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CLONALITY: POINT ESTIMATION1
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Assessments of biological complexity for populations that are of mixed
species are central in many biological contexts, including microbiomes, tu-
mor cell population structure, and immune cell populations. Here we address
the problem of quantifying the population diversity in experiments where
high throughput DNA sequencing is used to distinguish a large number of
cell subpopulations. Our model assumes a list of clonal species and their ob-
served frequencies in each of several replicate sequencing libraries. Though
the underlying distribution of frequencies cannot be estimated well from data
coming from only a small fraction of the total cell population, one can esti-
mate well the population-level clonality, defined as the sum of squared under-
lying fractions of the respective clones, the complement of the Gini–Simpson
index. Specifically, we proposed to adaptively combine multiple unbiased es-
timators of clonality derived from pairs of replicates to construct a single
estimator without relying on the commonly used but restrictive multinomial
assumption. The new estimator performs particularly well for replicates of
unequal size. We further illustrate the proposed methods with extensive sim-
ulations and a small real data example.

1. Introduction. A quantitative understanding of the structures of biological
populations is central to many questions in science and medicine. Recent advances
in analytical chemistry have facilitated detailed descriptions of biological macro-
molecules, particularly in the area of DNA sequencing. Sampling and classification
of molecules from a complex population leads to a natural series of questions about
the number of distinct classes of molecules, and their proportions in the popula-
tion. At one extreme, the underlying population can consist of a single class; at the
other extreme, each individual in a population may be the unique representative of
its class. A practical challenge in the characterization of populations of biological
molecules is that often only a small fraction of the total can be sampled and imper-
fectly measured. In our case, the molecules are derived from cells in the blood of a
patient. Typically, this small fraction of blood from an individual is divided during
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the experiment into a few (typically 5 to 10) parts, within which the biological pop-
ulation of interest is measured. These parts are termed replicates. Specifically, one
may measure the cell population composition by amplifying pools of molecules
from the blood sample using the celebrated polymerase chain reaction (PCR) and
subsequent DNA sequencing. The result of DNA sequencing from each replicate
is total numbers of reads of different types, which are the basis for studying the
population structure. One complication is that PCR amplification may randomly
alter original cell counts. This randomness oftentimes causes violation of the sim-
ple multinomial assumption for the observed counts of different cell types. While
problems we study bear substantial resemblance to those in ecology, the sample
size and underlying model assumption can be very different.

This research is motivated by the need to quantify the diversity of the adaptive
human immune system, that of so-called V(D)J rearrangements of particular sub-
sets of T cells and B cells [Schatz and Ji (2011)]. V(D)J rearrangement occurs in
the primary lymphoid organs (bone marrow for B cells and thymus for T cells)
and in a nearly random fashion rearranges variable (V), joining (J), and in some
cases, diversity (D) gene segments. It is a mechanism of genetic recombination that
results in the highly diverse repertoire of antibodies/immunoglobulins and T cell
receptors. The subgroups of immune cells with particular V(D)J rearrangements
are termed clones. If we have two cells drawn independently from the population,
then the “collision probability” that two cells belong to the same clone is obviously
the sum of squares of the proportions of cells in different clones. Such a “collision
probability” is the complement of the Gini–Simpson index [Breiman et al. (1984),
Kaplinsky and Aranout (2016)] and a natural measure of the diversity of a popu-
lation. We term it clonality of a population; estimating it is our primary goal. In
the rest of the paper, we use clonality with respect to the V(D)J rearrangement of
immune cells to illustrate our proposal. However, the method has much broader
applications.

In addition to clonality, Shannon’s entropy is obviously another summary for
the distribution of clones. The number of different clones could be of interest as
well. The paper by Kaplinsky and Aranout (2016) speaks well to the conundrum
that no single quantity suffices. Each of these summaries can be descriptive of a
population [Laydon, Bangham and Asquith (2015)]. For estimating the number
of distinct clones in ecology, see the celebrated work of Chao (1987, 1989). The
question of estimating the proportions of unseen clones can be traced back to the
work done in Bletchley Park during World War II [Aldrich (2010), Good (1953),
Robbins (1968)]. An analogous problem has been studied in linguistic contexts by
Efron and Thisted (1976). In general, it is even more difficult to estimate aforemen-
tioned quantities than clonality without strict parametric assumptions, and they are
not our focus.

Once clonality is available for a group of subjects, subsequent analyses can be
conducted to examine the association between different phenotypes and immune
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diversity characterized by clonality. For example, one hypothesized cause for in-
adequate vaccine efficacy among the elderly is their lost immune diversity as a
consequence of repeatedly responding to past challenges. This hypothesis can be
tested by examining if the clonality increases with age. One may also directly as-
sociate the vaccine efficacy measured by, for example, antibody titer changes after
the vaccination, with clonality. Since the true value of clonality would never be
known considering the huge number of immune cells in our body, we need to
use its estimated counterpart in aforementioned analyses. Consequently, the power
and efficiency of those analyses depend on the accuracy of clonality estimator. As
is well known from measurement error literature, using inaccurate estimators for
the true clonality can greatly dilute the underlying association of interest [Fuller
(1987)].

