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Measuring the corporate default risk is broadly important in economics
and finance. Quantitative methods have been developed to predictively as-
sess future corporate default probabilities. However, as a more difficult yet
crucial problem, evaluating the uncertainties associated with the default pre-
dictions remains little explored. In this paper, we attempt to fill this blank by
developing a procedure for quantifying the level of associated uncertainties
upon carefully disentangling multiple contributing sources. Our framework
effectively incorporates broad information from historical default data, cor-
porates’ financial records, and macroeconomic conditions by (a) characteriz-
ing the default mechanism, and (b) capturing the future dynamics of various
features contributing to the default mechanism. Our procedure overcomes the
major challenges in this large scale statistical inference problem and makes it
practically feasible by using parsimonious models, innovative methods, and
modern computational facilities. By predicting the marketwide total number
of defaults and assessing the associated uncertainties, our method can also be
applied for evaluating the aggregated market credit risk level. Upon analyzing
a US market data set, we demonstrate that the level of uncertainties associ-
ated with default risk assessments is indeed substantial. More informatively,
we also find that the level of uncertainties associated with the default risk
predictions is correlated with the level of default risks, indicating potential
for new scopes in practical applications including improving the accuracy of
default risk assessments.

1. Introduction. Measuring the corporate default risk has long been crucial in
many business decisions. Examples include loan evaluation where a bank analyzes
the credit quality of a borrower over various future potential borrowing periods,
internal control considerations where corporate management needs to periodically
and accurately assess the firm’s present financial condition, investment screening
where investors predict financial health of investments under consideration and
screen out undesirable investments, and determining the credit ratings by rating
agencies.
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Also, recent introduction and expansion of credit derivative markets have re-
newed interests in this topic. According to the survey by the International Swaps
and Derivatives Association (ISDA), the credit default swap (CDS) market, the
most popular type of credit derivatives, has exploded over the past decade to about
$30 trillion in 2010, up from $0.9 trillion in 2001. The default probabilities un-
derlie the pricing of such financial instrument, and CDS reflects the market-based
estimate of default probabilities. The Basel II bank regulation has further pushed
the topic to the center of the banking regulation. In particular, based on the Basel
II accord, banks and bank regulators need to determine the appropriate level of
regulatory and economic capital to be held by a bank to be in line with the credit
risk represented by its loan portfolio, where borrower default probabilities play an
explicit role.

In the finance literature, there are two broad categories of approaches for corpo-
rate default modeling—the structural and the reduced form modeling approaches.
The classical structural approach of Merton (1974) assumes that a firm defaults
when its assets drop to a sufficiently low level relative to its liabilities. A key im-
plication is that a firm’s conditional default probability is completely determined
by the only key variable, its distance to default, which is closely related to the
firm’s annual asset growth, accounting for its levels of liabilities and volatilities;
see, among others, the review of the structural approaches in Altman, Resti and
Sironi (2004). Campbell, Hilscher and Szilagyi (2008) argue that despite the im-
pressive predictive power of the Merton’s (1974) structural model, in light of its
restrictive functional form, it is better to use a reduced-form model, allowing more
covariates entering default predictions; see also Duffie and Lando (2001) on the
dependence of defaults with other covariates. The first generation of the reduced-
form models, for example, those in Beaver (1966, 1968) and Altman (1968), pri-
marily rely on the multiple discriminant analysis (MDA), classifying a firm into
one of the possible categories based on the score and rank computed from its indi-
vidual characteristics. The second generation approaches, such as Ohlson (1980)
and Zmijewski (1984), propose to use the logistic regression analysis, attempting
to assess the conditional probability that a firm would go default in the next period
of time. Both the first and second generations may be considered as static ap-
proaches, as they have been using single-period classification or probability mod-
els with the bankruptcy data but have ignored their multiple-period feature. As
pointed out by Shumway (2001), static models would produce biased and incon-
sistent estimates of bankruptcy probabilities due to their ignoring the dynamics
over time, and may introduce an unnecessary selection bias into the estimates. The
current generation of the reduced form models incorporates the dynamics over
time by examining the duration of the default events. Shumway (2001) proposes a
hazard function based duration modeling with time-dependent predictors; see also
Chava and Jarrow (2004), Campbell, Hilscher and Szilagyi (2008), Bharath and
Shumway (2008), and Beaver, Correia and McNichols (2012) among others. In
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particular, Chava and Jarrow (2004) demonstrate the superior predicting perfor-
mance of Shumway’s (2001) model over the first [i.e., Altman (1968)] and second
[i.e., Zmijewski (1984)] generations of models. The most recent development of
the reduced form modeling approaches on default predictions has an emphasis on
the corporate defaults over multiple periods; see, for example, Duffie, Saita and
Wang (2007) and Duan, Sun and Wang (2012).

