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We introduce a Bayesian multivariate hierarchical framework to estimate
a space-time model for a joint series of monthly extreme temperatures and
amounts of precipitation. Data are available for 360 monitoring stations over
60 years, with missing data affecting almost all series. Model components
account for spatio-temporal correlation and annual cycles, dependence on
covariates and between responses. Spatio-temporal dependence is modeled
by the nearest neighbor Gaussian process (GP), response multivariate depen-
dencies are represented by the linear model of coregionalization and effects
of annual cycles are included by a circular representation of time. The pro-
posed approach allows imputation of missing values and interpolation of cli-
mate surfaces at the national level. It also provides a characterization of the
so called Italian ecoregions, namely broad and discrete ecologically homoge-
neous areas of similar potential as regards the climate, physiography, hydrog-
raphy, vegetation and wildlife. To now, Italian ecoregions are hierarchically
classified into 4 tiers that go from 2 Divisions to 35 Subsections and are de-
fined by informed expert judgments. The current climatic characterization of
Italian ecoregions is based on bioclimatic indices for the period 1955–2000.

1. Introduction. Climate elements and regimes, such as temperature, precip-
itation and their annual cycles, primarily affect the type and distribution of plants,
animals and soils as well as their combination in complex ecosystems (Bailey
(2004), Metzger et al. (2013)). The ecological classification of climate represents
one of the basic steps for the definition and mapping of ecoregions, that is, of broad
ecosystems occurring in discrete geographical areas (Bailey (1983), Loveland and
Merchant (2004)). In keeping with these assumptions, a hierarchical classification
of Italian ecoregions was recently obtained by combining climatic diagnostic fea-
tures with distribution patterns of biological diversity and physical characteristics
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FIG. 1. Ecoregion hierarchical tiers and the climate monitoring network (a).

of the environment (Blasi et al. (2014)). The Italian ecoregions (see Figure 1) are
arranged into four hierarchically nested tiers, which consist of two Divisions, seven
Provinces, 11 Sections and 35 Subsections (Appendix A). The climatic features
adopted for the diagnosis and description of the Italian ecoregions refer to thermo-
pluviometric data and bioclimatic indices that date back to the period 1955–2000.
The use of long instrumental time series, with a minimum record of at least 30
years, is usually required to place current weather and climate within a historical
perspective (WMO (2016)).

The primary focus of this work is the characterization of Italian ecoregions in
terms of current and past climatic conditions and involves summarizing climate
variables at the ecoregion level, in order to evaluate climate impacts on ecosystems
and formulate reliable biodiversity conservation strategies. To these aims several
approaches have been proposed (see, e.g., Balint et al. (2011), Hannah et al. (2013),
Pesaresi et al. (2014)), often based on interpolated climate surfaces derived from
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the WorldClim database. The most recent release of WorldClim was obtained using
the work of Fick and Hijmans (2017) that updates an older protocol by Hijmans
et al. (2005). Data from between 9000 and 60,000 weather monitoring stations
are interpolated using time-independent thin-plate splines with covariates includ-
ing elevation, distance to the coast and satellite-derived variables (maximum and
minimum land surface temperature as well as cloud cover obtained by the MODIS
satellite platform). The database includes independent monthly spatial interpola-
tions of temperature (minimum, maximum and average), precipitation, solar radi-
ation, vapor pressure and wind speed at approximately 1 km2 spatial resolution for
the target temporal range 1970–2000. The authors adopt a multistep procedure to
select the best performing model for each WorldClim region and climate variable.
Although this solution allows for an improvement in terms of goodness of fit with
respect to the previous WorldClim protocol, it does not prevent the known risk of
local bias nor does it provide a rigorous assessment of estimates uncertainty (Faye
et al. (2014)). As a matter of fact, the uncertainty of estimated climate variables
considerably increases in areas characterized by large variation in elevation or with
sparse weather monitoring stations.

1.1. The available data. Long-term climate data for a network of 360 weather
monitoring stations were specifically collected for this work. This network returns
a better representation of the geographical and orographic heterogeneity of Italy
with respect to the one provided by WorldClim, which includes only 152 stations
prevalently located in plain and hilly sectors. We consider monthly records of
precipitation and min/max temperature at 360 monitoring stations over 60 years
(1951–2010). The data were mostly obtained from National Institutions (ISPRA,
CRA/CREA, Meteomont and ENEA) and local authorities (see Appendix B).
Monthly records were obtained considering monthly cumulative precipitations and
monthly averages of daily minimum and maximum air temperatures. Almost all
time series are affected by variable amounts of missing data, as shown in Table 1,
reporting summary statistics of the percentage of missing values at each monitor-
ing station. The observed climate variables vary consistently with the 35 ecore-
gional Subsections approximately ordered from North to South, as is shown in
Figure 2.

TABLE 1
Summary statistics of the percentage of missing values at each monitoring station

Min. 1st Qu. Median Mean 3rd Qu. Max.

Prec. 0.00 1.88 7.64 11.50 18.47 68.33
T. min 0.00 5.45 13.47 16.52 24.17 96.25
T. max 0.00 5.42 13.47 16.50 24.31 96.25
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FIG. 2. Boxplots of precipitation, minimum and maximum temperature by ecoregions. Colors fol-
low the Italian ecoregional Sections, see Figure 1 and Appendix A for boxplot labels.

1.2. Spatio-temporal interpolation. The secondary objective of our work is
climate mapping with long monthly time series dating back to 1950s and char-
acterized by variable amounts of missing data. We address this issue by a fully
model-based approach, relying on a stochastic model that accounts for some fun-
damental features of the multivariate spatio-temporal field that generates the data,
that is, correlation among climate variables and space-time variability. Estimation
is embedded in the Bayesian hierarchical modeling framework that allows control
over various sources of uncertainty. It is commonly assumed that spatio-temporal
data are generated by a Gaussian process (GP) and that the covariance function
captures space-time dependencies (Gelfand et al. (2010) and references therein).
While the richness and flexibility of spatio-temporal stochastic process models
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are indisputable, their computational feasibility and implementation pose some
challenges for large datasets. The implementation of a fully likelihood-based es-
timation algorithm for a multivariate space-time GP model would imply storing
and inverting the covariance matrix of the entire multivariate process. In our case
this matrix has order 3 × 12 × 60 × 360 = 7.776 × 105, then its storage is hardly
feasible even for a computer cluster, further it is also numerically impossible to
invert since rounding errors would likely cause the matrix to be ill-conditioned for
practical purposes. In double precision each element occupies 8 bytes, then the
covariance matrix for the data at hand would require about 269 Gb to be stored.
As for matrix inversion, consider that a state of the art pc with 16 Gb RAM takes
0.002 seconds to invert a covariance matrix of order 100 using the solve func-
tion in R (R Core Team (2017)). It takes 1.2 seconds for an order 1000 covariance
matrix and jumps to 8.7 seconds just doubling the matrix order to 2000. By simple
cubic spline extrapolation we obtain that inverting an order 105 covariance matrix
would require approximately 11 days (if that matrix could be stored)!

