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Computer simulation models are central to environmental science. These
mathematical models are used to understand complex weather and climate
patterns and to predict the climate’s response to different forcings. Climate
models are of course not perfect reflections of reality, and so comparison
with observed data is needed to quantify and to correct for biases and other
deficiencies. We propose a new method to calibrate model output using ob-
served data. Our approach not only matches the marginal distributions of the
model output and gridded observed data, but it simultaneously postprocesses
the model output to have the same spatial correlation as the observed data.
This comprehensive calibration method permits realistic spatial simulations
for regional impact studies. We apply the proposed method to global climate
model output in North America and show that it successfully calibrates the
model output for temperature and precipitation.

1. Introduction. Computer models are used extensively in environmental sci-
ence to understand and predict spatiotemporal processes. Weather forecasts are
derived from numerical weather prediction models that are essentially computer
simulations of the atmosphere based on differential equations. Predictions from
computer models can cover large spatial domains with higher spatial and temporal
coverage than data obtained from monitoring networks. As a result computer mod-
els can be a valuable tool to compensate for the limitations of the monitoring data.
However, they are deterministic and do not carry information about the inherent
uncertainty. Also, both spatial and temporal biases in these computer models need
to be recognized and calibration of the model is necessary. Evaluation and bias
correction of the performance of physical models are needed to obtain reliable
forecasts.

Comparison of computer model outputs with observed data is difficult because
they are often on different spatial scales. Since computer model outputs are often
given as averages over spatial grid cells and observed data are recorded as point
measurements, we must take into account the change of support problem when
we compare the two data sources. Several approaches have been proposed to dis-
cuss the change of support problem for block averages. A method to deal with the
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point-to-area change of support problem in geostatistics is given by block kriging
(Banerjee, Carlin and Gelfand (2014), Cressie (1993)) which allows predictions of
the block average of a process given observations as point measurements. Young
and Gotway (2007) extended block kriging and proposed a geostatistical method
for handling different types of change of support problems. Wikle and Berliner
(2005) proposed a hierarchical Bayesian model that allowed combination of data
observed at different spatial scales. Bradley, Wikle and Holan (2015) proposed a
hierarchical Bayesian methodology to perform spatiotemporal change of support
for survey data. See Gotway and Young (2002) and Cressie and Wikle (2011) for
a comprehensive review of statistical methods for combining incompatible spatial
data.

Methods to adjust for spatial misalignment have been applied to computer
model output. Fuentes and Raftery (2005) developed a Bayesian approach that
combines computer model output and station data with different spatial resolutions
by introducing a latent point-level process driving both data sources. McMillan
et al. (2010) and Zidek, Le and Liu (2012) presented a Bayesian hierarchical
method which combines station data and numerical model output with applica-
tion in PM2.5 and ozone data respectively. Berrocal, Gelfand and Holland (2010)
developed a fully model-based strategy within a Bayesian framework to downscale
air quality numerical model outputs to a point level. In their static spatial model
the observations are regressed on the numerical model outputs using spatially-
varying coefficients that are specified through a correlated spatial Gaussian pro-
cess. Gel, Raftery and Gneiting (2004) proposed the geostatistical output pertur-
bation method for calibrating probabilistic mesoscale weather field forecasting.
Berrocal, Raftery and Gneiting (2007) introduced a spatial Bayesian model averag-
ing method to calibrate forecast ensembles of whole weather fields simultaneously.
Berrocal, Raftery and Gneiting (2008) presented a two-stage spatial method for ob-
taining probabilistic forecasts of precipitation from a numerical forecast. Spatial
postprocessing of ensemble forecasts were developed in Feldmann, Scheuerer and
Thorarinsdottir (2015) and Schefzik (2017). Berrocal, Gelfand and Holland (2012)
combined monitoring data at the point level with numerical model outputs at the
grid cell level to obtain more accurate environmental exposure assessment. Reich,
Chang and Foley (2014) proposed a computationally efficient spectral method for
spatial downscaling with applications to ozone data. Uncertainty quantification of
computer-model output using ensemble copula coupling is discussed in Schefzik,
Thorarinsdottir and Gneiting (2013).

In the study of climate change, general circulation models (GCMs) are used
to provide insights into climate changes due to anthropogenic forcings. However,
there is usually a gap between large-scale outputs from GCMs and the fine-scale
outputs which are required for local and regional climate impact assessments. Sev-
eral dynamical and statistical downscaling methods have been developed to reduce
biases between climate model outputs and monitoring data and also to address the
spatial mismatch between multiple GCM outputs and the data needed for climate
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application studies (Bhowmik et al. (2017), Devineni and Sankarasubramanian
(2010), Seo et al. (2016)).

