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CAPTURING HETEROGENEITY OF COVARIATE EFFECTS
IN HIDDEN SUBPOPULATIONS IN THE PRESENCE OF
CENSORING AND LARGE NUMBER OF COVARIATES
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The advent of modern technology has led to a surge of high-dimensional
data in biology and health sciences such as genomics, epigenomics and
medicine. The high-grade serous ovarian cancer (HGS-OvCa) data reported
by The Cancer Genome Atlas (TCGA) Research Network is one example.
The TCGA and other research groups have analyzed several aspects of these
data. Here we study the relationship between Disease Free Time (DFT) after
surgery among ovarian cancer patients and their DNA methylation profiles of
genomic features. Such studies pose additional challenges beyond the typi-
cal big data problem due to population substructure and censoring. Despite
the availability of several methods for analyzing time-to-event data with a
large number of covariates but a small sample size, there is no method avail-
able to date that accommodates the additional feature of heterogeneity. To
this end, we propose a regularized framework based on the finite mixture of
accelerated failure time model to capture intangible heterogeneity due to pop-
ulation substructure and to account for censoring simultaneously. We study
the properties of the proposed framework both theoretically and numerically.
Our data analysis indicates the existence of heterogeneity in the HGS-OvCa
data, with one component of the mixture capturing a more aggressive form of
the disease, and the second component capturing a less aggressive form. In
particular, the second component portrays a significant positive relationship
between methylation and DFT for BRCA1. By further unearthing the nega-
tive relationship between expression and methylation for this gene, one may
provide a biologically reasonable explanation that sheds light on the relation-
ship between DNA methylation, gene expression and mutation.

1. Introduction. The advent of modern technology has led to a surge of high-
dimensional data in biology and health sciences such as genomics, epigenomics
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and medicine. In such applications often a large number of covariates are recorded,
many of which may have no effect on a response variable, hence creating a diffi-
cult variable selection problem. In some situations, the response variable is sub-
ject to censoring, which adds an extra layer of difficulty to the variable selection
problem. In addition, the underlying population may also be heterogeneous with
observations potentially coming from multiple unknown subpopulations. Such het-
erogeneity further complicates data analysis.

Ovarian cancer is the fifth-leading cause of cancer deaths among women in the
United States [The Cancer Genome Atlas Research Network (2011)]. Early-stage
ovarian cancer can be treated successfully using surgery and chemotherapy. The
high-grade serous ovarian cancer (HGS-OvCa) dataset [The Cancer Genome At-
las Research Network (2011)], available at the cBioPortal for Cancer Genomics
website http://www.cbioportal.org [Cerami et al. (2012), Gao et al. (2013)], in-
cludes the information of DFT of ovarian cancer patients after surgery and DNA
methylation of 9452 genes for 396 individuals. The relationship between DFT of
ovarian cancer patients and their DNA methylation profiles of genomic features
is an example of the challenges (possible heterogeneity and censoring) mentioned
above.

The TCGA and other research groups have analyzed several aspects of these
data [Han et al. (2016), Yang et al. (2011)]. Here we study the relationship between
DFT after surgery among ovarian cancer patients and their DNA methylation pro-
files of genomic features. The DNA methylation profile of a genome may provide
valuable information and may even be part of a genetic signature for DFT, overall
survival time and several other variables after surgery. Yang et al. (2011) analyzed
316 high-grade serous ovarian cancer cases concluding that neither methylation
nor mutation of the BRCA1 gene was associated with the prognosis. Bolton et al.
(2012) performed a pooled analysis of 26 observational studies on the survival
of women with ovarian cancer and reached a different conclusion. Their results
showed that BRCA1 was a significant factor on improvement for overall survival,
though they focused on mutation rather than methylation. A more recent study,
on the other hand, showed that a number of genes, including BRCA1, may have
different methylation profiles at different stages or in different subtypes of ovar-
ian cancer [Koukoura et al. (2014)]. This illustrates the heterogeneous relationship
between outcome variables (e.g., DFT) and methylation profiles. Our preliminary
analysis of HGS-OvCa data also lends support to this hypothesis (Supplementary
Figure S1 [Shokoohi et al. (2019)]). As we see from this and previous studies,
inconsistency of results and observed heterogeneity are prevalent in genomic stud-
ies, which necessitates a more careful analysis where heterogeneity as well as other
important aspects of the data must be taken into consideration.

Motivated by the above discussion and the fact that the issues raised are com-
monly seen in biomedical and genomic studies beyond the specific dataset dis-
cussed above, we propose a model that can capture heterogeneity in the popula-
tion. The literature and our preliminary analysis of the data lead us to hypothesize a
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mixture of survival models for DFT in the HGS-OvCa data that is subject to right
censoring and potentially influenced by DNA methylation in gene promoters, a
very high-dimensional problem. This leads to the problem of variable selection
in finite mixture of survival models, the topic that we will address in the current
paper.

Variable selection in linear and generalized linear models has been extensively
studied in different settings over the past decades. Among others, Least Abso-
lute Shrinkage and Selection Operator (LASSO) by Tibshirani (1996), Smoothly
Clipped Absolute Deviation Penalty (SCAD) by Fan and Li (2001), adaptive
LASSO (AdpLASSO) by Zou (2006), Smooth Integration of Counting and Ab-
solute Deviation (SICA) by Lv and Fan (2009), and Minimax Concave Penalty
(MCP) by Zhang (2010) provide modern methods for selecting variables and
performing parameter estimation simultaneously. Gilbride, Allenby and Brazell
(2006), Khalili and Chen (2007) and Städler, Bühlmann and van de Geer (2010)
studied variable selection in finite mixture of regression (FMR) models. These
methods lead to a tremendous reduction of the computational burden compared to
traditional variable selection methods such as “best subset selection” and “step-
wise deletion”.