In this paper, we attempt to construct an approximately unbiased estimator with
a small variance. In Section 2, we address necessary assumptions and describe
the proposed estimation method. Section 3 gives results of extensive simulations
for evaluating improvements of the new clonality estimator over existing ones.
Section 4 is a report on applications to data from a recent study of CD4 T cells.
Finally, Section 5 includes further discussion.

2. Method.

2.1. Model assumptions. We assume that p = (p1, . . . , pC)′ is a probability
vector whose coordinates represent the relative abundance of V (D)J rearrange-
ments of T cells or B cells for an individual. The dimension C is termed richness.
Without loss of generality, we assume that p1 ≥ p2 ≥ · · · ≥ pC > 0 for p. We wish
to estimate clonality

θ =
C∑

i=1

p2
i .

The closer clonality is to 1, the more peaked the probability vector p ∈ RC is, and
the less diverse the cell population is.

Only the finite set of vectors Ri , 1 ≤ i ≤ nR , is observed in practice. The index
nR is the number of replicates; each Ri consists of a vector of nonnegative integers
(Ri1, . . . ,RiC)′, where Rij is the count of sequenced reads from the j th clone in
the ith replicate. We first assume that

(2.1) {R1,R2, . . . ,RnR
} are independent.

The observed clone frequencies in the ith replicate are represented by the vector
p̂i = (p̂i1, . . . , p̂iC)′, where p̂ij = Rij/

∑C
j=1 Rij . The denominator of the fraction

is the total number of reads in replicate i. Since clonality θ = p′p = ‖p‖2
2, one

obvious estimate of θ is its empirical counterpart

n−1
R

nR∑
i=1

‖p̂i‖2
2.
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However, the function x2 is convex. So, Jensen’s inequality implies that the cited
average is upwardly biased, even if E(p̂i |p) = p.

A more sophisticated approach is to assume that Ri follows a multinomial dis-
tribution, a common assumption adopted in ecology [McKane, Alonso and Solé
(2004)], and construct the simple unbiased estimators for clonality as

Ci∑
j=1

Rij (Rij − 1)

Ri.(Ri. − 1)
, 1 ≤ i ≤ nR,

where Ci is the observed richness in replicate i. However the multinomial as-
sumption is often too strong and may be violated in intended applications. The
underlying reason is that while the number of sampled cells from different clones
may follow a multinomial distribution, the sequenced reads from each cell intro-
duce extra randomness, so the distribution of counts of reads from different clones
is no longer multinomial. The objective of this paper is to construct a valid and
accurate estimator under the weak but plausible assumption that

(2.2) E(p̂i |Ri.) = p.

To this end, define εi = (εi1, . . . , εiC) by εi = p̂i − p. Thus, E(εi |Ri.) = 0, the
C dimensional vector whose every entry is 0. If Ri |Ri. follows a multinomial dis-
tribution with the probability p, then clearly (2.2) is satisfied. In fact, it can hold
true in cases well beyond the multinomial setting. For example Ri |(Ri.,pi ) may
follow a multinomial distribution MN(Ri.,pi ) with a random probability vector
pi following a complicated distribution across replicates, but E(pi |p) = p. This
assumption in general is true if there is no systematic “bias” in generating the ob-
served counts from sampled cells such as sample contamination during sequenc-
ing.

2.2. Clonality estimation. The assumptions (2.1) and (2.2) imply that for
k < l,

E(p̂kj p̂lj |Rk.,Rl.) = p2
j

for all 1 ≤ j ≤ C. Therefore, we may define

θ̂(k,l) = p̂′
kp̂l =

C∑
j=1

p̂kj p̂lj ,

as an unbiased estimator of θ . Note that although we observe only positive p̂lj ,
and C is unknown, θ̂(k,l) can always be calculated from the observed data. Since
E(θ̂(k,l)|Rk.,Rl.) = θ , the weighted average

θ̂∗
w =

∑
1≤k<l≤nR

w(Rk·,Rl·)θ̂(k,l)∑
1≤k<l≤nR

w(Rk·,Rl·)
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is also an unbiased estimator for θ . That is, E(θ̂∗
w|R1., . . . ,RnR.) = θ for any

weight function w. A special case for which w(r1, r2) = r1r2 was employed by
Parameswaran et al. (2013).

To construct a better estimator, we need to consider the following fact. Suppose
that we have M asymptotically unbiased estimators of θ , θ̃1, . . . , θ̃M . We may com-
bine them to obtain a more efficient estimator by computing

θ̃ =
M∑
i=1

wiθ̃i,

where (w1, . . . ,wM)′ = Cw�−1
M 1M , Cw is a constant such that

∑M
i=1 wi = 1,

1M is a M dimensional vector whose every entry is 1, and �M is the variance-
covariance matrix of (θ̃1, . . . , θ̃M)′. Therefore, to choose a good weighting scheme
for θ̂∗

w , we need to study the covariance between θ̂(k,l) and θ̂(g,h) for all possi-
ble pairs of (k, l) and (g,h). If all four subscripts are distinct, then obviously
Cov(θ̂(k,l), θ̂(g,h)|Rk.,Rl.,Rg.,Rh.) = 0 due to the assumption of independence
(2.1). Our next step is to study the covariance in case that three indices are dis-
tinct, but the fourth is common. To that end, without loss of generality, we assume
l = g and have

Cov(θ̂(k,l), θ̂(g,h) | Rk.,Rl.,Rg.,Rh.)