A growing literature on the interpolation of large spatial and spatio-temporal
data is currently available, with some review papers (Heaton et al. (2017), Li et al.
(2016), Jona Lasinio, Mastrantonio and Pollice (2013)) and books (Banerjee, Car-
lin and Gelfand (2015)) to which the interested reader is referred for details. Ap-
proaches for modeling purely spatial covariance matrices avoiding bottlenecks and
computational issues due to the data size include low rank and covariance taper-
ing models (Banerjee, Carlin and Gelfand (2015) and references therein), approx-
imation of Gaussian Markov Random Fields (GMRF) by the Laplace transform
and Stochastic Partial differential Equations (Blangiardo and Cameletti (2015)),
products of lower dimensional conditional densities (see Datta et al. (2016a) and
references therein) and composite likelihood estimation methods (Eidsvik et al.
(2014)). Recently, multivariate extensions of covariance tapering and composite
likelihood methods were proposed by Bevilacqua et al. (2016a) and Bevilacqua
et al. (2016b). Examples of univariate spatio-temporal settings include the work
of Finley, Banerjee and Gelfand (2012) who introduce dynamic low-rank spatio-
temporal processes and Xu, Liang and Genton (2015) who adopt a GMRF-based
approach. Spatio-temporal process models are usually defined with discrete time
parameters, but the computational feasibility of models continuous in both space
and time has also received some attention by Bai, Song and Raghunathan (2012)
and Bevilacqua et al. (2012) who proposed to use composite likelihood methods
for parameter estimation. A proposal to model large data continuous in both space
and time was recently provided by Datta et al. (2016b) who extend the definition
of the Nearest Neighbor Gaussian Process (NNGP) approximation for spatial data
given in Datta et al. (2016a), the latter outperforming competitive state of the art
approaches such as predictive processes (Banerjee et al. (2008)).

In this work we are going to introduce some relevant novelties in the applica-
tion of the approach proposed by Datta et al. (2016b) to our multivariate spatio-
temporal model setting and use a generalized NNGP approximation for the mul-
tiresponse interpolation of climate variables. To this aim, we combine the NNGP
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with the linear model of coregionalization (Gelfand et al. (2004)) and with a circu-
lar representation of time (see for instance Shirota and Gelfand (2017)) that allows
to incorporate the effects of annual cycles. Bayesian estimation offers a convenient
framework for multivariate interpolation with continuous space-time data, leading
to computationally feasible tools, a direct missing data imputation strategy and ac-
curate evaluation of estimate and prediction uncertainties. The proposed approach
is applied to the characterization of Italian ecoregions in terms of min/max tem-
perature and precipitation and produces a criterion to choose the “best” ecoregion
hierarchical classification tier as part of the model definition. Three model settings
and four competing modeling approaches, covering some of the current literature
on climate mapping with data from sparse monitoring networks, are then com-
pared in terms of model prediction error and continuous ranked probability scores
(CRPS). Comparison shows that the proposed multivariate spatio-temporal model
outperforms all other approaches with the available data.

The paper is organized as follows. Section 2 is devoted to the definition of the
multivariate coregionalization model for the Italian data, while Section 3 contains
the NNGP definition and some details on the implementation of parameter esti-
mation and random effects prediction. Results of estimation, prediction and model
comparison are reported and commented on in Section 4, while Section 5 contains
some final remarks and addresses possible future developments.

2. The model. Let s ∈ S ⊂ R
d , with d = 2, and t ∈ T ⊂ R be spatial and

temporal coordinates respectively, and let Y ∗
1 (s, t), Y ∗

2 (s, t) and Y ∗
3 (s, t) represent

the precipitation level, minimum and maximum temperature observed at (s, t).
Then these variables have the following constraints: Y ∗

1 (s, t) ≥ 0 and Y ∗
3 (s, t) ≥

Y ∗
2 (s, t). To simplify modeling and computations, we prefer to work with latent

variables defined over the entire real line R, embedding the above constraints in
the variable definitions. Latent variables Y1(s, t), Y2(s, t) and Y3(s, t) are defined
as follows: {

Y1(s, t) = Y ∗
1 (s, t) if Y ∗

1 (s, t) > 0,

Y1(s, t) ≤ 0 if Y ∗
1 (s, t) = 0,

Y2(s, t) = Y ∗
2 (s, t),{

Y3(s, t) = Y ∗
3 (s, t) − Y ∗

2 (s, t) if Y ∗
3 (s, t) − Y ∗

2 (s, t) > 0,

Y3(s, t) ≤ 0 if Y ∗
3 (s, t) − Y ∗

2 (s, t) = 0.

Each latent response Yi , i = 1,2,3 is described by a combination of fixed and
random terms:

(1) Yi(s, t) = X(s)β i,zk
(s) + ωi(s, t) + λi(s, t) + εi(s, t)

with εi(s, t)
iid∼ N(0, σ 2

ε,i). Here X(s) = (1,X(s)) and X(s) is the elevation of
site s. The integer valued indicator zk(s) ⊂ Z

+ is the ecoregion label for the
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kth ecoregion tier: with k = 1 we have one ecoregion covering the entire coun-
try, while k = 5 returns the finer classification with 35 ecoregions. In general,
z1(s) = 1, z2(s) ∈ {1,2}, z3(s) ∈ {1,2, . . . ,7}, z4(s) ∈ {1,2, . . . ,13} and z5(s) ∈
{1,2, . . . ,35}. Then β i,zk

= (β0,i,zk
, β1,i,zk

)′ are regression coefficients, varying
with the ecoregion.

Let hspace = ‖s − s′‖ and htime = |t − t ′| indicate, respectively, spatial and tem-
poral distances and let hcircle = htime modL be a circular distance with period
L = 1 year. The term λi(s, t) describes the monthly effect of the annual cycle,
assumed to act independently on the three processes, that is, λi(s, t) ⊥ λi′(s, t) for
i �= i ′, and to follow a GP:

(2) λi(s, t) ∼ GP
(
0, σ 2

c,i exp(−φc,ihcircle)10(hspace)
)
, i = 1,2,3,

where 10(hspace) = 1 when hspace = 0 and 0 otherwise.
We define the random vector ω(s, t) = (ω1(s, t),ω2(s, t),ω3(s, t))

′ as

(3) ω(s, t) = Aw(s, t),

where A is a 3 × 3 matrix described below and w(s, t) = (w1(s, t),w2(s, t),
w3(s, t))

′ is a vector of zero mean GPs with independent components and spatio-
temporal correlation function C(hspace, htime, θ i ), with wi(s, t) ⊥ λi′(s, t) for all
values of (s, t), i and i′. Since ω(s, t) is a linear combination of independent
GPs, it is a multivariate GP with dependent components. The functional form
of C(hspace, htime, θ i ) is given by the general nonseparable space-time correlation
structure proposed by Gneiting (2002) in his equation (14), that is,

(4) C(hspace, htime; θ i ) = 1

(φt,ih
2αi

time + 1)τ
exp

(
− φsp,ih

2γi
space

(φt,ih
2αi

time + 1)ηiγi

)
.

