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SPARSE PRINCIPAL COMPONENT ANALYSIS WITH
MISSING OBSERVATIONS1

BY SEYOUNG PARK AND HONGYU ZHAO

Sungkyunkwan University and Yale University

Principal component analysis (PCA) is a commonly used statistical
method in a wide range of applications. However, it does not work well when
the number of features is larger than the sample size. We consider the esti-
mation of the sparse principal subspace in the high dimensional setting with
missing data motivated by the analysis of single-cell RNA sequence data. We
propose a two step estimation procedure, and establish the rates of conver-
gence for estimating the principal subspace. Simulated examples with various
missing mechanisms show its competitive performance compared to exist-
ing sparse PCA methods. We apply the method to single-cell data and show
that the proposed method can better distinguish cell types than other PCA
methods.

1. Introduction. Principal component analysis (PCA) is one of the most com-
monly used methods to reduce data dimension. It is effective in capturing the main
structure of the data in many application areas such as data compression, visualiza-
tion, and clustering. PCA is especially useful in the analysis of high-dimensional
data that arise in a wide range of fields such as genomics, signal processing, and
risk management. For example, gene expression data generated from various plat-
forms have 20,000 or more features whereas the sample size is much more limited,
often in the dozens or hundreds range.

This paper is motivated by the analysis of single-cell RNA sequence (scRNA-
seq) data, which enable high-throughput single-cell genomic measurements and
allow the analysis of cell-to-cell heterogeneity. One major effort of single cell anal-
ysis is to identify distinct cell types, that may be characterized by a small number
of genes among tens of thousands of genes. Sparse PCA (Zou, Hastie and Tibshi-
rani (2006)) of scRNA-seq data may be an effective approach to inferring different
cell types through identifying a few genes that describe most of the biological fea-
tures contained in the data. One major challenge of scRNA-seq data, compared to
bulk RNA-seq or microarray gene expression data, is that they have many miss-
ing values due to technical and sampling issues, where the missing mechanism in
scRNA-seq data is rather complex.

Sparse PCA was proposed to overcome inconsistency of the standard PCA for
high-dimensional data. In the classical setting where the dimension of the data
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is small compared with the sample size, the principal components are obtained
by the leading eigenvectors of the sample covariance matrix. But this estimate is
ill-posed when the number of variables p is larger than the sample size n. See
Baik and Silverstein (2006), Paul (2007), and Johnstone and Lu (2009) for details.
Sparse PCA (Zou, Hastie and Tibshirani (2006)) generally assumes that only a few
variables constitute principal components.

Various estimators of the sparse principal components have been proposed.
Amini and Wainwright (2009), Journée et al. (2010), Yuan and Zhang (2013), Vu
and Lei (2013), and Berthet and Rigollet (2013) focused on estimating the lead-
ing principal eigenvector v under various sparsity assumptions on v. Ma (2013)
proposed a new method using iterative thresholding for estimating the principal
subspace. Cai, Ma and Wu (2013) introduced an adaptive procedure for estimat-
ing the principal subspace and established that the estimator attains the optimal
rates of convergence. Qi, Luo and Zhao (2013) proposed a sparse PCA method
by introducing a new norm in traditional eigenvalue problem to obtain orthogonal
loadings. Wang, Lu and Liu (2014) studied an efficient algorithm to estimate the
principal subspace under more general model conditions, and established the com-
putational and statistical convergences. More recently, Deshpande and Montanari
(2016) proposed a covariance thresholding algorithm for the support recovery of
principal vectors.

Although these works have established nice theoretical properties, our empirical
evidence suggests that existing sparse PCA methods do not work well when data
have many missing values, an area that has not been well studied. Standard PCA
often replaces the missing data with the mean or an extreme value (Dodge (1985),
Chen (2002)). However, such a strategy is no longer valid when a large portion of
the data is missing. See Chen (2002) for an example of such data. Tsalmantza and
Hogg (2012), Bailey (2012), and Delchambre (2014) present a weighted principal
component analysis on noisy datasets with missing values, where missing data are
limiting cases of weight 0. Compared to the standard PCA, these methods can be
advantageous in that they naturally account for poorly measured and missing data.

For sparse PCA, Lounici (2013) considered estimating the first principal com-
ponent v when each component of the data is observed independently of the
other components with probability δ ∈ (0,1]. Kundu, Drineas and Magdon-Ismail
(2015) considered recovering v by sampling the data. But in practice, we are not
able to sample the data, but rather the samples are given. These works only es-
timate the first principal component v in the exact sparse case, that is, v has a
bounded number of nonzero components.

In this paper, we consider sparse PCA with missing observations by utilizing
the matrix completion problem for estimating the principal subspace. We impose
the sparsity condition on the principal vectors V = [v1, . . . , vr ] such that each of
the principal components v1, . . . , vr has at most s0 nonzero entries. For simplicity
of notation, let s be the number of nonzero rows of the V , thus, s0 ≤ s ≤ rs0.
This conditions is essentially the same as the total sparsity condition (Ma (2013),
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Kundu, Drineas and Magdon-Ismail (2015), Deshpande and Montanari (2016)).
Specifically, we consider the more challenging case where the sparsity parameter
s could be large, that is, s = nς = O(

√
n) for some small ς > 0, motivated by

Deshpande and Montanari (2016). This sparsity condition is adopted because we
believe that in our motivating scRNA-seq data only a few genes are associated
with principal components that can be used to define cell types. The rest of the
paper is organized as follows. In the remainder of this section, we summarize the
notation used in this paper, present a connection between matrix completion and
PCA analysis, and describe our PCA model. The proposed method and algorithm
are described in Section 2. Theoretical properties of our method are presented in
Section 3. A detailed description of the algorithm is given in Section 4. We show
simulation results in Sections 5 and 6. Real data examples using scRNA-seq data
are given in Section 7. All technical proofs and additional results are presented in
the Supplementary Material (Park and Zhao (2019)).

1.1. Some notations. For any positive integer p, define [p] := {1, . . . , p}. For
a matrix X ∈ R

n×p and sets C ⊆ [p] and R ⊆ [n], X·,C and XR,· denote sub-
matrices of X, which consist of the columns and rows of X, indexed by C and R,
respectively. Similarly, XR,C is the sub-matrix of X consisting of the rows in R

and columns in C. Specifically, Xi,· and X·,j denote the ith row and j th column of
the matrix X, σj (X) represents the j th largest singular value, ‖X‖2 = σ1(X) is a

spectral norm, ‖X‖F =
√∑

i,j X2
ij is a Frobenius norm, and ‖X‖∗ = ∑

j σj (X) is
the nuclear norm of X. For matrices X and Y of the same dimension, let 〈X,Y 〉 =
tr(XT Y ). For a matrix X ∈ R

n×p and a set � ⊂ [n] × [p], define X� ∈ R
n×p as

a matrix with the elements in the set � preserved, and the other entries replaced
with 0:

(X�)ij = Xij for (i, j) ∈ �, (X�)ij = 0 for (i, j) /∈ �.

For two vectors u ∈ R
n and v ∈ R

p , u⊗v denotes an n by p matrix satisfying (u⊗
v)i,j = uivj . Let 1n be the n-dimensional vector of ones. For numbers a1, . . . , an,
diag(a1, . . . , an) denotes an n by n diagonal matrix whose diagonal entries starting
in the upper left corner are a1, . . . , an. We use C for absolute constants that may
change from line to line. We write a = O(b) or a � b if a ≤ Cb for some positive
absolute constants C. If a ≥ Cb for some positive constants C, then we write
a = �(b) or a � b. We use a  b when a � b and b � a. For two numbers a and
b, we use the notation a ∨ b = max(a, b) and a ∧ b = min(a, b).