= E(θ̂(k,l)θ̂(l,h) | Rk.,Rl.,Rh.) − θ2

= E
{
(p + εk)

′(p + εl)(p + εl)
′(p + εh) | Rk.,Rl.,Rh.

} − θ2

= p′E
(
εlε

′
l | Rl.

)
p.

For our last consideration, we study the case that (k, l) = (g,h) and have

Cov(θ̂(k,l), θ̂(g,h) | Rk.,Rl.,Rg.,Rh.)

= E
(
θ̂2
(k,l) | Rk.,Rl.

) − θ2

= p′{E(
εkε

′
k | Rk.

) + E
(
εlε

′
l | Rl.

)}
p + Tr

{
E

(
εkε

′
k | Rk.

)
E

(
εlε

′
l | Rl.

)}
,

which can be approximated by

p′{E(
εkε

′
k | Rk.

) + E
(
εlε

′
l | Rl.

)}
p

under the assumption that

(2.3) Tr
{
E

(
εkε

′
k | Rk.

)
E

(
εlε

′
l | Rl.

)} � p′{E(
εkε

′
k | Rk.

) + E
(
εlε

′
l | Rl.

)}
p.

In our assumption (2.2), the coordinates of ε are typically small, and one may ex-
pect that the first term in (2.3) involving products of four such coordinates tends to
be smaller than the second term involving the product of only two. To approximate
the aforementioned correlations, we introduce one additional assumption that

(2.4) ψi = p′E(εiε
′
i | Ri.)p

E{‖εi‖2
2 | Ri.}θ

, i = 1, . . . , nR,
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are independent of the replicate i, that is, equal to a constant ψ̄ . In the Appendix,
we have shown that assumptions (2.3) and (2.4) hold under a simple yet reasonable
model.

Under assumptions (2.3) and (2.4),

Cov(θ̂(k,l), θ̂(g,h) | Rk.,Rl.,Rg.,Rh.) = θψ̄
∑

i∈{k,l}∩{g,h}
E

{‖εi‖2
2 | Ri.

}
.

Therefore, the optimal weighting scheme depends on only a good approximation
to E{‖εk‖2

2 | Rk.}. To this end, we approximate E{‖εk‖2
2 | Rk.} by the reciprocal

of the kth diagonal element of the nR × nR matrix �̂
−1
p , where

�̂p =

⎛
⎜⎜⎜⎝

max
(‖p̂1‖2

2, θ̂
)

θ̂ · · · θ̂

θ̂ max
(‖p̂2‖2

2, θ̂
) · · · θ̂

· · · · · · · · · · · ·
θ̂ θ̂ · · · max

(‖p̂nR
‖2

2, θ̂
)

⎞
⎟⎟⎟⎠

is a regularized version of the covariance matrix of the random vectors (p̂1i , . . . ,

p̂nRi)
′, and θ̂ is an initial estimator for θ such as that proposed by Boyd et al.

(2009) and Parameswaran et al. (2013). Specifically, this amounts to estimating
E{‖εk‖2

2 | Rk.} by

êk = (‖p̂k‖2
2 − θ̂

)
+ +

(∑
j 
=k

1

(‖p̂j‖2
2 − θ̂ )+

+ 1

θ̂

)−1
.

In other words, while ‖p̂k‖2
2 − θ̂ should approximate E{‖εk‖2

2 | Rk.}, this new esti-
mator adjusts the naive estimator upwardly to avoid negative values. Therefore, we
may construct an estimator for �0, the nR(nR −1)/2×nR(nR −1)/2 dimensional
variance-covariance matrix for the estimators {θ̂(k,l),1 ≤ k < l ≤ nR} up to a con-
stant multiplier. Denote the estimator by �̂0, whose entry indexed by (k, l) and
(g,h) is 0 if {k, l} and {g,h} are entirely distinct and

∑
i∈{k,l}∩{g,h} êi , otherwise.

Next, we may construct a set of estimators for clonality based on {θ̂(k,l),1 ≤ k <

l ≤ nR} with different weighting schemes. For the first estimator θ̂1, the weight for
θ̂(k,l) is proportional to Rk.Rl., which is proposed by Parameswaran et al. (2013).

For the second estimator θ̂2, the weights are proportional to �̂
−1
0 1nR(nR−1)/2. In

practice, we have found that the estimated covariance matrix is likely to be (nearly)
singular, which results in large variability in weights used in the linear combina-
tion. Therefore, we consider three new estimators θ̂i , i = 3,4,5, whose weights
are proportional to �̂

−1
j 1nR(nR−1)/2, where �̂j , j = 3,4,5, are regularized coun-

terparts of �̂0. Specifically,

�̂3 = 1

2
(�̂0 + ēI),

�̂4 = 1

2

{
�̂0 + diag(�̂0)

