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The Rapid Carbon Assessment (RaCA) project was conducted by the
US Department of Agriculture’s National Resources Conservation Service
between 2010–2012 in order to provide contemporaneous measurements of
soil organic carbon (SOC) across the US. Despite the broad extent of the
RaCA data collection effort, direct observations of SOC are not available at
the high spatial resolution needed for studying carbon storage in soil and its
implications for important problems in climate science and agriculture. As
a result, there is a need for predicting SOC at spatial locations not included
as part of the RaCA project. In this paper, we compare spatial prediction
of SOC using a subset of the RaCA data for a variety of statistical meth-
ods. We investigate the performance of methods with off-the-shelf software
available (both stationary and nonstationary) as well as a novel nonstationary
approach based on partitioning relevant spatially-varying covariate processes.
Our new method addresses open questions regarding (1) how to partition the
spatial domain for segmentation-based nonstationary methods, (2) incorpo-
rating partially observed covariates into a spatial model, and (3) accounting
for uncertainty in the partitioning. In applying the various statistical meth-
ods we find that there are minimal differences in out-of-sample criteria for
this particular data set, however, there are major differences in maps of un-
certainty in SOC predictions. We argue that the spatially-varying measures of
prediction uncertainty produced by our new approach are valuable to decision
makers, as they can be used to better benchmark mechanistic models, iden-
tify target areas for soil restoration projects, and inform carbon sequestration
projects.

1. Introduction. Oceans, terrestrial systems, and the atmosphere form the
three primary carbon reservoirs on the earth (Batjes (1996)). The amount of carbon
in terrestrial ecosystems is nearly three times that of the atmosphere, and while its
size is dwarfed by the ocean’s carbon storage, terrestrial carbon is much more dy-
namic (Batjes (1996)). Soil organic carbon (SOC), a generic term for the carbon
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found in soil’s organic matter, constitutes approximately two-thirds of the carbon
in terrestrial ecosystems and is an important component in the earth’s carbon cy-
cle (Post et al. (1982)). The carbon in soil is in continuous interaction with the
atmosphere via processes such as plant growth and decomposition (Bliss et al.
(2014)), and SOC helps mitigate the negative consequences of global changes in
climate by sequestering carbon released into the atmosphere by fossil fuel combus-
tion (Jobbágy and Jackson (2000); Post et al. (1982)). In addition to its relevance
to the earth’s climate, SOC is important in forestry and agriculture, as organic
matter contributes to soil fertility by helping retain moisture and supply plant nu-
trients (Bliss et al. (2014); Post and Kwon (2000)). Furthermore, SOC is one of
the soil properties used by hydrologists to better understand how precipitation is
processed by different land surfaces and contributes to surface and ground water
quality (Bliss et al. (2014)).

Because of the broad relevance of SOC to climate and agriculture, the National
Resources Conservation Service (NRCS) initiated the Rapid Carbon Assessment
(RaCA) project in 2010 (Wills et al. (2013)). The goal of the RaCA project was to
collect measurements of the carbon content of soil across the conterminous United
States at a single point in time. Specifically, the project emphasized collecting
spatially-referenced SOC measurements or “stocks,” that is, the amount of SOC
in a volume (area and depth of soil) to produce “statistically reliable quantitative
estimates of amounts and distribution of carbon stocks for U.S. soils under vari-
ous land covers” (Wills et al. (2013)). Since the collection of SOC data is highly
limited by time and cost constraints (Sleutel et al. (2003); Goidts and van Wese-
mael (2007)), SOC is measured only at limited locations. Thus, there is a need for
statistical methods to predict SOC concentration at unobserved locations using the
RaCA data.

In this paper, we consider the problem of spatial prediction of SOC concentra-
tion based on RaCA measurements. While geostatistical methods have previously
been used for this purpose (albeit not for the RaCA data set; see Simbahan et al.
(2006)), these analyses have relied on an assumption of second-order stationarity
in SOC over space. As we demonstrate in Section 2, this assumption is inappro-
priate because SOC shows evidence of second-order nonstationary behavior on re-
gional scales. However, existing methods (both stationary and nonstationary) with
off-the-shelf software are inadequate for spatial prediction of SOC, as they yield
either unrealistic prediction maps or a noninformative characterization of predic-
tion error. Since it is well documented that SOC is influenced by covariate infor-
mation such as land use (Jobbágy and Jackson (2000)) and soil properties (Mishra
et al. (2009)), we propose a novel approach for spatial prediction of SOC that uses
these spatially-referenced covariates to describe the second-order nonstationarity
in SOC. Existing approaches for covariate-driven nonstationary spatial modeling
(Calder (2008); Schmidt, Guttorp and O’Hagan (2011); Reich et al. (2011); Vianna
Neto, Schmidt and Guttorp (2014); Ingebrigtsen, Lindgren and Steinsland (2014);
Risser and Calder (2015)) require fully-observed spatial covariates, however, in
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this case the relevant covariates are not observed everywhere a prediction is de-
sired. To address this limitation, we propose a covariate-partitioning approach to
nonstationary spatial modeling that uses spatially-referenced covariate informa-
tion to divide the spatial domain into distinct “segments.” Once defined, these seg-
ments partition the domain such that every location is contained in exactly one of
these segments, and the SOC process within each segment is assumed to be lo-
cally stationary conditional on a particular segmentation. Since it is the segment
membership that will be used in our statistical model, not the value of the covari-
ate, spatial prediction does not require covariates to be observed at the prediction
location.

In spite of the fact that the SOC data display meaningful nonstationarities on re-
gional scales, we acknowledge that quantitative evaluation criteria do not indicate
a strong preference for our nonstationary statistical model, relative to approaches
with off-the-shelf software. This is not surprising (see, e.g., Fuglstad et al. (2015));
in any case, another important feature of our approach is that we are able to capture
spatial variation in the uncertainty associated with SOC concentration predictions.
Unlike traditional geostatistical methods where, for a fixed set of monitoring sites,
spatial variation in prediction uncertainty is driven primarily by variation in the
geographical distribution of the data (e.g., uncertainty is greatest at locations far
from the observations), our approach readily captures how covariates such as land
use and soil properties impact the strength of spatial dependence in SOC, which
directly informs the assessment of soil carbon stocks.