Most of the downscaling methods in the study of climate change impacts rely on
the following approaches: a delta approach where a change (delta) is added to the
observed variable of interest in order to make projections of the future (Hay, Wilby
and Leavesley (2000)); a bias correction-statistical downscaling model which uses
a quantile mapping approach to downscale the response variable to a regular grid
(Luers et al. (2006), Wood et al. (2004)), and the linear regression approach which
downscales the response variable to individual station locations (Dettinger et al.
(2004)). One critical aspect in bias correcting climate change projections with
monitored data is that the two data sources are asynchronous, that is, two time-
varying quantities without simultaneous measurements. Hence, studies have sug-
gested asynchronous regression approaches (Bhowmik et al. (2017), O’Brien, Sor-
nette and McPherro (2001), Stoner et al. (2012)).

These approaches only deal with marginal distributions, but in many situations
it is necessary to adjust model output so its joint distributions resemble those of the
underlying process. For example, we may want to study the dependence between
temperature and precipitation to forecast the probability of a specific weather
event, or the joint distribution of a collection of spatial locations to study regional
changes. Multivariate bias correction methods for climate model outputs were in-
vestigated in Vrac and Friederichs (2015) and Cannon (2016). The general idea of
empirical copula-bias correction and the Schaake shuffling methods (Clark et al.
(2004)) is to reshuffle the predictive spatiotemporal data according to some rank
structure derived from training data. As a result the test dataset receives a similar
dependence structure as the training data. Möller, Lenkoski and Thorarinsdottir
(2012) proposed a method for post processing an ensemble of multivariate fore-
casts using Bayesian model averaging along with a Gaussian copula. Their method
can be used to recover the dependence between multivariate weather quantities,
but no spatial factors are added. Recently, Bhowmik et al. (2017) suggested asyn-
chronous canonical correlation analysis for preserving temporal crosscorrelation
between GCM outputs and monitored data; however, it did not preserve the spatial
crosscorrelation that is exhibited in the monitoring data.

In this article we present a different approach to adjust for biases of the marginal
distribution as well as the spatial correlation of GCM outputs. We model the
spatially-varying marginal distributions of climate model outputs and gridded ob-
served data using a flexible non-Gaussian assumption. Therefore, our method not
only adjusts the mean but also the entire distribution including the variance and
skewness and the extreme events. The Karhunen–Loéve decomposition is used to
expand the two processes and isolate their differences in spatial correlation func-
tions. Because we calibrate the entire marginal distribution and also spatial depen-
dence structure, we call our procedure the “complete” spatial calibration method.

The article is organized as follows. The data description is provided in Section 2.
The details of the proposed spatial model calibration are provided in Section 3.
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Computing details are given in Section 4. Real data applications are conducted in
Section 5. A discussion is given in Section 6.

2. Data description. Monthly precipitation and average surface (2 m) tem-
perature data from the CNRM–CM5 GCM (Centre National de Recherches
Météorologiques–Coupled global climate Model version 5 General Circulation
Models; nine ensemble members) are used for calibration. CNRM–CM5 was de-
veloped jointly by CNRM–GAME (Centre National de Recherches Météorolo-
giques–Groupe d’études de l’Atmosphère Météorologique) and CERFACS (Cen-
tre Européen de Recherche et de Formation Avancée en Calcul Scientifique) to
contribute toward the CMIP5 (Climate Model Inter-comparison Project 5) mul-
timodel ensemble. The CMIP5 includes twentieth century historical runs and
decadal hindcast runs (Taylor, Stouffer and Meehl (2012)), and we use the decadal
hindcasts for the proposed study. Experiments forced with the representative con-
centration pathway (RCP) 8.5 scenario (van Vuuren et al. (2011)) are consid-
ered for future projection analysis (four ensemble members). Individual ensem-
ble members are obtained by initializing the CNRM-CM5 model with different
atmospheric and oceanic conditions to develop hindcasts and future projections of
precipitation and temperature. Thus, collectively, the ensemble represents the un-
certainty due to initial conditions. RCP8.5 represents the most aggressive growth
scenario with the radiative forcing reaching 8.5 Watts per meter2 by 2100. Spa-
tial resolution of the model is ∼1.4◦ which is regridded to ∼1.0◦ using bilinear
interpolation for the purpose of further downscaling. We use the gridded observed
precipitation and temperature over the conterminous United States from 1950 to
1999 over the summer (June to August) at a spatial resolution of ∼1.0◦ from the
Bureau of Reclamation (BOR) database. Details of the gridding procedure can be
found in Maurer et al. (2002). We consider the CNRM model (nine ensemble mem-
bers), 30-year hindcasts from 1981 to 2010 also over the summer at 815 locations
(1.0◦ grid cells) in the conterminous United States.