}
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and

�̂5 = 1

2

{
�̂0 + diag(�̂0 − emin) + emin1nR(nR−1)/21′

nR(nR−1)/2
}
,

where I is the nR(nR − 1)/2 by nR(nR − 1)/2 identity matrix, ē = n−1
R

∑nR

k=1 êk ,
and emin = min{ê1, . . . , ênR

}. The choice of these three regularization schemes is
out of convenience and simplicity: the first two are analogous to the ridge regu-
larization to the covariance and correlation matrices, respectively, and the last one
partially offsets the regularization of the second by adding a small positive constant
to all off-diagonal elements of the matrix. There are other types of regularization in
estimating the covariance matrix [see Fan, Liao and Liu (2016) and its references].
One unique aspect of our problem is that we focus on approximating the vector
�−1

0 1nR(nR−1)/2 rather than the covariance matrix itself.
Without prior knowledge, it is not clear which of the θ̂j performs better than

others for the observed data. Instead of choosing among them, our proposed esti-
mator is a new linear combination of the aforementioned five estimators {θ̂j , j =
1, . . . ,5}. The weight again is proportional to �̂

−1
θ 15, where �̂θ is the jackknife

estimator for the variance-covariance matrix of the random vector θ̂ = (θ̂1, . . . , θ̂5)
′

[Miller (1974)]. Specifically, for j = 1, . . . , nR , we calculate θ̂ without using the

j th replicate. Denoting the resulting vector by θ̂
(−j)

, we have

�̂θ = nR − 1

nR

nR∑
j=1

(
θ̂

(−j) − θ̂
)(

θ̂
(−j) − θ̂

)′
.

In summary, the final estimator θ̂F can be constructed via the following steps:

1. Obtain {θ̂(k,l)} and {êk}.
2. Obtain �̂j , j = 0,3,4,5 and θ̂j , 1 ≤ j ≤ 5 as linear combinations of θ̂(k,l).
3. Obtain �̂θ and θ̂F as the corresponding linear combination of {θ̂j ,

1 ≤ j ≤ 5}.
REMARK 1. Even with the proposed regularization, θ̂j (and θ̂F ) may some-

times be negative! One remedy is to force all the weights to be nonnegative by
introducing additional regularization [Tian et al. (2005)]. Specifically, let

w(λ) = {
�̂j + λdiag(�̂j )

}−11nR(nR−1)/2

for λ ≥ 0. We may choose a small λ so that all the components of w(λ) are non-
negative. The weights used in combining estimators are then obtained by rescaling
the corresponding w(λ) so that the rescaled weights sum to 1. One formal way to
identify the nonnegative weights is to solve the quadratic programming problem

min
w

w′�̂jw subject to w ≥ 0,w′1nR(nR−1)/2 = 1,

where the inequality w ≥ 0 is component-wise.
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REMARK 2. Our final estimator θ̂F is also a linear combination of {θ̂(k,l),1 ≤
k < l ≤ nR}. Ideally we want to estimate clonality as a direct linear combination of
these nR(nR − 1)/2 unbiased estimators {θ̂(k,l),1 ≤ k < l ≤ nR}. However, the op-
timal weights of such a linear combination depend on �0, the variance-covariance
matrix of {θ̂(k,l),1 ≤ k < l ≤ nR}. Without additional and often unverifiable as-
sumptions, it is not estimable with a limited number of replicates. For example, it
is clear that the jackknife procedure does not apply here. Consequently, the per-
formance of these five proposed initial estimators as direct combinations of θ̂(k,l)

can be poor in practice. The biggest advantage of constructing the final estima-
tor from these five rather than the original nR(nR − 1)/2 simple estimators is that
while the proposed estimator �̂0 may be inaccurate due to violating assumption
(2.3) or (2.4), the variance-covariance matrix of the five estimators can be reliably
estimated via the nonparametric jackknife procedure. Thus, the weights of θ̂(k,l)

used in constructing θ̂F are still adaptive to the data without relying entirely on
the quality of the estimator of �0. Because of this adaptivity, we have found that
the empirical performance of θ̂F is fairly robust. When nR is small, it is prudent to
consider fewer initial estimators since the jackknife procedure may fail to estimate
accurately the covariances of initial estimators.

3. Simulation study. In this section, we show the results from a series of sim-
ulations to study the finite sample performance of the proposed estimator by com-
paring it with some existing alternatives. We simulate the observed data mimicking
the underlying mechanism of the sequencing process. Specifically, the counts Ri

are generated via the following steps:

1. Simulate the number of cells of different clones from a multinomial dis-
tribution MN(ni, p̃i ) for the ith replicate, where the total number of cells in the
replicate, ni , is given a priori, p̃i ∼ Dirichlet(100C,p), reflects the inhomogene-
ity of clone distributions in serum samples and p is the true clone probabil-
ity.

2. Denote the number of cells of the kth clone by nik, k = 1, . . . ,C. Simulate
the number of reads originating from each cell independently from a distribution
L× 2S , where L ∼ Bin(1,0.1) and S ∼ Bin(12,0.75) represent if the DNA frag-
ment has successfully ligated and the number of successful PCR cycles, respec-
tively.2 Let the generated reads be {ζ1, . . . , ζni

}, where ni is the total number of
sampled cells. Without loss of generality, we assume that all cells are sorted so
that the first ni1 cells are from the first clone, the next ni2 cells are from the sec-
ond clone, and so forth. Then there are ri1 = ∑ni1

j=1 ζj reads from the first clone

2The choice of these parameters quantitatively but not qualitatively affects the simulation results
presented in this section.
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and

rij =
ni1+···+nij∑

j=ni1+···+ni(j−1)+1

ζj

reads from the j th clone for j = 2, . . . ,C.
3. Simulate the number of sequenced (observed) reads of the j th clone from

independent Poisson distributions, that is,

Rij ∼ Poisson
(

rij R̃i∑C
j=1 rij

)
, j = 1, . . . ,C,

where R̃i is the expected sequencing depth for the ith replicate.