Nonnegative scaling parameters φt,i and φsp,i are associated to time and space
respectively, smoothness parameters αi and γi take values in (0,1], the space-time
interaction parameter ηi ranges in [0,1] and τ ≥ d/2. Following Gneiting (2002),
we set τ = 1, α = 1 and γ = 0.5. Attractively, as ηi decreases towards zero, we
achieve separability in space and time. Now, letting Ti = aia′

i , where ai is the
ith column of A, the covariance matrix for the process ω at different times and
locations is given by:

Cov
(
ω(sl , tl),ω(sq, tq)

) =
3∑

i=1

TiC
(‖sl − sq‖, |tl − tq |; θ i

)

with AA′ = Cov(ω(s, t)) = �, ∀(s, t). Remark that different specifications of ma-
trix A in equation (3) can define the same covariance matrix �, with specific con-
sequences on the process structure (Gelfand et al. (2004)). Hence a careful defini-
tion of matrix A is required. A popular choice is the Cholesky decomposition of
the symmetric matrix � that produces a lower diagonal matrix. In this setting this
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decomposition induces an artificial ordering of the response variables, given that
the correlation structure of ω1 depends only on C(·, ·; θ1), the one of ω2 depends
on C(·, ·; θ1) and C(·, ·; θ2), while the correlation of ω3 depends on C(·, ·; θ1),
C(·, ·; θ2) and C(·, ·; θ3). To avoid this artifact, we propose to decompose � with
a different approach: let � = diag(ξ1, ξ2, ξ3) be the diagonal matrix of the square
rooted eigenvalues of � and � be the orthogonal matrix of its eigenvectors, such
that � ′� = I, we then let A = ��� ′. Such matrix A is symmetric by construction
and its elements do not depend on the ordering of the eigenvalues. Assume that D
is a 3 × 3 matrix that changes the ordering of the elements of ω(s, t). Then the
covariance matrix of Dω is D�D′ with the columns of matrix D� as eigenvectors.
Now let D�D′ = A∗A′∗, then A∗ = D��� ′D′ = DAD′, proving that A∗ has the
same values of A but arranged according to the reordering matrix D.

For ease of interpretation, remark that differences between ecoregions are spec-
ified by the regressive part, spatial and temporal dependence is ruled by ωi(s, t),
the seasonal component is described in λi(s, t), the correlation between responses
is defined by A and nonstructured effects are summarized in εi(s, t).

3. NNGP. For a parsimonious implementation of the model estimation al-
gorithm, we define ω∗

i (s, t) = ωi(s, t) + λi(s, t) and use this new variable in
what follows. Letting N be the number of observations in space and time, we
denote their locations by (sn, tn), n = 1, . . . ,N and we let ω∗

n = (ω∗
1(sn, tn),

ω∗
2(sn, tn),ω

∗
3(sn, tn))

′ with ω∗ = (ω∗
1, . . . ,ω

∗
N)′. If f (·) is a generic Gaussian den-

sity function, then the joint finite dimensional distribution of the whole observed
GP is given by

(5) f
(
ω∗) =

N∏
n=1

f
(
ω∗

n|ω∗
n−1, . . . ,ω

∗
1
)

with ω∗
0 = ∅. Notice that, though there is no univocal definition of a space-time

ordering of observed locations, (5) is a valid representation of the joint density for
any given ordering.

Let �n = (ω∗
n−1, . . . ,ω

∗
1)

′ be the conditional set of ω∗
n in (5) and let �n(m) ⊆

�n be a subset that contains at most m elements of �n. With the NNGP, the joint
finite dimensional distribution in (5) is approximated by

N∏
n=1

f
(
ω∗

n|�n(m)
)
.

As shown by Datta et al. (2016a), the quality of the approximation increases with
m and the best results are achieved if we choose the m elements of �n that have the
higher correlation with ω∗

n. To implement the NNGP, three decisions are required:

• how to order the observations;
• how to choose the value of m;
• how to choose the elements of �n(m) ⊆ �n.
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The ordering. A natural ordering is immediately available for the time dimen-
sion, but there is not a unique way to order observations in space at a given time.
The way we order spatial locations has a strong influence on the definition of
how candidate locations enter �n(m) (see also Katzfuss and Guinness (2017) and
Guinness (2018) for some theoretical implications of the neighbor choice and al-
ternative proposals, as the MMD ordering). Here we follow Datta et al. (2016a)
and order locations first according to the longitude coordinate, then according to
latitude. This ensures that �n includes observations spatially and temporally close
to ω∗

n.

The value of m. Compared to the size of the problem, the number of neighbors
m should be small in order to obtain a computational gain. Datta et al. (2016b)
showed that, assuming that the elements of �n(m) are “close enough” (correlated
or geographically close) to ω∗

n, choosing m ∈ {10, . . . ,20} produces an approxi-
mation almost indistinguishable from the original process.

The elements of �n(m). Again Datta et al. (2016b) suggest that the best choice
for �n(m) is to take the m elements that have higher correlation with ω∗

n. In a uni-
variate purely spatial or temporal setting, where correlation decreases with the dis-
tance, the optimal choice for the elements of �n(m) would consider observations
spatially/temporally closer to ω∗

n. In a spatio-temporal setting with nonseparable
correlation function there is not a one to one correspondence between distance and
correlation, since a spatio-temporal distance is not uniquely defined. In a univari-
ate spatio-temporal setting, Datta et al. (2016b) propose an adaptive approach in
which �n(m) is defined at each MCMC iteration as the set that has the higher
correlation with ω∗

n. The choice of �n(m) based on correlation would imply con-
sidering all possible sets of m neighbors at each point for each MCMC iteration. In
this work we prefer not to follow this approach since it is not efficient in terms of
parameter estimation and computational time. We apply the NNGP approximation
to the GP ω∗ whose covariance function is given by the sum of ω’s and λ’s covari-
ances. The numerator of the correlation function needed for the implementation
of Datta’s adaptive neighboor is σ 2

c,iCλ,i + σ 2
ω,iCω,i , where Cλ,i is the correlation

function of the monthly effect and Cω,i is the Gneiting correlation function. Notice
that if σ 2

c,i � σ 2
ω,i , and given that Cλ,i is equal to zero if hspace �= 0, observations

at different spatial locations will have low correlation and will not be chosen as
neighbors, while they are required to learn about the spatial dependence structure.
Paradoxically, in this case, we would end up to choose only time neighbors. If we
choose the number of neighbors separately for the two components ω and λ, we
would have to simulate both components at all times and sites, with a considerable
increase in the computational effort.