The means and standard deviations of gridded observed data and one ensemble
member are given in Figures 1 and 2. For temperature the climate model captures
the general mean pattern, but its pattern is smoother, and it has larger standard de-
viations than the gridded observed data. For precipitation the climate model has
higher mean in the west and the northeast and lower mean in the midwest and
the south in comparison to the gridded observed data. The climate models’ stan-
dard deviations are smaller than the gridded observed data. Semivariograms given
in Figures 2(c) and 2(d) indicate that for both temperature and precipitation, the
two data sources have different spatial correlation functions. While these data ex-
hibit strong spatial correlation, temporal dependence appears to be weak with less
than 5% of observations having statistically significant autocorrelation. Most of
the 815 locations do not have an overall increasing or decreasing trend over time.
Therefore, in this analysis we ignore temporal dependence and focus on spatial
modeling.
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FIG. 1. Pointwise mean and standard deviation of monthly average summer (June, July and August)
temperature (◦C) and precipitation (cm) from gridded observed data (1950–1999) and one ensemble
member of climate models (1981–2010).

We check for the distributions of gridded observed data and climate model out-
puts. In addition to the normal distribution, we also consider the skew-t distribu-
tion (Azzalini and Capitanio (2003), Jones and Faddy (2003), Morris et al. (2017))
which has four parameters to provide a more flexible model. Figure 3 displays
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FIG. 2. Comparison of means, standard deviations and semivariograms of monthly summer (June,
July and August) temperature (◦C) and precipitation (cm) from gridded observed data (1950–1999)
and climate models (1981–2010, the same ensemble member as in Figure 1).
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FIG. 3. Quantile plots gridded observed data (gray), model outputs (gray), fitted normal (dotted)
and fitted skew-t (dashed) at five arbitrarily selected locations. Longitude and latitude for each loca-
tion are given beside the vertical axis in (a).

normal and skew-t quantile plots for both data sources at five arbitrarily chosen
locations. From the quantile plots for temperature and precipitation, we can see
that the skew-t distribution provides a better fit than the Gaussian distribution.

3. Methods. In this section we present our method to post-process climate
model output so that its marginal distributions and the spatial correlation match
those of the observed data. Our approach has the following three components:
first, we model the spatially-varying and potentially non-Gaussian marginal dis-
tributions of the model outputs and observed data; second, we model the spatial
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covariance of both data sources; and finally, we perform calibration to rectify
differences between the two data sources. Although these three components are
described separately, they are in fact performed simultaneously in the Bayesian
hierarchical model described in Section 4.

3.1. Marginal distributions. Define Xt(s) as the climate model output for time
t at site s and Yt (s) as the gridded observed data at time t at site s. Let Fs(x) and
Gs(y) be the CDFs of Xt(s) and Yt (s) at location s respectively. The CDFs could
vary with both space and time, but we focus on space here. The two processes
can both be transformed to the standard normal distribution by defining ZXt(s) =
�−1{Fs[Xt(s)]} and ZYt(s) = �−1{Gs[Yt (s)]}. Similarly, we can write the data as
Xt(s) = F−1

s {�[ZXt(s)]} and Yt (s) = G−1
s {�[ZYt(s)]}.

For the special case when both processes are Gaussian, they can be written as

(1) Xt(s) = μX(s) + σX(s)ZXt(s) and Yt (s) = μY (s) + σY (s)ZY t (s),

where μX(s) and σX(s) > 0 are the spatially-varying mean and standard deviation
of Xt(s), and μY (s) and σY (s) > 0 are those of Yt (s). As mentioned in the previous
section, for a richer class of marginal distributions we also consider the spatial
skew-t process

(2) Xt(s) = μX(s) + ξX|rXt | + σXtσX(s)ZXt(s),

where rXt
indep∼ N(0, σ 2

Xt) and σ 2
Xt

i.i.d.∼ InvGamma(νX/2, νX/2) are random ef-

fects. Yt (s) can be written in the same way with parameters μY (s), ξY and rY t
indep∼

N(0, σ 2
Y t ), σ 2

Y t

i.i.d.∼ InvGamma(νY /2, νY /2). The marginal distributions of Xt(s)
(over rXt and σ 2

Xt ) and Yt (s) (over rY t and σ 2
Y t ) both follow a skew-t distribu-

tion with four parameters {μX(s), σX(s), νX, ξX} and {μY (s), σY (s), νY , ξY } re-
spectively. Here, μX(s) is the location parameter, σX(s) is the scale parameter and
νX > 0 is the shape parameter (degrees of freedom) of the skew-t distribution in
which smaller values represent heavier tails. Positive values of the skewness pa-
rameter ξX indicate a right-skewed distribution and vice versa.

The models in (1) or (2) do not include any measurement error. If observed data

are measured with error, denote Y ∗
t (s) as the measured value and let Y ∗

t (s)
indep∼

N [Yt (s), τ 2
Y ]. In this case our focus is on the distribution of the underlying true

value Yt (s), and our goal remains to match the distribution of Xt(s) with Yt (s)
instead of Y ∗

t (s).