1.2. Motivation of the proposed sparse PCA. For the column-centered data
X ∈ R

n×p , standard PCA (Hotelling (1933), Jolliffe (1986)) seeks the best rank r

estimate:

(1) Ẑ = argmin
Z:rank(Z)≤r

‖X − Z‖2
F .
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The solution is provided by the singular value decomposition (SVD) of X =
UDV T (Eckart and Young (1936)): Ẑ = U·,[r]D[r],[r]V T·,[r], where U·,[r] ∈ R

n×r ,
V·,[r] ∈ R

p×r , and D[r],[r] ∈ R
r×r . Here, the r columns of V,[r] are PCA loadings

and U·,[r]D[r],[r] represents PCA scores. This PCA output can also be obtained by
the eigen-decomposition of the matrix XT X/n to find the first r leading sample
principal eigenvectors. However, in the presence of missing observations, where
� ⊂ [1, n]× [1,p] is the set of observed elements, the method based on the eigen-
decomposition of the Gram matrix � = XT

�X� is not appropriate as � is not in-
formative in this setting. For example, if the ith and j th columns of X have few
observed entries on the same rows, the analysis based on �ij can be ill-posed.

One can consider the following optimization, which is motivated by (1):

Ẑ = argmin
Z:rank(Z)≤r

‖X� − Z�‖2
F ,

but it does not have a closed form solution. As a matrix completion method,
Mazumder, Hastie and Tibshirani (2010) considered the following convex relax-
ation: for μ ≥ 0,

(2) Ẑ = argmin
Z∈Rn×p

1

2
‖X� − Z�‖2

F + μ‖Z‖∗.

REMARK 1. As an alternative to (2), Srebro, Rennie and Jaakkola (2005) and
Hastie et al. (2015) considered the following optimization objective:

(3) (Â, B̂) = argmin
Â∈Rn×r ,B̂∈Rp×r

1

2

∥∥X� − (
ABT )

�

∥∥2
F + μ

2

(‖A‖2
F + ‖B‖2

F

)
,

which is based on the fact (Srebro, Rennie and Jaakkola (2005)) that

‖Z‖∗ = min
A,B:Z=ABT

1

2

(‖A‖2
F + ‖B‖2

F

)
.

Note that the optimization problems (2) and (3) provide an equivalent solution,
that is, Ẑ = ÂB̂T when r ≥ rank(Ẑ).

In the above settings, we assume that X is column-centered, but in practice we
observe X� with uncentered data X. We use the mean as an extra parameter (μ in
(4)) for the optimization. We consider the following optimization by imposing the
penalty term on the unobserved parts of the data: for γd, ζd ≥ 0,

(4) Ẑ = argmin
Z∈Rn×p,μ∈Rp

∥∥Z� + (
1n ⊗ μT )

� − X�

∥∥2
F + γd‖Z‖∗ + ρζd

(Z�c),

where ρζd
: Rn×p → R is a penalty function, depending on a tuning parameter

ζd , and μ = (μ1, . . . ,μp)T corresponds to the mean vector. The last term in (4)
enforces a certain type of structure on the solution Ẑ. For example, if one be-
lieves that most of the unobserved entries in X are nearly zero or wants to identify
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unobserved entries having large values, one can use ρζd
(A) = ζd

∑
ij |Aij | for a

matrix A.
For scRNA-seq data analysis, we suggest using a regularizer ρζd

(A) =
ζd

∑
ij A2

ij , which also empirically works well for various missing mechanism
cases as presented in Sections 5–6:

(5) (Ẑ, μ̂) = argmin
Z∈Rn×p,μ∈Rp

∥∥Z� + (
1n ⊗ μT )

� − X�

∥∥2
F + γd‖Z‖∗ + ζd‖Z�c‖2

F .

The last term improves the conditioning of the problem and gives preference to
Ẑ�c with smaller norms. Note that Gaussian functions exp(−λx2) for some λ > 0
are known as possible dropout event generating functions for normalized scRNA-
seq data X (Pierson and Yau (2015), Wang et al. (2017)), that is, Xij are inde-
pendently observed with P(Xij is observed) = 1 − exp(−λX2

ij ). In this case, we
have

log
{
P

(
Xij is unobserved for all (i, j) ∈ �c | X)} = −λ‖X�c‖2

F .

Hence, the last term in (5) plays a role for imputing the unobserved parts X�c of
scRNA-seq data X by indirectly maximizing the conditional probability that the
entries in �c are indeed unobserved. When ζd = 0 and μ = 0, (5) reduces to (2)
that only minimizes the distance of Z and X on the observed part �. In this paper,
we propose a two-step procedure. In the first step, we select significant variables
among p variables by a certain criterion. The second step uses the sub-matrix
of X� with the selected variables to solve optimizations motivated by (5). See
Section 2 for the detailed algorithm.

1.3. Model. In this subsection, we present the sparse PCA model that will be
used for theoretical analysis of the proposed method. Suppose that we have an n×
p matrix X with observed entries indexed by the set � := {(i, j) : Xij is observed}
in the following model:

(6) X = 1n ⊗ (
μo)T + X0 + W = 1n ⊗ (

μo)T + UDV T + W.

Here μo = (μo
1, . . . ,μ

o
p)T represents the mean vector, U is an n × r random

matrix with independent and identically distributed (i.i.d.) N(0,1) entries, D =
diag(λ

1/2
1 , . . . , λ

1/2
r ) with 0 < λr ≤ · · · ≤ λ1, V ∈ R

p×r has orthonormal columns,
and W has i.i.d. N(0, σ 2) entries which are independent of U . Note that we impose
the sparsity condition on the principal vectors V = [v1, . . . , vr ] such that each of
the principal components v1, . . . , vr has at most s0 nonzero entries. We consider
the high-dimensional setting where p > n. Note that the noise model (6) with
μo = 0 is used by Ma (2013) and Cai, Ma and Wu (2013) for sparse PCA analysis.
Throughout the paper, the dimension p, the rank r , the sparsity parameter s, the
spikes λj , and the σ 2 can be regarded as functions of the sample size n.
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Regarding the mechanism of missingness, we assume that the Xij are indepen-
dently observed with probability pij , where the pij may depend on μo, D, and V

in model (6). For j ∈ [p], let

(7) Sj := {
i ∈ [n] : (i, j) ∈ �

}
be the set of indices i where (i, j) ∈ �. We allow the probability pij to be different
across i and j , and X·,j1 and X·,j2 may have few observed entries on the same rows
(i.e., |Sj1 ∩ Sj2 | = o(n)). Note that for this case, unbiased (or corrected) sample
covariance matrices obtained by assuming that the pij are the same for all i or
the size of Sj1 ∩ Sj2 is large enough for any j1 and j2, as used in Lounici (2013),
Loh and Wainwright (2012), and Cai and Zhang (2016), are not available. The
proposed method can estimate the principal subspace span(V) based on the partial
observation X� under some conditions. Note that the principal subspace span(V)
is uniquely identified with the projection matrix V V T (Cai, Ma and Wu (2013)).
We use the following loss function: L(V, V̂ ) = ‖V V T − V̂ V̂ T ‖2

F .

2. Proposed method. We provide a detailed description of our two-step al-
gorithm. In the first step, we select a significant variable set Ŝ ⊂ [p]. In the second
step, we use the selected variables Ŝ to estimate the principal subspace. Recall
that for j ∈ [p], Sj := {i ∈ [n] : (i, j) ∈ �} ⊆ [n] is the set of indices i where
(i, j) ∈ �. Let nj = |Sj | be the number of observed entries of X in the j th column.
Let n̄j := n − nj be the number of unobserved entries of X in the j th column.

2.1. Step 1: Using matrix factorization. In the first step, we select the signif-
icant variable set Ŝ ⊂ [p]. We normalize data X� to X�/

√
n and consider the

following optimization problem involving group lasso penalty: for fixed r̃ ,

min
μ∈Rp,A∈Rn×r̃ ,AT A=Ĩr ,B∈Rp×r̃

F (A,B,μ) where(8)

F(A,B,μ) = 1

2

∥∥∥∥X�√
n

− (
1n ⊗ μT )

� − (
ABT )

�

∥∥∥∥2

F

+
p∑

i=1

λ(i)‖Bi,·‖2.(9)

See Lemma 1 for the theoretical lower bound of r̃ . Let (Â, B̂, μ̂) be the solution
to (8). We will select the variables based on the row support set of B̂ . Note that
one can solve (5) without variable screening, but this step substantially reduces the
computation time, especially when p is large.