Hence we propose the following. We define a spatio-temporal distance as

(6)

√(
hspace

1

150

)2
+ h2

time,
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and we include in �n(m) the m locations with smaller distances from ωn. No-
tice that, as the spatial and temporal dimensions have different scales, we adjust
the spatio-temporal distance heuristically, assuming that one year has the same
weight as 150 kms. Our choice is justified by the following considerations: in
each neighborhood we want to include information on the spatial dependence, the
time dependence and the cross-correlation structure, furthermore we need infor-
mation on the annual cyclical component. Equation (6) ensures that the generic
point (sn, tn) has approximately m neighbors,

√
m of which are observed at the

same time and at different locations,
√

m share the same spatial location and are
observed at different times and the remaining are observed at different times and
locations. Furthermore, in order to learn about the annual cyclical component, we
may have to modify the points at the boundaries of �n(m). This is done in such
a way that, for example, the neighborhood of location (s, January 2000) includes
location (s, January 1999) and (s, February 1999).

3.1. Implementation details. In Section 2 we assumed E(ω∗) = 0N , then us-
ing standard results from the multivariate normal theory, we can write

f
(
ω∗

n|�n(m)
) = φ3

(
ω∗

n|Bn�n(m),Fn

)
,

where φ3(ω
∗
n|Bn�n(m),Fn) is the 3-variate normal distribution with mean

Bn�n(m) and covariance matrix Fn. Parameters Bn and Fn depend on the Gneiting
and circular correlation function parameters, on � and on the distances between
the spatio-temporal locations in (ωn,�n(m)).

Our data are observed over 360 spatial locations, and each point is observed for
720 times, that is, 12 months × 60 years. Given the set of m values we explored
(m = 10,15,20), the maximum temporal distance between ω∗

n and the elements
of �n(m) is equal to one year, with the exception of the first 12 months in the
database that have a maximum distance of less then one year. Starting from the
13th time-point onwards, the parameters Bn and Fn at the nth spatial location
are the same, since they depend on the Gneiting and circular correlation function
parameters, on � and on the temporal distances between locations in (ω∗

n,�n(m)),
that do not change. Then we only need to compute Bn and Fn for the first 13 times
and 360 spatial locations, thus obtaining a huge computational gain. Notice that in
this setting also the computation of the full conditionals of ωn is simplified as it
implies only a time window of two years at each spatial location. Given that after
the first 12 months the distances between time points start to repeat, we need to
compute only the full conditionals for the first 13 months and the last 12 months,
as from the 13th to the (720–12)th month we have a full constant 24 months time
window.

Grid prediction. Let Y0 = (Y(s0, t1), . . . ,Y(s0, t720))
′ be the 3-variate time

series of Y ’s at a spatial grid point and let define �y,j = (y0,j−1, . . . ,y0,1,y)

as the conditioning set of y0,j , where y = (y1, . . . ,yN)′ is the set of all data
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from the monitoring network and y0,j = (y1(s0, tj ), y2(s0, tj ), y3(s0, tj ))
′, with

j ∈ {1, . . . ,720}. In a similar vein, we define y,j (m) as the set of m nearest
neighbors of y0,j , based on the distance (6). Notice that, since y,j contains all
sampled spatio-temporal locations, the set of m nearest neighbors y,j (m) can
contain temporal indexes that are even higher than tj , for example, in the set of
neighbors of the first time of a grid point, there can be points in the second or third
time. We want to obtain samples of Y0 from the predictive density

(7) f
(
y0|yO) =

∫ 720∏
j=1

f (y0,j |�y,j , θ)f
(
yM, θ |yO)

dθ dyM,

where yM and yO are subsets of y composed of, respectively, missing and ob-
served data, θ contains all model parameters and f (yM, θ |yO) is the posterior
distribution. Our interest is also in the prediction of the annual cyclical com-
ponent λ0 = (λ0,1, . . . ,λ0,12), where λ0,� = (λ1(s0, �), λ2(s0, �), λ3(s0, �))

′, with
� = 1, . . . ,12. We then sample from the following predictive density:

(8) f
(
λ0|yO) =

∫
f (λ0|y0,y, θ)

720∏
j=1

f (y0,j |�y,j , θ)f
(
yM, θ |yO)

dθ dyM dy0.

The density f (y0,j |�y,j , θ) in (7) and (8) is a trivariate normal, but as with equa-
tion (5), estimation of its parameters requires the computation/inversion of a co-
variance matrix of dimension N + j (Banerjee, Carlin and Gelfand (2015)). We
then use the NNGP to approximate the predictive densities and substitute �y,j (m)

to �y,N in both expressions. After model fitting, posterior samples from (7) and
(8) can be obtained using standard Monte Carlo integration.

4. Results and discussion. Notice that the response variables were rescaled
and standardized to improve the efficiency of the MCMC estimation algorithm.
In order to preserve the information about the zeroes, the monthly precipitation
amount was simply rescaled by its standard deviation while Y2 and Y3 were both
standardized. Results are presented according to the model (transformed) scale,
except for the model-choice indices and Figure 3.

4.1. Model choice and posterior estimates. We estimated nine different mod-
els, varying the number of neighbors in the NNGP and the ecoregional hierarchi-
cal tier: m = {10,15,20} and k ∈ {3,4,5}, respectively. Weakly informative priors
were used throughout, namely N(0,100) for regression parameters, IG(1,1) for all
variances, IW(3, I) for �, U(0,1) for the separability parameter, φsp ∼ U(0.05,6)

and φt ,φc ∼ U(3,36) that correspond to practical ranges in the intervals [6,60] km
and [1,12] months, respectively. The MCMC was implemented with 100,000 it-
erations, a burn-in phase of 70,000 and thinning by 12, keeping 2500 samples for
posterior inferences. Posteriors estimates were obtained in about three days and
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FIG. 3. Maps of the monthly effects of January (a), (b), (c) and August (d), (e), (f) on the annual
cycles of the three components of the process.

were implemented on the TeraStat cluster (Ferraro Petrillo and Raimato (2014))
that allows for fast computing with a limitation on the number of processes that
can be launched simultaneously.

Due to conjugancy, the MCMC algorithm samples regression coefficients,
nuggets, missing data, spatio-temporal and circular processes using Gibbs steps,
that is, from their full conditionals, while the other parameters are sampled all
togheter with a Metropolis step using the adaptive proposal of Andrieu and Thoms
(2008), algorithm 4.