The paper proceeds as follows: in Section 2, we introduce the RaCA data in
more detail and conduct exploratory analyses, and in Section 3 we introduce rele-
vant explanatory variables and their subsequent partitioning. Section 4 outlines our
covariate-partitioning approach for nonstationary spatial prediction of SOC, and in
Section 5 we present the results of our fitted model, predictions, and implications
for carbon stock assessment. Section 6 concludes the paper.

2. RaCA data and exploratory analyses. The RaCA data and additional
variables such as land use-land cover (LULC) classes, soil series, and soil moisture
are available through the soilDB package in R (Beaudette and Skovlin (2015)),
and a summary report of the sampling methods and data description is provided in
Wills et al. (2013). While measurements of SOC stocks are available for each site
to depths of five, 10, 20, 30, 50, and 100 centimeters (in Mg C ha−1), we use the
one hundred centimeter depth measurement since our focus is on estimating total
SOC, not a soil depth profile (e.g., Minasny et al. (2006); Mishra et al. (2009)). Our
study focuses on a subset of the RaCA SOC measurements collected in the Great
Lakes region of the midwestern United States, shown in Figure 1, which contains
790 observations.

2.1. Variogram analysis. As discussed in Section 1, accurate estimation of the
spatial distribution of SOC is hindered by costly and time-consuming data collec-
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FIG. 1. Great Lakes subset of the soil organic carbon stocks data set.

tion, and we are thus motivated to consider spatial statistical methods to predict
SOC concentration at unobserved locations. Focusing on the Great Lakes region,
we begin with a simple variogram analysis of the SOC data, first calculating the
empirical semivariogram and corresponding fitted exponential semivariogram for
the entire region. Here and throughout the remainder of the paper, the SOC data
is transformed to the log scale; for the variogram analyses, we use the ordinary
least squares (OLS) residuals from a regression of log SOC on latitude, longitude,
and the longitude/latitude interaction. Exploratory analysis indicates that the expo-
nential correlation model fits the data well; the fitted exponential semivariogram is
shown in Figure 2(b) with 95% confidence band (using the parametric bootstrap).

A simple way to assess the presence of second-order nonstationary behavior in a
spatial data set is to split up the spatial domain into subregions and conduct a vari-
ogram analysis separately for each subregion. Arbitrarily dividing the Great Lakes
region into four parts, we fit an exponential semivariogram to the OLS residuals
in each subregion. The subregion-specific semivariograms with 95% confidence
bands (again using the parametric bootstrap) are shown in Figure 2(d): the fitted
semivariograms indicate that the subregions display quite different spatial depen-
dence patterns. These differences are significant, as indicated by the nonoverlap-
ping uncertainty bands, which motivates a nonstationary spatial model for the SOC
data where the spatial dependence properties vary over the spatial domain.
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FIG. 2. Fitted exponential semivariograms for the entire Great Lakes region (top) and for four
arbitrary subregions (bottom), with 95% confidence bands.

2.2. Off-the-shelf spatial prediction. Various packages in R are readily avail-
able for the analysis of spatial data, some developed for stationary processes and
some accommodating nonstationary ones. Here, we summarize and report on the
prediction results obtained by applying different models with off-the-shelf soft-
ware to our SOC data. All models were fitted using 20,000 MCMC iterations with
the first 10,000 discarded as burn-in and with no thinning of the chain. All the spa-
tial models use an exponential correlation structure, as this was deemed to provide
a good representation of the dependence structure in the data, and all use uninfor-
mative, most times uniform, priors on model parameters.

Bayesian additive regression trees. Bayesian additive regression trees (BART;
Chipman, George and McCulloch (2010)) is a Bayesian sum-of-trees model that
has been shown to perform well in a variety of settings, particularly for predic-
tion (see, e.g., Bonato et al. (2011), Ding et al. (2012), Green and Kern (2012)).
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Because of its predictive skill, we spatially predict (log) SOC using BART as im-
plemented in the BayesTree package for R. In applying BART to the SOC data,
we use latitude and longitude as covariates for the mean function.

Treed Gaussian process. Related to BART is the nonstationary treed Gaussian
process (TGP) model of Gramacy and Lee (2008) in which tree partitions are de-
fined by segmenting the coordinate axes, and partitioning uncertainty is accounted
for through a model averaging approach (Hoeting et al. (1999)). The TGP model
is implemented in the tgp package for R (Gramacy (2007)), which we use with
all the defaults on (log) SOC. As in BART, latitude and longitude are used as main
effects in the mean function.

Gaussian predictive process. Given the moderately large dimension of the
RaCA dataset, we also consider an off-the-shelf implementation of the Gaussian
predictive process (PP) model of Banerjee et al. (2008), which is specifically de-
signed to account for large spatial data sets. The PP works by constructing an
approximation to a Gaussian process by projecting realizations of the process of
interest onto a lower dimensional space spanned by the predictive process knots,
thereby reducing the computational burden. By construction, the PP is technically
nonstationary, and the PP model provides a nonstationary approximation to any
stationary covariance function. We fit a PP model to our SOC data using the sp-
Bayes package for R (Finley, Banerjee and Carlin (2007); Finley, Banerjee and
Gelfand (2013)) specifying 103 knots and a constant mean.

Bayesian stationary Gaussian process. The PP model reduces to a Bayesian
stationary Gaussian process model if the predictive process knots are taken to be
exactly the observation locations. Using the spBayes package and the spLM
function with default prior settings, we generate spatial predictions of log SOC
using a traditional Bayesian stationary (isotropic) spatial Gaussian process model
with mean (log) SOC specified as a linear function of longitude and latitude.