REMARK 2. The matrix factorization in (8) makes us consider a low rank ma-
trix ABT that targets the low rank matrix X0/

√
n = UDV T /

√
n as in (6), and this

approximately reduces the row sparsity of V into B as ‖Bi,·‖2
2 targets Vi,·D2V T

i· /n

due to AT A = Ir̃ and UT U/n ≈ Ir . Hence ‖Bi,·‖2 may have a large value when
‖Vi,·‖2 is large, that is, the ith variable is significant. When r̃ = r , A and B corre-
spond to U/

√
n ∈ R

n×r and V DT ∈ R
p×r , respectively. Note that the regulariza-

tion parameters in (8) must satisfy λ(i) ≈ σ
√

ni/n for i ∈ [p]. See Lemma 1 for
detailed formula.
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The low rank induced term ‖ABT ‖∗ is not included in (8) as the rank of ABT is
already at most r̃ due to matrix factorization. Although (8) is not jointly convex, it
can be solved by using iterative algorithms. Consider A and μ fixed, and we solve
Problem (8) for B . Note that this problem decouples into the following p separate
regression problems: for j ∈ [p],

B̂j,· = argmin
β∈Rr̃

1

2

∥∥∥∥XSj ,j√
n

− μj 1nj
− ASj ,·β

∥∥∥∥2

F

+ λ(j)‖β‖2,

which has a different regression matrix ASj ,· across j ∈ [p]. By applying the gen-
eral idea of the Majorization–Minimization (MM) algorithm (Lange, Hunter and
Yang (2000)), we will update Bj,· using the same regression matrix for all j ∈ [p].
This reduces the computation of an update of B (Hastie et al. (2015)). Note that
Hastie et al. (2015) considered fast alternating least squares in terms of matrix
completion and low-rank SVD. They also utilized the majorizers to update each
iterate, but their objective function is different from ours. We summarize the algo-
rithm of the first step as follows:

ALGORITHM (Step 1): Obtain Ŝ and μ̂.
Inputs: Data matrix X�, initial estimates A0, B0, and μ0, and k = 0.
Outputs: Â, B̂ , μ̂ as an estimate of minimizer of problem (8) and Ŝ.
Repeat until (Bk,μk) converges
1. k ← k+1.
2. X̃ := X�/

√
n+ (AkB

T
k )�c − (1n ⊗μT

k )�, and BT
k X̃T = ŨD̃Ṽ T be the reduced

SVD.
3. Ak+1 = Ṽ ŨT .
4. Update X̃ = X�/

√
n + (Ak+1B

T
k )�c − (1n ⊗ μT

k )�.
5. Update Bk+1 as follows: for � = 1, . . . , p, the �th row of Bk+1 satisfies

if
∥∥AT

k+1X̃·�
∥∥

2 ≤ λ(�), then (Bk+1)�,· = 0,

else (Bk+1)�,· = ‖AT
k+1X̃·,�‖2 − λ(�)

‖AT
k+1X̃·,�‖2

AT
k+1X̃·,�.

6. Update μk+1 = 1
n

∑n
i=1 ẌT

i,·, where Ẍ = ( X√
n

− Ak+1B
T
k+1)� + (1n ⊗ μT

k )�c .

7. Ŝk+1 = {� ∈ [p] | Bk+1,�· �= 0} and update Ŝ ← Ŝk+1.

Details of the above algorithm with its stopping criterion and theoretical proper-
ties are deferred to Section 4. Note that the goal of Step 1 is to obtain the estimated
mean vector μ̂ and to select the significant variable set Ŝ using the row support set
of {Bk}.

REMARK 3. Johnstone and Lu (2009), Ma (2013), and Cai, Ma and Wu (2013)
performed variable screening based on column norms of X. Our numerical ex-
amples demonstrate that Step 1 serves a similar role in principle and has similar
theoretical properties but performs better than the existing methods.
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2.2. Step 2: Solve a nuclear-norm-regularized problem. Recall that μ̂ is the
estimate of μ and Ŝ ⊂ [p] is the selected set obtained from Step 1. Let ŝ := |Ŝ|. In
the second step, we only utilize the set of variables in Ŝ to estimate the principal
subspace. First, we estimate X0,� by solving the following problem, which is a
special version of (5): for γd > 0,

(10) X̂1 = argmin
Z∈Rn×ŝ

∥∥Z� + (1n ⊗ μ̂
Ŝ
)� − (X·,Ŝ )�/

√
n
∥∥2
F + γd‖Z‖∗.

Then, we solve the following problem, which is also a special version of (5): for
ζd > 0,

(11) X̂2 = argmin
Z∈Rn×ŝ ,Z�=(X̂1)�

‖Z‖∗ + ζd‖Z�c‖2
F .

See Theorem 1 for the theoretical conditions on ζd and γd . In (10), we focus on
estimating X0,�, and (11) utilizes this estimate to update the remaining part of X0.
We found that the two steps (10)–(11) are more efficient than estimating X0 in an
one step in that it provides a more tight bound on ‖X̂2 −X0‖ as well as empirically
produces an accurate estimator. Moreover, solving (10) and (11) require the same
time complexity as presented in Section 1 of the Supplementary Material (Park
and Zhao (2019)), and it does not require much time to solve even for large scale
data as in Table 8.

Then we define X̂ ∈ R
n×p satisfying X̂·,Ŝ = X̂2 and X̂·,Ŝc = 0. For the target

dimension r0 of a principal subspace, we construct V̂r0 ∈ R
p×r0 whose columns

have the first r0 right eigenvectors of X̂. We summarize the proposed two-step
algorithm as follows:

ALGORITHM Two-step procedure.
Inputs: Data matrix X� and r0, which is the target dimension of the principal
component space of interest.
Outputs: principal components V̂ ∈ R

p×r0 .
Steps:
Step 1. Obtain Â, B̂ , μ̂, and Ŝ from Step 1.
Step 2(a). Use μ̂ and X·,Ŝ to solve (10) and obtain X̂1 ∈ R

n×ŝ .

Step 2(b). Use obtained (X̂1)� to solve (11) and obtain X̂2 ∈R
n×ŝ .

Step 2(c). Construct X̂ ∈R
n×p such that X̂·,Ŝ = X̂2 and X̂·,Ŝc = 0.

Step 2(d). V̂r0 ∈ R
p×r0 consists of the first r0 right eigenvectors of X̂.

REMARK 4. In our implementation, we solve (10)–(11) with an additional
constraint ‖Z‖∗ ≤ ρ for some ρ > 0 by using the composite gradient descent al-
gorithm. Since they are strongly convex, it enjoys a computational convergence as
that in Agarwal, Negahban and Wainwright (2012). This additional side constraint
is included to ensure good behavior of the algorithm in the first few iterations
(Agarwal, Negahban and Wainwright (2012)). We use ÂB̂T

Ŝ,· as an initial input
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in the composite gradient descent algorithm, which empirically provides a good
output rather than using an arbitrary matrix as an initial input. We terminate the
composite gradient descent update after 500 iterations based on empirical obser-
vation that the iterates are stable after 100 runs. Analysis of convergence rates
of the composite gradient descent algorithm (Agarwal, Negahban and Wainwright
(2012)) in our setting is left open for future research.

2.3. Choosing the penalty parameters. In Step 1, based on Lemma 1, we

choose r̃ = [n/ logp] and (λ(j))2 = nj

n
(σ̂ 2 + σ̂ 2

√
20 logp

nj
) for j = 1, . . . , p, where

σ̂ 2 = median{‖XSj ,j − μ̂j 1nj
‖2

2/nj : j ∈ [p]} is the estimate of σ 2 (Johnstone and
Lu (2009), Ma (2013)).

In Step 2, we solve (10) and (11) by using the composite gradient descent algo-
rithm (Agarwal, Negahban and Wainwright (2012)) with regularization parameters
ζd, γd , and ρ, where ρ is stated in Remark 4. Based on the theoretical rate of γd as
in Theorem 1, we choose γd using simulation as follows: for a fixed ζd > 0,

(12) γd = max
1≤k≤100

∥∥W(k)
�

∥∥
2/

√
n,

where W(k) ∈ R
n×ŝ for k = 1, . . . ,100 are independent of each other and each

has i.i.d. N(0, σ̂ 2) entries, and Â and B̂ are the output obtained from Step 1. We
choose ρ as

(13) ρ = 2
∥∥ÂB̂T

Ŝ,·
∥∥∗.