While various quantitative procedures have been developed for predicting cor-
porate default probabilities, point predictions are serving as the dominating mea-
sures in the current state of knowledge. A blank in the literature is that the point
predictions are equipped with no assessment of the associated prediction uncer-
tainties. A main reason behind it is that the task is too challenging due to the
huge scale and high complexity of the problem. Clearly, the historical corporate
and macroeconomic time series data are of high dimensionality and complexity.
Meanwhile, all companies exposed to future default risks would require assess-
ments of their default risks and the associated level of uncertainties. The level of
complexity would substantially increase further if one concerns the prediction with
multiple future periods. Fundamentally, there are multiple contributing sources to
the uncertainties including those from the default mechanism, the future dynamics
of the corporates and economic environment, and the model estimation errors; see
Section 2 for more details on the source of uncertainties.

Our investigation intends to develop a procedure obtaining prediction intervals
for quantifying the level of uncertainties associated with default risk predictions,
taking the three aforementioned sources of uncertainties into account. Studies on
the prediction intervals with duration modeling have been documented in the liter-
ature in areas such as the reliability; see, for example, Hong, Meeker and McCalley
(2009) and reference therein. Nevertheless, existing methods do not apply to the
scenario of corporate default prediction due to the unique challenging practical
aspects of the problem; see Sections 2 and 3.

Given the complexity of the models in this scenario, explicit formulas gener-
ally do not exist for constructing valid prediction intervals. Thus, our framework
resorts to resampling procedures built upon parametric stochastic models. When
the number of companies at default risk is at the order of tens of thousand with
history of tens of years, challenges are arising from (1) complicated structure of
covariates with large number of unknown parameters, (2) large scale of the data
sets, and (3) complicated data structure. For example, the data set in our analy-
sis in Section 4 for the US market over the period 1990–2009 contains more than
10,000 companies, and the number of monthly observations exceeds 1,000,000.
However, only few companies have observations during the entire period because
many companies either went default or exited the market due to other reasons.
Among all companies in the data set, missing data are overwhelming and the time
horizons for those observations are highly heterogeneous among the companies.
Our Section 3 provides detail on our framework developed for uncertainties as-
sessments with prediction intervals for both point predictions and total defaults
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predictions, overcoming those challenges by using parsimonious models, innova-
tive and computationally efficient methods, and powerful computational facilities.

The proposed framework in this study will contribute to the literature from sev-
eral important aspects. First and foremost, compared with the current practice of
default probability prediction which typically yields only the point estimate, the
introduction of default prediction intervals dramatically improves our understand-
ing and knowledge especially for model diagnosis and statistical inferences. Fur-
thermore, a distinguished feature of our measure is allowing for not only multiple
sources of uncertainties but also the asymmetric nature of default probability pre-
diction intervals so that the lower bound of default probability prediction would
not go below zero (which is obviously not sensible). Appropriately quantifying
the associated uncertainties is the key to valid statistical inference on the future
default probabilities. For example, to assess how well their model of default pre-
diction performs, Campbell, Hilscher and Szilagyi (2008) compare the fitted point
estimate of probability of failure (which is the average of such estimates from
each company) with the actual default rate in the market and conclude (p. 2916)
that their model somewhat overpredicts failures in 1974 to 1975, underpredicts for
much of the 1980s, and then overpredicts in the early 1990s. Obviously, additional
scope of the problem may be provided if the prediction intervals are taken into
consideration. Also, the availability of uncertainty quantification for default prob-
ability prediction would enable us to further conduct effective forecasting evalua-
tions, for example, along the line of Diebold and Mariano (1995), where one would
examine whether the apparent improvement of forecast accuracy is statistically
significant. In our data analysis reported in Section 4, facilitated by the prediction
intervals, we are able to show that the out-of-sample aggregated predictions for the
total number of defaults work quite well for multiple years.