The choice among alternative specifications of the same model was performed
using the Deviance Information Criterion (DIC) (Spiegelhalter et al. (2002)) and
the CRPS (Grimit et al. (2006)) reported in Tables 2 and 3. Notice that while DICs
are referred to the multivariate response, CRPSs are obtained for each of the three
process components. As expected, the largest number of neighbors always returns
the smallest DIC value for a given k, while CRPS has a different behavior for the
precipitation and temperature. Precipitation prefers more local features (m = 10
versus m = 20) than temperatures. We choose the model structure suggested by
the majority of criteria that corresponds to k = 3 and m = 20. The “best” model
suggests to aggregate ecoregions into seven distinct Provinces (see Figure 1), that
is, the most aggregated and general ecoregional tier among those considered with
the model implementation. This result is consistent with a principle widely adopted
by hierarchical approaches to the ecological classification of land. This basic prin-
ciple states that climate acts as a primary environmental factor in determining the
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TABLE 2
Model choice, DIC values for different choices of the

hierarchical ecoregional tier (k) and neighborhood size
(m) in the NNGP approximation. DIC values are to be

read as ×104

m

10 15 20

k 3 459.35 343.49 336.21
4 479.78 451.81 385.38
5 679.39 553.75 543.26

broad-scale ecosystem variation, while factors such as geomorphology and soil
features assume an equal or greater importance than climate at local spatial aggre-
gation levels (Bailey (2004), Mücher et al. (2010)). In the following, we are going
to report on parameter estimates and predictions obtained with the chosen model.

TABLE 3
CRPS values for different choices of the hierarchical
ecoregional tier (k) and neighborhood size (m) in the

NNGP approximation

m

Y1 10 15 20

k 3 19.366 19.315 19.872
4 18.718 19.541 20.510
5 19.570 19.189 19.820

m

Y2 10 15 20

k 3 0.423 0.406 0.400
4 0.429 0.402 0.411
5 0.426 0.402 0.411

m

Y3 10 15 20

k 3 0.475 0.460 0.456
4 0.484 0.458 0.464
5 0.487 0.461 0.477
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TABLE 4
Posterior estimates of the GP and annual cyclical component parameters, as in equations (4) and

(2), respectively

φsp φt φc η

Y1 Est. 0.188 28.979 15.210 0.774
(CI) (0.184 0.192) (28.871 29.072) (14.972 15.394) (0.774 0.775)

Y2 Est. 0.138 9.628 10.176 0.943
(CI) (0.137 0.140) (9.476 9.750) (10.102 10.239) (0.942 0.943)

Y3 Est. 0.431 23.814 9.760 0.166
(CI) (0.429 0.432) (23.576 23.995) (9.690 9.835) (0.165 0.168)

σ 2
c σ 2

ε σ 2
ω

Y1 Est. 0.617 0.176 0.413
(CI) (0.612 0.623) (0.175 0.178) (0.409 0.416)

Y2 Est. 6.968 0.008 0.050
(CI) (6.830 7.092) (0.008 0.008) (0.050 0.051)

Y3 Est. 2.799 0.062 0.525
(CI) (2.647 2.919) (0.061 0.062) (0.519 0.532)

Posterior estimates of the GP and annual cyclical component parameters (see
equations (2) and (4)) are reported in Table 4 with their 95% credible intervals
(CI). In Table 5 we show the proportion of variance due to the space-time (σ 2

ω,i

is the ith element of the diagonal of �), the cyclical and the residual component
for each response variable, in order to appreciate the relevance of each of the three
components in explaining the total variation. It is worth noticing that for the min-
imum temperature Y2 almost the entire variation can be ascribed to the cyclical
component, while for the thermal excursion Y3 only 15.5% is due to the spatio-
temporal term and a negligible contribution comes from the residual part. The pre-
cipitation Y1 has a different behavior: a large portion of the total variation (51%) is
due to the cyclical component, the space-time dynamic accounts for 34.2%, while

TABLE 5
Proportions of the space-time, cyclical and

residual components of the variance for each
climate variable

σ 2
ω σ 2

c σ 2
ε

Y1 0.342 0.512 0.146
Y2 0.007 0.992 0.001
Y3 0.155 0.827 0.018
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a quite relevant 14.6% of the total variation is left unexplained. Compatibly with
the physics of the phenomena, precipitation dynamics seem to be more affected by
small scale events with respect to Y2 and Y3, causing higher residual variability.

Table 4 shows that the three climate variables have nonseparable space-time dy-
namics, as CIs for the η parameter are never close to 0. Practical ranges and covari-
ances of the three components in (1) provide useful information on the extent of
the spatial, temporal and annual cyclical dependence. The spatial practical ranges
of Y1, Y2 and Y3 are respectively 15.95 km, 21.676 km and 6.967 km, suggesting
a less homogeneous spatial behavior of the temperature range with respect to the
other two variables. In terms of time dependence, we have the following practical
ranges: 37.78 days, 113.73 days and 45.98 days for Y1, Y2 and Y3, respectively.
These values highlight a similar extension of the temporal correlation for the pre-
cipitation and the thermal excursion. Finally, as expected, the annual cyclical ef-
fect φc has similar behavior for the second and third variable, with practical ranges
71.99 days (Y1), 107.60 days (Y2) and 112.19 days (Y3): annual cycles are longer
and almost seasonal (four months long, as expected) for the minimum temperature
and the temperature range, while a shorter cycle is estimated for the precipitation.
Measures of the correlation between climate variables are also obtained and are
all far from zero. Precipitation and minimum temperature are positively correlated
(0.210 with 95% CI (0.208,0.213)), while precipitation and temperature range are
negatively correlated (−0.214 with 95% CI (−0.218,−0.211)). As expected, min-
imum temperature and temperature range are negatively correlated with a stronger
relation (−0.493 with 95% CI (−0.499,−0.497)).

In Tables 6 and 7 the posterior estimates of the intercepts and regression co-
efficients for each of seven ecoregion Provinces are reported with their 95% CIs.
All estimates for the fourth Province (1D) are not relevant and very different from
the other values, due to the presence of only one monitoring station in the given
area. This suggests to aggregate the fourth Province to one of its neighbors for
future investigations, as recently tested in the first report on the Italian natural
capital.2 Estimates of the model intercepts β0’s allow to analyze the average be-
havior of each component in the specific Province. The only estimate that shows
a value close to zero is for the temperature range in ecoregion 1B, the Po Plain
Province, suggesting a very small temperature range in that area. All Provinces
are well characterized with some overlapping of CIs for each variable, suggesting
similarities between areas. A similar behavior in terms of precipitation (Y1) can
be found in Provinces 1B, 2A, 2B and 2C (j = 2,5,6,7), while 1A, 1B and 2C
(j = 1,2,7) show similarities in terms of minimum temperature (Y2) and only 1A
and 2C (j = 1,7) show interval estimates overlapping for the temperature range

2Italian Natural Capital Committee (INCC), 2017. 1st Report on the State of Natural Capital
in Italy (synthesis). Available at: http://www.minambiente.it/sites/default/files/archivio/allegati/
sviluppo_sostenibile/sintesi_raccomandazioni_primo_rapporto_capitale_naturale_english_version.
pdf.

http://www.minambiente.it/sites/default/files/archivio/allegati/sviluppo_sostenibile/sintesi_raccomandazioni_primo_rapporto_capitale_naturale_english_version.pdf
http://www.minambiente.it/sites/default/files/archivio/allegati/sviluppo_sostenibile/sintesi_raccomandazioni_primo_rapporto_capitale_naturale_english_version.pdf
http://www.minambiente.it/sites/default/files/archivio/allegati/sviluppo_sostenibile/sintesi_raccomandazioni_primo_rapporto_capitale_naturale_english_version.pdf