3.2. Spatial correlation. After modeling marginal distributions we assume
that ZXt(s) and ZYt(s) are standard Gaussian for all s, and jointly ZXt =
[ZXt(s1), . . .ZXt (sn)]T , ZY t = [ZYt(s1), . . .ZY t (sn)]T are also Gaussian. In this
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section we isolate the difference in their correlation functions. Assume both pro-
cesses permit a Karhunen–Loéve (KL) decomposition

(3) ZXt(s) =
L∑

l=1

φl(s)xtl and ZYt(s) =
L∑

l=1

φl(s)ytl,

where the φl(s) are orthonormal functions, and xtl and ytl are normal and pairwise
independent loadings with mean zero and Var(xtl) = fl and Var(ytl) = gl . The full
KL representation has infinitely many terms, but we choose L to be a large and
finite integer to produce a reasonable approximation. The covariance functions are

(4)

Cov
[
ZXt(si ),ZXt(sj )

] =
L∑

l=1

φl(si )φl(sj )fl and

Cov
[
ZYt(si ),ZY t (sj )

] =
L∑

l=1

φl(si )φl(sj )gl.

We use the same basis functions φl(s) for both ZXt(s) and ZYt(s). This assumption
is common when using a known basis expansion such as wavelets or Fourier ex-
pansions but requires scrutiny in other cases such as empirically orthogonal func-
tions (EOF) estimated using principal components analysis (PCA). We consider
the basis functions

φl(s) =
{

cos
(
s′ωl/2

)
l is even,

sin
(
s′ω�l/2�

)
l is odd,

where ω = (ω1, . . . ,ωn) is the set of Fourier frequencies of the form (2πj1/n1,

2πj2/n2) for (j1, j2) ∈ S(n1, n2), where the data are observed within the regular
grid of points S(n1, n2) = {0,1, . . . , n1 −1}×{0,1, . . . , n2 −1}. For the variances
fl and gl we consider the spectral density of the stationary and isotropic Matérn
covariance on lattice (Guinness and Fuentes (2017))

f (ωl) = fl(ωl1,ωl2) = σ 2
f

{1 + (
αf

δ
)2[sin2(

δωl1
2 ) + sin2(

δωl2
2 )]}νf +1

.

Here, σ 2
f = 1 because σ 2

f represents the variance of ZXt(s) which is fixed at one
to identify the scale of the marginal distribution Fs, νf is the smoothness param-
eter and αf is the range parameter. The variance gl has the same form as fl with
parameters σ 2

g = 1, νg and αg . The lattice spacing is δ = 1 for our dataset.
We also consider the nonstationary principal component decomposition under

Gaussian and skew-t assumptions. In this case φl(s) are the eigenvectors of the
average of sample covariance matrices for ZXt and ZY t , and fl , gl are the cor-
responding eigenvalues. To approximate the covariances of ZXt and ZY t , we first
subtract the site’s mean and divide by its standard deviation and then take the eigen
decomposition of their sample covariances. We keep all the eigenvectors since our
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focus is not on selection of the number L. The procedure remains the same except
for the use of empirical basis functions.

Often, the climate model output represents averages over subregions while ob-
served data are point measurements. If the climate model output is recorded as
areal averages in grid squares Bj , they can be represented as

Xtj =
∫
Bj

Xt(s) ds =
L∑

l=1

[∫
Bj

φl(s) ds

]
xtl =

L∑
l=1

φ̃lj xtl

which has the same form as (3) except with integrated basis functions φ̃lj =∫
Bj

φl(s) ds. Similarly, the covariance between a pair of grid cell averages is
Cov(Xti,Xtj ) = ∑L

l=1 φ̃li φ̃lj fl which has the same form as (4). In particular the
block covariance remains a linear combination of the variances fl . With the same
form for Xtj as in (3) and the same form for Cov(Xti,Xtj ) as in (4), the change of
support problem can be handled naturally within the KL representation. Bradley,
Wikle and Holan (2015) also consider the change of support problem with KL
basis expansion.

3.3. Calibration. Conditional on the parameters in the marginal distributions
Fs and Gs, the variances fl and gl and the latent xtl and ytl , the standardized cli-
mate model output is calibrated as Z̃Xt (s) = ∑L

l=1 wlφl(s)xtl , where wl = √
gl/fl .

With the weight wl the covariance of Z̃Xt (s) matches the covariance of ZYt(s)
since Cov[Z̃Xt (si ), Z̃Xt (sj )] = ∑L

l=1 w2
l φl(si)φl(sj )fl = Cov[ZYt(si ),ZY t (sj )].