There is a rich literature on variable selection for lifetime models. Among oth-
ers, see for example, Volinsky and Raftery (2000) for a traditional approach with
modified BIC, Tibshirani (1997) on LASSO for Cox proportional hazards model,
Sohn et al. (2009) for gradient lasso, Fan and Li (2002) on SCAD for Cox pro-
portional hazards and proportional hazards frailty models, Cai et al. (2005) for
multivariate failure time data with a growing number of regression coefficients,
Liu et al. (2015) for multivariate varying-coefficient hazard model and Faraggi
and Simon (1998), Sha, Tadesse and Vannucci (2006) and Lee, Chakraborty and
Sun (2011) on the Bayesian approach for the Cox and the Accelerated Failure
Time (AFT) models. The latter is among the most widely used type of parametric
regression models in survival analysis [Lawless (2003), Chapter 6] and will be the
model considered in this paper.

The problem of variable selection for FMR models when observations are sub-
ject to right censoring, on the other hand, has not been treated much in the lit-
erature. McLachlan and McGiffin (1994) studied maximum likelihood estimation
in mixture of survival models. The only research we found on model and variable
selection problems in these models was the work of Lu (2009), who adopted a two-
step model selection method based on BIC and backward elimination for a mixture
of normal distributions with a left censoring mechanism focusing on econometric
applications. However, our simulations indicate that the BIC in the first step of
Lu’s method may dramatically overestimate the mixture order; see Section 3.3 for
further discussion.

We propose a penalized likelihood method for variable selection in finite mix-
ture of AFT models when observations are subject to right censoring. We believe
that this work will be widely usable in many applications, especially in genomics.
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Simplicity, flexibility and in particular parameter interpretability have made AFT
models appealing. We study large sample properties of our proposed method the-
oretically. The small sample behaviour of the method has been studied using sim-
ulated data modelled after our motivating example of the ovarian cancer data.

The rest of this manuscript is organized as follows. Section 2 is devoted to
modelling and methodology. In Section 2.1, we briefly review mixture of AFT
models. We propose our penalized approach for variable selection in mixture of
AFT models in Section 2.2. Large sample properties of the proposed approach will
be studied in Section 2.3. Simulation studies are presented in Section 3 to assess the
validity of the proposed approach for small to moderate size data. In Section 4, an
analysis of HGS-OvCa data is provided to shed light on the relationship between
DFT and genomic features of ovarian cancer. Section 5 includes some concluding
remarks.

2. Model and method.

2.1. A model to capture heterogeneity. We propose a mixture of AFT models
to capture heterogeneity in our data. Let X be time-to-event (for instance, DFT in
our case) with support X ⊂ R

+, and z = (z1, . . . , zd)� ⊂ R
d be a d-dimensional

vector of covariates that may have an effect on X. Let T = min{Y,C}, where Y =
logX and C is the logarithm of the censoring time. We further use δ to denote
the censoring indicator. That is, δ = 0 if the time is censored. Note that we do
not observe X (or equivalently Y ); the observed data are instead (T , δ). In what
follows we assume that censoring (variable C) is noninformative and independent
of the pair (Y,z).

We say V = (T , δ,z) follows a finite mixture of AFT regression models of order
K if the conditional density of (T , δ) given z has the form

(2.1)
f (t, δ;z,�) =

K∑
k=1

πk

[
fY

(
t; θk(z), σk

)]δ[
SY

(
t; θk(z), σk

)]1−δ

× [
fC(t)

]1−δ[
SC(t)

]δ
,

where the πk (0 < πk < 1, with
∑K

k=1 πk = 1) are mixing probabilities, and fC(·)
and SC(·) are the density and survival functions of C, respectively. On the other
hand, fY (·) and SY (·) are respectively the density and survival functions of Y ,
in which θk(z) = h(β0k + z�βk), where h(·) is a known link function, and β0k

and βk = (βk1, βk2, . . . , βkd)� are the intercept and regression coefficients, respec-
tively, and σk is a dispersion parameter. It is worth noting that for each component
of the mixture specified in (2.1), say the kth component,

(2.2) Y = logX = β0k + z�βk + σkε,

where ε has a suitable distribution such as standard normal, extreme value, gen-
eralized extreme value or logistic. A common AFT model in survival analysis is
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based on the Log-Normal distribution [Lawless (2003)] in which ε ∼ N(0,1). The
vector of all parameters is

� = (β01, . . . , β0K,β1, . . . ,βK,σ1, . . . , σK,π1, . . . , πK−1)
�,

which has length d∗ = K(d +3)−1, increasing with the order (K) of the mixture.
For a given sample when all the observations are failure times, that is, there is

no censoring (i.e., δi = 1), the density f (t, δ;z,�) is proportional to the density
of a finite mixture of regression models [McLachlan and Peel (2004)]. Since the
term [fC(t)]1−δ[SC(t)]δ in (2.1) does not involve any model parameter, it is nonin-
formative for parameter estimation and thus omitted from the conditional density
function hereafter. Therefore (2.1) can be rewritten as

(2.3) f (t, δ;z,�) ∝
K∑

k=1

πk

[
fY

(
t; θk(z), σk

)]δ[
SY

(
t; θk(z), σk

)]1−δ
.

