the principal works on the subject (Section 2.1)
and presents the analysed data (Section 2.2). Latent space models for network data
are introduced in Section 3 and the proposed model is outlined in Section 3.1.
Model estimation is discussed in Section 4. Further issues are discussed in Sec-
tion 5, such as model identifiability (Section 5.1), missing data (Section 5.2) and
the introduction of edge-specific covariates (Section 5.3). The application is pre-
sented in Section 6 and the results are discussed in Section 7. A large scale sim-
ulation study is outlined in Section 8, where also the main findings are reported.
Section 9 presents the results of a comparison between the proposed model and
the lsjm by (Gollini and Murphy (2016)). We conclude with some discussion in
Section 10.

2. The Eurovision song contest.

2.1. History of the contest and previous works on the subject. The Eurovision
Song Contest, held since 1956, is a TV singing competition where the partici-
pant countries are members of the EBU (European Broadcasting Union). Despite
its name, the European Broadcasting Union includes both European and non-
European countries. Indeed, Eurovision’s fame has spread all over the world during
the last years and it has been broadcast from South America to Australia. It is the
non-sportive TV program with the largest audience in the world and one of the
oldest ones (Lynch (2015)).

From its first edition, where only seven countries competed, there have been
several changes in the number of participants, the voting system and the struc-
ture of the competition. Due to the increasing popularity of the program, many
countries have been included in the contest. The current structure of the contest
consists of two preliminary stages used to select the finalists, followed by the final
stage for the title. The voting system has been modified several times, in the voting
procedure and the grading scheme. In the early years of the competition, a jury
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elected the winning song. Later, the system has been supported by televoting,1 in-
troduced in 1998 in all the competing countries. As for the grading scheme, it is
positional2 since 1962, but the method used to rank the countries has been modi-
fied across the different editions. From 1975 to 2015, each country had to express
its top 10 preferences ranking them from the most to the least favourite using the
following scores: 12, 10, 8, 7, 6, 5, 4, 3, 2, 1. Each country had to vote exactly 10
others, could not vote for itself and each grade could be used only once. At the end,
the country receiving the highest overall score would have won the competition.
A restriction has been imposed on the lyrics in the past, as the participants were
required to perform a song written in their national language. However, this rule
was definitively abolished after 1998.

Every year, both the singer and the song representing a country change, mak-
ing each edition of the Eurovision independent from the previous one. Indeed, the
structure of the competition is built in such a way that the past results will not influ-
ence the future performances. Countries should vote only according to their tastes
and, as musical evaluation has no objective criteria, the voting results should not
depend on the countries themselves, but only on the songs. However, this claim
was often doubted, especially after the introduction of televoting. Several issues
have been raised on the voting system, which was said to be biased. The first pa-
per investigating the presence of bias in the voting system is Yair (1995). This
work considers voting relations among 22 of the 24 countries competing in the
period 1975–1992 and claims that, according to their voting preferences, they can
be clustered in three regional blocks: Mediterranean, Western and Northern. Coun-
tries tend to vote for others from the same block, hence following a nonobjective
(nondemocratic) behaviour. However, the paper does not provide an in-depth sta-
tistical evaluation of the results. The author supports the theory that the geographic
location of a country may influence its voting behaviour. This assumption has been
further investigated by Fenn et al. (2006); in this work, the dynamic evolution of
votes exchanged in the competition 1992 to 2003 has been analysed, with the aim
at looking for subgroups of countries. The subgroups found are not fully explained
by the geographical positions of the countries. Clerides and Stengos (2006) devel-
oped an econometric framework to analyse the data and arrived to similar conclu-
sions, in the sense that the authors do not find any “strategic” vote exchange in
the period 1981–2005. Saavedraa, Efstathioua and Reed-Tsochasb (2007) investi-
gated the structural properties of the dynamic network for the period 1984–2003
via q-analysis and found that clustering arises mainly between countries closed to

1Televoting is a voting method conducted by telephone. The organizers of the event provide the
audience with telephone numbers associated with the different participants. The rankings are then
determined by the number of calls/SMS that each contestant receives.

2Positional voting is a ranked voting system where a list of candidates has to be ordered by voters.
Rankings of different voters are converted into points and cumulated in scores, associated with each
contestant. The one receiving the highest final score wins.
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each other in a geographical sense. Spierdijk and Vellekoop (2006) applied multi-
level models to look for the influence of geographic and cultural factors in the vote
exchange from 1975 to 2003 and found that these do not explain the behaviour
of all the competing countries. Ginsburgh and Noury (2008) claim that having a
similar culture may influence the votes expressed by a country. Cultural proximity,
as well as geographic proximity and migration flows in the period 1998–2012 have
been investigated as sources of bias by Blangiardo and Baio (2014). The authors
discovered the presence of a mild positive bias among few couples of countries but
no evidence of a negative bias overall. Mantzaris, Rein and Hopkins (2018) anal-
ysed the editions 1975–2005 searching for couples of countries exhibiting prefer-
ential voting. They investigate the hypothesis of random allocation in the votes,
and found some evidence that geographic proximity is influential up to an extent;
however, many countries do not tend to vote according to such a rule.

The aforementioned works show that there has been a growing interest in the
structure underlying votes exchange in the Eurovision Song Contest during the
past twenty years. The authors investigated the influence of social, geographical,
cultural and political factors on the mechanism forming preferences and agree that,
at least to some extent, these components may be relevant. However, none of the
factors above is able to explain satisfactorily the votes exchanged in the competi-
tion for the last years.

2.2. Data. The assumption that the exchange of votes is driven by similarities
among countries may be reasonable. However, similarities among countries might
not coincide with social, geographical, cultural and political factors that can be
explicitly measured. In fact, there could be some unobservable (latent) factors in-
fluencing such a process. The aim of this work is at recovering the underlying latent
similarities among countries. The idea is that the more two countries are similar,
the more they will tend to vote for each other. To recover recurrent voting patterns,
we need to examine a collection of editions. In particular, we focus on years sub-
sequent to the introduction of the televoting system, 1998–2015. We assume that
the televoting preferences reflect the preferences of the whole population, and that
they are more representative when compared to the jury opinions alone. We do not
consider years 2016 and 2017 because the voting system was again modified in
that period. In fact, in the period from 1998 to 2015, votes given by the jury and
by televoting were jointly considered: the final top 10 for each country was deter-
mined by looking at the intersection of the most voted songs by the two sources.
From 2016 onwards, the final preferences expressed by each country are given by
the union of the 10 favourites of the jury and the 10 favourites of the televoting.
That is, in the last two years of the competition, each country could elicit more
than 10 preferences. In the period 1998–2015, the countries were allowed to sing
in any language and most of the songs were in English. The period we consider is
homogeneous both with respect to the voting system and (for the large part) to the
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language used in the performance. Subsequent editions of the Eurovision are as-
sumed not to depend on one another, as the singer and the song performed change
every year without any predetermined criteria. This assumption allows us to con-
sider the exchange of votes in different editions of the contest as replications of the
same phenomenon, which is the expression of musical appreciation between cou-
ples of countries. These different replications of preferences among countries will
then be used to recover the similarities. Indeed, the basic assumption is that the
more two countries are similar, the more they tend to vote for one another through
the editions.