The calibrated climate model output is X̃t (s) = G−1
s {�[Z̃Xt (s)]} which has the

same marginal distribution as Yt (s). This procedure matches the distribution of
Yt (s) not the noisy measurements Y ∗

t (s). If matching the Y ∗
t (s) distribution were

the objective, we would add N(0, τ 2
Y ) error to X̃t (s).

If both data sources are Gaussian, then we have ZXt(s) as in (1). Adding back
the marginal (linear) transformation to Z̃Xt (s) results in the final calibrated climate
model output with the same marginal distribution and spatial correlation as Yt (s):

(5) X̃t (s) = μY (s) + σY (s)
L∑

l=1

wlφl(s)xtl .

If both data sources follow a skew-t distribution, then the calibrated climate model
output is

X̃t (s) = μY (s) + ξY |rY t | + σY tσY (s)
L∑

l=1

wlφl(s)xtl .

To carry the bias adjustment on to RCP8.5, we assume the biases between
model outputs and gridded observed data are stationary in time. That is, the mean
difference between future observations and RCP8.5 remains the same as δ(s) =
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μY (s) − μX(s), the ratio of standard deviations remains R(s) = σY (s)/σX(s) and
the appropriate covariance weight remains wl = √

gl/fl . Then, under the Gaussian
assumption the calibrated RCP8.5 becomes[

μRCP(s) + δ(s)
] + [

R(s)σRCP(s)
]
wlZRCP(s),

where δ(s), R(s) and wl are all adjustment factors, and μRCP(s), σRCP(s) and
ZRCP(s) are defined similarly as for Xt(s) and Yt (s). The term μRCP(s) + δ(s)
represents the mean of future observations, and R(s)σRCP(s) represents the stan-
dard deviation of future observations. The formula for the skew-t distribution can
be written similarly with extra parameters.

4. Computing details. Let Xt = [Xt(s1), . . . ,Xt (sn)]T denote the climate
model outputs and Yt = [Yt (s1), . . . , Yt (sn)]T denote the gridded observed data
over the n spatial locations for time t ; here, we assume the same n locations for
both data sources though this assumption is not required by our approach. If the
Gaussian assumption is appropriate and a nugget is included, then we have

Xt ∼ N
(
μX,DX

(
�U�′ + τ 2

XIn

)
DX

)
and

Yt ∼ N
(
μY ,DY

(
�V �′ + τ 2

Y In

)
DY

)
,

where U = diag(f1, . . . , fL), V = diag(g1, . . . , gL), � is an n × L matrix
with �ij = φj (si ), DX = diag[σX(s1), . . . , σX(sn)] and DY = diag[σY (s1), . . . ,

σY (sn)]. The spectral densities fl and gl and basis functions φi(sj ) are given
in Section 3.2. The MCMC algorithm (Brooks et al. (2011)) involves a Gibbs
sampling step for conjugate updates of μX , μY , the random effects xtl , ytl , a
Metropolis–Hasting step for updating τ 2

X , τ 2
Y and the parameters in U and V . The

random effects are obtained from the posterior distribution of xt = [xt1, . . . , xtL]T
under the model Xt ∼ N(μX + �xt , τ

2
XIn). The posterior predictive distribution

of X̃t is then obtained within each MCMC iteration.
Under the skew-t setting we have Xt ∼ N(μX + ξX|rXt |,DX[σ 2

Xt(�U�′ +
τ 2
XIn)]DX) and Yt ∼ N(μY + ξY |rY t |,DY [σ 2

Y t (�V �′ + τ 2
Y In)]DY ). The MCMC

algorithm under this assumption also involves a Gibbs sampling step for conjugate
updates of the parameters in the mean structure as well as σ 2

Xt , σ 2
Y t , the random ef-

fects xtl , ytl and a Metropolis–Hasting step for updating τ 2
X , τ 2

Y and the parameters
in U and V .

Spatial Gaussian priors with exponential covariance function are assigned for
the mean vectors μX = [μX(s1), . . . ,μX(sn)]T and μY = [μY (s1), . . . ,μY (sn)]T
and for θX = log(σX) and θY = log(σ Y ), where σX = [σX(s1), . . . , σX(sn)]T and
σ Y = [σY (s1), . . . , σY (sn)]T . We assign uniform prior within (0,Mν) for νX , νY

and another uniform prior within (0,Mτ ) for τ 2
X and τ 2

Y . Normal priors are speci-
fied for ξX , ξY with mean 0 and standard deviation Mξ . Uniform hyperpriors with
lower bound 0 and upper bounds 60, 20, 5 are specified for the hyperparameters
Mν , Mτ , Mξ in the prior distributions respectively.
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5. Application. In this section, we apply our method to calibrate the 30-year
hindcast climate model outputs of monthly average temperature and precipitation
data from 1981 to 2010 during summer (described in Section 2) and generate cal-
ibrated RCP8.5 from 2020 to 2034 to study future climate. We work with log of
precipitation and transform back to the original scale for all plots and projections
to avoid negative values. We ran our models for 12,000 MCMC iterations with the
first 2000 as burn in.