Rows 2–5 in Table 1 summarize the different models applied to the (log) SOC
data, with details on the mean function specification, the R package used to imple-
ment the model, and the computational time that it takes to fit each model. Surfaces
of (log) SOC obtained by generating predictions on a fine grid covering the entire
spatial domain using each of the aforementioned methods are presented in Fig-
ure 3. Specifically, from left to right, the panels show the posterior mean (top) and
standard deviation (bottom) of the predictions using BART, TGP, SGP, and PP.
Clearly, none of these models appear to be appropriate for the data: BART does
not yield scientifically meaningful predictions with the artificial horizontal and
vertical lines, and while the three other spatial models produce prediction maps
that are generally smooth they are characterized by uncertainty prediction maps
that are either unrealistic for an environmental process like log SOC (see TGP), or
uninformative since they are almost constant in space.
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TABLE 1
A summary of the models fit to the SOC data. (GP indicates a Gaussian process; lat/lon refers to

latitude/longitude.) All spatial models use an exponential correlation function. Computational times
correspond to fitting the model to the full data set (n = 790)

Label Details Mean function R package Computational time

BART‡ Bayesian additive
regression trees

Lat/lon as inputs BayesTree 12.4 minutes†

TGP‡ Bayesian treed GP Lat/lon for inputs
and mean

tgp 13.1 minutes†

PP‡ Bayesian Predictive
Process (r = 103 knots)

Constant spBayes 2.4 minutes†

SGP‡ Bayesian stationary GP Lat/lon spBayes 19.4 minutes†

NSGP Bayesian nonstationary
GP

Constant n/a 7.0 (max), 3.4 (avg.)
minutes†

†Time given for an Intel Core i7 3.1 GHz machine (16 GB memory) for 20,000 MCMC iterations.
‡Methods using available off-the-shelf software.

FIG. 3. Posterior mean predictions (top) and corresponding posterior standard deviations (bot-
tom) for log SOC in the Great Lakes region, using the models BART (left), TGP (left-center), PP
(right-center), and SGP (right). (Note: both color bars have the same limits as in Figure 6.)
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To address the limitations of these off-the-shelf methods, and to model the glob-
ally nonstationary but locally stationary nature of the SOC data highlighted in Sec-
tion 2, in Sections 3 and 4 we move on to introduce a novel segmentation-based
model for nonstationary spatial processes with partitions informed by covariates.

3. Covariate-driven partitioning. Returning to the exploratory analysis in
Section 2, it is clear that partitioning the domain captures the nonstationary be-
havior in SOC for the Great Lakes region. However, there are three problems as-
sociated with the subregion-specific variogram analyses. First, the arbitrary par-
titioning of our domain as in Figure 2 is not scientifically meaningful: in other
words, it provides no way of understanding why the different subregions exhibit
nonstationarities. Second, generating predictions of SOC based only on separately
or independently fitted variograms for each subregion does not comprise an ap-
propriate spatial model, because no information is shared across the subregions.
Third, the fitted semivariogram estimates are likely sensitive to the specific parti-
tion used in Figure 2; in other words, we might want to account for uncertainty in
the partition itself.

A solution to the first problem is to partition the spatial domain based on co-
variate information. As discussed in Section 1, there are well documented rela-
tionships between SOC and a number of covariate variables, for example, land
use-land cover (LULC) class and drainage class. Both of these categorical vari-
ables are available in the soilDB package in R (Beaudette and Skovlin (2015)).
According to Wills et al. (2013), the LULC classes were developed specifically for
the RaCA project to correspond to the classes and definitions of the Natural Re-
sources Inventory. RaCA designated five specific LULC classes (four of which are
represented in the Great Lakes region subset), namely cropland, farmland, pasture-
land, rangeland, and wetland, with one additional category for any cropland site
that was also known to correspond to a Conservation Reserve Program (CRP). The
drainage class variable refers to “the frequency and duration of wet periods under
conditions similar to those under which the soil developed. Alteration of the water
regime by man, either through drainage or irrigation, is not a consideration un-
less the alterations have significantly changed the morphology of the soil” (NRCS
Soil Survey Manual, Chapter 3). Plots of the subsetted LULC and drainage class
variables are shown in Figure 4.

Given the known relationships between SOC and these variables as well as the
rich literature on covariate-driven nonstationary modeling, we are motivated to use
these covariates to describe the second-order nonstationary behavior exhibited by
SOC over the Great Lakes region. In other words, our hypothesis is that both the
first- and second-order properties of SOC might be similar in areas where the co-
variates are homogeneous. However, measurements of LULC and drainage class
are not available for every prediction location of interest, which render the nonsta-
tionary models of Reich et al. (2011), Vianna Neto, Schmidt and Guttorp (2014),
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FIG. 4. The Great Lakes region subset of the Rapid Carbon Assessment (RaCA) land use-land cover
classes (left) and drainage classes. For land use, CRP refers to a Conservation Reserve Program
cropland site. For drainage class, the labels are as follows: VPD = very poorly drained, SPD =
somewhat poorly drained, PD = poorly drained, MWD = moderately well drained, WD = well
drained, SED = somewhat excessively drained, ED = excessively drained.

Ingebrigtsen, Lindgren and Steinsland (2014), and Risser and Calder (2015) unus-
able in this situation.

Hence, here we propose to partition the spatial domain based on the multivariate
spatial distribution of LULC and drainage class. This provides scientifically mean-
ingful partitioning, and also accounts for the fact that we are dealing with incom-
pletely observed covariates. Having defined a partitioning of the spatial domain,
we can use an approach similar to one outlined in Fuentes (2001) (see Section 4)
to define a globally nonstationary, locally-stationary spatial process. Finally, to
both account for uncertainty in the partitioning and introduce spatial dependence
in SOC across subregions, we propose to use a Bayesian model averaging frame-
work (Hoeting et al. (1999)).