In each edition, the votes exchanged among the countries can be described by a
network, where nodes represent the countries. As we are interested in the exchange
of votes and not in the final ranking, an edge going from country i to country j

will denote that i has j in its top 10. Vice versa, the edge will be from j to i if
the latter has been voted by the j . Indeed, recall that although the grading scheme
is positional, each country can express a limited amount of preferences r = 10
in the analysed period. Rosén (1972) proved that when sampling r units from a
population of size3 n, if r � n, the first r units are independent with respect to
the extraction order. As our interest lies in modelling the exchange of votes and
not in determining the winner in each edition, we can treat the networks as binary,
without much loss of information. An alternative approach, designed for contexts
where the ranking scale is equally spaced, may be found in Hoff (2015).

The resulting network is then directed, acyclic (as countries can not vote for
themselves) and unweighted. If we consider a group of editions for the contest,
we will have a collection of networks, defined on the same group of countries
(see paragraph 5.2), and this object is indeed a multidimensional network. The
following section introduces a general modelling framework for such data.

3. Latent space models for multidimensional networks. Latent space mod-
els have been introduced by Hoff, Raftery and Handcock (2002) with the aim at
reducing the complexity typical to the dependence structure in network data. This
purpose is achieved via geometric projection of the nodes onto a low dimensional
space. The probability of observing an edge between two nodes is assumed to be a
function of the unknown nodes’ coordinates in the latent space. Conditionally on
the set of latent positions, the observed binary indicators are assumed to be inde-
pendent across networks. Hoff, Raftery and Handcock (2002) distinguish between
distance and projection latent space models, depending on the choice of the func-
tion that summarizes the latent coordinates. The distance model assumes that this
is indeed a distance function. Gollini and Murphy (2016) extended the distance
model described by Hoff, Raftery and Handcock (2002) to the case of multiplex
data, with the introduction of a so called Latent Space Joint Model (lsjm in the

3In the present context, n = 48 is the number of countries that country i can potentially vote.



LATENT SPACE MODELLING OF THE EUROVISION 907

FIG. 1. Latent space representations of a network with 3 nodes.

following). In that context, the probability of an edge in a given network depends
on a specific latent space and a network specific intercept. The latent spaces (one
for each network) are thought to be realizations of a common latent space, which
captures the average latent coordinates of the nodes and is behind all the networks.
The variational approach used to estimate model parameters is fast but suffers from
computational issues when the dimension of the multiplex is relatively high, either
in the number of nodes n or in the number of networks K .

The present work builds on the model of Gollini and Murphy (2016) with the
aim at recovering the similarities among the countries participating in the Eurovi-
sion Song Contest. As our interest lies in recovering such similarities, rather than
modelling observed ranks, the choice of a distance latent space model to recon-
struct the network is quite appropriate. However, distances correspond to symmet-
ric relations, which is a characteristic of similarity measures. Figure 1 shows an
example for the latent space representation of a 3 nodes network. Node z3 in space
A has been moved in space B , so that d

(A)
13 < d

(B)
13 and d

(A)
23 < d

(B)
23 . In our model,

this correspond to a higher probability to observe a link between node 1 and 3 (or
node 1 and 2) in space A when compared to space B .

The distances in the latent space are scaled by a network specific coefficient,
to weight the influence of the latent space in the determination of the votes for
a given edition of the Contest. The lowest the value of this coefficient, the more
the structure of edge probabilities resembles a random graph in this edition. This
could lead to reject the claim that the votes patterns for the Eurovision contest are
biased by some preexisting preferences among countries.

The latent space is taken to have dimension p = 2, to allow for a graphical
visualization and for a comparison of the estimated latent coordinates with the
geographical positions (latitude and longitude) for the analysed countries. In this
way we may be able to tell whether the latent configuration obtained resembles
the geographical one and, if so, we may conclude that the position of a country on
the map is indeed of some relevance in the competition. However, the choice of
p is still an open problem in the literature and for other applications the choice of
p = 2 could be suboptimal.

The model, formulated in Section 3.1, also allows for the introduction of edge-
specific covariates. In the present application, we use cultural covariates, such as
the presence of a common language among a couple of participants (countries), to
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see whether these contribute to the formation of preferences. The multidimensional
network is defined on all the countries that took part at least once in the Eurovision
in the period 1998–2015 (see Section 5.2 for details).

The set collection of adjacency matrices will be denoted by Y = {Y(1), . . . ,

Y(K)}. The generic element of each matrix, y
(k)
ij , in the collection is binary, with

y
(k)
ij = 1 if there is an edge from node i to node j in the kth network, y

(k)
ij = 0

else. Indexes i, j = 1, . . . , n are used to denote nodes in the network (countries)
and index k = 1, . . . ,K refers to the K different networks in the multiplex.

3.1. The proposed model. Given the assumptions made in Section 3 and fol-
lowing Hoff, Raftery and Handcock (2002) and Gollini and Murphy (2016), the
probability of observing an edge between node i and node j in the kth network of
the multiplex is given by

(3.1) Pr
(
y

(k)
ij = 1 | �(k), d(zi ,zj )

) = exp{α(k) − β(k)d(zi ,zj )}
1 + exp{α(k) − β(k)d(zi ,zj )} = p

(k)
ij ,

where � = (�(1), . . . ,�(K)) = (α(1), . . . ,α(K),β(1), . . . ,β(K)) is the set of model
parameters.

Following Gollini and Murphy (2016), the function d(·, ·) is taken to be the
squared Euclidean distance, that is d(zi ,zj ) = ∑p

l=1(zil − zjl)
2 = dij . The dis-

tance matrix will be denoted by D. This choice of the distance function allows
to penalize more heavily the probability of an edge linking two nodes that are far
apart in the latent space when compared to one linking two closer nodes. There-
fore, the latent space part of the model will push towards a non-random structure
for the matrix of edge probabilities.