Suppose a large number of covariates z = (z1, . . . , zd)� are recorded but most of
them have no effect on the response variable Y ; we do not, of course, know which
ones. We therefore assume that the underlying model is sparse in the sense that
most of the coefficients βkj are zero. The maximum likelihood estimator (MLE)
of � will not be able to provide exact zero estimates for those coefficients that
are truly zero particularly when the number of covariates is large compared to the
sample size. As such the maximum likelihood approach does not provide a sparse
solution. To address this problem, in this work, we study regularization methods
for variable selection in finite mixture of AFT models.

2.2. Penalized likelihood method. In order to select the important variables in
the model we propose to use a penalized likelihood approach, if necessary after
some screening.

Let (ti, δi,zi ), i = 1,2, . . . , n, be a random sample from a finite mixture of AFT
regression models, as given in (2.3). The conditional log-likelihood is given by

(2.4) �n(�) =
n∑

i=1

log
K∑

k=1

πk

[
fY

(
ti; θk(zi ), σk

)]δi
[
SY

(
ti; θk(zi ), σk

)]1−δi .

We propose to estimate � by maximizing the penalized log-likelihood

(2.5) �̃n(�) = �n(�) − pλn(�)

with the penalty function being

(2.6) pλn(�) = n

K∑
k=1

πα
k

{
d∑

j=1

pλn,k
(βkj )

}
,

where pλn,k
(βkj ) is a nonnegative and nondecreasing function in |βkj |, λn =

(λn,1, . . . , λn,K) is the vector of tuning parameters, and α ∈ [0,1] controls the
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contribution of the mixing probabilities πk in the penalty as suggested in Städler,
Bühlmann and van de Geer (2010). The advantage of this method compared to the
MLE is that the resulting fitted model is sparse, that is, those regression coeffi-
cients that are not significant or close to zero will be estimated as zero. Therefore,
the variable selection and parameter estimation are combined and done simultane-
ously. This approach will reduce the computational burden substantially.

We consider several well-known penalties.

• AdpLASSO: pλk
(βkj ) = λkw̃kj |βkj |, where the w̃kj are some known weights.

• LASSO: pλk
(βkj ) = λk|βkj |.

• SCAD: pλk
(βkj ) = λk|βkj |1{|βkj |≤λk} + [−|βkj |2−2aλk |βkj |+λ2

k

2(a−1)
]1{λk<|βkj |≤aλk} +

(a+1)λ2
k

2 1{|βkj |>aλk} with a > 2 where 1 is indicator function; Fan and Li (2001)
suggested a = 3.7 based on minimizing a Bayes risk.

• MCP: p′
λk

(βkj ) = 1
γ
(γ λk −|βkj |)+, where γ > 0 and p′(·) is the first derivative

with respect to βkj . In our simulations, we set γ = 4.5 which is computed based
on pairwise sample correlation of covariates as suggested by Zhang (2010).

• SICA: pλk
(βkj ) = λk

(a+1)|βkj |
(a+|βkj |) , where a > 0 is chosen based on a data-

dependent approach so as to achieve unbiasedness, sparsity and continuity.
Meanwhile, this leads to a less complex optimization problem in terms of con-
cavity as discussed by Lv and Fan (2009). They argued that to achieve unbiased-
ness and sparsity, a must be in (0,∞) and to achieve continuity a ∈ [a0,∞)

where a0 = λ + √
λ2 + λ. They also argued that the optimal value of a should

be chosen “to have the minimal maximum concavity, which is favourable from
the computational point of view since the degree of concavity is related to the
computational difficulty”. Accordingly we set a = 5.

The maximum penalized likelihood estimator (MPLE) of � is then

(2.7) �̂n = arg max
�

�̃n(�).

With an appropriate choice of the tuning parameter λn, many of the estimated
regression coefficients, especially those with no effects on the outcome variable,
will be zero and hence their corresponding variables do not appear in the fitted
model.

The penalties in the above list have been widely used in regression problems
regardless of whether the covariates z’s are correlated or not. In general, as long as
the regularity condition R.5 [Shokoohi et al. (2019), Supplementary Material S2]
on the positive definiteness of the information matrix holds, the MPLE has the
sparsity and asymptotic normality properties stated in Theorem 1 below.

Numerical implementation of the proposed method, including a modified EM
algorithm, selection for the tuning parameters (λ), and estimation of the num-
ber of mixture components (K), are all provided in Supplementary Material S1
[Shokoohi et al. (2019)]. In the next section we focus on large sample properties
of the MPLE.
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2.3. Large sample properties of the estimators. We assume that the observed
data is a sample from a sparse finite mixture of AFT regression models with K

components and a corresponding true parameter vector

�0 = (
β0

01, . . . , β
0
0K,β0

1, . . . ,β
0
K,σ 0

1 , . . . , σ 0
K,π0

1 , . . . , π0
K−1

)�
.

We further assume that �0 is an interior point of the parameter space � ⊂ R
d∗

where d∗ = K(d + 3) − 1. In the sparse model many of the true regression coef-
ficients β0

kj are zero, although we do not know which ones. We aim to study the

so-called oracle property of the MPLE of �0 as defined in Fan and Li (2001).
Without loss of generality, for each 1 ≤ k ≤ K , consider the partitioning

β0
k = (β0

k1,β
0
k2) such that β0

k1 contains the true nonzero regression coefficients and
β0

k2 = 0. We assume that dim(β0
k1) = d1. Naturally, we partition the true parameter

vector as �0 = (�0
1,�

0
2) so that �0

1 contains the nonzero vectors β0
k1, and �0

2 = 0.
The intercepts β0

0k , variances σ 0
k and the mixing probabilities π0

k are also included
in �0

1. A similar partitioning is considered for any candidate parameter vector
� = (�1,�2) ∈ �. More specifically, we assess the performance of the estimator
�̂n through its sub-vectors �̂n1 and �̂n2, where dim(�̂n1) = dim(�0

1) = d∗
1 and

dim(�̂n2) = dim(�0
2) = d∗ − d∗

1 , such that an oracle would know d∗
1 . We investi-

gate the following properties for the estimator �̂n. As n → ∞,

(i) Sparsity: �̂n2 = 0, with probability tending to 1.
(ii) Asymptotic normality:

√
n(�̂n1 − �0

1) has the same asymptotic normal
distribution as the oracle estimator which estimates �0

1 with the knowledge that
dim(�0

1) = d∗
1 and �0

2 = 0.