Moreover, the uncertainties of default probability prediction should be crucial in
improving our understanding of default risk pricing on financial markets, and may
provide a new venue of exploring distress risk and/or credit risk in asset pricing.
For example, Ding et al. (2012) document the puzzling negative relationship be-
tween stock returns and default risk as measured by default probability. Giesecke
et al. (2011) report a puzzling finding on the US corporate bond market that credit
spreads are roughly twice as large as default losses and do not respond to realized
default rate. The missing uncertainties of default probability predication could be
important. As an illustration, we demonstrate by our data analysis in Section 4
that the assessments of uncertainties associated with predicted default probabili-
ties for individual companies are indeed highly informative. First of all, the level
of uncertainties can be high, especially for those companies with high predicted
default probabilities. Second, and more interestingly, we found that by incorpo-
rating the width of the prediction interval in a logistic regression for the binary
variable defined as a company going default or not, significant interaction is found
between the width of the prediction interval and the point default probability pre-
diction. This shows that the level of uncertainties associated with the point default
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probability prediction can be informative practically for solving problems. Addi-
tionally, the uncertainties of default probability prediction should shed light on
many important issues in finance where default/credit risk plays a central role. For
example, Giesecke and Kim (2011) explore the systemic risk of the financial sector
defined as the conditional probability of failure of a sufficiently large proportion
of financial institutions. We show in our Section 4 that our procedure is capable of
equipping prediction intervals with aggregated predicted total number of defaults,
a feature that can benefit various studies of systemic risks.

The rest of this paper is organized as follows. In Section 2, we disentangle
the sources of uncertainties contributing to the default predictions. We present in
Section 3 our framework for predictions and assessing their associated levels of
uncertainties for future default risks of individual companies and the total number
of future defaults on the market. Section 4 comprehensively analyzes a large-scale
US market data by developing default probability predictions and quantitatively
assessing their associated level of uncertainties. A simulation study evaluating the
accuracy of our method is presented in Section 5. Section 6 concludes this paper
and draws the picture for future research. The Supplementary Material [Yuan et al.
(2018)] contains the detail of the EM algorithm in our method.

2. Sources of uncertainties in default risk predictions.

2.1. Stochastic time-to-event. We construct our procedure in a setting for mul-
tiperiod corporate default risk prediction. For the default mechanism, we focus
on the recent reduced form models for the durations of the defaults and other
competing risk events. Event duration modeling can be broadly classified into the
time-to-event data analyses, a subject that has been intensively studied in areas
such as reliability in engineering studies, and survival analysis [see, for example,
Meeker and Escobar (1998), and Kalbfleisch and Prentice (2002)]. The key device
for the duration modeling is the event intensity function. In the survival or time-to-
event analysis, intensity function modeling plays a central role; see the monograph
Kalbfleisch and Prentice (2002) and reference therein. For corporate defaults in fi-
nance, predictions with the intensity function model also involve the stochastic
nature of the explanatory variables, and we refer to Duffie (2011) as an overview.

Modeling the durations with intensity function treats the time when a company
defaults in the future as a random variable. Meanwhile, to accommodate the fact
that a company may exit the market before going default due to events other than
bankruptcy, for example, being acquired by another company, incorporating the
competing risks are required in modeling the time-to-exit of the companies. Gen-
erally speaking, suppose there are K types of credit events competing with each
other so that in only one event that occurs the first is observed. Let Tk be the time
to the event of type k (k = 1, . . . ,K). We denote the event intensity function by
λk(t) [λk(t) ≥ 0, t ≥ 0] for the kth type of event. The event intensity function con-
nects to the survival function Sk(t) = P(Tk > t) by Sk(t) = exp{− ∫ t

0 λk(u) du};
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see, among others, Kalbfleisch and Prentice (2002) for more detail on the intensity
function.

Additional to observing that the intensity λk(t) is a function of time, it is nat-
ural to expect that features including the financial healthiness, profitability, grow-
ing perspective,etc., are affecting the future default occurrences. Meanwhile, the
macroeconomic conditions also have impact on future defaults. From the predic-
tive perspective, the company specific features and the macroeconomic conditions
are also stochastic, a source that also contributes to the uncertainties in the corpo-
rate default predictions. Therefore, adequately incorporating the dynamic features
is crucial in both predicting the defaults and assessing the associated level of un-
certainties.