The edge-probability matrices are symmetric, that is p
(k)
ij = p

(k)
ji . As already

mentioned, this choice is driven by the fact that we are interested in estimating
similarities between the countries, and, therefore, we need to impose a symmet-
ric relation between dyads (i, j) and (j, i). If we decide to also model explicitely
node-specific characteristics, by means of row and column effects, we could define
nonsymmetric edge probability matrices. Hoff (2015) showed that, if we compute
the sample variance and correlation of the row and column means deviations from
the overall mean in the observed adjacency matrices, we can empirically evaluate
the row and column effects. However, note that, in the Eurovision networks, the
out-degree is fixed by construction and there is no variability in the row means, and
no correlation between the row and column effects are present. Also, the variabil-
ity of the column effects is very low (0.02 on average). Therefore we decide not
to consider row and column-specific effects and have symmetric probability ma-
trices. Last, note that our model does not imply that a network generated from it is
undirected. Indeed, symmetric probability matrices can, and usually do, generate
directed networks, as the edge-draws are independently conducted.
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Each view is associated with a couple of network-specific parameters: β(k) and
α(k), with k = 1, . . . ,K . Differently from Gollini and Murphy (2016), we intro-
duce the scaling coefficient β(k) to weight the influence of latent space for the kth
network on the determination of edge probabilities. This parametrization is par-
ticularly suited for the Eurovision application, as it helps to address the eventual
presence of bias in the exchange of votes. Indeed, if in the kth network β(k) ≈ 0,
edge probabilities do not depend on the latent structure, and edges form randomly.
On the contrary, when β(k) > 0, the latent structure will impact the edges forma-
tion. If these coefficients are estimated to be non-null for all the networks, or most
of them, the latent space has a constant influence in determining the structure of
the observed multiplex. According to the assumption that the probability of ob-
serving an edge decreases with growing distances, the constraint β(k) ≥ 0 must be
imposed. As the coefficient is bounded and can not take negative values, it follows
that the lowest the value of β(k), the closer the structure of the network will be to
a random graph. That is, if β(k) = 0, we have

p
(k)
ij = exp{α(k)}

1 + exp{α(k)} = p
(k)
RG,

and the model for the kth network reduces to a random graph (Erdős and Rényi
(1959)) with edge probability p

(k)
RG. Thus, the coefficient β(k), when it is different

from zero, can only decrease the edge probability values with increasing distances.
In other words, edge probabilities are bounded from above by p

(k)
RG. To counterbal-

ance the effect of the coefficient, the intercept parameter α(k) is bounded as well
so that the graph corresponding to p

(k)
RG is not disconnected. Indeed, according to

the properties of random graphs (Erdős and Rényi (1960)), if p
(k)
RG >

(1−ε) log(n)
n

,
the graph will almost surely be connected. Taking ε = 0, as n → ∞, this property
can be expressed in terms of α(k) as

α(k) > log
(

log(n)

n − log(n)

)
= LB

(
α(k)) = LB(α).

Thus, the lower bound LB(α) is independent of k = 1, . . . ,K , as the node set is
constant across the multidimensional network. Defining a lower bound prevents
from assigning large negative values to the intercept parameters. Indeed, if α(k)

is too low, the effect of the latent distances would be dominated by the intercept
parameter, even if this effect is relevant (β(k) > 0). That is, large negative val-
ues of α(k) in equation (3.1) would correspond to edge probabilities tending to 0
and numerically undistinguishable. In such a case, two distinct matrices of edge
probabilities having elements p

(k)
ij ≈ 0 would lead numerically to the same likeli-

hood.
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4. Parameter estimation.

4.1. Likelihood and posterior. Given the model for the edge probabilities de-
fined in equation (3.1), the likelihood function for the model is a product of
Kn(n − 1) terms

(4.1) L(�,D | Y) =
K∏

k=1

n∏
i=1

∏
j �=i

(
p

(k)
ij

)y(k)
ij

(
1 − p

(k)
ij

)1−y
(k)
ij ,

and the corresponding log-likelihood is

�(�,D | Y) =
K∑

k=1

n∑
i=1

∑
j �=i

�
(k)
ij

=
K∑

k=1

n∑
i=1

∑
j �=i

y
(k)
ij

(
α(k)

− β(k)dij

) − log
(
1 + exp

{
α(k) − β(k)dij

})
.(4.2)

As the matrices of edge probabilities are symmetric for all the analysed networks,
one could equivalently consider only their upper or lower triangular part, and the
number of terms to be considered in the product for the likelihood reduces to K(n
2

)
.
Similarly to Gollini and Murphy (2016) and Handcock, Raftery and Tantrum

(2007), we adopt a Bayesian approach to estimate the model. As in Gollini
and Murphy (2016), the latent coordinates are assumed to be independent ran-
dom variables distributed according to a standard p-variate Gaussian distribution:
zi ∼ MVNp(0, I). In the present context, the dimension of the multivariate Gaus-
sian is fixed to p = 2 (see Section 3).

The parameter space for the intercepts and the coefficients is bounded, as de-
scribed in paragraph 3.1. For this reason, the prior distributions for these parame-
ters are described by truncated Gaussian distributions. As no a priori information
is available on their relationship, they are assumed to be independent, both within
and across the networks: α(k)

∼N[LB(α),∞](μα,σ 2
α) and β(k)

∼N[0,∞](μβ,σ 2
β ).

The unknown μα,σ 2
α ,μβ,σ 2

β play the role of nuisance parameters. Indeed, their
value is of no interest but their specification is relevant, as they determine the so-
lutions for the parameters of interest, α(k) and β(k). Given their relevant role in
the model, we decided to estimate these parameters, to avoid subjective specifica-
tions of their values. For this purpose, an extra layer is introduced in the model,
as described in Figure 2, leading to a hierarchical structure. The prior distribu-
tions specified for the nuisance parameters are: μα|σ 2

α ∼ N[LB(α),∞](mα, τασ 2
α ),

σ 2
α ∼ Invχ2

να
, μβ |σ 2

β ∼ N[0,∞](mβ, τβσ 2
β ) and σ 2

β ∼ Invχ2
νβ

.
The distributions for the nuisance parameters depend on a set of hyperparam-

eters η = (να, νβ, τα, τβ), that have to be specified. However, their choice is not
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FIG. 2. Hierarchy structure of the model.

as influential as the nuisance parameters to get estimates of α(k) and β(k); in the
following, we will present some criteria for the determination of η that were found
to work well in practice. The posterior distribution is therefore defined by

P
(
α,β,z,μα,μβ,σ 2

α , σ 2
β |Y)

= L(α,β,z|Y)π(z)π
(
α|μα,σ 2

α

)
π

(
μα|σ 2

α , τα

)
× π

(
σ 2

α |να

)
π

(
β|μβ,σ 2

β

)
π

(
μβ |σ 2

β , τβ

)
π

(
σ 2

β |νβ

)
.(4.3)

The posterior distributions for the parameters α(k), β(k) and for the latent coor-
dinates are not available in closed form. To obtain parameter estimates, proposal
distributions have been developed and are presented in the Supplementary Nate-
rial (D’Angelo, Murphy and Alfò (2019)), together with the distributions of the
nuisance parameters.