There are a variety of methods in the statistics literature for obtaining partitions
of a multivariate space (here, geographic space, i.e., latitude and longitude) based
on multivariate inputs (here, LULC and drainage class). For this paper, we use
multivariate cluster-wise regression, also called multivariate latent class regression
(see, e.g., Leisch (2004); Müller, Quintana and Rosner (2011)). Before describing
this approach, we establish some terminology: we define a partition of the spa-
tial domain D as the assignment of each location in the geographical space to a
particular subregion. In a partition, each location is assigned to exactly one subre-
gion and collectively the subregions comprise the entire spatial domain. Also, we
define a segment as an individual subregion: therefore, a partition is made up of
a set of segments. We use P to denote a generic partition, made up of segments
{S1, . . . ,SK}. By definition, P = ⋃

k Sk and Sk ∩ Sk′ =∅ for k �= k′.
It is trivial to note that determining the segments of a partition P of the spa-

tial domain D is equivalent to clustering the geographical coordinates of points
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within D. In particular, if the segments of the partition are to be characterized
by the fact that the covariate processes are similar within each segment, then the
clustering mechanism ought to be informed by the covariates. Leisch (2004) and
Müller, Quintana and Rosner (2011) propose two different approaches to achieve
covariate-informed clustering: the first approach falls in the model-based cluster-
ing category, and the second falls in the class of product partition models (thus,
specified in a Bayesian nonparametric framework). For computational simplic-
ity, we follow Leisch (2004) and use a model-based clustering approach. Working
with a two-dimensional spatial domain (i.e., latitude and longitude of locations) we
model the bivariate vector of coordinates (s1, s2) for each point s ∈ D as arising
from a mixture of bivariate normal distributions where the mean and the covari-
ance matrix are mixture-component specific. In other words, given a pre-specified
and finite number K of clusters, we assume

(3.1) s = (s1, s2) ∼
K∑

k=1

πk(s) · N2(s;mk,Dk),

where Nd(x;m,V ) is the d-variate Gaussian density with mean m and covariance
V evaluated at x. The flexmix package in R allows us to fit this class of models
for fixed K using the EM algorithm. Taking the observation locations of the two
spatial covariates (LULC and drainage class) as data for model (3.1) and using the
flexmix package with K ranging from 2 to 6, we obtain multiple potential par-
titions of the observation locations of the covariate processes, shown in Figure 5.
The mixture for a specified number of segments is nonunique (in other words, the
EM algorithm converges to several different local modes), and after re-starting the

FIG. 5. Finite mixture models used to generate the candidate partitions. The plotted points repre-
sent locations with a nonmissing observation of both the drainage class and land use variables.
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algorithm several times for each K we selected the best mixture(s) based on EM
convergence and the log-likelihood.

However, note that Figure 5 only provides partitions for locations where we
have a measurement of the spatial covariates. As will be seen in Section 4, we
require partitions of the locations where we have SOC measurements (which differ
from the covariate measurement locations) as well as all locations on a fine grid
for generating predictions. When fitting model (3.1) to the latitude and longitude
coordinates of the covariate locations using the package flexmix, we obtain as
a byproduct the bivariate Gaussian densities from (3.1), which can be defined for
any location s ∈ D. Based on the K segment probabilities, we assign each location
to a segment by taking the maximum of the bivariate Gaussian densities, that is, the
segment for location s is defined as maxk{N2(s;mk,Dk)}. Thus the eight mixtures
in Figure 5 yield eight partitions of the spatial domain (not shown), denoted {Pj :
j = 1, . . . ,8}, with segments denoted {Sjk : k = 1, . . . ,Kj }.

4. A partition-based nonstationary spatial Gaussian process model. The
covariate partitions {Pj : j = 1, . . . ,8} defined in Section 3 can be used to model
both first- and second-order nonstationarities in SOC as follows. Let Z(·) represent
observed log SOC, where we model Z(·) as a spatial stochastic process defined
for all s ∈ D (here, D denotes the Great Lakes region of the United States). For all
s ∈D, let

(4.1) Z(s) = μ(s) + Y(s) + ε(s),

where E[Z(s)] = μ(s) is a deterministic mean function, Y(·) is a mean-zero la-
tent spatial Gaussian process, and ε(·) is an error process that is assumed to be
independent of Y(·). We observe the value of Z(·) at a fixed, finite set of locations
{s1, s2, . . . , sn} ∈ D (see Figure 1) and wish to use these observations to learn about
the underlying processes and generate predictions at unobserved locations.

In Section 4.1, we outline a statistical model for log SOC conditional on a single
partition Pj , and in Section 4.2 we outline the model fitting for each conditional
model. Then, in Section 4.3 we describe a model-averaging approach to posterior
prediction that incorporates all candidate partitions.

4.1. Conditional model specification. Conditional on the Kj segments {Sjk :
k = 1, . . . ,Kj } of partition Pj , we first model Y(·) as a mixture of stationary
processes (Fuentes (2001)), that is,

(4.2) Y(s) =
Kj∑
k=1

wjk(s)Ỹjk(s),

where the Ỹjk(·) are orthogonal and stationary, and wjk(·) is a positive kernel

weight function such that wjk(s) ≥ 0 and
∑Kj

k=1[wjk(s)]2 = 1 for all s ∈ D (fol-
lowing Reich et al. (2011)). Define the covariance function of each Ỹjk(·) to be
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C̃jk ; then, the covariance function of Y(·) is

(4.3) Cov
(
Y(s), Y

(
s′)) ≡ C

(
s, s′) =

Kj∑
k=1

wjk(s)wjk

(
s′)C̃jk

(
s − s′),

which is a valid nonstationary covariance function. For each C̃jk , we use an
anisotropic version of the parametric Matérn model

(4.4) C̃jk

(
s − s′; θ jk

) = σ 2
jk

�(νjk)2νjk−1

[√
Qjk

(
s − s′)]νjkBνjk

(√
Qjk

(
s − s′)).

In (4.4), Bνjk
(·) denotes the modified Bessel function of the third kind of order νjk ,

Qjk(s− s′) = ‖�−1/2
jk (s− s′)‖2 is a squared Mahalanobis distance with anisotropy

matrix �jk parameterized according to its spectral decomposition, that is (for d =
2),

(4.5) �jk =
[
cos(ηjk) − sin(ηjk)

sin(ηjk) cos(ηjk)

][
φ

(1)
jk 0

0 φ
(2)
jk

][
cos(ηjk) sin(ηjk)

− sin(ηjk) cos(ηjk)

]
,

and θ jk = (σ 2
jk, νjk, φ

(1)
jk , φ

(2)
jk , ηjk) is a vector of parameters that control the vari-

ance, smoothness, and anisotropy of Ỹjk(·). In the anisotropy matrices (4.5), φ
(1)
jk

and φ
(2)
jk represent directional “ranges” (i.e., inverse decay parameters) and ηjk

represents an angle of rotation; these parameters allow for locally elliptical corre-
lation patterns.