The observed data consist of all nonzero Rij s. Thus,

E(p̂ij ) = E

(∑ni1+···+nij

j=ni1+···+ni(j−1)+1 ζj∑ni

j=1 ζj

)
= E

(
nij

ni

)
= E(p̃ij ) = pj ;

and therefore it satisfies our key assumption (2.2). It is also clear that Ri =
(Ri1, . . . ,RiC)′ does not follow a multinomial distribution.

For each simulated data set, we constructed five estimators of clonality: (1) the
proposed estimator θ̂regF with regularization to ensure nonnegative weights; (2) the
weighted estimator θ̂w1 = θ̂∗

w with w(r1, r2) = r1r2; (3) the weighted estimator
θ̂w2 = θ̂∗

w with w(r1, r2) = r1r2/(r1 + r2); (4) the naïve estimator

θ̂Naive =
C∑

j=1

R2
.j

R2
..

,

where R.. = ∑C
j=1 R.j ; and (5) the unbiased estimator under the multinomial as-

sumption

θ̂MN =
C∑

j=1

R.j (R.j − 1)

R..(R.. − 1)
.

The performance of an estimator of clonality ˆ̂
θ is measured by the base 2 log-

transformed empirical mean squared error (MSE)

log2
{
E(

ˆ̂
θ − θ0)

2}
using estimators from 500 independently simulated datasets. We have also esti-
mated the relative bias for each estimator defined as

E(
ˆ̂
θ − θ)/θ.
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In the first set of simulations, we let nR = 8, C = 106 and pj ∝ {log(1 + j)}−1.
For the total numbers of cells sampled across replicates, we let (n1, . . . , n8)

′
be n1 = (8, . . . ,8)′ × 105 or n2 = (16,16,8,6,4,2,1,1)′ × 105. For sequenc-
ing depths across replicates, we let (R̃1, . . . , R̃8) be R̃1 = (4, . . . ,4)′ × 105 or
R̃2 = (2,2,4,4,4,4,8,8)′ × 105. In the simulation settings 1–4, we consider all
four different combinations of numbers of sampled cells and sequencing depths
in the order of (n1, R̃1), (n1, R̃2), (n2, R̃1), and (n2, R̃2). We also considered
pj ∝ j−0.25, j−0.5, and j−1 in simulation settings 5–8, 9–12, and 13–16, re-
spectively. The true clonality was 1.01 × 10−6, 1.12 × 10−6, 3.60 × 10−6, and
7.9 × 10−3 for aforementioned four choices of p. Simulation results on MSE and
bias are summarized in Tables 1 and 2, respectively. The results show clearly that
the performance of the proposed estimator is superior to other competitors across

TABLE 1
The log2(MSE) of θ̂regF and alternatives including θ̂Naive, θ̂MN, θ̂w1, and θ̂w2 in estimating
clonality based on 500 simulations when the sequencing reads do not follow a multinomial

distribution

Setting (n1,R1) (n1,R2) (n2,R1) (n2,R2)

pj ∝ {log(1 + j)}−1

θ̂regF −52.82 −52.96 −52.66 −52.49
θ̂w1 −52.82 −52.84 −51.59 −49.89
θ̂w2 −52.82 −52.94 −51.59 −50.68
θ̂Naive −36.24 −35.71 −33.10 −30.80
θ̂MN −36.51 −35.90 −33.19 −30.83

pj ∝ j−0.25

θ̂regF −52.72 −52.68 −52.39 −52.36
θ̂w1 −52.72 −52.59 −51.27 −49.62
θ̂w2 −52.72 −52.67 −51.27 −50.44
θ̂Naive −36.24 −35.71 −33.10 −30.80
θ̂MN −36.51 −35.90 −33.19 −30.83

pj ∝ j−0.5

θ̂regF −47.60 −47.53 −47.19 −47.01
θ̂w1 −47.59 −47.37 −46.08 −44.96
θ̂w2 −47.59 −47.53 −46.08 −45.49
θ̂Naive −36.24 −35.71 −33.10 −30.80
θ̂MN −36.51 −35.90 −33.19 −30.83

pj ∝ j−1.0

θ̂regF −27.59 −27.47 −25.25 −25.02
θ̂w1 −27.72 −27.58 −26.18 −25.15
θ̂w2 −27.72 −27.76 −26.17 −25.66
θ̂Naive −27.71 −27.47 −26.17 −24.93
θ̂MN −27.71 −27.47 −26.17 −24.93
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TABLE 2
The relative bias of θ̂regF and alternatives including θ̂Naive, θ̂MN, θ̂w1, and θ̂w2 in estimating
clonality based on 500 simulations when the sequencing reads do not follow a multinomial

distribution

Setting (n1,R1) (n1,R2) (n2,R1) (n2,R2)