4.2. The algorithm for parameter estimation. Estimation of model parame-
ters is carried out using a Markov Chain Monte Carlo based approach. A detailed
specification of the full conditional and the proposal distributions can be found in
the Supplementary Material. Within each iteration of the chain, the nuisance pa-
rameters are updated from the corresponding full conditional; updated estimates
for the intercepts, the coefficients and the latent coordinates are then proposed.
The updates for the intercept α(k) and the scaling coefficient β(k) in each network
are jointly carried out, as it was empirically found that they may be correlated.
The joint updating scheme helps improving the speed of convergence, while the
latent coordinates are updated separately and sequentially. Indeed, it could be the
case that the current estimates for a subset of the latent positions have already
converged, while the remaining zi’s are still far from the “true” values. Jointly up-
dating the z as block would not respond to the need to adjust just the mislocated
coordinates; separate updating has been found to be a better strategy. After the set
of latent coordinates has been updated at a given iteration of the algorithm, it has to
be compared with the set of estimates obtained at the previous iteration. Since the
likelihood in equation (4.1) considers the distances between the latent coordinates,
it is invariant to rotation or translation of the latent positions zi . Therefore, it has
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to be ensured that the current set is not a “rigid” transformation of the previous
ones, to prevent from non-optimal stationary solutions for the latent coordinates.
To achieve such aim, Procrustes (Dryden and Mardia (1998)) correlation is com-
puted and the current configuration is discharged if the value is above a certain
threshold, fixed to be 0.85. The choice of this value, that ranges in [0,1] is arbi-
trary and should reflect the presence of high correlation. Values of the threshold
above 0.80 have been found to work well in practice. The Supplementary Material
reports the pseudo-code describing the estimation procedure.

Before starting the algorithm, the set of hyperparameters η needs to be defined.
The degrees of freedom of the inverse Chi-squared prior distribution for the vari-
ance parameters σ 2

α and σ 2
β are fixed to να = νβ = 3, as values in the range [2,6]

have been tried and it has been found that the different specifications do not have
substantial impact on the parameter estimates. The variance-scale hyperparameters
are set to be τα = τβ = K−1

K
, so that the means of the proposal distributions for μα

and μβ reduce to the corrected sample means (see the Supplementary Material).
Starting values for the distances are taken to be the geodesic distances between

the nodes in a randomly chosen network of the multiplex. From these distances,
and for a fixed value for p, starting values for the latent coordinates are computed
via multidimensional scaling as in Hoff, Raftery and Handcock (2002) and the
starting values for the distances are obtained taking the squared Euclidean dis-
tances between the starting values for the latent coordinates. These are then used
to model, via logistic regression, the adjacency matrices. The corresponding esti-
mates for intercepts and scaling coefficients are taken to be the starting values for
α and β . If these starting values fall outside the bounds specified for the parame-
ters, they are replaced by these bounds. The nuisance parameters μα and μβ are
initialized as the sample means of the initial estimates for α and β , respectively. In
a similar fashion, σ 2

α and σ 2
β are initialised as the sample variances of α and β .

5. Further issues.

5.1. Identifiability. As it can be easily noticed, the likelihood in equation (4.1)
is invariant to linear transformations of the scaling coefficients. Indeed, for some
constant c,

α(k) − β(k)dij = α(k) − β(k)

c
(dij c) = α(k) − β(k)�d�

ij , k = 1, . . . ,K.

For this reason, the coefficient for the reference network is fixed to β(r) = 1 (index
r denotes the reference network). The role of β parameters is to scale the distances
and, therefore, the corresponding values are meaningful only when compared with
each other given the reference. Thus, we have no loss of information in fixing
β(r) = 1. A further identifiability issue is:

α(r) − dij = (
α(r) + c

) − (dij + c) = α(r)� − d�
ij .
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To overcome this further issue, also the intercept α(r) for the reference network
needs to be fixed. As the intercept term defines an upper bound for the edge prob-
abilities in the corresponding network, the value chosen for α(r) should not un-
derestimate this bound. We propose to fix it accordingly to the observed density
in the network. More specifically, let us consider the expected value for the edge
probability in network r :

p̄(r) = E

[
n∑

i=1

∑
j �=i

P
(
y

(r)
ij = 1 | (r),D

)] = E

[
n∑

i=1

∑
j �=i

exp{α(r) − dij }
1 + exp{α(r) − dij }

]
.

A naive empirical approximation to this value, which is not available in closed
form, is given by

p̄(r) 	 E

[
n∑

i=1

∑
j �=i

exp{α(r) − 2}
1 + exp{α(r) − 2}

]
= exp{α(r) − 2}

1 + exp{α(r) − 2} ,

where the distances have been replaced by the constant 2 as this value is the mean
empirical distance among coordinates simulated from a standard Gaussian distri-
bution. This leads to

α̂(r) = log
( ˆ̄p(r)

1 − ˆ̄p(r)

)
+ 2,

where p̄(r) is ˆ̄p(r) = ∑n
i=1

∑
j �=i y

(r)
ij /(n(n−1)). Thus, α̂(r), or any number greater

than α̂(r), can be used as a fixed value for the intercept in the reference network.
As to the choice of the reference network, we may consider a network that

is of particular interest. Alternatively, if there is no reason to prefer a network, a
randomly chosen one can be selected. In the present work, for ease of interpretation
of the results, the first (in terms of time) network of the multiplex has been set as
the reference network.

5.2. The issue of “nonparticipating” countries. Due to the increasing pop-
ularity that Eurovision gained over the years, many countries have requested to
participate in the contest and have been accepted. With an increasing number of
participants, preliminary stages had to be introduced to select a smaller subgroup
of countries accessing to the final, where they compete for the title. The winner of
the previous edition enters the final straightforwardly, while the remaining coun-
tries have to compete in the qualifications round. Therefore, the selection of the
finalists in the kth edition does not depend on the results in the previous edition,
apart from the specific case mentioned before. With the introduction of semi-finals,
countries that do not make it to the last stage are allowed to vote for their favourite
10 participants in the final. Their participation is passive, as they can vote but can
not receive votes. Further, several countries have abandoned the competition for
years, for a series of reasons. The preselection process, the presence of passive
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countries and the drop outs imply that the set of participants in two consecutive
editions may not be exactly the same. However, the phenomena mentioned above
are structural and, for that reason, we decided not to treat them as a missing values
problem.