Similarly, we choose ζd = √
nŝ/(2 rank(B̂Ŝ,·)‖ÂB̂T

Ŝ,·‖2) based on the fact that

rank(ÂB̂T
Ŝ,·) = rank(B̂Ŝ,·). Those choices of the regularization parameters do not

give the best results for any given cases, but they lead to good empirical results
in various settings and can help us understand how the proposed method performs
with reasonable choices of these tuning parameters.

3. Theoretical properties. In this section, we investigate the theoretical prop-
erties of the proposed principal subspace estimator. As stated in Section 1.3, the
dimension p, the rank r , the sparsity parameter s, the spikes λj , and the σ 2 can be
regarded as functions of the sample size n.

3.1. Main results. We define the following key quantities: n+ = maxj∈S nj

and pmin = mini∈[n],j∈S pij . The following Lemma 1 shows the exact row selec-
tion property of Ŝ with high probability.

LEMMA 1. Suppose Conditions S1–S4 in the Supplementary Material (Park
and Zhao (2019)). Let (Â, B̂) be the solution to (8) with r̃ ≥ s and (λ(i))2 =
ni

n
(σ 2 + σ 2

√
20 logp

ni
) for i ∈ [p]. Let Ŝ := {j ∈ [p] : B̂j,· �= 0}. Then, with prob-

ability 1 − 3/p, Ŝ = S.
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The following theorem shows the statistical convergence of the estimator un-
der some conditions. We include the required assumptions in the Supplementary
Material (Park and Zhao (2019)).

THEOREM 1. For r0 ≤ r , let Vr0 := V·,[r0] ∈ R
p×r0 . Suppose all conditions

in Lemma 1 hold. Let V̂r0 ∈ R
p×r0 be the proposed estimate of Vr0 with ζd ∼√

ns/(2rλ1) and γd ∼ ‖W�‖2/
√

n. Then, with probability tending to one,

(14)
∥∥V̂r0V̂

T
r0

− Vr0V
T
r0

∥∥
F � logn√

pminλ1

[
n

ς−1
2

(
1 ∨ σnς )] +

√
r√
n

√
r ∨ logn.

Note that the upper bound in (14) mainly consists of two terms. The first term
is induced by controlling missing entries and the noise of the sparse PCA model,
The upper bound in (14) is o(1), provided that ς is some small constant and pmin
is bounded below by some negligible value satisfying o(1), as in Condition S1 of
the Supplementary Material (Park and Zhao (2019)), showing that the proposed
method for principal subspace could accurately estimate the underlying principal
subspace.

4. Computational algorithm. In this section, we present details of the algo-
rithm (Step 1) given in Section 2 with its theoretical properties. For fixed r̃ , recall
the function F(A,B,μ), which is the objective function of A ∈ R

n×r̃ , B ∈ R
p×r̃ ,

and μ ∈ R
p , as in (9). For fixed A, B , and μ, define the functions QA(Ã|A,B,μ),

QB(B̃|A,B,μ), and Qμ(μ̃|A,B,μ) as

QA(Ã|A,B,μ) = 1

2

∥∥∥∥
(

X√
n

− ÃBT

)
�

+ (
ABT − ÃBT )

�c − (
1n ⊗ μT )

�

∥∥∥∥2

F

+
p∑

i=1

λ(i)‖Bi,·‖2,

QB(B̃|A,B,μ) = 1

2

∥∥∥∥
(

X√
n

− AB̃T

)
�

+ (
ABT − AB̃T )

�c − (
1n ⊗ μT )

�

∥∥∥∥2

F

+
p∑

i=1

λ(i)‖B̃i,·‖2,

Qμ(μ̃|A,B,μ) = 1

2

∥∥∥∥
(

X√
n

− ABT

)
�

− (
1n ⊗ μ̃T )

� + (
1n ⊗ (μ − μ̃)T

)
�c

∥∥∥∥2

F

+
p∑

i=1

λ(i)‖Bi,·‖2.

We can easily check that QA(Ã|A,B,μ), QB(B̃|A,B,μ), and Qμ(μ̃|A,B,μ)

are majorizers of F(Ã,B,μ), F(A, B̃,μ), and F(A,B, μ̃), respectively. That is,
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it holds that

F(Ã,B,μ) ≤ QA(Ã|A,B,μ),F (A, B̃,μ) ≤ QB(B̃|A,B,μ),F (A,B, μ̃)

≤ Qμ(μ̃|A,B,μ),

F (A,B,μ) = QA(A|A,B,μ) = QB(B|A,B,μ) = Qμ(μ|A,B,μ).

We update {(Ak,Bk,μk)} by the following iterative procedure:

Ak+1 = argmin
A∈Rn×r̃ :AT A=Ĩr

QA(A|Ak,Bk,μk),Bk+1 = argmin
B∈Rp×r̃

QB(B|Ak+1,Bk,μk),

μk+1 = argmin
μ∈Rp

Qμ(μ|Ak+1,Bk+1,μk).

Note that one can update μk without using the majorizer Qμ, but our empirical
results show that we can obtain a more stable output with the majorizer and this
also yields convergence of μk in terms of ‖μk+1 − μk‖2 as in Lemma 5, which
can not be obtained without the majorizer. The following lemmas show that we
can easily solve each iteration in Step 1.

LEMMA 2. Let Â = argminÃ∈Rn×r̃ :ÃT Ã=Ĩr
QA(Ã|A,B,μ). Let X̃ = X�/√

n + (ABT )�c − (1n ⊗ μT )�. Consider the reduced SVD, BT X̃T = ŨD̃Ṽ T ,
where Ũ and Ṽ have orthonormal columns, respectively. Then Â = Ṽ ŨT .

LEMMA 3. Let B̂ = argminB̃∈Rp×r̃ QB(B̃|A,B,μ). Then, for � = 1, . . . , p,
the �th row of B̂ satisfies the following:

if
∥∥AT X̃·,�

∥∥
2 ≤ λ(�), then B̂�,· = 0,

else B̂�,· = ‖AT X̃·,�‖2 − λ(�)

‖AT X̃·,�‖2
AT X̃·,�.

LEMMA 4. Let μ̂ = argminμ̃∈Rp Qμ(μ̃|A,B,μ). Let Ẍ = ( X√
n

− ABT )� +
(1n ⊗ μT )�c . Then μ̂ = 1

n

∑n
i=1 ẌT

i,· is the sample mean vector of Ẍ.

By Lemmas 2–4, we obtain the algorithm (Step 1) given in Section 2.1. The
following Lemma 5 establishes a convergence of the algorithm (Step 1) and shows
that the iterates {Bk}k=1,2,..., and {μk}k=1,2,..., converge.

LEMMA 5. Let (Ak,Bk,μk), k ≥ 0 be the sequence generated by the algo-
rithm in Step 1. Then, the sequence of F(Ak,Bk,μk) is decreasing and converges
to some positive constant FL, and

ηk := 1

2
‖Bk+1 − Bk‖2

F + n‖μk+1 − μk‖2
2 → 0 as k → ∞.

Specifically, mink∈[T ] ηk ≤ F(A0,B0,μ0)−FL

T +1 .
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FIG. 1. Plots of the successive difference ηk as iteration increases for the selected eight scRNA-seq
data sets. The left and right plots consider the four scRNA-seq data sets, respectively.

All technical proofs are presented in the Supplementary Material (Park and
Zhao (2019)). Based on results of Lemma 5, one can use the stopping criterion
ηk ≤ ε for some small constant ε > 0. We use ε = 10−4 in our implementa-
tion. Regarding the computational convergence rate, we see that the initial ob-
jective function value of F in (9) is F(A0,B0,μ0) = 1

2‖X�√
n

− (1n ⊗ μT
0 )‖2

F ,

where B0 = 0 and μ0 is the sample mean vector of X�/
√

n. Thus, we have
F(A0,B0,μ0) � ‖ 1√

n
UDV T ‖2

F � tr(V D2V T ) = tr(D2) � rλ1. Hence the num-
ber of iterates of the algorithm is O(rλ1) because the algorithm converges at a
rate of O(F(A0,B0,μ0)/K), where K denotes the number of iterations of the
algorithm.