pj ∝ {log(1 + j)}−1

θ̂regF 0.010 0.009 0.009 0.010
θ̂w1 0.010 0.009 0.009 0.010
θ̂w2 0.010 0.009 0.009 0.010
θ̂Naive 3.473 4.178 10.30 22.89
θ̂MN 3.164 3.903 9.994 22.62

pj ∝ j−0.25

θ̂regF 0.009 0.009 0.009 0.009
θ̂w1 0.009 0.009 0.009 0.009
θ̂w2 0.009 0.009 0.009 0.009
θ̂Naive 3.12 3.757 9.265 20.59
θ̂MN 2.84 3.510 9.987 20.34

pj ∝ j−0.5

θ̂regF 0.003 0.002 0.004 0.002
θ̂w1 0.003 0.003 0.003 0.004
θ̂w2 0.003 0.002 0.003 0.004
θ̂Naive 0.974 1.172 2.891 6.421
θ̂MN 0.887 1.095 2.804 6.343

pj ∝ j−1.0

θ̂regF 0.001 0.001 −0.002 0.000
θ̂w1 0.001 0.001 −0.001 0.000
θ̂w2 0.000 0.000 −0.001 0.000
θ̂Naive 0.001 0.001 0.001 0.003
θ̂MN 0.001 0.001 0.001 0.003

all cases. For example, the MSE of the proposed estimator is 80% less than that of
θ̂w1 or θ̂w2 and only a tiny fraction of that of θ̂MN, when pj ∝ {log(1 + j)}−1 with
(n2, R̃2). The performance of θ̂MN assuming a multinomial distribution for Ri is
approximately the same as that of the naïve estimator and substantially worse than
those based on θ̂(k,l)s. In the combination of n1 and R̃1, all replicates are actually
identically distributed. One may expect that θ̂w1 = θ̂w2 with equal weights for all
θ̂(k,l) is optimal. It is confirmed by the simulation. On the other hand, the proposed
estimator performs similarly well. In general, the proposed estimator has almost
no bias, while both θ̂Naive and θ̂MN can be severely biased, which contributes to
their inflated MSEs. When ρ = −1, all estimators including the naïve estimator
perform quite well. It may be due to the observation that in such a setting, the
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TABLE 3
The log2(MSE) of θ̂regF and alternatives including θ̂Naive, θ̂MN, θ̂w1, and θ̂w2 in estimating

clonality based on 500 simulations when the sequencing reads follow a multinomial distribution

pj ∝ j−0.25 pj ∝ j−0.5 pj ∝ j−1

Setting n1 n2 n1 n2 n1 n2

θ̂regF −56.63 −61.01 −48.99 −51.86 −28.74 −31.75
θ̂w1 −56.63 −61.07 −48.98 −51.95 −28.81 −31.90
θ̂w2 −56.63 −60.84 −48.98 −51.66 −28.81 −31.57
θ̂Naive −38.57 −44.69 −38.57 −44.69 −28.81 −31.94
θ̂MH −56.42 −57.39 −48.97 −51.97 −28.81 −31.94

clonality is determined by the cell probabilities of few large clones, which can be
estimated accurately.

In the second set of simulations, we let Ri follow a simple multinomial distri-
bution MN(R̃i,p). In this case, one may expect that θ̂MN is unbiased and performs
relatively well. We also let (n1, . . . , n8)

′ be n1 or n2 and pj ∝ {log(j + 1)}−1 and
j−ρ for ρ = 0.25,0.5, and 1. The results are summarized in Table 3. The results
show that under the multinomial assumption, θ̂MN indeed performs better than
others in most settings; however, the loss in the finite sample performance for the
proposed estimators is at most moderate.

The observed gain in estimation accuracy can greatly increase the power of the
subsequent statistical analysis concerning clonality. For example, one may be in-
terested in comparing clonality between two groups of patients. Assuming that
pj ∝ j−0.25 in the first group and ∝ {log(1 + j)}−1 in the second group, that is,
θ = 1.12 × 10−6 versus 1.01 × 10−6, the power depends on the effect size of the
test, which is the signal to noise ratio and can be easily estimated via simulations.
Treating the test based on the proposed estimator as the reference, the asymptotic
relative efficiency (ARE) of tests based on θ̂w1, θ̂w2, θ̂Naive, and θ̂MH is estimated
as 0.25, 0.25, 0.01, and 0.01, respectively, for the setting with n2 and R̃1. The ARE
between two tests is the ratio of squared effective sizes and can be interpreted as
the inverse of the ratio of the sample sizes needed to achieve the same power.
Therefore, the test based on the proposed estimator is substantially more powerful
than alternatives, which require at least 300% more patients to reach a comparable
power. To better quantify the gain, we conducted a more realistic simulation. Un-
der the same setup, we generate clone frequencies for two groups of patients. For
the ith patient from group k, the probability pj ∝ j−ρik , j = 1, . . . ,106, where ρik

is drawn from beta distribution Beta(100,300) and Beta(150,400) for k = 1 and
2, respectively. We estimated the power of the unequal variance t-test (Behrens–
Fisher test) comparing clonality between two groups of 15 patients each under
different combinations of sequencing depth and cell number based on 500 simu-
lated datasets. Although strictly speaking, the normality assumption of the t-test
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TABLE 4
The empirical power of two sample t-test based on θ , θ̂regF, θ̂Naive, θ̂MN, θ̂w1, and θ̂w2 comparing
the clonality of pj ∝ j−ρ,ρ ∼ Beta(100,300) with that of pj ∝ j−ρ,ρ ∼ Beta(150,400) with 15

patients per group

Setting (n1,R1) (n1,R2) (n2,R1) (n2,R2)