To model nonparticipant (absent) countries, we define the set of nodes N in
a more general way, as the set of countries that have voted at least once in the
considered period. We can rewrite the log-likelihood as

(5.1) �(�,D | Y) =
K∑

k=1

n∑
i=1

∑
j �=i

h
(k)
ij �

(k)
ij ,

where h
(k)
ij is an indicator variable, with h

(k)
ij = 1 if the ith node was present in

the kth edition and could have voted for node j ; while h
(k)
ij = 0 implies that the

ith node was not allowed to vote for node j in the kth edition. Let us denote as
H(k) the binary matrix indicating whether or not a country was present in the kth
edition. The rows of the H(k) matrix denote whether the corresponding countries
may vote at the kth occasion; more formally, if

∑n
j=1 hij = 0, then the ith node

was absent from that specific edition of the contest. Instead, the columns of H(k)

refer to the possibility of being voted for the corresponding countries. That is, if
h

(k)
ji = 1 the ith node has been voted in the kth edition.

5.3. Covariates. Edge-specific covariates can be considered in the applica-
tion. In the current application, all the used covariates do not depend on the spe-
cific network of the multiplex. From an exploratory analysis (see Figure 4) we
could see that the association between the covariates and the different adjacency
matrices was slightly varying over time. Therefore, in the current empirical appli-
cation, we have considered constant effects, in the spirit of model parsimony. Of
course, one could have had assumed that the effects of the covariates may vary
over time. The implementation of such a model would be straightforward.

Each covariate is stored in a n × n matrix, that will be denoted by Xf , where
f = 1, . . . ,F is the index for the set of F covariates. To maintain the character-
ization of the intercept term, the effect of the covariates is taken to be inversely
related to edge probabilities (see Section 6). Therefore, the effect associated to
each covariate will be characterized in a similar fashion to the scaling coefficients
β(k), k = 1, . . . ,K (see the Supplementary Material). That is, the edge probability
in equation (3.1) is modified to the following:

P
(
y

(k)
ij = 1 | α(k), β(k), dij , λ,xij

)

= exp{α(k) − β(k)dij − ∑F
l=1 λlxij l}

1 + exp{α(k) − β(k)dij − ∑F
l=1 λlxij l}

.(5.2)

The proposal distribution to update the λl’s is derived in the Supplementary
Material, where we also suggest how to modify the proposal distributions for the
other parameters when considering covariates.
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6. The Eurovision song contest data. We considered 18 different editions of
the Eurovison Song Contest, from 1998 to 2015. In this period, two major changes
have occurred in the structure of the program, due to the growing number of coun-
tries willing to participate in the show. First, in 2004, a semi-final stage was added
to select participants. In 2008, after the 50th anniversary of the competition, the
event was rebuilt and two semi final stages were introduced. Countries that par-
ticipate to the semi-finals are entitled to vote in the final, even if they have not
qualified. Of course, the songs that do not go to the final can not compete for the
title and can not receive any vote in the final. The voting structure in the final
induced by the introduction of qualifying stages is modelled by the auxiliary vari-
ables h

(k)
ij , defined in Section 5.2. During the period 1998–2015, a total of n = 49

countries took part to the competition. After 2004, on average, 14 countries were
completely absent (not voting nor competing). A list of the 49 countries and their
ISO3 codes is given in the Supplementary Material.

Figures 3 describe some features of the 18 networks. In particular, in Figure 3(a)
we give an overview of countries’ participation per year, distinguishing the role
that each country had in a given edition: absent (A), present but can not be voted
(Pa) or fully present (Pp). It is easy to see from the plot that some countries, such
as the UK or France, have been constantly present to the competition, while others
had only made some sporadic appearances. Monaco for example competed from
2004 to 2006, but never made it to the final. Figure 3(b) reports the values for the
association in the exchanging of votes between two different editions, measured
by the index

A(k,l) =
∑n

i,j I(h(k)
ij y

(k)
ij = h

(l)
ij y

(l)
ij )∑n

i,j I(h(k)
ij y

(k)
ij = h

(l)
ij y

(l)
ij ) + ∑n

i,j I(h(k)
ij y

(k)
ij �= h

(l)
ij y

(l)
ij )

.

The index above is limited between 0 and 1 and the values observed for the data
range from 0.4 to 0.8. However, there seems to be evidence that countries tend to
repeat their patterns of votes through the analysed editions. The plots in 3(c) and
3(d) represent the number of joint participations for each couple of countries in
the period 1998–2015 and the average number of votes they have exchanged while
competing together. The matrix in 3(d) is not symmetric and the ith row shows
the average number of votes that country i gave to others. Instead, the j th column
reports the average number of votes that country j has received from the other
participants. The last plot shows that many couples consistently voted/avoided to
vote for the same group of countries, regardless of the edition.

At a second stage, covariates have been included in the analysis, similarly to
what has been done by Blangiardo and Baio (2014), Spierdijk and Vellekoop
(2006), in order to see whether the vote exchanges in the period could be, at least
partially, explained by “cultural” factors. The covariates we considered are listed
below:
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FIG. 3. Eurovision data: some exploratory statistics.

1. The log geographic distance between two countries (X1). These distances
were computed using the coordinates of the centroids of each country, obtained
from https://developers.google.com/public-data/docs/canonical/countries_csv; the
centroids have been estimated considering latitude and longitude of the main cities
of each country.

https://developers.google.com/public-data/docs/canonical/countries_csv
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FIG. 4. Covariates.

2. The presence of a border common to a couple of countries (X2). To maintain
the characterization of the intercept, this information is coded as a binary variable
that takes value 0 if there is a common border and 1 otherwise.

3. The presence of a common official language (X3). This information is coded
as a binary variable that takes value 0 if they share the official language and 1
otherwise.

4. The fact that two countries share a major language, defined as a language
spoken at least by 9% of the population (X4). This information is coded as a binary
variable that takes value 0 if two countries share a major language and 1 if not.

5. The presence of a common past “history” shared by two countries (X5), they
were colonized by the same country, they belonged to the same country, etc. This
information is coded as a binary variable that takes value 0 if two countries share
a common past and 1 otherwise.

Figure 4 describes the association between the covariates and the adjacency matri-
ces. The plot in 4(a) displays the association between the set of binary covariates
X2 to X5, measured by the index

A(Y(k),Xl )
=

∑n
i,j I(h(k)

ij y
(k)
ij = 1 − xl,i,j )∑n

i,j I(h(k)
ij y

(k)
ij = 1 − xl,i,j ) + ∑n

i,j I(h(k)
ij y

(k)
ij �= 1 − xl,i,j )

.