Figure 1 shows the successive difference ηk as iterates increase. We observe that
the stopping criterion is satisfied within 250 iterates in all the cases, and the succes-
sive difference converges to zero as the iterate count k increases that corresponds
to the results of Lemma 5.

5. Simulation: First study. In this section, we compare our principal sub-
space estimate with other methods. For comparisons, we consider the follow-
ing PCA estimators: the standard PCA (“PCA”); the diagonal thresholding sparse
PCA (“DTSPCA”) by Johnstone and Lu (2009); the iterative thresholding sparse
PCA with hard thresholding (“ITSPCA”) by Ma (2013); the correlation augmented
sparse PCA (“CORSPCA”) by Nadler (2009); and the augmented sparse PCA
(“AUGSPCA”) by Paul and Johnstone (2007). For these PCA estimators, we use
the imputed data by replacing the missing values with zeros following Xu and
Su (2015), Wang et al. (2017), and Shao and Höfer (2017), because these PCA
methods are not designed to take into account missing values in data. We also con-
sider the weighted PCA methods that are designed to take into account dropouts
in data: “EMPCA” by Bailey (2012) and “WPCA” by Delchambre (2014). In the
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implementation, we use the following regularization parameters: αn = 3
√

logp/n

for “DTSPCA”; γ = 0.75 for “ITSPCA”; κ = 2.1 for “AUGSPCA” and ξ = 0 for
“WPCA.” For the other methods, we use the regularization parameters suggested
in the original papers.

For the performance measurement, we record ‖V̂ V̂ T − V V T ‖ for various es-
timates V̂ of the principal coefficient V . Denote the row support set by S = {j ∈
[p] : Vj,· �= 0} and |S| = s. We consider the two different PCA models based on
constructing the matrix V . In the first model, the matrix V is obtained by orthonor-
malizing a p × r matrix M , where

(15) Mi,j ∼ N
(
0, i3)

for i = 1, . . . , s and Mi,· = 0 for i > s

so that the norms of the sorted rows in V have rapid decay. The λi take r equally-
spaced values such that λr = 10 and λ1 = 30. In the second model, V is obtained
by orthonormalizing a p × r matrix M , where

(16) Mi,j ∼ Uniform(0,1) for i = 1, . . . , s and Mi,· = 0 for i > s

so that the norms of nonzero rows in V have similar values.
We introduce dropout events according to the eight different generating func-

tions g(x) shown in Figure 2, where g(·) is symmetric about the origin and mono-
tonically decreasing over [0,∞). We observe X̃ as

X̃ij = Xij δij , where δij ∼ Bernoulli
(
1 − g(Xij )

)
,

where the δij are independent Bernoulli random variables, that is, Xij is indepen-
dently observed with probability 1−g(Xij ). We consider the case when n = 1000,
p = 2000, r = 10, σ = 1, and s ∈ {30,60}.

Figure 2 displays the eight different monotone function g(x)’s: the first two
functions have Gaussian function form exp(−λx2), which was used as a dropout
event generating function for scRNA-seq data (Pierson and Yau (2015), Wang et al.
(2017)); the third and fourth functions are constants, that is, missing occurs com-
pletely at random; the fifth and sixth functions have double exponential function
form exp(−λ|x|); and the seventh and eighth consider the cases that Xij ’s are al-
ways unobserved when they are less than a certain threshold level and observed
with probability 0.7 when they are greater than the threshold level.

In Figures 3–4, we compare the proposed estimator with the other PCA methods
for the missing cases 1, 3, 5, and 7 when s = 30. For the other settings and missing
cases, see Section 10 of the Supplementary Material (Park and Zhao (2019)). The
performance measurements are averaged over 200 repetitions. Across all the cases,
the proposed sparse PCA outperforms the other methods in terms of estimating the
principal subspace, while it generally takes a few seconds and comparable to those
of other estimators.
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FIG. 2. Eight different dropout event generating functions: g1(x) = exp(−1.5x2),
g2(x) = exp(−0.5x2), g3(x) = 0.3, g4(x) = 0.7, g5(x) = exp(−2|x|), g6(x) = exp(−0.7|x|),
g7(x) = 1{|x|<0.2} + 0.3 × 1{|x|≥0.2}, and g8(x) = 1{|x|<1} + 0.3 × 1{|x|≥1}. These eight missing
cases generally yield the following missing proportions for our simulated datasets: 0.85, 0.93, 0.2,
0.4, 0.7, 0.86, 0.33, and 0.39, respectively.

FIG. 3. (A) The bar graph with average of the performance measurements ‖V̂r V̂
T
r −VrV

T
r ‖2 and

its one standard deviation over 200 repetitions. (B) The bar graph with average of computational
time (seconds) and its one standard deviation. We consider the missing cases 1, 3, 5, and 7 when
n = 1000, p = 2000, r = 10, σ = 1, s = 30, and V follows (15).
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FIG. 4. (A) The bar graph with average of the performance measurements ‖V̂r V̂
T
r − VrV

T
r ‖2 and

its one standard deviation over 200 repetitions. (B) The bar graph with average of computational
time (seconds) and its one standard deviation. We consider the missing cases 1,3,5, and 7 when
n = 1000, p = 2000, r = 10, σ = 1, s = 30, and V follows (16).

6. Simulation: Second study. In this section, we assess the performances of
the proposed method in terms of clustering, as will be considered in Section 7, by
simulation. In the experiments, we use two types of simulation data. We gener-
ate the first simulation model using the following four steps as in Park and Zhao
(2018), shown in (A1)–(A4) below. In the first step, C points are generated on a
circle in the two-dimensional latent space, where each point is considered to be
the center of one cluster. The n points are generated by adding independent noise
to the center of the corresponding cluster. In the second step, we project the previ-
ously generated two-dimensional data to a p-dimensional space, which represents
gene expression data. In the third step, we simulate a noisy gene expression data
by adding independent Gaussian noise. In the last step, we introduce a dropout
event such that each entry is independently observed with a certain probability.
See Section 7 of the Supplementary Material (Park and Zhao (2019)) for details of
the simulation model. In the simulation, we fix n = 500, p = 1000, q = 50, C = 5,
d = 10, σ 2 = 1, γ = 0.01, and σ 2

l = 1.
In the second simulation model, we generate the data using Gaussian mixture

model. To distinguish different cell types, it is likely that only some genes are in-
formative, and noninformative and highly noisy genes can increase the difficulty of
identifying cell types. Under this context, we use a few attributes to distinguish the
clustering labels. We generate the simulation model based on the Gaussian mixture
model. See Section 7 of the Supplementary Material (Park and Zhao (2019)) for
details of the simulation model. We consider a high-dimensional setting n = 1000,
p = 2000, q = 50, C = 5, σsignal ∈ {12,16,20}, and γ = 0.01.

We also consider the other state-of-the-art dimension reduction methods used to
analyze scRNA-seq data: “ZIFA” by Pierson and Yau (2015) and “CIDR” by Lin,
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TABLE 1
Simulation model 1: Average (one standard deviation) of NMI and ARI values over 200 repetitions

for various σsignal. The average missing rate is 65%

NMI ARI

Method σsignal = 12 σsignal = 16 σsignal = 20 σsignal = 12 σsignal = 16 σsignal = 20