For the finite mixture of AFT regression models considered in the current paper,
under the regularity conditions R.1–R.6 given in Supplementary Material S2 and
Lemma S1 and Lemma S2 as established in Supplementary Material S3 [Shokoohi
et al. (2019)], the MPLE �̂n in (2.7) has the oracle property described by (i) and
(ii). These results particularly apply to the MPLE obtained using penalties such as
the SCAD, MCP, SICA and partially for the LASSO. The proofs are aligned with
those in Khalili and Chen (2007) and thus omitted. Establishing similar results
for the AdpLASSO, a data-adaptive penalty, requires a different proof presented
below. Consider the penalized log-likelihood

(2.8) �̃n(�) = �n(�) − n

K∑
k=1

πα
k

d∑
j=1

λn,k

(
w̃kj |βkj |),

where the weights w̃kj are chosen as

(2.9) w̃kj = |β̃kj |−γ
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for any
√

n-consistent estimator β̃kj of β0
kj , and some constant γ > 0. The

AdpLASSO-based MPLE is then

(2.10) �̂n = arg max
�

�̃n(�).

We now state our main result.

THEOREM 1. Let Vi = (Ti, δi,Zi ), i = 1,2, . . . , n, be a random sample from
a finite mixture of AFT regression model in (2.3) that satisfies conditions R.1–R.6
in Supplementary Material S2 [Shokoohi et al. (2019)]. As n → ∞,

(a) if
√

nλn,k → 0, there exists a local maximizer �̂n of �̃n(�) such that∥∥�̂n − �0∥∥ = Op

(
n−1/2)

.

(b) (oracle property) for any
√

n-consistent estimator �̂n = (�̂n1, �̂n2) of �0, if√
nλn,k → 0 and n(γ+1)/2λn,k → ∞,

(i) Sparsity: P(�̂n2 = 0) → 1.
(ii) Asymptotic normality:

√
n
(
�̂n1 − �0

1
) →d N

(
0,−1

1

(
�0

1
))

,

where 1(�
0
1) is the Fisher information matrix under the true model where all

covariates with zero effects are removed.

PROOF. See Supplementary Material S4 [Shokoohi et al. (2019)]. �

According to Theorem 1, asymptotic properties of the MPLE in (2.10) depend
on the choices of w̃ik , γ and λn,k . The MLE can be a good candidate for β̃kj in
(2.9). Having specified γ , if we choose λn,k ∝ n−1/2−ζ , for a 0 < ζ < γ/2, then
they satisfy the conditions required by the theorem. A common choice of γ is
1, hence 0 < ζ < 1/2. Note that the

√
n-consistency of β̃kj used in w̃ik can be

weakened to just having consistent estimators [Zou (2006)].

3. Simulation studies. In this section, we assess the performance of the pro-
posed methods via simulations. All the results are obtained using our open-source
fmrs package implemented in R which is available at https://CRAN.R-project.
org/package=fmrs.

3.1. Scenarios and settings. We considered mixtures of Log-Normal AFT
models, where fY (·) = φY (·) and SY (·) = �Y (·) in (2.3) are respectively the
probability density and cumulative distribution of Normal with mean θk(z) =
β0k + z�βk and variance σ 2

k . We consider mixture of AFT models of orders
K = 2,3 with intercepts, dispersion parameters and mixing probabilities chosen

https://CRAN.R-project.org/package=fmrs
https://CRAN.R-project.org/package=fmrs
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as in Table S1 in Supplementary Material S5 [Shokoohi et al. (2019)]. For this
mixture model, the signal-to-noise (SNR) ratio is computed as

SNR =
∑K

k=1 πkβ
�
k �βk∑K

k=1 πkσ
2
k

,

where � is the covariance matrix of the vector of covariates z, which is assumed to
follow a multivariate Normal distribution. For the parameter settings given in Sup-
plementary Table S1 [Shokoohi et al. (2019)], the SNR varies between 5 and 10.

Specifically let n be the sample size. The vectors of covariates zi , i = 1, . . . , n,
are generated from a d-multivariate Normal distribution with mean 0 and a
variance-covariance matrix � whose (l,m)th element is ρ|l−m| for ρ = 0.5 and
0.75. Given the sparse vector βk of the regression coefficients in Supplemen-
tary Table S1 [Shokoohi et al. (2019)], the pair-wise correlation between the sig-
nal and noise covariates varies from (close to) zero to 0.75. Given (n, d), the
generated design matrix (zi , i = 1, . . . , n) is kept fixed throughout the simula-
tions. We consider uniform censoring on (0,UM), where UM is a pre-specified
value chosen in such a way that the average censoring percentage is equal to
10, 30, 40 and 60 for each of the sample sizes n = 200, 300 and 700. Given
(K,d,n,ρ,π,σ , β01,β1, . . . , β0K,βK) and the design matrix, the data (ti, δi),
i = 1,2, . . . , n, are generated from the mixture of AFT regression models (2.3) as
follows. For instance for K = 2,

(i) we generate ui from Uniform(0,1), i = 1, . . . , n. If ui ≤ π1 (1st element
of π), then yi is generated from N(β10 + z�

i β1, σ
2
1 ); otherwise yi is generated

from N(β20 + z�
i β2, σ

2
2 ).