5.1. Model comparisons. To compare approaches under different assumptions
for the marginal distribution (Gaussian or skew-t) and covariance (Fourier or
PCA), we use all model outputs (1981–2010) and gridded observed data from
1950 to 1989 as training data and the last 10 years of gridded observed data
(1990–1999) as test data. Since the GCM predictions do not have temporal cor-
respondence with gridded observed data, the overlap in the years poses no conflict
in the analysis. We include another model (denoted as “normal*” in Tables 1 and
2) which is the same as (5) but without the weight wl to demonstrate its impor-
tance. This model adjusts the marginal distributions but not the spatial correlation.
Notice the PCA normal*, PCA normal, Fourier normal* and Fourier normal ap-
proaches all have the same form of marginal distribution, but different estimating
procedures may cause slightly different results under each setting. We use fixed
eigenvalues for fl and gl under the PCA setting, while under the Fourier setting
we update the parameters in spectral densities fl and gl within each MCMC itera-
tion. We obtain X̃t (s) from equation (5); X̃t (s) = μY (s) + σY (s)

∑L
l=1 wlφl(s)xtl ,

and X̃t (s) = μY (s) + σY (s)
∑L

l=1 φl(s)xtl for normal*.
To assess the marginal fit, we compute the mean squared error (MSE) of the

predictive mean and standard deviation by comparing them to the sample mean
and standard deviation of the test data. Let μ̄Y (s) be the sample mean of obser-
vations Yt (s) at location s and X̃m

t (s) be the calibrated model output of ensem-
ble member m, where m = 1, . . . ,9. We calculate MSE(μ̂m) = 1

n

∑n
i=1[μ̄Y (si ) −

1
T

∑T
t=1 X̃m

t (si)]2 for each of the nine ensemble members and report the me-
dian and standard deviation of MSE(μ̂1), . . . ,MSE(μ̂9) in Table 1. We define
MSE(σ̂1), . . . ,MSE(σ̂9) for the standard deviation of Yt (s) in a similar way and
report the median and standard deviation in Table 1 as well. We also use the in-
tegrated quadratic distance (Thorarinsdottir, Gneiting and Gissibl (2013)) to com-
pare the posterior predictive cumulative distribution F to the empirical cumulative
distribution G as

(6) dIQ(F,G) =
∫ ∞
−∞

[
F(x) − G(x)

]2
dx.

We compute integrated quadratic distance for each observation and report the av-
erage over space. We also calculated the AUC for predicted exceedances of high
thresholds, where AUC denotes the area under the receiver operating character-
istic (ROC) curve. For temperature we consider the performance for classifying
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TABLE 1
Median (standard deviation) of MSE(μ̂), MSE(σ̂ ), integrated quadratic distance (IQ dist) and AUC

(all values multiplied by 100) for test set prediction using climate model outputs (9 ensemble
members) for (a) temperature and (b) precipitation for assessment of marginal fit (averaged over

space and time)

MSE(μ̂) MSE(σ̂ ) IQ dist AUC

(a) Model outputs 362.6 (33.0) 92.7 (9.3) 147.0 (3.3) 82.3 (3.1)
Schaake shuffle 9.3 (0.3) 3.4 (0.1) 101.4 (0.1) 85.2 (2.3)
PCA (normal*) 10.3 (0.1) 4.0 (0.3) 102.3 (0.3) 84.6 (2.9)
PCA (normal) 8.4 (0.1) 2.3 (0.3) 98.6 (1.0) 86.7 (2.5)
PCA (skew-t) 5.8 (0.3) 1.5 (0.2) 96.2 (1.3) 88.5 (3.6)
Fourier (normal*) 8.9 (0.3) 3.1 (0.3) 99.7 (1.9) 85.7 (3.7)
Fourier (normal) 6.9 (0.3) 1.7 (0.2) 97.9 (2.1) 88.4 (4.1)
Fourier (skew-t) 5.9 (0.4) 1.4 (0.2) 96.8 (2.2) 89.3 (4.6)