MIS-PCA 0.85 (0.05) 0.95 (0.04) 0.99 (0.01) 0.87 (0.05) 0.99 (0.03) 0.99 (0.01)
PCA 0.47 (0.07) 0.83 (0.03) 0.96 (0.02) 0.47 (0.06) 0.86 (0.04) 0.97 (0.02)
DTSPCA 0.59 (0.07) 0.87 (0.03) 0.97 (0.02) 0.60(0.07) 0.85 (0.05) 0.94 (0.02)
ITSPCA-Hard 0.62 (0.05) 0.84 (0.04) 0.94 (0.03) 0.69 (0.06) 0.91 (0.03) 0.97 (0.02)
ITSPCA-Soft 0.70 (0.05) 0.90 (0.04) 0.97 (0.02) 0.72 (0.06) 0.94 (0.04) 0.96 (0.02)
CORSPCA 0.69 (0.06) 0.90 (0.03) 0.97 (0.03) 0.70 (0.06) 0.91 (0.04) 0.97 (0.01)
AUGSPCA 0.58 (0.05) 0.83 (0.03) 0.97 (0.02) 0.47 (0.07) 0.87 (0.03) 0.96 (0.02)
EMPCA 0.78 (0.07) 0.90 (0.04) 0.95 (0.02) 0.80 (0.07) 0.93 (0.04) 0.96 (0.03)
WPCA 0.80 (0.07) 0.91 (0.04) 0.96 (0.03) 0.82 (0.07) 0.93 (0.04) 0.97 (0.03)
CIDR 0.79 (0.07) 0.93 (0.03) 0.97 (0.02) 0.82 (0.06) 0.92 (0.04) 0.96 (0.01)
ZIFA 0.73 (0.09) 0.92 (0.05) 0.96 (0.02) 0.73 (0.09) 0.91(0.03) 0.96 (0.03)

Troup and Ho (2017). Note that “ZIFA” implements a probabilistic PCA method by
incorporating a zero inflated model to account for dropout characteristics. “CIDR”
is a novel clustering method through imputation and dimensionality reduction that
uses a simple implicit imputation approach to alleviate the impact of dropouts in
scRNA-seq data. For the proposed method “MIS-PCA,” we use X̂P̂ ∈ R

n×r0 as a
principal component score, where X̂ ∈ R

n×p and P̂ ∈ R
p×r0 are the output matrix

and principal components obtained from Step 2, respectively. For the number of
iterations needed for convergence of “MIS-PCA,” see Figure 1. We use the true
cluster number for the target dimension r0 as well as the target cluster number.

We use three performance measures to evaluate the consistency between the
obtained clustering and the true labels: Normalized Mutual Information (NMI)
(Strehl and Ghosh (2003)), Adjusted Rand Index (ARI) (Wagner and Wagner
(2007)), and Purity. NMI and Purity take on values between zero and one, but ARI
can have negative values. These metrics measure the concordance of two cluster-
ing labels such that higher value refers to higher concordance. For details of these
metrics, see Section 9 of the Supplementary Material (Park and Zhao (2019)).

Table 1 and Table S1 in the Supplementary Material (Park and Zhao (2019))
show the summary of NMI, ARI, and Purity measures for different σsignal (i.e., sig-
nal to ratio) levels when the first simulation model is considered. We observe that
the performances become better as the σsignal level is increased. For all the cases,
the proposed method “MIS-PCA” outperforms the other competitors in terms of
clustering samples. The results for the second simulation model (Table 2 and Ta-
ble S2 in the Supplementary Material (Park and Zhao (2019))) are also consistent
with those of the first simulation model.
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TABLE 2
Simulation model 2: Average (one standard deviation) of NMI and ARI values over 200 repetitions

for various σsignal. The average missing rate is 70%

NMI ARI

Method σsignal = 12 σsignal = 16 σsignal = 20 σsignal = 12 σsignal = 16 σsignal = 20

MIS-PCA 0.83 (0.05) 0.95 (0.01) 0.99 (0.00) 0.84 (0.06) 0.98 (0.01) 0.99 (0.00)
PCA 0.43 (0.06) 0.80 (0.03) 0.94 (0.02) 0.45 (0.08) 0.83 (0.03) 0.95 (0.01)
DTSPCA 0.55 (0.07) 0.83 (0.03) 0.94 (0.02) 0.57(0.08) 0.85 (0.04) 0.96 (0.02)
ITSPCA-Hard 0.63 (0.03) 0.85 (0.02) 0.95 (0.02) 0.66 (0.04) 0.88 (0.02) 0.96 (0.01)
ITSPCA-Soft 0.68 (0.03) 0.88 (0.02) 0.96 (0.01) 0.71 (0.04) 0.91 (0.02) 0.97 (0.01)
CORSPCA 0.64 (0.06) 0.87 (0.03) 0.95 (0.02) 0.67 (0.07) 0.89 (0.03) 0.96 (0.01)
AUGSPCA 0.43 (0.06) 0.80 (0.03) 0.93 (0.02) 0.45 (0.07) 0.83 (0.03) 0.95 (0.02)
EMPCA 0.75 (0.03) 0.88 (0.03) 0.91 (0.04) 0.78 (0.04) 0.91 (0.03) 0.93 (0.03)
WPCA 0.78 (0.04) 0.88 (0.03) 0.93 (0.04) 0.80 (0.05) 0.93 (0.03) 0.95 (0.02)
CIDR 0.74 (0.07) 0.90 (0.02) 0.94 (0.03) 0.78 (0.06) 0.90 (0.02) 0.95 (0.02)
ZIFA 0.68 (0.08) 0.89 (0.03) 0.92 (0.04) 0.71 (0.08) 0.89 (0.03) 0.94 (0.03)

Furthermore, we evaluate the sensitivity of the clustering results for these meth-
ods with respect to departures from assumptions in some interesting missing data
patterns. We first consider the setting, where pij are generated from the Uniform
distribution, that is, pij ∼ unif(pmin,pmax), where pmax = (pmin + 0.3) ∧ 1. That
is, the missing mechanism in (A4) of the aforementioned two simulation models
is replaced with the Uniform distribution. Note that our theoretical results imply
that it becomes more challenging as pmin approaches to zero given that the other
parameters in the model are fixed. We consider pmin ∈ {0.01,0.1,0.3,0.5,0.7} to
evaluate the sensitivity to the minimum observed probability. Tables 3–4 show the
sensitivity of the clustering results (NMI) with respect to pmin when Simulation
models 1 and 2 are considered, respectively. It is seen that the accuracy of clus-
tering results is getting worse as pmin approaches zero, as we expected, but “MIS-
PCA” is less sensitive to the change of pmin than other methods. We found that
“MIS-PCA” and “CIDR” generally acheive more accurate clustering results com-
pared to other methods, while the variation of clustering results of “MIS-PCA”
is less than those of other methods for each simulation setting, suggesting that
“MIS-PCA” provides more stable results.

Second, we consider the missing case, pij = 1−exp(−γX2
ij ), where γ > 0 rep-

resents the exponential decay parameter. Note that this missing pattern is known
to be a possible dropout event generating function for normalized scRNA-seq data
X (Pierson and Yau (2015), Wang et al. (2017)). We consider the sensitivity of
the clustering results to changes in the decay parameter γ . Specifically, we con-
sider γ ∈ [10−5, . . . ,1] in (A4) of the two simulation models. Tables S3–S4 of the
Supplementary Material (Park and Zhao (2019)) show the sensitivity of the clus-
tering results (NMI) with respect to the decay parameter when Simulation models
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TABLE 3
Sensitivity analysis when Simulation model 1 with pij ∼ unif(pmin,pmax), where

pmax = pmin + 0.3 and σsignal = 12 is considered: Average (one standard deviation) of NMI values
over 200 repetitions for various γ

Method pmin = 0.01 pmin = 0.1 pmin = 0.3 pmin = 0.5 pmin = 0.7

MIS-PCA 0.39 (0.12) 0.55 (0.10) 0.69 (0.07) 0.80 (0.05) 0.92 (0.03)
PCA 0.37 (0.13) 0.50 (0.12) 0.61 (0.09) 0.68 (0.07) 0.81 (0.05)
DTSPCA 0.37 (0.15) 0.51 (0.14) 0.64 (0.10) 0.73 (0.08) 0.83 (0.05)
ITSPCA-Hard 0.35 (0.19) 0.50 (0.13) 0.65 (0.11) 0.75 (0.08) 0.83 (0.07)
ITSPCA-Soft 0.36 (0.17) 0.50 (0.15) 0.64 (0.10) 0.73 (0.07) 0.86 (0.05)
CORSPCA 0.36 (0.16) 0.48 (0.13) 0.65 (0.10) 0.76 (0.08) 0.85 (0.08)
AUGSPCA 0.37 (0.20) 0.49 (0.17) 0.66 (0.10) 0.75 (0.07) 0.85 (0.06)
EMPCA 0.38 (0.19) 0.50 (0.15) 0.64 (0.14) 0.75 (0.09) 0.86 (0.06)
WPCA 0.37 (0.18) 0.51 (0.14) 0.62 (0.12) 0.73 (0.09) 0.84 (0.07)
CIDR 0.37 (0.16) 0.53 (0.14) 0.67 (0.10) 0.78 (0.07) 0.92 (0.05)
ZIFA 0.37 (0.20) 0.52 (0.16) 0.66 (0.14) 0.77 (0.12) 0.88 (0.08)