θ 74% 74% 74% 74%
θ̂regF 72% 73% 72% 73%
θ̂w1 71% 70% 24% 7%
θ̂w2 71% 70% 24% 7%
θ̂Naive 72% 73% 65% 52%
θ̂MH 72% 73% 65% 61%

is violated here, the t-test is still approximately valid and commonly used in prac-
tice.3 The results are summarized in Table 4. It is clear that the power of the test
using the proposed estimator is almost as good as that using the true clonality,
while the tests based on other estimators may suffer substantial power loss under
selected settings.

The power loss is not the only consequence of using an inaccurate estima-
tor and we conducted an additional set of simulations to examine the dilution
of the correlation coefficient caused by not using the true clonality. To this end,
we simulate clonality for 1000 patients, where pj ∝ j−ρ , j = 1, . . . ,106, and
ρ ∼ Beta(60,300). The simulated ρs are in the range of [0.1,0.25]. We then sim-
ulate an independent variable Z = (ρ + ερ)/

√
2, where the independent error ερ

follows the same beta distribution as ρ. We calculate the correlation coefficient
between Z and the true clonality as well as the estimators thereof. The results are
summarized in Table 5. The proposed estimator has the smallest dilution for the
correlation coefficient between Z and the true clonality across all settings. Dilution
from other estimators can be big, which would have a substantial negative impact
on the estimation and hypothesis testing for the correlation coefficient of interest.

4. Example. In this section we illustrate the application of our approach in a
recent study conducted by Qi et al. (2014). The T-cell receptors (TCRs) diversity
plays a crucial role in determining the ability of the immune system to efficiently
respond to various pathogenic challenges [Qi et al. (2014)]. It is desirable to in-
vestigate human TCR diversity by sequencing a large number of sequences and
extrapolating the information based on an appropriate statistical method [Boyd et
al. (2009)]. Among the several metrics for TCR diversity are richness and clarity;

3Based on additional simulations (not shown here; available from the first author), the empirical
Type I errors based on different estimators of clonality varied from 0.03 to 0.06 with 15 patients per
group, further confirming the validity the t-test.
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TABLE 5
The estimated correlation coefficient between Z and θ , θ̂regF, θ̂Naive, θ̂MN, θ̂w1, and θ̂w2 based on

1000 patients

Setting (n1,R1) (n1,R2) (n2,R1) (n2,R2)

θ 0.72 0.72 0.72 0.72
θ̂regF 0.65 0.66 0.62 0.60
θ̂w1 0.60 0.53 0.12 0.03
θ̂w2 0.60 0.53 0.12 0.03
θ̂Naive 0.65 0.65 0.46 0.27
θ̂MH 0.65 0.66 0.46 0.36

we focus on the latter. In the study by Qi et al. (2014), five replicate TCR libraries
of CD4 naïve T cells, CD4 memory T cells, CD8 naïve T cells, and CD8 memory
T cells are sequenced from seven participants. The sequencing depth Ri. varied
from 8.9 × 104 to 7.4 × 105 with a median level of 3.2 × 105. Figure 1 shows
the observed cumulative proportions of CD4 naïve and memory T cells from the

FIG. 1. The cumulative proportion of CD4 naïve and memory T cells from the top 10,000 clones
for a 33 year-old female. Five curves represent results from independent replicates.



ESTIMATING CLONALITY 127

top clones of a 33 year-old female. From the figure, it is clear that the top 10,000
clones account for a bigger proportion of CD4 memory T cells than naïve CD4
T cells, reflecting the relative evenness of the distribution of clone sizes of naïve
T cells. Due to the limited number of sampled T cells (∼10−4% out of the to-
tal T-cell repertoire) as well as the sequencing depth, the estimation for the entire
distribution of clone sizes is very difficult. However, because there were multiple
independent measurements per individual, we may apply the proposed method to
estimate clonality for a given subset of T cells for that individual. Specifically, we
calculate the proposed estimator θ̂regF as well as the naïve estimator θ̂Naive for clon-
ality of CD4 naïve and memory T cells for each of the seven participants. First, the
clonality of CD4 memory T cells is several orders of magnitudes greater than that
of the CD4 naïve T cells, confirming our previous observation on the evenness of
the distribution of the naïve T cell clones. Second, for the same reason, while the
proposed and naïve estimators yield similar estimates of clonality for memory T
cells, they become very different for naïve T cells. For example, for the individual
in Figure 1, the clonality estimates (θ̂Naive, θ̂regF) = (8.35×10−5,8.06×10−5) for
CD4 memory T cells and (3.31 × 10−6,3.34 × 10−8) for CD4 naïve T cells. This
is similar to the pattern observed in the simulation study, and we believe that the
proposed estimator is much more reliable than its naïve counterpart for estimating
clonality of more uniformly distributed CD4 naïve T cell clones.