In general, we might propose a similar model for the mean behavior μ(·), that is,

μ(s) = ∑Kj

k=1 wjk(s)μ̃jk(s), where μ̃jk(s) can accommodate any mean structure,
including (in the case of a linear mean) fully observed covariates and segment-
specific intercepts. For log SOC, we considered a variety of segment-specific mean
functions involving latitude and longitude, but found that using a constant mean
across all segments performed as well as a model with a global mean latitude and
longitude coefficients. Furthermore, a model with constant spatial mean performed
as well as a model with a different intercept in each segment. Thus, we set μ̃jk(s) ≡
μj for all k.

To complete the specification of our model (4.1), we suppose that the error
process ε(s) is spatially independent and Gaussian. Similar to (4.2), we model

ε(s) = ∑Kj

k=1 wjk(s)̃εjk(s), where each ε̃jk(s)
i.i.d.∼ N(0, τ 2

jk). Thus, we expand the
θjk vector to include the variance τ 2

jk ; collect all of the variance/covariance pa-
rameters across segments into a single vector

θ (j) = {θ j1, . . . , θ jKj
}.

In this paper, the weight functions wjk(·) for partition Pj are chosen to be in-
dicator functions for segment Sjk , that is, wjk(s) = 1(s ∈ Sjk) (following, e.g.,
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Gramacy and Lee (2008)). In this case, for partition Pj , the process Y(·) and there-
fore Z(·) is now locally stationary within each Sjk and independent across the Sjk ,
conditional on Pj . For the random observed vector Z ≡ (Z(s1), . . . ,Z(sn))

�, the
indicator weight function implies a conditional likelihood for Z,

p
(
Z|μj , θ

(j),Pj

) ∝
Kj∏
k=1

|Vjk + �jk|−1/2

(4.6)
× exp

{
−1

2
(Zjk − μj 1jk)

�(Vjk + �jk)
−1(Zjk − μj 1jk)

}
,

which is the product of segment-specific multivariate Gaussian likelihoods. In
(4.6), the “jk” subscript partitions each term into its partition- and segment-
specific components, for example, Zjk = {Z(si ) : si ∈ Sjk}; Vjk = τ 2

jkI captures a
partition-/segment-specific measurement error variance; the elements of �jk come
from C̃jk . Note that the likelihood for Z in (4.6) is conditional on Pj . As a result,
the partition controls the second-order properties of Z(·) by determining indepen-
dent regions of local stationarity. As mentioned previously, the partition could also
specify first-order properties, although for SOC we have not used this property.

Still conditional on Pj , we factor the prior distribution as p(μj , θ
(j)|Pj ) =

p(μj |Pj ) × p(θ (j)|Pj ). The prior on μj is proper but noninformative and con-
jugate for the likelihood (4.6), that is, p(μj |Pj ) = N(0,1002). The prior for θ (j)

is conditional on the partition since Pj controls the dimension of θ (j). Based on
the variogram analysis in Section 2, we choose to use a smoothness (ν) which is
constant across segments and fixed to be ν = 0.5 (true for all partitions), corre-
sponding to an exponential correlation structure in (4.4). Otherwise,

(4.7) p
(
θ (j)|Pj

) =
Kj∏
k=1

p
(
τ 2
jk

)
p

(
σ 2

jk

)
p

(
φ

(1)
jk

)
p

(
φ

(2)
jk

)
p(ηjk)

(the conditioning on Pj on the right-hand side is suppressed). Each component of
(4.7) is noninformative and proper: for k = 1, . . . ,Kj ,

p
(
τ 2
jk

) = Uniform(0,100), p
(
σ 2

jk

) = Uniform(0,100),

p
(
φ

(1)
jk

) = Uniform(0,
√

2), p
(
φ

(2)
jk

) = Uniform(0,
√

2),

p(ηjk) = Uniform[0, π/2].
Uniform priors for the variance parameters τ 2 and σ 2 are used in place of more
traditional conjugate inverse-Gamma priors to avoid prior bias in the case where
an individual segment contains a small number of observations (following Gelman
(2006)). For this analysis, the longitude/latitude coordinates of locations within
each cluster were rescaled to lie in [0,1]×[0,1] to improve mixing of the MCMC;
therefore, the upper limits for the priors on the anisotropy matrix eigenvalues, φ

(1)
jk
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and φ
(2)
jk (which correspond to squared ranges of dependence) are set to

√
2, which

is the maximum distance on [0,1] × [0,1]. The reasoning behind this choice is
that the squared spatial range of the process within a segment is not expected to
exceed the size of the segment. The limits on the prior for ηjk are set to ensure
identifiability (following, e.g., Katzfuss (2013)).

4.2. Model fitting and MCMC. Conditional on partition Pj , the posterior dis-
tribution is

(4.8) p
(
μj , θ

(j)|Pj ,Z = z
) ∝ p

(
Z|μj , θ

(j),Pj

) · p(μj |Pj ) · p(
θ (j)|Pj

)
,

which combines (4.6) and priors defined in Section 4.1. As usual, (4.8) is not avail-
able in closed form, and we must resort to Markov chain Monte Carlo (MCMC)
methods. Posterior samples from (4.8) are generated using the nimble package
for R (de Valpine et al. (2017)): the MCMC for Pj is run for 20,000 total itera-
tions with 10,000 iterations discarded as burn-in. A univariate Metropolis Hastings
sampling step is conducted for the overall mean (μj ), and adaptive random walk
samplers are conducted for the segment-specific variance/covariance parameters
([τ 2

jk, σ
2
jk, φ

(1)
jk , φ

(2)
jk , ηjk], sampled as a block).