The set of covariates which seems to be most relevant, when compared to the oth-
ers, is the one indicating the sharing of a border (X2). The values for the different
associations are quite constant over time, slightly increasing with the introduction
of the semi-final stage. This leads to assume that the influence of the covariates on
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the edge probabilities is quite constant with editions. Figure 4(b) reports the box-
plots for the couple (adjacency matrix, log X1). We can not find, at least visually,
evidence of association between the distances and the presence of an arch in the
adjacency matrix (that is, a vote). However, for each year, if we look at the median
geographic distance for the block where an arch is present, we observe that this is
usually lower than the one of the complementary block. Regressing the adjacency
matrices on the log-geographic distances gives a negative estimate for every edi-
tion. That supports the claim that the geographic distances are indeed negatively
correlated with the propensity to vote for a country.

Last, two subperiods, 1998–2007 and 2008–2015, will be analysed separately,
to check for large changes in the latent space position of a country according to
the analysed years. That is, the analysis of the two subperiods would give an idea
on the stability of the average coordinates in the latent space recovered for the fill
interval 1998–2015.

The set of covariates X2 − X5 have been collected from the CEPII database,
http://www.cepii.fr/CEPII/en/welcome.asp, while the analysed data are available
at http://eschome.net/.

7. Results. The following models have been considered in the analysis:

1. Model 1: covariates not included;
2. Model 2: covariates X1–X5 included;
3. Model 3: log-geographic distance included (X1);
4. Model 4: information on shared borders included (X2);
5. Model 5: no latent space (β(k) = 0 ∀k) and covariate X2 included;
6. Model 6: random graph model (no covariates and β(k) = 0 ∀k).

Models 5 and 6 have been estimated to test an additional layer in the modelling
structure (the latent space). Each model was estimated running the MCMC algo-
rithm for 50,000 iterations, with a burn in of 5000 iterations. The intercept param-
eter in the first network was fixed to α(1) = 0, as p̂(1) ≈ 0.114 and β(1) = 1. The
estimated models have been compared using the Deviance Information Criterion
(DIC) (see Spiegelhalter et al. (2002)):

DIC = D(�̂) + 2
(
D̄(�) − D(�̂)

)
,

where D(�) = −2 logL(�) and � = (�,D, λ). The deviance term D(�̂) is com-
puted with the posterior estimates, while D̄(�) is the mean deviance of the poste-
rior distribution. The best model is the one with the lowest value of the DIC, see

4The intercept in the reference network is fixed as

α̂(1) = log
(

0.11

1 − 0.11

)
+ 2 	 −0.09 ≈ 0.

http://www.cepii.fr/CEPII/en/welcome.asp
http://eschome.net/
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TABLE 1
DIC values for fitted models

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

DIC 19,584.12 19,494.74 19,461.52 19,412.12 23,340.84 23,899.62

Table 1. According to such criteria, Model 4 is found to be the best one, including
both the latent space and the information on shared borders. The hypothesis of a
random mechanism determining the exchange of votes can then be discarded in
favour of a more complex solution. In fact, similarities among countries, described
by distances in a latent space, play a substantial role in the formation process for
observed preferences. Indeed, under Model 4, the scaling coefficient estimates as-
sociated to the latent space distances are quite high in each edition, see Table 2.
The covariate X2 seems to be the only one relevant in the analysis. Indeed, the es-
timated coefficients associated with the other edge covariates in model 2 were all
close to 0, which supports the model choice via the deviance information criterion.
The Procrustes correlations among the latent space estimated under model 1 and
model 2 is quite high, namely 0.975. That is because the matrix of covariates X2
acts like a fixed effect on the edge probabilities, with a decreasing effect when no
common border is present between two countries. Therefore, the introduction of
the set of covariates X2 does not seem to have a direct effect on the latent distances
between the nodes. The mean of the posterior estimate for the effect λ associated
with the border covariate is 0.60 with a standard deviation of 0.10.

Figures 5, 6 and 7 show the estimates obtained under model 2 for the latent
positions, the distances and the posterior distribution for the parameters of in-
terest. Figure 5(a) reports the posterior means for the country latent coordinates
(reported with their ISO3 codes, see the Supplementary Material) together with

TABLE 2
Model parameters: estimated averages and standard deviations, 1998–2015

Year α̂ sd(α) β̂ sd(β) Year α̂ sd(α) β̂ sd(β)

1998 0 – 1 – 2007 1.15 0.15 0.92 0.14
1999 0.72 0.18 0.36 0.14 2008 1.01 0.16 0.92 0.15
2000 0.89 0.18 0.67 0.15 2009 0.66 0.17 0.49 0.14
2001 0.58 0.17 0.22 0.12 2010 0.69 0.15 0.54 0.12
2002 0.77 0.19 0.47 0.15 2011 0.84 0.17 0.70 0.15
2003 0.81 0.16 0.80 0.16 2012 0.79 0.15 0.75 0.14
2004 0.82 0.18 0.59 0.16 2013 0.76 0.16 0.73 0.13
2005 0.86 0.16 0.65 0.13 2014 0.57 0.16 0.48 0.13
2006 0.76 0.17 0.50 0.16 2015 0.91 0.16 1.01 0.17
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the corresponding standard deviations. Note that the model does not necessarily
place in the center of the latent space those countries that have been most success-
ful throughout the editions. Indeed, for example, Sweden and Denmark won the
largest number of titles in the analysed period, respectively 3 and 2 titles. How-
ever, Denmark is not in the origin, but it is rather placed close to a group of coun-
tries from northern Europe. If we look at a specific country, its neighbours on the
latent space are the countries that were estimated to be more similar in tastes, ex-
pressed in terms of voting exchange patterns. The latent space presents a number
of denser zones, that partly resemble northern Europe, eastern Europe and North
Eastern Europe. However, these subgroups are not completely faithful to the ge-
ographic locations of countries, as, for example, Spain is closer to Romania than
to Portugal or France. We should notice that Romanians define one of the major
immigrant group in Spain, and Latvians are one of the largest immigrant groups in
Ireland. Therefore, some of the geographical misplacements within the subgroups
in the latent space may be also explained in terms of migration flows. However,
the message is that geographical locations can not fully explain the observed votes
exchange. Indeed, Figures 6 and 8 show the presence of large differences when
we compare estimated and geographical distances. In particular, for a given coun-
try i, the rows of the matrices in Figure 8 represent the intersection between its
r nearest neighbours in the latent space (we denote this set as LNi,r ) and its r

closer neighbours in terms of geographical distances (GNi,r ); we consider the val-
ues r = 1,2,3,5,10,15. Given the number of neighbours r , the average5 and the
maximum number of common neighbour countries is reported in Table 3. The ta-
ble confirms what was already visible from Figure 8: there is weak association
between the coordinates in the latent space and the geographical ones. A similar
comparison can be made with the information on the shared border. Given a coun-
try i, let us define r∗

i the number of bordering countries, LNi,r∗
i

the r∗ nearest
neighbours in the latent space and CNi,r∗

i
the set of bordering countries of node

i. The average number of geographical bordering countries that are also neigh-
bouring in the latent space6 is 0.11, where r̂∗ ≈ 4. This low association between
bordering countries and closest countries in the latent space confirms that X2 is
only partially relevant to the description of votes’ exchange in the contest. Figure 9
reports the matrix of the intersections between the sets of neighbours LNi,r∗

i
and

5The average number of common neighbours is given by∑n
i=1 |LNi,r ∩ GNi,r |

rn
.