(ii) the censoring time is generated as ci ∼ log[Uniform(0,UM)] with UM

pre-specified to achieve the desired level of right censoring. We then set ti =
min{yi, ci} and δi = I{yi<ci}.

In our simulations for each scenario and setting, we generated R = 500 data sets
as described above. Given a mixture order K , for each simulated sample, we use
the BICk given in Supplementary Section S1.A4 [Shokoohi et al. (2019)], for tun-
ing parameter (λk) selection. Computationally, each set of simulation (R = 500
replicates) took between 22 seconds (for a balanced 2-component mixture of AFT
model with 200 samples and 10 covariates) and 96 minutes (for an unbalanced
3-component mixture of AFT model with 700 samples and 50 covariates) to be
analyzed on a MacBook Pro 15-inch with 2.5 GHz Intel Core i7 Processor and
16 GB DDR3 Memory, making it possible to carry out extensive simulation stud-
ies.

3.2. Results. In the discussion below, let CIZ = # Correctly Identified Zero,
CIN = # Correctly Identified Nonzero, IIZ = # Incorrectly Identified Zero and
IIN = # Incorrectly Identified Nonzero regression coefficients. The sensitivity (SE)
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FIG. 1. Average specificity (SP) and sensitivity (SE) for an unbalanced mixture with two compo-
nents for three different censoring levels and three sample sizes n.

and specificity (SP) are respectively defined as SE = CIN
CIN+IIZ and SP = CIZ

CIZ+IIN .
Also we denote component-wise L2-loss of the regression coefficient estimates as

L2k =
√√√√√ d∑

j=1

(β̂kj − βkj )2, k = 1, . . . ,K.

Figure 1 compares the average SE and SP for the LASSO, AdpLASSO, MCP,
SCAD and SICA penalties over R = 500 simulated data sets for one of the sce-
narios described above. The corresponding numerical values with standard devia-
tions among 500 replicates are given in Supplementary Table S2 [Shokoohi et al.
(2019)]. The results for the other scenarios, which show similar trends as that in
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Figure 1, are presented in Supplementary Material S5 [Shokoohi et al. (2019), Ta-
bles S3–S13].

The results presented in Figure 1 and those from the tables in Supplementary
Material S5 [Shokoohi et al. (2019)] lead to the following general observations.
Setting α = 0, that is, removing πk from the penalty in (2.6), improves the re-
sults of AdpLASSO, LASSO and SICA but worsens the performance of MCP and
SCAD [Shokoohi et al. (2019), Table S3 and S4]. In some scenarios, for instance
Table S13 [Shokoohi et al. (2019)], which correspond to a 3-components mixture
(K = 3), we observe low SE. Given the small sample size and heavy censoring
in the components of the mixture of AFT model, such performance is of course
expected. Ignoring censoring in analyzing the data causes a considerable loss of
performance in terms of SE and SP even in the presence of a moderate censoring,
as can be seen from Table S3 and S5, where Table S5 contains the results for the
same scenario as in Table S3 but with censoring ignored. Furthermore, when the
correlation factor ρ increases from 0.5 to 0.75, the performance of the penaliza-
tion method SP and SE declines, mainly in the smaller component of the mixture
model. Finally, our study shows that each penalty has its unique merits; none of
them can universally dominate its competitors.

As some methods perform better in terms of SE while at the same time worse
in terms of SP, we further use the ROC curve to combine SE and SP into a single
comparable statistics, the area under the curve (AUC), to compare the performance
of different penalty functions in the variable selection problem. We consider a sce-
nario with K = 2, d = 50 and ρ = 0.75. Figure S2 in Supplementary Material S6
[Shokoohi et al. (2019)] depicts the upper left part of ROC curves for different
penalties under different sample sizes and censoring percentages. From this figure
we observe that the AdpLASSO is the dominant method in many scenarios and
has consistent behaviour. The other penalties also perform well in terms of AUC,
but they show inconsistent behaviour. The AUCs were greater than 90%.

Since the method with all penalties perform well under the settings in Table S1,
we further carried out an additional simulation to investigate the performance of
the method in a setting in which the SNR was set to be approximately 1, a 5-fold
or more reduction of the SNR. The results are presented in Table S14. This setting
differs from the one whose results are presented in Table S2 only in the coefficients
of covariates and the variances of the mixture components. By comparing the re-
sults in Table S2 with those in Table S14, we can see that overall the performance
loss of the method (in terms of the averages sensitivity and specificity) for the set-
ting with a much smaller SNR is approximately between 2 to 20%. Therefore, as
expected, the weaker the signal-to-noise ratio, the harder the task of variable selec-
tion. Nevertheless, it is remarkable to see that even a 5–10 fold reduction in SNR
still leads to considerable sensitivity and specificity of the method.

With the good performance of the method using various penalties documented
above, one obvious question is whether a conventional, nonregularized method
would perform equally well. To investigate this, we compared the component-wise
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L2-loss of MLE of the regression coefficients using the procedure of McLachlan
and McGiffin (1994) with those of MPLE from our method considering various
penalties. The results are presented in Tables S15 and S16 in Supplementary Ma-
terial S5 [Shokoohi et al. (2019)] for d = 10 and 50, respectively. Overall, the
L2-loss of the MLE is larger than that of the MPLE (among different penalties)
even with a small number of covariates. As the number of covariates increases, the
performance of the MLE compared to the MPLE deteriorates dramatically.