1 and 2 are considered, respectively. We observe that “MIS-PCA” consistently
produced more accurate clustering results with less variations compared to other
methods. This suggests that “MIS-PCA” may be favorable when the underlying
missing probability satisfies pij = 1 − exp(−γX2

ij ). This may be due to the ef-
fects of imputing X�c using the proposed optimization, which actually updates
X�c by considering the conditional probability that the entries in �c are indeed
unobserved when the underlying missing probability follows a decaying squared
exponential, as presented in Section 1.2. This finding suggests that when the miss-

TABLE 4
Sensitivity analysis when Simulation model 2 with pij ∼ unif(pmin,pmax), where

pmax = pmin + 0.3 and σsignal = 12 is considered: Average (one standard deviation) of NMI values
over 200 repetitions for various γ

Method pmin = 0.01 pmin = 0.1 pmin = 0.3 pmin = 0.5 pmin = 0.7

MIS-PCA 0.40 (0.14) 0.56 (0.11) 0.69 (0.08) 0.82 (0.05) 0.92 (0.04)
PCA 0.38 (0.16) 0.50 (0.14) 0.59 (0.11) 0.70 (0.08) 0.80 (0.07)
DTSPCA 0.39 (0.18) 0.52 (0.16) 0.66 (0.13) 0.76 (0.10) 0.82 (0.06)
ITSPCA-Hard 0.36 (0.19) 0.52 (0.15) 0.65 (0.12) 0.73 (0.10) 0.80 (0.08)
ITSPCA-Soft 0.36 (0.18) 0.53 (0.16) 0.65 (0.11) 0.75 (0.09) 0.83 (0.06)
CORSPCA 0.38 (0.17) 0.51 (0.14) 0.64 (0.12) 0.74 (0.07) 0.83 (0.05)
AUGSPCA 0.38 (0.20) 0.51 (0.16) 0.65 (0.12) 0.73 (0.06) 0.83 (0.06)
EMPCA 0.38 (0.18) 0.50 (0.14) 0.66 (0.12) 0.76 (0.07) 0.83 (0.03)
WPCA 0.39 (0.22) 0.50 (0.18) 0.64 (0.13) 0.77 (0.11) 0.86 (0.09)
CIDR 0.41 (0.19) 0.53 (0.16) 0.66 (0.12) 0.79 (0.09) 0.89 (0.06)
ZIFA 0.40 (0.21) 0.52 (0.18) 0.67 (0.15) 0.78 (0.10) 0.86 (0.05)
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TABLE 5
Summary of the characteristics of the 11 real single-cell data sets

Data set # cells (n) # genes (p) # populations Missing proportion

Buettner 182 8989 3 42%
Usoskin 622 15,332 4 40%
Pollen 249 14,805 11 55%
Kolodziejczyk 704 11,235 3 88%
Deng 317 1001 11 38%
Ginhoux 251 11,834 3 73%
Ting 114 14,405 5 57%
Treutlein 80 9352 5 53%
Tasic 1727 5832 49 33%
Zeisel 3005 4412 47 47%
Macosko 6418 12,822 39 85%

ing patterns in scRNA-seq data follows the decaying squared exponential, that is,
exp(−γX2

ij ), then one can expect that “MIS-PCA” provides more stable and accu-
rate clustering results than other methods.

7. Applications to single-cell RNA sequence data. In this section, we apply
the proposed sparse PCA to single cell datasets. The scRNA-seq data X ∈ R

n×p is
high-dimensional, that is, it usually has tens of thousands genes (p) and a few hun-
dred cells (n). One major challenge of scRNA-seq data, compared to bulk RNA-
seq or gene expression microarrays, is that they have many missing values due to
technical and sampling issues. Furthermore, the missingness in scRNA-seq data is
not at random, that is, the probability of missing a data may be related to its value.
It is also known that only a limited number of genes out of thousands of genes are
significantly differentially expressed in distinct cell types. These facts motivate us
to apply the proposed sparse PCA to these datasets. We consider the 11 differ-
ent single cell datasets as summarized in Table 5. Each of the 11 scRNA-seq data
sets represents several types of dynamic processes such as cell differentiation, cell
cycle, and response upon external stimulus. See Section 8 of the Supplementary
Material (Park and Zhao (2019)) for details and references of data. Each scRNA-
seq data set contains cells for which the labels were known a priori or validated in
the respective studies.

Figures 5–7 visualize the cells into two dimensions based on the PCA scores for
the three datasets, Usoskin (Usoskin et al. (2014)), Pollen (Pollen et al. (2014)),
and Ting (Ting et al. (2014)). Each cell is colored based on the true label informa-
tion to visualize differences between cell populations. We observe that “MIS-PCA”
can better distinguish cell types than other PCA methods. See Figures S7–S11 of
the Supplementary Material (Park and Zhao (2019)) for the PCA scatterplots using
the five selected datasets with sample sizes less than 1000.
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FIG. 5. Visualization of Usoskin data (Usoskin et al. (2014)) based on obtained scores: Each point
represents a cell and is colored and marked based on the true label information. The axes are in
arbitrary units.

As observed in Figures 5–7, for the other PCA methods, two PCA scores can
be similar in terms of the relative position of points in lower-dimensional space
even when two PCA loadings V1,V2 ∈ R

p×r are very different in terms of the
norm ‖V1V

T
1 − V2V

T
2 ‖. This often occurs when data X is sparse (i.e., has many

missing values) and two PCA loadings V1 and V2 are sparse or only significantly
different in rows corresponding to the columns of the data X with many missing
values (i.e., zeros). For example, when it comes to the ith and j th samples, the dis-
tances between two scores are d1 := ‖(Xi,· −Xj,·)V1‖ and d2 := ‖(Xi,· −Xj,·)V2‖
corresponding to V1 and V2 loadings, respectively. Then the difference of these
distances is

|d1 − d2| ≤
∥∥(Xi,· − Xj,·)(V1 − V2)

∥∥ = ∥∥(Xi,Si∪Sj
− Xj,Si∪Sj

)(V1 − V2)Si∪Sj ,·
∥∥,

which has a small value when V1 and V2 are sparse in the rows in Si ∪ Sj or
|Si ∪ Sj | is small.

While the main goal of PCA is dimension reduction, the dimension reduction
methods are also commonly used for clustering data as seen in Section 6. In the
single-cell data analysis, Yan et al. (2013), Deng et al. (2014), Wang et al. (2017),
and Park and Zhao (2018) clustered and visualized the cells by projecting the cells
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FIG. 6. Visualization of Pollen data (Pollen et al. (2014)) based on obtained scores.

onto the lower dimensional space. One can use the first several principal compo-
nents derived from a PCA to cluster the cells. Note that for “MIS-PCA,” we apply
k-means clustering (Forgy (1965), MacQueen (1967)) based on the principal com-
ponent scores X̂P̂ ∈ R

n×r0 to assign labels to each cell. Similarly, we obtain the
clusters of cells for each method by using the true cluster number for the target
dimension r0 as well as the target cluster number.

Tables 6–7 and Table S5 in the Supplementary Material (Park and Zhao (2019))
summarize the NMI, ARI, and Purity values, respectively. In many cases, the pro-
posed method “MIS-PCA” generally has higher values of these measurements,
which shows that it generally performs better than other competitors. This demon-
strates that the proposed method can better uncover cell-to-cell similarity and dis-
similarity structures well than other dimension reduction methods. Table 8 sum-
marizes the computational time of the methods. The “MIS-PCA” generally takes
less than a minute even when the large scale data are considered. Note that “ZIFA”
uses an iterative expectation-maximization algorithm for inference, which makes
it computationally intensive.