812 G. MASTRANTONIO ET AL.

TABLE 6
Point estimates of the intercepts at each Province for each GP component and relative 95% CIs.
Provinces are coded as follows 1 = 1A, 2 = 1B, 3 = 1C, 4 = 1D, 5 = 2A, 6 = 2B and 7 = 2C

β0,1 β0,2 β0,3 β0,4

Y1 Est. 1.348 0.741 0.965 −0.050
(CI) (1.280 1.400) (0.668 0.794) (0.924 1.003) (−8.155 7.777)

Y2 Est. 0.207 0.225 0.094 −0.005
(CI) (0.189 0.234) (0.207 0.240) (0.084 0.106) (−1.746 1.758)

Y3 Est. 0.155 0.008 0.779 0.083
(CI) (0.055 0.201 ) (−0.069 0.097) (0.737 0.844) (−4.919 4.748)

β0,5 β0,6 β0,7

Y1 Est. 0.633 0.740 0.783
(CI) (0.520 0.787) (0.710 0.774) (0.745 0.838)

Y2 Est. 0.878 0.457 0.277
(CI) (0.838 0.910) (0.445 0.464) (0.263 0.295)

Y3 Est. −1.965 −0.070 0.196
(CI) (−2.038 −1.856) (−0.125 −0.038) (0.127 0.264)

TABLE 7
Point estimates of the regression coefficients of the elevation (multiplied by 103) at each Province
for each GP component and relative 95% CIs. Provinces are coded as follows 1 = 1A, 2 = 1B,

3 = 1C, 4 = 1D, 5 = 2A, 6 = 2B and 7 = 2C

β1,1 β1,2 β1,3 β1,4

Y1 Est. 0.029 0.498 0.248 63.022
(CI) (−0.022 0.068) (0.189 0.742) (0.208 0.294) (−650.237 788.956)

Y2 Est. −0.747 −0.322 −0.452 73.423
(CI) (−0.761 −0.729) (−0.414 −0.242) (−0.470 −0.437) (−86.057 231.301)

Y3 Est. −0.366 −0.094 −1.073 −117.311
(CI) (−0.428 −0.305) (−0.648 0.423) (−1.177 -1.023) (−544.667 338.024)

β1,5 β1,6 β1,7

Y1 Est. −0.532 0.548 0.416
(CI) (−1.250 0.241) (0.502 0.592) (0.272 0.546)

Y2 Est. −2.802 −0.842 −0.452
(CI) (−3.038 −2.541) (−0.856 −0.826) (−0.498 −0.405)

Y3 Est. 8.256 0.040 −0.736
(CI) (6.891 9.607) (−0.042 0.112) (−0.985 −0.570)
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(Y3). Notice that Province 1B covers the Po Plain and is a very heterogeneous area
where a transition from the continental to the Mediterranean behavior occurs. The
relation with the elevation described by the estimates of the regression coefficients
β1’s often admits the zero value in the 95% CI. This is likely linked to the pres-
ence of a latitudinal gradient in the area. For example, in the Po Plain Province
(1B) a large area is divided by the Po river in a Northern sector with continental
regime and a Southern sector with Apennines regime, as already highlighted for
the effects of the cyclical components. The Alpine province (1A) is associated to
regression coefficients that are all quite far from zero and this can be linked to the
absence of a latitudinal gradient, being the region only affected by a longitudinal
variation. Moreover the area is characterized by a considerable relief energy (large
elevation gradient).

4.2. Predictions and out of sample validation. After model fitting, we used
posterior samples to predict the values of the responses, and hence the cyclical
component of the model λi(s, t), on a square lattice of 3305 spatial points with
15 km side over 720 time points. Given the limitation on the number of parallel
processes that can be launched on the Terastat cluster grid predictions were all
implemented on the Bari ReCaS Data Center. ReCaS provides a computing power
of 128 servers each with 64 cores and 256 Gb of RAM.

In Figure 3 examples of two maps of predicted monthly effects of the annual
cyclical component are reported. The maps for the months of January and Au-
gust have been chosen as representative of the factors affecting the composition
of ecosystems and their distribution over the Italian territory. Above all, these fac-
tors include moisture availability in the different seasons, winter cold and summer
drought. First, the model was able to show some interesting seasonal patterns of
precipitation (Figure 3(a) and 3(d)). These include: (i) the continental regime of
the Alpine Province, the only region with larger precipitation values in summer
than in winter months; (ii) the transitional character of the Po Plain Province to-
wards a more Mediterranean regime, with lower summer precipitation; (iii) the
very clear latitudinal gradient in both the Apennines and peninsular Tyrrhenian
Provinces, which mainly reflects the varying distance from the coast of the moun-
tain reliefs. More local patterns are suggested as well, that however need a deeper
investigation at the Section and/or Subsection ecoregional levels. These include
the longitudinal summer gradient in precipitation between Eastern and Western
Alps and the marked summer precipitation decrease in some Southern peninsular
and main island sectors. Second, winter cold (Figure 3(b)) clearly characterizes
both the Alpine and Po Plain Provinces within the Temperate Division. On the
contrary, the variable behavior within the Apennines Province should be further
investigated in order to elaborate on the differences with the Tyrrhenian Province
of the Mediterranean Region. Patterns that need to be characterized at lower ecore-
gional levels emerged in this case as well. These include the latitudinal gradient
along the Adriatic Province and the differences between the two main Tyrrhenian
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islands. Among several features, the third component of the process shows the
relevance of reduced winter temperatures and their variation in characterizing the
thermic continentality of the Po Plain and Adriatic Provinces. It also confirms that
higher temperatures occur in both the Tyrrhenian and the Adriatic Mediterranean
Provinces.

To assess the out of sample predictive capability of the proposed modeling ap-
proach, we built a validation set by randomly choosing 10% of available spatial
observations at each time point (between 24 and 35 validation points for each time)
for each variable (overall, 22,628 points for Y1, 21,321 points for Y2 and 21,272
for Y3). Three settings of the proposed model and five alternative competing mod-
eling approaches for climate mapping with data from sparse monitoring networks
were employed to obtain predictions for the validation sets. The predictive capa-
bility was measured by the rooted mean squared errors (RMSE) of the hold-out
samples. Here we briefly describe the chosen models, while details on the models
and implementation settings can be found in Appendix C:

M1 Independent interpolation of each climate variable at each time point by
three-variate thin plate splines (TPS) for the spatial coordinates and elevation.

M2 Independent interpolation of each climate variable by a spatio-temporal
generalized additive model (GAM) with a decennial three-variate thin plate regres-
sion spline (see Wood (2017)) component for the spatial coordinates and elevation,
two independent univariate thin plate regression splines terms for smooth effects
of years and months and fixed effects of the seven Provinces. Alternative model
specifications had higher AIC and RMSE and smaller deviance explained.