4.3. Model-averaged posterior prediction. Recall from Section 1 that our pri-
mary goal for using this model is prediction. Define a collection of locations
{s∗

1, . . . , s∗
m} ⊂ D for which we would like to obtain predictions of the corre-

sponding (log) SOC values Z∗ = (Z(s∗
1), . . . ,Z(s∗

m)). While the statistical model
outlined in Section 4.1 is conditional on a single partition Pj , using a Bayesian
framework we can average over the partitions {Pj : j = 1, . . . ,8} from Section 3
to obtain the full posterior predictive distribution for Z∗ conditional on observed
Z = z:

(4.9) p
(
Z∗|Z = z

) =
8∑

j=1

∫ ∫
p

(
Z∗,μj , θ

(j),Pj |Z = z
)
dμj dθ (j).

The properties of conditional probabilities allow us to re-write (4.9) as

(4.10)
p

(
Z∗|Z = z

) =
8∑

j=1

∫ ∫
p

(
Z∗|μj , θ

(j),Pj ,Z = z
)

× p
(
μj , θ

(j)|Pj ,Z = z
) × p(Pj |Z = z) dμj dθ (j).

This factorization of (4.9) greatly simplifies posterior prediction, as follows. Since
we are using a Gaussian process model, p(Z∗|μj , θ

(j),Pj ,Z = z) is multivariate
Gaussian: with[

Z
Z∗

∣∣∣ μj , θ
(j),Pj

]
∼ Nn+m

(
μj 1n+m,

[
Vj + �j �ZZ∗

j

�Z∗Z
j V∗

j + �∗
j

])
,
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where �Z∗Z
j ≡ Covj (Z∗,Z), it follows that

(4.11) p
(
Z∗|μj , θ

(j),Pj ,Z = z
) = Nm

(
μ

(j)
Z∗|z,�

(j)
Z∗|z

)
,

where

μ
(j)
Z∗|z = μj 1m + �Z∗Z

j (Vj + �j )
−1(z − μj 1n),

�
(j)
Z∗|z = (

V∗
j + �∗

j

) − �Z∗Z
j (Vj + �j )

−1�ZZ∗
j .

The next component in (4.10) is the conditional posterior distribution (4.8), while
the final component of (4.10) is the posterior probability of each partition Pj con-
ditional on the data. From Bayes’ Theorem, the latter is

(4.12) p(Pj |Z = z) = p(Z|Pj )p(Pj )∑8
i=1 p(Z|Pi )p(Pi )

= p(Z|Pj )∑8
i=1 p(Z|Pi )

.

The last equality follows from our use of a uniform prior over the different parti-
tions, that is, p(Pj ) = 1/8, j = 1, . . . ,8, which is appropriate in this setting be-
cause the partitions are defined by the covariates and not SOC. In any case, the
important quantity here is the marginal likelihood

(4.13) p(Z|Pj ) =
∫ ∫

p
(
Z|μj , θ

(j),Pj

)
p

(
μj , θ

(j)|Pj

)
dμj dθ (j).

Estimation of the marginal likelihood is a well-known problem in Bayesian analy-
sis (for more details on our approach, see the Supplementary Material, Risser et al.
(2019)).

Combining all of the above, (4.10) suggests the following algorithm to sample
from p(Z∗|Z = z):

1. Draw Pj according to the p(Pj |Z = z), j = 1, . . . ,8.

2. Draw (μ∗
j , θ

(j)∗ ) from p(μj , θ
(j)|P = Pj ,Z = z), which is the posterior dis-

tribution for the mean and covariance parameters conditional on Pj (the sampling
of which is described in Section 4.2).

3. Draw Z∗ from p(Z∗|μj = μ∗
j , θ

(j) = θ
(j)∗ ,P = Pj ,Z = z) as defined in

(4.11).

5. Results.

5.1. Posterior prediction maps. Before showing the prediction maps, recall
that the sampling algorithm requires estimates of the marginal likelihood. A vari-
ety of methods for estimating the marginal likelihoods (4.13), outlined in the Sup-
plementary Material (Risser et al. (2019)), were applied to the eight partitions. The
resulting log marginal likelihood estimates (scaled to have mean zero and variance
one) and normalized probabilities (4.12) are shown in the Supplementary Material



180 RISSER, CALDER, BERROCAL AND BERRETT

FIG. 6. Model-averaged posterior mean predictions (left) and corresponding posterior standard
deviations (right) for log SOC (units = log Mg/ha to 100 cm).

(Risser et al. (2019)). The scaled log marginal likelihood estimates show agree-
ment between all of the estimators except BICM, which we henceforth exclude
from consideration. Otherwise, on the probability scale, the estimators collectively
give nonzero weight to the same three or four partitions (4, 6, 7, and 8) and none
of the methods suggest that the model probabilities should be evenly distributed
across all eight partitions. Given this relative agreement and for simplicity, we
decided to use the HM estimator for generating posterior predictions of log SOC.

The resulting model-averaged posterior prediction maps and corresponding
standard deviations for the Great Lakes region are shown in Figure 6. By av-
eraging over the partitions, which individually consist of independent segments,
we are able to obtain a relatively “smooth” posterior mean surface, although arti-
facts of the individual segments are visible in the posterior standard deviation map.
While the standard deviation map is not smooth, we note that this nonsmoothness
is what the SOC data select as the best model fits (based on the marginal likelihood
estimates), and other marginal likelihood estimators give qualitatively similar re-
sults (see Figure 1 in Risser et al. (2019)). Regardless, the standard deviation map
characterizes how the variability in predictions of log SOC varies over space; see
Section 5.3 for further discussion. Comparing both the predicted (log) SOC sur-
face obtained using our nonstationary Gaussian process model (Figure 6) as well
as its standard deviation map to those obtained using other off-the-shelf methods
(Figure 3) we can conclude that SOC is much more flexibly modeled with our pro-
posed nonstationary model, as the prediction variances are better described by our
model.