6This average is given by ∑n
i=1 |LNi,r∗

i
∩ CNi,r∗

i
|

r∗
i n

.
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FIG. 5. Estimated latent positions 1998–2015. The legend reports the probabilities corresponding
to a distance of 0.2 in the latent space, years 1998, 2004 and 2008. The values refer to the case of
x2,ij = 0, within the brackets are reported the values for x2,ij = 1.

CNi,r∗
i
, for 1998–2015. Bulgaria, Lithuania and Serbia and Montenegro are the

countries that tend to vote more for their bordering countries. Indeed, their closest
countries in the latent space are often countries with which they share a border
(|LNi,r∗

i
∩ CNi,r∗

i
|/r∗

i ≥ 0.5). In general, there is no strong association between
the presence of a border and the closeness in the latent space.

The estimated values for the network intercept parameters are quite similar for
the different networks corresponding to the editions in the period 1998–2015 (Fig-
ure 7). Indeed, the voting rule (in the Eurovision song contest) for that period re-
quired that participating countries vote for exactly 10 others, which implied a fixed
outdegree for each node in the corresponding networks. The observed densities are
then quite similar and this is reflected in similar estimates for the α(k) parameters,
which define the upper bound for the edge probabilities in a given network.

The estimated values for the posterior means of the network-specific scaling
parameters β(k) range from 0.22 in year 2001, to 1.01 in year 2015. As none of
these parameters is estimated to be 0, the latent space is found to always play a
role in the formation of observed networks. However, its influence depends on
the dimension/magnitude of the scaling parameter β(k). In 2001 this role is quite
limited, as it is in 1999. In the last network the influence of the latent space is
the greatest (β(18) = 1.01), and it is similar to the one in the first edition (β(1) =
1). We have estimated the same model with different networks set as reference,
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FIG. 6. Estimated distances between couple of countries, 1998–2015.

FIG. 7. Boxplots for model parameter estimates and the coefficient for X2, 1998–2015.



LATENT SPACE MODELLING OF THE EUROVISION 923

FIG. 8. Intersections of the set of neighbours LNi,r and GNi,r , 1998–2015.
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TABLE 3
Average and maximum number of intersections of the set of the closest latent positions and the

closest geographical positions

Q r = 2 r = 3 r = 5 r = 10 r = 15

Average number 0.06 0.11 0.14 0.21 0.37 0.47
Maximum number 1 1 2 3 8 12

and no substantial changes were observed in the pattern of the estimated scaling
coefficients. Also, the estimated latent spaces were highly correlated with the one
presented here.

The Supplementary Material reports the results for the analysis of the two sub-
periods 1998–2007 and 2008–2015. The model considered for the subperiods does
not include any covariates, as the interest lays primarily in recovering the latent co-
ordinates. The findings confirmed a weak correspondence between the estimated
latent position of a country and its actual latitude and longitude coordinates on the
globe. A direct comparison of the latent space estimated for 1998–2015 to that es-
timated for 1998–2007 and 2008–2015 is not available, as the number of countries

FIG. 9. Intersection of the set of neighbours LNi,r∗
i

and CNi,r∗
i

, 1998–2015. On the left column,

in brackets, are reported the values of r∗
i .
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is different. Indeed, not all the participants in 1998–2015 were also participant
in both of the subperiods. Just to give an example, Italy rejoined the competi-
tion in 2011, after being absent in the period 1998–2007. The multidimensional
networks for the subperiods can not include the same set of nodes of the period
1998–2015. Indeed, countries completely absent from the competition, in a given
subperiod, correspond to isolated nodes, and the pairwise distances from present
countries are not be identifiable, as they are potentially infinite. Also, removing
present countries to match the node set of the two subperiods is not a valid option,
as it would alter the voting structure. Although some of the distances vary with re-
spect to those in the longer period 1998–2015, the subgroups observed in Figure 5
are still present. For example, Northern Europe countries tend always to be closer
to each other, as do Eastern Europe countries.

8. A simulation study. A simulation study has been considered to test the
proposed model. In particular, simulations have been exploited to assess the large-
sample behaviour the parameters estimates, when the dimension K of the multi-
plex is large, and to verify the robustness in the latent coordinates estimates with
respect to different underlying distributions. In all the different scenarios, the refer-
ence was taken to be the first network of the multiplex and the reference parameters
have been fixed to β(1) = 1 and α(1) = 0 (as in the application). The intercepts and
the scaling coefficients have been simulated from their prior distributions (see Sec-
tion 4.1), with σ 2

α = σ 2
β = 1, μα = μβ = 0. Four simulation scenarios have been

defined, divided in two blocks:

• Block I This block has been built to test the large-sample behaviour and the ro-
bustness of parameter estimates when the latent coordinates distribution is far
from Gaussianity. Indeed, not all the observed data might be well described by
latent Gaussian coordinates. Within each scenario in the block, we have con-
sidered 4 types of multidimensional networks, with a relatively small K but an
increasing number of nodes:

1. n = 25 and K = 3,
2. n = 50 and K = 3,
3. n = 50 and K = 5,
4. n = 100 and K = 3.

The values for the scaling parameters and the intercepts are constants in scenar-
ios I–III, conditionally on the type of multiplex considered.
– Scenario I: the latent coordinates have been simulated from a bivariate normal

distribution (the prior distribution used in the model).
– Scenario II: the latent coordinates have been simulated from a mixture of

bivariate normal distributions, where the number of components was set to
G ≈ n/7. The mean vector for each group has been simulated from a standard
bivariate normal distribution and the covariance matrices are diagonal with
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elements randomly sampled in the interval (0.1,1). This scenario corresponds
to the case of data representing different kind of relations among separate
groups of nodes/communities. Indeed, the probability for node i in group c to
link with node j will be higher if j ∈ c as well.