M3 Independent interpolation of each climate variable at each time point by a
spatial GAM with a bivariate thin plate regression spline on the coordinates and
a thin plate regression spline on the elevation term. Provinces were included as
fixed effects only in the precipitation model, as they did not seem to affect the
temperature spatial behavior at this temporal resolution. Again, model choice was
guided by the values of AIC, RMSE and deviance explained.

M4 Independent interpolation of each climate variable at each time point by
local linear regression over nearest neighbors (NN) with elevation as explanatory
variable. We adopted 10 neighbors for the precipitation and 15 for the temperature.
The neighborhood dimension was chosen as the one minimizing the RMSE.

M5 Independent interpolation of each climate variable at each time point by
Bayesian Gaussian Kriging with a linear trend on the spatial coordinates and ele-
vation, parameterized as in Diggle and Ribeiro (2002). Specific modeling features
are reported in Appendix C and were selected as those producing the smallest
RMSE.

M6 Univariate version (uncorrelated responses) of the model in equation (1)
without annual cyclical effects.

M7 Univariate version (uncorrelated responses) of the model in equation (1)
with annual cyclical effects.
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TABLE 8
Rooted mean squared error and CRPS computed over the validation set, in bold the smallest values
for each criterion. In italics the Mean Absolute Error computed for the models where CRPS could

not be evaluated

RMSE CRPS

prec tmin tmax prec tmin tmax
(mm) (C◦) (C◦) (mm) (C◦) (C◦)

M1 44.17 1.84 1.69 26.37 1.37 1.22
M2 48.75 1.91 1.85 23.60 1.18 1.04
M3 44.50 1.86 1.79 36.69 3.92 4.67
M4 46.32 1.87 1.83 27.61 1.40 1.28
M5 41.39 1.81 1.78 36.72 3.91 4.67
M6 61.04 0.89 0.93 34.07 0.42 0.72
M7 39.50 0.86 0.91 19.88 0.41 0.47
M8 38.29 0.84 0.89 19.87 0.40 0.46

M8 Multivariate spatio-temporal model in equation (1).

In Table 8 we list RMSEs and CRPS3 for the eight alternatives and the three cli-
matic response variables. As a further benchmark, consider that Fick and Hijmans
(2017) report the following cross-validation RMSEs for WorldClim predictions:
49.46 mm for precipitation, 1.40 C◦ for minimum temperature and 1.30 C◦ for
maximum temperature.

The proposed multivariate spatio-temporal model outperforms all other ap-
proaches with the data available in this case. The introduction of model features
such as seasonality, nonseparability and correlation between climate response vari-
ables considerably helps in improving all considered criteria. Among the selected
alternatives, only GAMs include ecoregions as model terms and allow to analyze
their characteristics in terms of climate variables, however models M2 and M3 are
not satisfactory in terms of prediction error, CRPS and missing data imputation.

5. Concluding remarks and future developments. In this paper we present
a multivariate generalization of the NNGP model proposed in Datta et al. (2016b).
Our proposal originates from the currently most efficient approach suggested by a
sequence of comparative studies. Datta et al. (2016a) compare NNGP based spatial
models with predictive process models in terms of computational complexity and
estimation performance, concluding in favour of NNGPs. In Datta et al. (2016b)
Dynamic NNGPs (DNNGP) are compared to full rank GPs and low rank Gaussian
Predictive Processes (Banerjee et al. (2008)) detecting notable improvements of

3Remark that following Gneiting and Raftery (2007), Mean Absolute Errors are computed for the
models where CRPS could not be evaluated and are highlighted in italics.
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NNGPs performance over low-rank methods. Additional simulation experiments
proving a better predictive performance of DNNGPs over Local Approximation
GPs (Gramacy and Apley (2015)) are provided in the supplemental material of
the same article. Low-rank models were also considered in Banerjee et al. (2008)
and favorably compared to predictive process models in terms of model accuracy,
complexity and efficiency. Our proposal combines the computational efficiency
of NNGPs with several new ideas for handling complex structures typical of cli-
mate data. We use the linear model of coregionalization to account for multivariate
spatio-temporal dependencies, a circular representation of the time index to define
the annual cyclical term and propose an efficient implementation that allows es-
timation of model parameters with a large amount of data. Compared to alterna-
tive approaches, the explicit consideration of the underlying process features (such
as correlation among climate responses, space-time variability and cyclical com-
ponents) improves the prediction error. In particular these features make up for
auxiliary information, such as satellite data as used in WorldClim. Indeed, many
auxiliary information sources could be considered, such as MODIS, or TRMM
based climatologies and/or observations. Unfortunately none of these goes back
far enough to comply with the chosen time window (1950–2010) and allows in-
terpolation of climate data at any desired resolution. The richness of the model
output allows to characterize the Italian ecoregions with respect to precipitation,
minimum and maximum temperature, returning information on the cyclical trend,
spatial and temporal correlation. While the exponential function is almost manda-
tory when modeling correlation on a circular time scale (Gneiting (2013)), a pos-
sible generalization of the current model structure to less smooth phenomena is
obtained by changing the values of α and γ in equation (4). The current model
settings are well suited for relatively smooth phenomena such as monthly sum-
maries of climatic variables and should be revised if different time aggregations
are chosen. Notice that the model architecture is very flexible and can be adapted
to a wide variety of meteo-climatic studies.

The future will find us working on a more detailed bioclimatic characterization
of the Italian ecoregions, obtaining parameter estimates for all available ecore-
gional tiers, including Divisions, Sections and Subsections. As new ecoregional
boundaries have recently been proposed mainly based on biogeographic and phys-
iographic considerations (Blasi et al., unpublished data), the model could be ap-
plied to develop a climatic characterization of the new strata, comparing results
to those reported in this paper. Further developments will include considering dif-
ferent specifications of matrix A and hence using different type of priors for �

following the discussion in Daniels and Kass (1999) and Daniels and Pourahmadi
(2009). Rewriting the estimation algorithm using a parallel architecture would con-
siderably speed up computations and will be addressed as a next step. Notable con-
tributions along these lines related to similar settings include the very recent works
of Finley et al. (2017) and Chung et al. (2018).
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APPENDIX A: ITALIAN ECOREGIONS

1 Temperate Division
1A Alpine Province

1A1 Western Alps Section
1A1a Alpi Marittime Subsection
1A1b Northwestern Alps Subsection

1A2 Central and Eastern Alps Section
1A2a Pre-Alps Subsection
1A2b Dolomiti and Carnia Subsection
1A2c Northeastern Alps Subsection

1B Po Plain Province
1B1 Po Plain Section

1B1a Lagoon Subsection
1B1b Central Plain Subsection
1B1c Western Po Basin Subsection

1C Apennine Province
1C1 Northern and Western Apennine Section

1C1a Toscana and Emilia-Romagna Subsection
1C1b Tuscan Basin Subsection

1C2 Central and Southern Apennine Section
1C2a Umbria and Marche Apennine Subsection
1C2b Lazio and Abruzzo Apennine Subsection
1C2c Campania Apennine Subsection