We also examined the performance of the variable selection method under
model mis-specification. We simulated R = 500 data sets from a finite mixture
of Weibull AFT models and then fitted a mixture of Log-Normal AFT models to
the data. Although Weibull and Log-Normal can be similar depending on the pa-
rameters, we have verified that the simulating models are quite different from the
fitted models for our simulation settings. The results are presented in Supplemen-
tary Table S17 [Shokoohi et al. (2019)], which shows that all the penalties are
reasonably robust to model mis-specification. In the worst case scenario the SE
and SP are down by at most 15%. As the sample size increases the loss decreases
rapidly.

3.3. Order selection. For the results presented above, we assumed that the
order K of a mixture model is known a priori. In practice, however, the order
usually needs to be estimated. Information criteria such as BIC have been studied
thoroughly for order selection in many situations. In this section, we study the
performance of the BIC∗, described in Supplementary Material S1.A5 [Shokoohi
et al. (2019)], for selecting the order of a finite mixture of AFT models when
observations are subject to right censoring. The simulation set-up is as follows.

We generated R = 500 right-censored data sets from a mixture of Log-Normal
AFT models with K = 2 as described in the previous section. We then fit a mixture
of Log-Normal AFT models of orders K = 1,2, . . . ,5, to each simulated data set,
and choose the optimal K̂ as the one that minimizes the BIC∗. We also considered
using AIC∗ as the criterion, but its performance was seen to be worse than BIC∗
and was thus not pursued.

Figure 2 shows the average proportion of times that the true order K = 2 is
selected by the BIC∗ computed based on the MPLE using different penalties. More
details are available in Supplementary Table S18 [Shokoohi et al. (2019)], which
contains the average proportions of times that an order K = 1, . . . ,5, is selected by
BIC∗. Table S19 in Supplementary Material S5 [Shokoohi et al. (2019)] presents
SE and SP when the order of the mixture of AFT model is selected. These results
are based on matching the closest (in terms of β̂kj ) estimated components to the
true components when the order of the mixture is overestimated. Note that the
scenario of underestimation was never seen in this set of simulations.

From Figure 2, we observe that depending on the sample size, censoring level
and the choice of penalty, the BIC∗ selects the true order of the mixture of AFT
models between 60% to 96% of the times. More specifically, the BIC∗ based on
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FIG. 2. Comparison of performance of BIC∗ based on different penalties in selecting the true order
(K = 2) of the underlying mixture of AFT model. The BIC∗ based on AdpLASSO, LASSO and SICA
outperforms the BIC∗ based on SCAD and MCP. The performance is consistent with low (A) and
moderate (B & C) censoring. Both SCAD and MCP show inconsistent behaviour when there is heavy
censoring (D).

AdpLASSO, LASSO and SICA outperforms the BIC∗ based on SCAD and MCP.
The latter overestimated the order of the mixture of AFT models in most of the
scenarios (Table S20). One possible explanation based on our simulations is that
SCAD and MCP resulted in more sparse models (higher SP) with lower SE (see,
e.g., Table S21 in Supplementary Material S5 [Shokoohi et al. (2019)]), thus forc-
ing the BIC∗ to add extra component(s) to the mixture of AFT model to account
for the lack of fit. As a comparison, included in Table S20 are also order selection
results by the BIC computed using the MLE as described in Lu (2009). It is clearly
seen that our method outperforms the comparison method by a large margin, espe-
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cially when the sample size is smaller, as the MLE-based BIC often overestimates
the mixture order.

4. Analysis of HGS-OvCa data. As discussed earlier, the main motivation
for our work is to understand the relationship between DFT of ovarian cancer
patients and their DNA methylation profiles. The two main challenges are hetero-
geneity caused by hidden subpopulations and right censuring of DFT. We use the
methodology developed in the previous section to analyze the TCGA HGS-OvCa
dataset described in Section 1. Specifically, this dataset contains nonmissing DFT
data for 396 patients after surgery, in which 28% were right censored (i.e., pa-
tients remained disease free). The median of DFT was 14 months (range: 0–180
months), with 49% remaining alive at the time of the last follow-up. For this group
of patients, methylation levels for 9452 gene promoters were also available. The
correlations between these genes (before screening) range from −0.90 to 0.96.
In addition, there are also other covariates, including age at diagnosis, stage and
tumor grade [The Cancer Genome Atlas Research Network (2011)].

One of the questions of interest, especially for prognosis, is how methylation
levels of gene promoters and other variables are related to DFT after surgery. Al-
though several studies have analyzed this same dataset already, their conclusions
were inconsistent or different from each other. One possible explanation is that dis-
ease and patient heterogeneity were not taken into account in the previous works.

Our own preliminary analysis of the response variable (DFT) shows that the log
of response variable can be modelled using a two-components mixture [Shokoohi
et al. (2019), Figure S1 in Supplementary Material S6], leading to a mixture model
hypothesis.

We apply a log-transformation on all covariates. The minimum observed
nonzero methylation level was added to avoid taking the logarithm of zero, if
needed. The transformed values were then centred. A single-variable screening
scheme led to the selection of 18 genes whose methylation levels at the promoter
regions had the greatest influence on DFT based on our data. We further included
the BRCA1 and BRCA2 genes based on information from the literature. The cor-
relation between these 20 selected genes ranges from −0.34 to 0.46. These 20
genes are listed in segment (A) of Table 1.