Additionally, another major benefit of using our nonstationary method with
covariate-partitioning for the SOC data is the significant reduction in computa-
tional time relative to fitting a stationary Bayesian spatial model (as well as other
related Bayesian models). Recall that the eight candidate partitions are generated
ahead of time, and then, for each partition, the nonstationary models can be fit at
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the same time in parallel. For a dataset of size n ≈ 800 observations, the maximum
time required for an individual partition was 7 minutes (for 20,000 MCMC itera-
tions), and the average time across all partitions was just 3.4 minutes (see Table 1).
A traditional stationary model (e.g., SGP; see Section 2.2) took approximately 20
minutes (computational times given are for an Intel Core i7 3.1 GHz machine with
16 GB memory). This major improvement in computational time is due to the fact
that the likelihood conditional on a partition is the product of independent multi-
variate Gaussian likelihoods (see Section 4.1).

5.2. Model comparison. Besides the qualitative comparison of the predictive
SOC maps generated by our model-averaged, covariate-partitioned nonstationary
model (henceforth NSGP) and the other off-the-shelf models, we also compare
the predictive performance of the various models quantitatively. To this goal, we
first use 10-fold cross validation in which the full data set (n = 790) is split into
10 equally sized test data sets with m = 79 observations. For each subset, we fit
all models using the other nine subsets as training data and obtain predictions
at the test locations. The continuous rank probability score (CRPS; Gneiting and
Raftery (2007)) is used to evaluate the sharpness and calibration of predictions for
the held-out data. Krüger et al. (2016) outline several methods for estimating the
CRPS for individual predictions based on the output from MCMC algorithms (i.e.,
ĈRPSt for t = 1, . . . ,m). Mean scores are calculated for the test set using ĈRPS =
m−1 ∑m

t=1 ĈRPSt and compared across models. Since the conditional predictive
cumulative distribution functions (conditional on the true parameter state, i.e., the
likelihood) are not available for BART and TGP, we use what Krüger et al. (2016)
call the empirical CDF method (ECDF) for calculating CRPS for each model.
ECDF is based on samples drawn from the posterior predictive distribution and
is a consistent approximation for the CRPS for every predictive distribution with
finite mean (Krüger et al. (2016)). The ECDF estimate of CRPS is calculated using
the scoringRules package for R (Jordan, Krüger and Lerch (2016)).

For the 10-fold cross validation, the CRPS for each fold is the average of uni-
variate CRPS across the test data. Given that our approach targets second-order
properties of log SOC, we would also like to evaluate the models with respect to
a multivariate criteria, for example, the energy score. However, in other work we
have found it difficult to implement the energy score, because deviations in the
energy score are challenging to diagnose. Instead, we evaluate the models’ predic-
tive capability for spatial averages of log SOC. We choose to work with spatial
averages because while spatial averages are still univariate variables (and can thus
be evaluated using the aforementioned methods), by being functionals of the joint
predictive distribution, their second moment depends on the covariance structure
of the (log) SOC process. Additionally, spatial averages are more compelling and
useful quantities to examine from a soil management perspective. To this end, we
fit all models to two additional groups of holdout sets, block and circular. Each
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TABLE 2
Mean continuous rank probability scores (averaged over holdout sets) for each group of holdout

sets, with the standard deviation in scores in parenthesis. The best model for each holdout set is in
bold

Holdout NSGP SGP BART† TGP PP

10-fold 0.391 (0.026) 0.396 (0.025) 0.407 (0.026) 0.399 (0.025) 0.398 (0.023)
Block 0.168 (0.142) 0.185 (0.140) 0.168 (0.089) 0.136 (0.125) 0.188 (0.162)
Circular 0.178 (0.157) 0.229 (0.192) 0.151 (0.068) 0.189 (0.155) 0.223 (0.201)

†BART is excluded from consideration based on its unrealistic prediction map.

block holdout set (12 total) creates a test data set out of a contiguous ≈ 3.3◦ longi-
tude by ≈ 1.7◦ latitude box (the holdout sets range in size from 29 to 79 locations;
see the Supplementary Material, Risser et al. (2019)). Each circular holdout set
(10 total) creates a test data set using the 29 nearest neighbors of a randomly se-
lected station (so that the holdout sets consist of 29 + 1 = 30 stations; again see
the Supplementary Material, Risser et al. (2019)). For each holdout set (block and
circular), the other sets are used as training data to predict the spatial average cor-
responding to the test data locations. Then, we calculate the univariate CRPS for
the spatial average, again using the scoringRules package as described previ-
ously. We note that the areal evaluation explores the posterior predictive distribu-
tion for the average log SOC value for all available measurement locations in the
holdout set, as opposed to the true areal average (which of course is not available
for evaluation).

The CRPS for each model in Table 1 and each group of holdout sets are summa-
rized in Table 2. Our covariate segmentation nonstationary model yields the best
CRPS when averaging the univariate CRPS over locations in each fold, but the im-
provement relative to the other models is modest. The two nonstationary models
(NSGP and TGP) perform well for the block holdout sets, although TGP maintains
a clear advantage over NSGP. This is not completely surprising, since TGP (which
uses rectangular partitions of the domain) is expected to perform well for rectan-
gular holdout sets. When looking at the circular holdout sets, NSGP is preferred
to TGP, which again is expected since NSGP uses nonrectangular partitions of the
domain. BART outperforms both TGP and NSGP for the circular holdout sets,
although recall that we previously decided to exclude BART from consideration
based on its unrealistic prediction map.

One limitation of using CRPS to compare models is that it is difficult to evaluate
the relative improvement for one model versus another. Clearly, NSGP yields only
modest (at best) improvements in CRPS relative to the other fitted models; how-
ever, we note that other papers that focus on nonstationary modeling (e.g., Paciorek
and Schervish (2006); Fuglstad et al. (2015)) also find very small improvements
in out-of-sample evaluation criteria relative to stationary models, even when ex-
ploratory analyses indicate the presence of nonstationarity in the data. Fuglstad
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et al. (2015) note that, in their experience, “nonstationary models do not lead to
much difference in the predicted values, [but] that the differences are found in the
prediction variances”—this is also noted by Schmidt, Guttorp and O’Hagan (2011)
and Vianna Neto, Schmidt and Guttorp (2014), and is certainly true for our appli-
cation as well. As in Fuglstad et al. (2015), we would like to point out that whether
or not we have improved the CRPS is not the only question worth asking: in this
case, we argue that our more flexible characterization of the prediction variances
yields increased insight into the spatial distribution of SOC (we expound upon this
further in the next section).