We may estimate the variance of log(θ̂regF) by its jackknife variance estimator
denoted by σ̂θ , that is, performing a second round of jackknife in addition to the
jackknife step used for estimating the variance-covariance matrix of (θ̂1, . . . , θ̂5)

′.
We then may construct a 95% confidence interval for clonality by approximating
the distribution of {log(θ̂regF)− log(θ)}/σ̂θ with a t-distribution of nR −1 degree of
freedom. For the same individual above, the 95% confidence interval of clonality is
(7.80 × 10−5,8.33 × 10−5) for the memory CD4 T cells and (2.16 × 10−8,5.14 ×
10−8) for the naïve CD4 T cells. Due to the small number of replicates, these
confidence intervals need to be interpreted cautiously.

Last, we compare clonality of naïve CD4 T cells between three participants
younger than 40 and four participants older than 70 using a two sample t-test.
Clonalities are log transformed before the test. The p value based on θ̂regF is 0.08
with the estimated average log-transformed clonality being −11.92 for old partic-
ipants and −15.16 for young participants, suggesting that the immune diversity
of older participants is substantially lower than that of younger participants with
a marginal statistical significance. The test based on θ̂Naive yields similar result.
However, the estimated average log-transformed clonality becomes −11.60 for old
participants and −12.59 for young participants, representing a much smaller group
difference. We have also compared clonality of memory CD4 T cells between three
young and four old participants. The results based on θ̂regF and θ̂Naive are almost
identical. It is not a surprise, since two methods yield similar estimates of clonal-
ity for memory T cells as mentioned above. Based on θ̂regF, the estimated average
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log-transformed clonality is −7.43 for old participants and −9.29 for young par-
ticipants and the two-sided p-value is 0.049, also confirming the hypothesis that
immune diversity in old participants is lower than that in young participants. The
sample size of the analysis is limited, partly due to the sequencing cost. We may
expect that with continuously dropping cost, similar data may be collected in a
much larger cohort of patients, allowing more sophisticated analysis with clearer
advantages of using the proposed estimator.

5. Discussion. Estimating various functionals of p is particularly important
in evaluating the health of the immune system of a patient. This may be a patient
with a hematopoietic malignancy. It is known that such patients may have compro-
mised immune systems of severely depleted cell diversity [Laydon, Bangham and
Asquith (2015), Section 2 and its references]. In such a case, clonality can be a sen-
sitive health indicator of the immune system. The goal of this paper is to demon-
strate that from data on frequencies of V(D)J rearrangements, our new approach
can accurately estimate the underlying clonality. We note that this methodology is
applicable to data sets in many other biological contexts, where data are obtained
by repeated sampling from a large population, and the proportions of different
species within the total population are of interest. Population, whose diversity is of
potential interest, ranges from molecules to cells, to microorganisms, and to large
ecosystems.

If the multinomial assumption is problematic, for example, when the sampling
probability varies from capture to recapture, the proposed method is especially use-
ful. It is possible to consider more direct relaxation of the multinomial assumption
such as employing the Dirichlet-multinomial model. Such parametric assumptions
may help to estimate the variance-covariance matrix �0 and, more importantly,
facilitate the statistical inference of the clonality estimator, which warrants further
research.

The method can also be employed to estimate other functionals of p given ade-
quate number of replicates. For example, η = ∑C

i=1 p3
i , which is useful for further

differentiating immune systems with similar clonalities, can be estimated by suit-
ably combining {∑C

i=1 p̂j i p̂ki p̂li ,1 ≤ j < k < l ≤ nR}. The optimal choice of the
weighting scheme used in such a combination is more complicated and a topic of
future research.

The R-package lymphclon implementing our approach can be found in the
CRAN repository.

APPENDIX: MODEL ASSUMPTIONS ON ESTIMATING �0

The proposed estimation procedure for �0 relies on assumptions (2.3) and
(2.4). To assess their plausibility in practice, we consider the following data gen-
erating process for the ith replicate: first, ni cells are sampled and numbers of
cells from different clones follow a multinomial distribution MN(ni,p); second,
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the observed count vector Ri is generated from another multinomial distribution
MN(Ri., p̂Ri), where p̂Ri is a random probability vector with E(p̂Ri |p̂Ni) = p̂Ni

and var(p̂Ri |p̂Ni) = �̃/ni , p̂Ni = (ni1, . . . , niC)′/ni , and nij is the number of
sampled cells from clone j . Under these simple assumptions, Ri |Ri. does not fol-
low the multinomial distribution typically assumed in the literature. One may cal-
culate that

p′E
(
εkε

′
k | Rk.

)
p =

(
1

nk

+ 1

Rk.

− 1

nkRk.

)(
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where η = ∑C
j=1 p3

j , and �p = diag(p)−pp′. Therefore, if �̃ ≈ 0, that is, p̂Ri ≈
p̂Ni , then
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which implies that

ψi ≈ (η − θ2)

θ(1 − θ)
≥ 0,

independent of i, and the term Tr{E(εkε
′
k | Rk.)E(εlε

′
l | Rl.)} is negligible when

min(nk,Rk., nl,Rl.) � θ/η. The latter is true when the number of sampled cells
and sequencing depth are adequately large.
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