We then used the regularization method of Section 2.2 and fitted mixtures of
Log-Normal and Weibull AFT models each of orders K = 1,2,3,4, to the data.
Our results (with the optimal penalty parameters selected for each method) show
that a two-component Log-Normal mixture model based on SCAD and a penalty
on the variances of the components of the mixture [Chen and Tan (2009)] min-
imized the BIC. The BIC results are given in Table S23 in Supplementary Ma-
terial S8 [Shokoohi et al. (2019)]. Based on these results and those provided in
Supplementary Material S7 [Shokoohi et al. (2019)], the Log-Normal model with
2 components has the best fit.
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TABLE 1
The fitted mixture of AFT models with 2 components; HGS-OvCa data. The active genes and the

corresponding nonzero estimated coefficients (A) and other parameters (B) are presented

(A) Active genes & estimated coefficients

Gene BRCA1 BRCA2 NPPA GHSR TUBB6

Component 1 2.5 × 10−13 1.6 × 10−14 3.8 × 10−14 9.5 × 10−14 2.2 × 10−5

Component 2 0.51 7.3 × 10−13 −2.6 × 10−13 0.48 1.6 × 10−12

Gene IL1R2 C11orf9 ALOX12 MMRN1 ASIP

Component 1 4.0 × 10−13 7.1 × 10−14 1.4 × 10−13 −9.6 × 10−14 0.74
Component 2 8.3 × 10−13 −1.4 × 10−12 4.5 × 10−13 −2.18 8.4 × 10−15

Gene TWSG1 HOXC11 KL NFRKB PPYR1

Component 1 3.8 × 10−13 1.2 × 10−9 2.5 × 10−4 1.5 4.9 × 10−13

Component 2 −1.22 −2.5 × 10−12 6.2 × 10−12 −5.8 × 10−15 1.2 × 10−12

Gene LCN2 SNUPN PTEN LGALS1 SFTPD

Component 1 1.7 × 10−14 −2.4 × 10−14 4.9 × 10−13 −3.5 × 10−14 5.2 × 10−14

Component 2 1.46 −0.88 −4.2 × 10−13 1.4 × 10−9 0.51

(B) Other parameters

Parameter Intercept σ π λSCAD

Component 1 2.70 0.50 0.67 0.07
Component 2 3.62 0.79 0.33 0.11

LogLik: −345.01, BIC: 743.86.

Under this selected model, we can see that the promoter methylation levels of
genes ASIP and NFRKB are active in Component 1 while genes BRCA1, GHSR,
MMRN1, TWSG1, LCN2, SNUPN and SFTPD are active in Component 2 (Ta-
ble 1). The mixing proportions for Components 1 and 2 are 67% an 33%, respec-
tively, with Component 1 having a smaller dispersion (sd = 0.5) compared to that
of Component 2 (sd = 0.79). The full results are given in Supplementary Mate-
rial S7 [Shokoohi et al. (2019)]. Our bioinformatics analysis reveals that all genes
identified in either component have been previously studied, and several of them
have been implicated in cancer and other diseases. We have summarized the genes
that have been implicated in various types of cancer (BRCA1, ASIP and SFTPD)
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TABLE 2
Cancer-associated genes identified in the HGS-OvCa data analysis

Gene Information Summary

ASIP Full name Agouti-Signaling Protein; Protein Coding gene
Cancer Associated with nonmelanoma skin cancers. Single nucleotide polymor-

phisms in ASIP is associated with basal cell carcinoma (cancer). An im-
portant role for exon 17b of ASIP in cancer cells was identified; alterna-
tive splicing isoforms, hASIP-sa, hASIP-sb, had different effects on cell
growth and Fas/FasL-mediated apoptosis in BEL-7404 human hepatoma
cells.

BRCA1 Full name BRCA1, DNA Repair Associated; Protein Coding gene
Cancer Breast-Ovarian Cancer (Familial), and Pancreatic Cancer

SFTPD Full name Surfactant Protein D; Protein Coding gene
Cancer chest wall lymphoma cancer

in Table 2. Full details, including the genes that have been identified to be involved
in other disorders in the literature (NFRKB, GHSR, MMRN1 and LCN2) are pro-
vided in Table S24 of Supplementary Material S9 [Shokoohi et al. (2019)].

We computed the posterior probability that an observation belongs to Compo-
nent 1. Stratified according to several clinical variables (Disease Free Status, Over-
all Survival Status, Tumor Stage, Grade and Platinum Status), we plotted these
probabilities as a box plot for each stratum within each variable. As we can see
from Figure 3(A), those who were disease free tended to have a smaller proba-

FIG. 3. Posterior probability versus clinical variables. On average, patients who have a better
prognosis, for instance those who were disease free (A) and those who were still living (B), have a
smaller probability of belonging to Component 1.
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bility of belonging to Component 1. From Figure 3(B), we observed a smaller
average probability of belonging to Component 1 for those who were still living
under the clinical variable Overall Survival Status. Similar observations are made
from the other clinical variables: on average, those who have a better prognosis
have a smaller probability of belonging to Component 1 [Shokoohi et al. (2019),
Figures S3–S5 in Supplementary Material S6]. Taken together, the results seem to
indicate that Component 2 captures the less aggressive form of the disease whereas
Component 1 is the opposite.