(b) Model outputs 322.8 (9.6) 65.2 (6.0) 97.8 (0.8) 72.7 (6.3)
Schaake shuffle 18.2 (0.5) 16.5 (0.3) 71.1 (0.1) 75.3 (3.5)
PCA (normal*) 19.1 (2.0) 17.0 (2.0) 71.2 (0.2) 71.2 (3.4)
PCA (normal) 12.4 (0.3) 13.9 (1.0) 68.1 (0.7) 80.8 (2.9)
PCA (skew-t) 9.9 (1.2) 12.9 (0.5) 67.6 (0.8) 81.6 (3.0)
Fourier (normal*) 17.2 (2.2) 14.9 (1.7) 72.2 (0.9) 75.4 (3.1)
Fourier (normal) 10.4 (1.7) 11.1 (0.3) 71.3 (1.0) 82.2 (4.3)
Fourier (skew-t) 9.6 (1.7) 11.4 (0.3) 70.5 (1.0) 82.5 (3.7)

above or below 30◦C; for precipitation we consider the performance for classify-
ing above or below 15.24 cm. These two values are roughly the 99th percentile
of temperature and precipitation among all locations respectively. Therefore, bet-
ter results for classification indicate that we can better model the threshold ex-
ceedances. Specifically, for temperature we calculate 1

T

∑T
t=1 I {Xm

t (s) > 30}, the
proportion of Xm

t (s) above 30◦C for location s from ensemble member m of model
output and use this proportion to predict whether the gridded observed data Yt (s)
is above or below 30◦C for each t . By varying the threshold on the posterior prob-
ability used to classify the prediction as above or below 30◦C, we can generate
the ROC curve and calculate AUC. For each ensemble member m we calculate
AUCm(t) of time t and take the average over time to obtain AUCm. We report the
median and standard deviation of AUC1, . . . ,AUC9 in Table 1. Everything is the
same for precipitation, except we consider above or below 15.24 cm for prediction.

We report the median and standard deviation (both multiplied by 100) for the
results of the marginal fit from the nine ensemble members in Table 1. The skew-t
provides a better marginal fit than the normal distribution for all settings, but the
normal distribution also works well. The model without the weight wl (normal*)
still helps to adjust biases in model outputs, but its performance is clearly inferior
to the models with wl . For the skew-t models the choice of covariance model has
little effect on the marginal performance, as expected. Figure 4 displays quantile
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TABLE 2
Median and standard deviation (multiplied by 1000) for test set average of squared difference
between semivariograms of calibrated model outputs (nine ensemble members) and gridded

observed data for (a) temperature and (b) precipitation over distance h for assessment of spatial fit

0–50 km 51–100 km 101–500 km 500–1000 km

(a) Model outputs 1455.9 (21.1) 783.6 (9.4) 864.3 (50.3) 4111.4 (1223.9)

Schaake shuffle 795.2 (17.5) 775.6 (10.3) 471.7 (7.8) 105.1 (10.5)

PCA (normal*) 5.2 (0.3) 4.6 (0.4) 13.0 (1.6) 30.2 (6.5)

PCA (normal) 4.1 (0.5) 3.6 (0.5) 10.3 (1.4) 25.9 (7.8)

PCA (skew-t) 1.7 (0.4) 1.9 (0.5) 9.2 (1.2) 22.8 (2.3)

Fourier (normal*) 4.3 (0.3) 4.1 (0.7) 11.3 (1.5) 26.5 (5.3)

Fourier (normal) 3.0 (0.4) 3.4 (0.6) 8.7 (1.2) 19.8 (2.5)

Fourier (skew-t) 1.5 (0.3) 2.2 (0.8) 7.9 (1.1) 18.8 (2.7)

(b) Model outputs 152.3 (5.2) 680.6 (16.1) 1588.4 (134.8) 3138.7 (452.9)

Schaake shuffle 3627.1 (36.8) 4605.8 (160.0) 1157.4 (79.4) 556.8 (85.2)

PCA (normal*) 40.0 (2.3) 233.5 (14.8) 1196.8 (57.4) 2271.0 (136.8)

PCA (normal) 12.3 (1.9) 56.8 (8.4) 176.8 (30.3) 852.9 (115.5)

PCA (skew-t) 10.3 (5.2) 53.5 (5.2) 161.9 (8.4) 824.5 (92.3)

Fourier (normal*) 35.5 (4.5) 224.5 (12.3) 1115.5 (48.4) 2381.9 (120.6)

Fourier (normal) 11.0 (1.9) 51.6 (5.8) 98.7 (8.4) 780.0 (126.5)

Fourier (skew-t) 9.7 (3.2) 49.0 (5.2) 96.1 (7.7) 776.8 (108.4)

plots of gridded observed data, model outputs and one of the calibrated model
outputs (Fourier, skew-t) at the same locations chosen for Figure 3. We can see the
quantiles of model outputs match with gridded observed data after calibration.

To assess the fit of spatial correlation, we compare the semivariogram between
gridded observed data and each approach. Let γ̂Y (h) and γ̂X(h) be the empirical
semivariogram over distance h for gridded observed data and climate model out-
puts respectively. We compute the average of squared difference between γ̂Y (h)

and γ̂X(h) for distances within 0 to 50 km, 51 to 100 km, 101 to 500 km and 501
to 1000 km. The results of the spatial fit for the nine ensemble members are given
in Table 2 (all values are multiplied by 1000). Our approach works very well in re-
solving the differences in spatial dependence between the two data sources. For the
skew-t model the Fourier covariance generally outperforms the PCA covariance.
Figures 2(c) and 2(d) also show the spatial correlations of climate model outputs
after calibration (Fourier, skew-t) match much better to the gridded observed data
than the original climate model outputs for both temperature and precipitation.