– Scenario III: the latent coordinates have been simulated from a standard bi-
variate Hotelling’s T 2 distribution with 4 degrees of freedom. This scenario
allows for some nodes to be located far from the center in the latent space.
Thus, this case reflects the presence of inactive/semi-inactive nodes in the
network, that tend to interact poorly with the rest of the network.

• Block II This block has been built to test the large-sample properties of the
parameter estimates when the number of networks K is large. That is, the case
of the application considered in the present application.
– Scenario IV: the latent coordinates are simulated according to the bivariate

Gaussian distribution specified in Section 4.1. Multiplexes with different size
have been simulated:

1. K = 10 and n = 50,
2. K = 20 and n = 50,
3. K = 30 and n = 50.

In all the considered scenarios, we treated both the case where all the nodes are
present in each network (denoted by P ) and the case where some of the nodes
are absent in some networks (denoted by A) (see Section 5.2). In the second case,
the missing data process resembles the one observed in the Eurovision data with
respect to the average number of absent nodes per network and the number of ab-
sences for each node. The reference network was taken to be the first of the mul-
tiplex and the corresponding parameters have been fixed to β(1) = 1 and α(1) = 0
(the values in the application). The latent coordinates, the intercepts and the scal-
ing parameters have been simulated from their prior distributions (see Section 4.1),
with σ 2

α = σ 2
β = 1, μα = μβ = 0.

8.1. Results. To estimate the model on the simulated data (Block I and Block
II), we fixed να = νβ = 3, τα = τβ = (K − 1)/K , α(1) = 0 and β(1) = 1 (see
Section 4.2 for details). Each model was estimated 10 times, performing 40,000
MCMC iterations and discarding the first 5000. The parameter estimates were con-
sistent with the simulated values in all different scenarios and the estimates for the
latent coordinates have been found to be robust to misspecifications of the cor-
responding distribution. In the Supplementary Material we present in detail the
results for the different scenarios. Boxplots and tables with mean and standard de-
viations for the parameter estimates are presented, as well as mean and standard
deviation of the Procrustes correlation between the estimated and the simulated
latent space coordinates. Overall, the proposed method returns reliable estimates
for the true parameter values. The simulated values fall within the 95% credible
interval built on the posterior distributions, with a couple of exceptions that occur
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when the number of networks increases. However, in these cases, the true mag-
nitude of the value is always recovered, as the estimates are still quite close to
the actual simulated values. The simulated latent spaces are always recovered with
high correlation, even in the stressed scenarios, I and II. There is no substantial
difference in estimates for cases P and A. Thus, the absence of some of the nodes
in some networks of the multiplex does not impact the estimation of the latent
position estimates.

9. Comparison with the lsjm model. The lsjm model by Gollini and Murphy
(2016) considers a mean latent space, which originates the network-specific latent
coordinates. To compare the two models, we have simulated different types of
multiplex, fixing β(k) = 1 for k = 1, . . . ,K , that is, according to the lsjm. The
simulated multidimensional networks come from the following scenarios:

1. A sparse multiplex with n = 50, K = 3 and α = (−0.66,−0.70,−0.54),
2. A multiplex with n = 70, K = 2 and α = (−0.73,−1.12),
3. A small, denser multiplex with n = 25, K = 3 and α = (0,1.02,0.28).

Simulating from the model presented in this work (which will be referred to as
lsmmn) when all the coefficients are fixed to 1 corresponds to simulating from the
latent space joint model when all the network-specific latent spaces are the same.
Therefore, in the present setting, the two models can be compared. Both the lsjm
and the lsmmn models have been estimated 10 times for each of the simulated
multidimensional networks. The lsjm is estimated using the R package lvm4net
(https://cran.r-project.org/web/packages/lvm4net). In the Supplementary Material
we report the results of such a comparison. As it can be derived by looking at the
Supplementary Material, the model we propose outperforms the lsjm both in the
quality of parameter estimates and in recovering the latent coordinates.

10. Discussion. In the present work, we have introduced a general and flex-
ible model for the analysis of multidimensional networks (multiplexes). In par-
ticular, the model is defined to recover similarities among the nodes when the
structure of the observed networks is complex and there is not clear information
on which external information can be used to explain the observed patterns. The
model extends the latent space model by Hoff, Raftery and Handcock (2002) and
the latent space joint model by Gollini and Murphy (2016) with the introduction
of network-specific scaling parameters representing the impact of the latent space
on the edge-probabilities. When these coefficients are null, the model reduces to a
random graph model for multidimensional networks. Moreover, missing data and
edge-specific covariates are considered. A hierarchical Bayesian approach is em-
ployed to define the model and its estimation is carried out via MCMC. We have
defined hyperprior distributions for the hyperparameters of the model, to avoid
subjective specifications. The latent coordinates allow for an efficient visualiza-
tion of the network, a well desired feature for large multidimensional networks.

https://cran.r-project.org/web/packages/lvm4net
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The model has been applied to the votes exchanged among countries in a popu-
lar TV show, the Eurovision Song Contest, from 1998 to 2015. Cultural and geo-
graphical covariates have been included in the analysis and only the presence of a
shared boarder between two countries was found to be relevant to explain observed
voting patterns. The recovered similarities among the participants in the period
1998–2015 have been found to resemble only partially the corresponding geo-
graphical locations. Indeed, exploratory analysis displays a group structure among
the nodes in the latent space which does not completely agree with geographical
criteria. These findings sustain the claim of bias in the voting structure observed
in the Eurovision, which, however, can not be attributed to geographical reasons
alone.

In the simulation study we have applied the proposed model to a large variety
of multidimensional networks and successfully recovered the latent coordinates
and the network-specific parameters. That has proved the ability of the model to
recover the (latent) association structure among the nodes in a multiplex, also when
the number of networks is large.

The latent space model for multivariate networks is implemented in the R pack-
age spaceNet and it is available on CRAN (https://CRAN.R-project.org/package=
spaceNet).
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SUPPLEMENTARY MATERIAL

Supplement to “Latent space modelling of multidimensional networks
with application to the exchange of votes in Eurovision song contest” (DOI:
10.1214/18-AOAS1221SUPP; .pdf). The Supplementary Material (D’Angelo,
Murphy and Alfò (2019)) provide with the derivation of the full conditional and
proposal distributions used to estimate the model, a table with the ISO3 codes
for the countries participating in the Eurovision Song Contest in the period 1998–
2015, the results of the analysis for the subperiods 1998–2007 and 2008–2015, the
results of the different simulation scenarios and a pseudo-code of the algorithm
used for parameter estimation.
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