It is interesting to see that the active genes for Components 1 and 2 do not over-
lap. This suggests that the genes selected based on their methylation level may be
further studied as potential biomarkers. In particular, since hypermethylation may
lead to downregulation [Earp and Cunningham (2015), Kong et al. (2015), Kwon
and Shin (2011), Kwong et al. (2006), Schöndorf et al. (2016)], it is of interest
to investigate the relationship between gene expression and DNA methylation for
the HSG-OvCa dataset. Gene expression measures are available for eight of the
nine genes that were deemed to significantly influence the response (expression
values for gene ASIP is not available). We computed and tested Kendall’s tau cor-
relation for each of the two components. For Component 1, significant negative
correlations between expression and methylation were detected for genes BRCA1,
LCN2, SFTPD and TWSG1, taking multiple testing into consideration. The scat-
terplots with nominal p-values are provided in Figures S6–S13 in Supplementary
Material S6 [Shokoohi et al. (2019)].

For Component 2, significant negative correlations were detected only for genes
LCN2 and SFTPD. For the rest of the genes, the relationships are inconclusive.
This is not completely surprising given that a component composed of patients
having the less aggressive form of the disease may have hidden heterogeneity. As
such, it is plausible that there exists a more homogeneous subset of individuals
in Component 2 for which there is a clear relationship between the gene expres-
sion and methylation. To investigate this, we employed a method that is capable
of detecting positive or negative association that exists only in a subsample com-
ing from an underlying cryptic heterogeneous population. Since the subset, if it
does exist, is unknown a priori, we used the tau-path method with the CEMCtp
algorithm [Zhang, Ding and Lin (2017)] to probe the presence of such a hidden re-
lationship. Using this method, we confirmed that the two genes that were found to
have significant negative correlations with the full set analysis once again showed
a significant negative correlation with almost all the observations contributing to
the results [Shokoohi et al. (2019), Figures S14 and S15 in Supplementary Ma-
terial S6]. More interestingly, of the other genes that were found not to be sig-
nificant for the full set of observations, the expression and DNA methylation of
genes BRCA1 and GHSR are now found to be significantly negatively correlated
(see Figure 4 for BRCA1 and Supplementary Figure S16 for GHSR [Shokoohi
et al. (2019)]) for a subset of observations only, suggesting further heterogeneity
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FIG. 4. Scatter plot of gene expression vs methylation of BRCA1. Patients classified into Compo-
nent 1 are shown in red, while those in Component 2 are in blue. The subset of patients in Compo-
nent 2 that exhibit a negative association between gene expression and methylation are depicted in
upside-down deltas.

within Component 2. In summary, although the full-set analysis failed to find a re-
lationship between gene expression and methylation, yet visual inspection seems
to indicate that the relationships are similar for the two components, using tau-
path, we were able to not only uncover a negative relationship, but also identify
the subset of observations that contributed to such a relationship.

5. Closing remarks and conclusions. There have been many studies on vari-
able selection in different settings, but only a few that focus on FMR models. There
also exist studies that consider variable selection in an AFT model with censoring.
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However, to the best of our knowledge, none of these studies have considered
variable selection in FMR when the observations are subject to a censoring mech-
anism. The ovarian cancer study, among many others, is an example of a real data
set with both heterogeneity and censoring where there are numerous genomic fea-
tures that may possibly have an effect on the response variable. We have developed
a regularization method for variable selection in mixture of AFT models when
observations are subject to right censoring. A natural extension of the proposed
methods is to consider a mixture of semi-parametric AFT models without specify-
ing the random error distributions. The main challenge in this direction is the issue
of model identification. Hunter, Wang and Hettmansperger (2007) provided identi-
fiability conditions for semi-parametric finite mixture models with K = 2,3 com-
ponents. However, model identification in the presence of covariates and censoring
is yet to be formally studied. Another interesting research problem is hypothesis
testing of the number of mixture components (K). Kasahara and Shimotsu (2015)
and Zhu and Zhang (2004) provided statistical approaches for testing K in mixture
of regression models. These results, however, are not applicable to our setting due
to censoring and variable selection.

We studied the statistical properties of our proposed method theoretically. Our
simulation results show that the proposed method based on different penalties per-
forms reasonably well in finite samples. None of the penalties can universally dom-
inate the others. The AdpLASSO shows a more consistent behaviour.

In our analysis of the ovarian cancer data, a pre-screening step as we had taken
in the current paper was indispensable, because the dimension of the predictor
variables should be smaller than the sample size. Such a pre-screening step is even
more imperative for mixture of AFT models as the number of parameters is mul-
tiplied by the order of the mixture model. The results of our analysis point to the
existence of both disease and patient heterogeneity in the HGS-OvCa data. Specif-
ically, we uncovered two components in our optimal mixture of AFT model, with
Component 1 capturing a more aggressive form of the disease and Component 2,
a less aggressive form. This conclusion was reached based on several prognostic
variables in conjunction with the posterior probability of each patient belonging
to each of the components. In Component 2, the significant positive relationship
between methylation and DFT for the gene BRCA1 is especially noteworthy, since
BRCA1 has been found to play an important role in ovarian cancer, either based
on mutation, gene expression or methylation. Our finding that, for a majority of
patients in Component 2, their methylation level is negatively associated with the
expression of BRCA1 is particularly interesting and biologically relevant. It is
likely that the BRCA1 mutation is kept at base by the epigenetic mechanism for
patients in Component 2, leading to their longer DFT. This finding provides addi-
tional insights into the disease mechanism, and may potentially help with sorting
out inconsistent results seen in the literature.

In conclusion, we believe that our analysis of the ovarian cancer data using
the proposed methodology can serve as a catalyst for the analyses of other data
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with similar features; two particular characteristics are heterogeneity and censor-
ing, which appear to be common in biomedical and genomics studies.
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