In addition to comparisons based on clustering performance measure, we in-
clude some analysis for some selected data. Among the 11 data sets, we mainly
analyze the three data sets based on the obtained clustering results. The first data
set, called Usoskin data set (Usoskin et al. (2014)), contains 622 sensory neuron
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FIG. 7. Visualization of Ting data (Ting et al. (2014)) based on obtained scores.

cells from the mouse dorsal root ganglion, with an average of 1.14 million reads
per cell. Usoskin et al. (2014) divided the cells into four neuronal types: “pep-
tidergic nociceptors,” “nonpeptidergic nociceptors,” “neurofilament containing,”

TABLE 6
NMI values for the 11 single-cell data sets. Higher values indicate better performance

Data set PCA MIS-PCA DTS ITS COR AUG WPCA EMPCA ZIFA CIDR

Buettner 0.45 0.61 0.36 0.36 0.44 0.42 0.46 0.47 0.65 0.48
Usoskin 0.65 0.87 0.67 0.68 0.82 0.70 0.63 0.61 0.67 0.58
Pollen 0.94 0.96 0.94 0.91 0.94 0.94 0.88 0.85 0.93 0.91
Kolod 0.55 0.91 0.79 0.79 0.85 0.88 0.65 0.62 0.76 0.86
Deng 0.72 0.74 0.72 0.72 0.66 0.75 0.74 0.73 0.70 0.56
Ginhoux 0.51 0.61 0.58 0.52 0.53 0.52 0.54 0.43 0.39 0.35
Ting 0.89 0.94 0.91 0.91 0.93 0.89 0.92 0.91 0.91 0.78
Treutlein 0.73 0.87 0.71 0.71 0.85 0.73 0.60 0.56 0.89 0.82
Tasic 0.46 0.60 0.48 0.48 0.52 0.49 0.52 0.50 0.55 0.57
Zeisel 0.55 0.66 0.53 0.54 0.55 0.52 0.57 0.56 0.60 0.64
Macosko 0.52 0.77 0.54 0.55 0.57 0.59 0.59 0.58 0.66 0.77
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TABLE 7
ARI values for the 11 single-cell data sets. Higher values indicate better performance

Data set PCA MIS-PCA DTS ITS COR AUG WPCA EMPCA ZIFA CIDR

Buettner 0.39 0.61 0.34 0.34 0.40 0.39 0.42 0.44 0.66 0.39
Usoskin 0.53 0.75 0.52 0.53 0.70 0.50 0.54 0.52 0.56 0.48
Pollen 0.93 0.95 0.93 0.87 0.93 0.93 0.86 0.78 0.92 0.84
Kolod 0.55 0.95 0.83 0.83 0.90 0.94 0.51 0.50 0.71 0.89
Deng 0.48 0.51 0.48 0.48 0.37 0.49 0.48 0.46 0.46 0.39
Ginhoux 0.48 0.63 0.45 0.45 0.40 0.50 0.56 0.40 0.38 0.32
Ting 0.87 0.92 0.89 0.89 0.94 0.87 0.91 0.91 0.91 0.84
Treutlein 0.55 0.78 0.54 0.54 0.64 0.55 0.38 0.44 0.80 0.61
Tasic 0.46 0.63 0.52 0.52 0.54 0.56 0.57 0.58 0.60 0.62
Zeisel 0.55 0.67 0.54 0.56 0.56 0.55 0.57 0.57 0.62 0.63
Macosko 0.52 0.74 0.54 0.54 0.55 0.56 0.57 0.55 0.63 0.67

and “tyrosine hydroxylase containing.” Note that the sensory neuron cell types
are characterized by distinct cell sizes, and the results in Usoskin et al. (2014)
suggest that the four principal neuronal types are consistent with the known devel-
opmental origin of sensory neuron type. We see that “MIS-PCA” can distinguish
these four neuron cell types as in Figure 5, while the other methods fail to sep-
arate the two subtypes, “nonpeptidergic nociceptors” and “tyrosine hydroxylase
containing,” marked black & big circle and green & triangle, respectively. This
may be due to the fact that the two subtypes share the channel “TRPA1,” which
is activated by pungent chemical such as mustard oil, ginger and clove, and itch
receptors (Usoskin et al. (2014)).

TABLE 8
Computational time (seconds) for the 11 single-cell data sets

Data set PCA MIS-PCA DTS ITS COR AUG WPCA EMPCA ZIFA CIDR

Buettner 1.5 4.2 1.6 2.5 14.5 3.8 7.7 85.4 1791.5 1.8
Usoskin 15.8 38.8 69.4 72.9 87.6 128.5 22.9 124.3 8495.1 26.5
Pollen 3.5 12.7 5.3 7.8 49.1 10.7 61.3 296.6 3012.5 4.3
Kolod 4.2 8.0 4.8 6.8 24.8 4.6 9.6 280.2 9041.5 5.2
Deng 3.2 7.9 3.1 4.3 29.3 4.1 14.1 102.5 3551.6 1.4
Ginhoux 4.4 4.3 7.3 8.8 26.5 8.0 12.3 92.8 1801.6 2.8
Ting 4.2 3.9 7.1 9.2 44.0 10.4 8.5 102.9 3051.6 1.3
Treutlein 0.3 0.7 0.3 0.3 0.2 0.2 0.6 1.0 77.2 0.2
Tasic 5.0 7.3 15.5 22.1 25.6 8.9 13.6 31.4 8125.1 4.1
Zeisel 5.3 8.4 19.2 25.0 27.1 8.6 18.1 40.5 6935.8 3.3
Macosko 4.2 6.0 13.2 20.8 23.2 5.8 11.4 25.2 6005.3 3.0
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The second data set, the Ginhoux data set (Schlitzer et al. (2015)), consists of
the expression values of 11,834 genes for 251 dendritic cell progenitors with one
of three cellular states: Common Dendritic cell Progenitors (CDPs), Pre-Dendritic
Cells (PreDCs), and Monocyte and Dendritic cell Progenitors (MDPs), where DC
progenitors, originated from hematopoietic stem cells in the bone marrow, transit
through a plethora of cellular states (Schlitzer et al. (2015)). Note that dendritic
cells play an critical role in the activation of the adaptive immune systems in ver-
tebrates, but some of the mechanisms involved in this process are controversial
(Winter and Amit (2015), Cannoodt (2016)). Figure S10 in the Supplementary
Material (Park and Zhao (2019)) visualizes the cells in 2-D space for the dimen-
sion reduction methods. We found that same type of cells generally group together
well when using “MIS-PCA” than when other methods are used, but some of the
two types of cells, CDPs and PreDCs (marked circle and cross, respectively), are
mixed and difficult to distinguish, which is even worse when the other methods are
used. This suggests that the proposed method can better differentiate different cell
types even when the underlying process associated with the cells are known to be
difficult to distinguish.

The analysis of the third data, Deng data set (Deng et al. (2014)), can be found
in Section 10 of the Supplementary Material (Park and Zhao (2019)).

8. Discussion. Our proposed method for sparse PCA with missing observa-
tions can be considered a reformulation of the matrix completion problem from
noisy entries. When the underlying missing probability follows a decaying squared
exponential, which is a known as possible dropout event generating functions
for scRNA-seq data, the proposed optimization essentially impute the unobserved
parts of data by maximizing the conditional probability that the entries of the un-
observed parts are indeed unobserved. The method allows the probability pij , the
probability of the event that Xij ’s are observed, to be different across i and j ,
where unbiased sample covariance matrices are not available. Our theoretical re-
sults and assumptions do not assume the uniform sampling, and can also include
the cases where the missing mechanism depends on unknown parameters. As the
simulation with various missing mechanisms and application examples illustrate,
when the data include missing values, the proposed sparse PCA method gener-
ally outperforms the other sparse PCA methods that rely on the unbiased sample
covariance matrix.
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SUPPLEMENTARY MATERIAL

Supplement to “Sparse principal component analysis with missing obser-
vations” (DOI: 10.1214/18-AOAS1220SUPP; .pdf). We provide proofs of the the-
oretical results presented in the main paper, characteristics of the used scRNA-seq

https://doi.org/10.1214/18-AOAS1220SUPP
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data sets, performance metrics, and additional tables and figures for simulation and
single cell data analysis.
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