We also compare our method with the Schaake shuffle (Clark et al. (2004)).
We apply the Schaake shuffle to nine standardized ensemble members and trans-
form them back to the original scale after shuffling. The historical observations
are randomly selected from the same month of all years except the year of model
output. As shown in Table 1, the Schaake shuffle method adequately calibrates the
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FIG. 4. Quantile plots for gridded observed data (test set; gray), model outputs (dotted) and cal-
ibrated model outputs (Fourier, skew-t, dashed) at the five arbitrarily selected locations for temper-
ature and precipitation. Longitude and latitude for each location are given beside the vertical axis
in (a).
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marginal distributions. From Table 2 we can see the shuffle method also helps to
correct the biases in spatial correlation, but our method produces better results. The
shuffle method does not work well within a distance of 100 km, but it manages to
perform better between distances of 100–1000 km. We should mention again that
we consider monthly data in summer and only select historical observations from
the same month for shuffling. The shuffle method should perform better for daily
data in which they can select historical observations seven days before and after.

5.2. Future projections. We carry the bias adjustment on to RCP8.5 for
monthly mean temperature and precipitation in summer under the assumption that
the biases between model outputs and gridded observed data are stationary in time,
as described in Section 3.3. We choose the normal model for future projection be-
cause it works well in adjusting the biases with fewer parameters to be estimated
than the skew-t model. We will benefit more from the skew-t model under the pres-
ence of extreme events, but for monthly mean data the normal model appears to be
sufficient.

Our method introduces regional adjustments, since the bias in the model seems
to be space dependent. While on average across space we observe an increasing
trend in the mean temperature, it is not consistent at different locations and it varies
more in the western United States. Furthermore, rather than adjusting the central
tendency we focus on calibrating the entire distributions. Our findings provide
insight and understanding regarding which corrections are needed across space
and for the lower and upper quantile of temperature and precipitation.

Our adjustments for the upper quantiles are smaller than for the median and
lower quantiles. On average the 95th percentile for the calibrated RCP8.5 is 0.4◦C
lower than for the uncalibrated RCP8.5, while the 50th percentile of the calibrated
RCP8.5 is 1.9◦C lower than the uncalibrated RCP8.5, and the 5th percentile of the
calibrated RCP8.5 is 1.7◦C lower than the uncalibrated RCP8.5. Figures 5 and 6
are the time series plots of the 5th, 50th and 95th percentiles of RCP8.5 (tempera-
ture and precipitation, four ensemble members each) for the conterminous United
States in July before and after calibration (Fourier, normal). All the results indi-
cate the need to introduce a methodology for calibration that is space and quantile
dependent.

6. Discussion. In this paper we have introduced a method to adjust for biases
of climate model outputs. We present our results under Gaussian and skew-t as-
sumptions, but even more flexible models can be applied to the spatially-varying
marginal distributions of the two data sources. Most of the calibration literature
considers regression approaches and include model outputs as explanatory vari-
ables for estimating the gridded observed data. Mean shifting or quantile mapping
are commonly used methods. In our approach we use the KL decomposition to
isolate the difference in the correlations of two data sources and successfully rec-
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FIG. 5. Time series plots for the 5th, 50th and 95th percentiles of RCP8.5 (four ensemble members)
for July temperature (◦C) from 2020 to 2034 in the United States before (gray) and after (black)
calibration (Fourier, normal).

tify it in addition to matching the marginal distributions. Our results for model
comparisons have shown the importance of calibrating spatial dependence.

There are several opportunities for methodological extensions of our approach.
We have not considered temporal dependence because it is relatively weak com-
pared to spatial dependence in our data, but accounting for autocorrelation would
be crucial for an analysis of daily or subdaily data. It would be possible to include
a temporal trend and construct a spatiotemporal model. Another extension would
be to model temperature and precipitation simultaneously and develop a multivari-
ate spatial model calibration when we encounter correlated variables. Inclusion of
covariates would be another direction to extend our model. It is possible to incor-
porate covariate information when we model the marginal distributions in (1) or
(2). We would expect for a potential improvement to the calibration results with
the information of important covariates like elevation or slope for temperature and
precipitation data.
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FIG. 6. Time series plots for the 5th, 50th and 95th percentiles of RCP8.5 (four ensemble members)
for July precipitation (cm) from 2020 to 2034 in the United States before (gray) and after (black)
calibration (Fourier, normal).
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