1D Italian part of Illyrian Province
2 Mediterranean Division

2A Italian part of Ligurian-Provencal Province
2B Tyrrhenian Province

2B1 Northern and Central Tyrrhenian Section
2B1a Eastern Liguria Subsection
2B1b Maremma Subsection
2B1c Roman Area Subsection
2B1d Southern Lazio Subsection

2B2 Southern Tyrrhenian Section
2B2a Western Campania Subsection
2B2b Lucania Subsection
2B2c Cilento Subsection
2B2d Calabria Subsection

2B3 Sicilia Section
2B3a Iblei Subsection
2B3b Sicilia Mountains Subsection
2B3c Central Sicilia Subsection
2B3d Western Sicilia Subsection



818 G. MASTRANTONIO ET AL.

2B4 Sardegna Section
2B4a Southwestern Sardegna Subsection
2B4b Northwestern Sardegna Subsection
2B4c Southeastern Sardegna Subsection
2B4d Northeastern Sardegna Subsection

2C Adriatic Province
2C1 Central Adriatic Section

2C1a Abruzzo and Molise Adriatic Subsection
2C1b Marche Adriatic Subsection

2C2 Southern Adriatic Section
2C2a Murge and Salento Subsection
2C2b Gargano Subsection

APPENDIX B: DATA SOURCES

Data sources, organized by region: Abruzzo: Regione Abruzzo, direzione La-
vori Pubblici e Protezione Civile; Basilicata: Regione Basilicata, Ufficio Pro-
tezione Civile; Calabria: Regione Calabria, ARPACAL, Centro funzionale multi-
rischi; Campania: Regione Campania, Direzione generale Protezione Civile;
Emilia Romagna: ARPA Emilia Romagna: Friuli Venezia Giulia: ARPA Friuli
Venezia Giulia, Protezione Civile Regionale; Lazio: Regione Lazio, Servizio In-
tegrato Agrometeorologico; Liguria: Arpa Liguria; Lombardia: Arpa Lombar-
dia, Protezione Civile Regionale; Marche: Regione Marche, Servizio Agrome-
teo Regionale; Molise: Protezione Civile Regionale; Piemonte: Arpa Piemonte;
Puglia: Regione Puglia, Arpa, Protezione Civile Regionale; Sardegna: Regione
Sardegna, Arpa Sardegna; Sicilia: Regione Sicilia, Osservatorio Acque, Assesso-
rato dell’Energia e dei servizi di pubblica utilità, dipartimento dell’Acqua e dei ri-
fiuti; Trentino: Provincia di Trento, Centro funzionale Protezione Civile; Toscana:
Regione Toscana, Settore idrologico regionale; Umbria: Regione Umbria, Cen-
tro funzionale decentrato di monitoraggio meteo-idrologico; Valle d’Aosta: Arpa
Valle D’Aosta; Veneto: Arpa Veneto.

APPENDIX C: MODEL COMPARISONS

In this section we add some details on the models compared in the out of sample
validation assessment given in Section 4.2. As a general remark, notice that with
models M6–M8 we consider the response variables Y1, Y2 and Y3 defined as in
Section 2, rescaled and standardized as we addressed in Section 4. With univariate
models M1-M5, Y1 and Y2 are again as above, but the Y3 response is simply the
standardized maximum monthly temperature.

M1 Independent interpolation of each climate variable at each time point by
three-variate thin plate splines for the spatial coordinates and elevation. At time t ,
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the response variable Yi is expressed as a three-dimensional thin plate spline func-
tion (tps) with arguments the UTM coordinates in s and the site elevation X(s),
all expressed in km: Yi(s, t) = tps(s,X). Smoothness of the function is chosen via
generalized cross-validation as implemented in the function Tps of the fields
package (Nychka et al. (2017)) in the R software.

M2 Independent interpolation of each climate variable by a generalized addi-
tive model (GAM) with a decennial three-variate thin plate regression spline com-
ponent for the spatial coordinates and elevation, two independent univariate thin
plate regression spline terms for smooth effects of years and months and fixed
effects of the seven Provinces:

Yi(s, t) = sdt

(
s,X(s)

) + s(yeart ) + s(monthtime) + Xβ, i = 1, . . . ,3,

where s(·) denotes thin plate regression splines as in Wood (2017), dt is the index
of the decennial time window where t belongs, X is a matrix of seven dummy
variables associated to ecoregions at tier level 3 and β is a vector of regression
parameters. The above model specification was chosen among several competitive
ones on the basis of smallest AIC and RMSE, and largest deviance explained.
Estimates were obtained by the quadratically penalised likelihood type approach
implemented in the function gam of the mgcv package (Wood (2017)) in the R
software. The degree of smoothness of model terms is estimated as part of fitting.

M3 Independent interpolation of each climate variable at each time point by a
GAM with a bivariate thin plate regression spline component for the spatial co-
ordinates and an independent thin plate regression spline term for the elevation.
Provinces were included as fixed effects only in the precipitation model, as they
did not seem to affect the temperature spatial behavior at this temporal resolution:

Y1(s, t) = s(s) + s
(
X(s)

) + Xβ,

Yi(s, t) = s(s) + s
(
X(s)

)
, i = 2,3.

Again, model choice was guided by the values of AIC, RMSE and deviance ex-
plained. Estimates were obtained by the quadratically penalised likelihood type
approach implemented in the function gam of the mgcv package (Wood (2017))
in the R software. The degree of smoothness of model terms is estimated as part of
fitting.

M4 Independent interpolation of each climate variable at each time point by
local linear regression over nearest neighbors (NN) with elevation as explanatory
variable. The method was implemented with function gstat of the gstat R
package (Pebesma (2004), Gräler, Pebesma and Heuvelink (2016)), setting the
inverse distance power to zero. We adopted 10 neighbors for the precipitation and
15 for the temperature measurements. The neighborhood dimension was chosen
as the one minimizing the RMSE.

M5 Independent interpolation of each climate variable at each time point by
Bayesian Gaussian Kriging parameterized and implemented as in the R package
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geoR (Diggle and Ribeiro (2002)). The same model was used for all variables and
time points, with the following features selected as producing the smallest RMSE:

– linear trend for the spatial coordinates and elevation expressed as UTM-km and
km, respectively;

– exponential covariance structure;
– flat prior for the trend coefficients: N(0,100);
– uninformative reciprocal prior for the process variance: p(σ 2) ∝ 1

σ 2 ;
– discrete uniform priors for the range parameter ψ with ψ ∈ {0,50,100,150,

200} and for the relative nugget τ 2
rel with τ 2

rel ∈ {0,0.5,1,1.5,2} in km.

M6 Univariate version of the model in equation (1) with uncorrelated responses
and no annual cyclical effects.

M7 Univariate version of the model in equation (1) with uncorrelated responses
and annual cyclical effects.

M8 Multivariate spatio-temporal model in equation (1).

All scripts are available from the authors upon request.
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