5.3. Implications for decision making. Gridded prediction maps and corre-
sponding standard deviations such as those shown in Figures 3 and 6 are extremely
important to soil scientists, and (as mentioned in Section 1) are used for a wide va-
riety of purposes, including benchmarking mechanistic models of soil carbon (e.g.,
Todd-Brown et al. (2014)), identifying target areas for soil restoration projects
(e.g., Ryals et al. (2014); Ryals et al. (2015)), and informing carbon sequestration
projects that seek to determine the limits of soils’ carbon storing capacity (e.g.,
Angers et al. (2011); Wiesmeier et al. (2014)). For each of these purposes, it is
very important to account for spatial variation in the uncertainty of the resulting
predictions: as discussed in Section 5.2, note that the NSGP model can account for
this (e.g., right panel of Figure 6) while the stationary (or approximately station-
ary) models cannot (e.g., bottom row of Figure 3). Thus, while the posterior mean
predictions look quite similar (for example, NSGP, SGP, and PP) and the quanti-
tative cross validation results do not yield overwhelming evidence in support of
the nonstationary model, the clear differences in standard deviations are a strong
argument for using NSGP.

To emphasize this point, we plot the ratio of standard deviations in Figure 7,
specifically showing the posterior standard deviations for SGP, PP, and TGP di-
vided by the corresponding quantity for NSGP. In this plot, areas with a ratio of
greater than one correspond to regions where NSGP provides much more precise
predictions relative to the other models; areas with a ratio of less than one repre-
sent regions where posterior standard deviations from the other models are smaller.
Using the results from the nonstationary model, a practitioner seeking to identify
target areas for a new soil restoration project may want to focus their efforts in the
Ohio River Valley (Kentucky, southern Indiana, and southern Illinois), as this is an
area where both the soil carbon predictions are low and the uncertainty associated
with these predictions is small. Alternatively, while soil carbon appears to be low
along the Mississippi River in Wisconsin, the uncertainty in these measurements
is much larger. Neither SGP nor PP provide this information.

6. Discussion. In this paper, we have proposed a novel method for obtain-
ing predictions of soil organic carbon at unobserved locations using a covariate-
driven nonstationary spatial Gaussian process model. Our approach uses covariate
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FIG. 7. Comparison of the posterior standard deviations across SGP, PP, TGP, and NSGP. The
plotted colors represent the ratio of standard deviations for SGP (left), PP (center), and TGP (right)
divided by the standard deviations for NSGP. Areas with a ratio of less than one correspond to regions
where NS-GP provides more precise predictions relative to the other models; areas with a ratio of
less than one represent regions where the other models likely underestimate the standard deviations.

partitioning to divide the geographic space according to the within-segment dis-
tribution of the covariates (here, land use-land cover and drainage class), so that
the covariates indirectly inform the modeled first- and second-order properties of
SOC as well as the resulting predictions. This approach extends existing covariate-
driven nonstationary approaches in that the information a covariate provides on
SOC can be used for prediction even if the covariate is not fully observed over
the spatial domain. Bayesian model averaging accounts for uncertainty in the par-
titioning, and while our approach yields only modest improvements in terms of
out-of-sample evaluation criteria, it provides a more appropriate characterization
of the spatial variation in prediction uncertainty. Furthermore, while many non-
stationary spatial approaches are computationally intensive, our approach results
in computational times that are significantly faster than the time required to fit a
corresponding second-order stationary model.

Of course, there are limitations to our nonstationary model. For example, the
marginal likelihood estimation seems to be fairly sensitive to individual likeli-
hood values, resulting in a few nonzero and many nearly zero posterior model
probabilities. Regardless of which marginal likelihood method was used (see the
Supplementary Material, Risser et al. (2019)), the estimates always put nearly all
the weight on a single model. In a general setting, this may not be problematic;
however, in our approach, we rely on model averaging to produce a scientifically
meaningful (i.e., smooth) fitted surface, and we are well aware that the individual
models, which specify independence across segments, are not on their own appro-
priate for modeling an environmental process like SOC. In light of the variability
in the marginal likelihood estimates, we might also consider a second approach to
model averaging, which could involve identifying a subset of the partitions that are
in some sense “good” (as indicated by the data) and uniformly weighting over the
reduced set. The resulting surface would likely be more scientifically meaningful



NONSTATIONARY SPATIAL PREDICTION OF SOIL ORGANIC CARBON 185

while also using the data to indicate which of the partitions provide a better fit to
the observed SOC.

Finally, an additional extension that might address the nonsmooth mean predic-
tions in Figure 6 would be to use different weighting functions for the partition-
specific likelihood in (4.6). Recall that we use indicator weight functions; more
generally, we might use weight functions without sharp boundaries. In this case,
the transition between segments for a particular partition would be smoother, re-
sulting in a more realistic specification for the individual models. In fact, we imple-
mented such an approach, using the bivariate Gaussian densities from (3.1) as the
unnormalized weights combined with the nearest neighbor Gaussian process like-
lihood (NNGP; Datta et al. (2016)) to speed up the computation. Unfortunately,
such an approach did not improve the CRPS criteria relative to NSGP with in-
dicator weights, and the computational times for fitting the individual partitions
increased to as much as 2 hours (even with the NNGP likelihood; without NNGP
the computational times were much longer, exceeding 10 hours for an individual
partition). In general, the primary benefit of using indicator weight functions is
computational: the product nature of (4.6) greatly reduces the computational time
for fitting each model. The decision to use a different weight function should be
balanced with the computational limitations of model fitting for a general data set.
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SUPPLEMENTARY MATERIAL

Marginal likelihood estimation and supporting plots (DOI: 10.1214/18-
AOAS1204SUPP; .pdf). We provide additional supporting text regarding marginal
likelihood estimation and supporting plots that show marginal likelihood estimates
and holdout sets.
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