We describe here how to incorporate the dynamic features as explanatory co-
variate information in the intensity function. Modeling and estimating the stochas-
tic covariate will be discussed in Section 2.4. We denote by a random vector
xt = (x1t , . . . , xpt )

T indexed by time t containing generic covariates of dimen-
sionality p. The observed covariate process is then x(t1, t2) = {xs : t1 < s ≤ t2}
representing available covariate information from t1 to t2. Subsequently, the inten-
sity function for event type k (k = 1, . . . ,K) for a company at time t with covariate
xt is characterized by λk(t;xt ). Such an intensity function models the rate (i.e.,
probability per unit time) that event k will happen instantly after time t , condi-
tioning on the covariate value. The total events intensity (i.e., something happens)
for a company at time t is λ(t;xt ) = ∑K

k=1 λk(t;xt ) by noting that competing risk
events are mutually exclusive. We also define the cumulative intensity function
for the event type k as �k[t;x(0, t)] = ∫ t

0 λk(s;xs) ds (k = 1, . . . ,K). Then the
aggregated cumulative intensity function is �[t;x(0, t)] = ∑K

k=1 �k[t;x(0, t)].

2.2. Parametric intensity function and its estimation. For practical applica-
tions, parametric intensity functions λk(·) (k = 1, . . . ,K) are often assumed for
effectively analyzing time-to-event data with meaningful practical interpretations.
In our work, we consider that the intensity function of event type k at time t

has the exponential additive form λk(t;xt ) = exp(βk0 + βk1x1t + · · · + βkpxpt ).
Treating xt as random, the framework is referred to as doubly stochastic in
Duffie, Saita and Wang (2007) for corporate default predictions. The parame-
ter β = (β10, . . . , β1p, . . . , βK0, . . . , βKp)T is unknown and needs to be estimated
from historical defaults data. Therefore, uncertainties associated with the parame-
ter estimation contribute to the uncertainties in the default predictions.

We now describe the maximum likelihood (ML) method for estimating the pa-
rameter in the intensity function. For each company, the time-to-event data are
denoted by {ti , δi ,xi (0, ti)} (i = 1, . . . , n), where n is the number of companies.
Here ti is the event time for company i if one of the K events happens, and ti
is the last observation time τ if no event occurred during the data collection pe-
riod. The event indicator for company i is δi = (δ1i , . . . , δKi)

T, where δki = 1
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and δli = 0, l �= k if event k happens to company i, and δli = 0, l = 1, . . . ,K , if no
event happens until the last observation time τ . Last, the observed covariate history
from the time origin to ti for company i is denoted as xi (0, ti) = {xi,s : 0 < s ≤ ti},
with xi,s representing the covariates of company i at time s. In this investigation,
we consider K = 2 types of events hereinafter, that is, a company defaults (k = 1)
or exits the market due to other events (k = 2).

We note that the cumulative distribution function (cdf) of the random variable T

for the time-to-event of a company, given its covariate history x(0, t), is FT (t) =
P(T ≤ t) = 1 − e− ∫ t

0
∑2

k=1 λk(s;xs ) ds = 1 − e−�[t;x(0,t)]. The marginal cdf of time
to event type k, denoted as Tk , is FTk

(t) = 1 − e− ∫ t
0 λk(s;xs ) ds = 1 − e−�k[t;x(0,t)].

The probability density function (pdf) of Tk is fTk
(t) = λk(t;xt )e

−�k[t;x(0,t)]. To
differentiate different types of observed events, let �k, k = 1,2 be the event indi-
cators. That is, �1 = 1,�2 = 0 if it is a default, �1 = 0,�2 = 1 if it is an exist
due to other reason, and �1 = �2 = 0 if no event occurred by the latest observa-
tion time (denoted by τ ) in the data set. Due to two types of competing risks, the
observed time-to-event of a company is therefore T = min(T1, T2). The fraction
of failing probability due to the type k event is

Fk(t) = Pr(T ≤ t,�k = 1) = Pr(Tk ≤ t, Tl > Tk; for all l �= k)

=
∫ t

0
fTk

(tk)
∏
l �=k

[
1 − FTl

(tk)
]
dtk =

∫ t

0
λk(s;xs)e

−�[s;x(0,s)] ds.

The joint likelihood of the event times or the last observation times ti ’s of the n

given the covariate processes xi,ti at ti and covariate history xi(0, ti) (i = 1, . . . , n)

is then given by

LT (β|DATA) =
n∏

i=1

(( 2∏
k=1

{
λk(ti;xi,ti )e

−�[ti;xi (0,ti )]}δki

)

× {
e−�[ti ;xi (0,ti )]}∏2

k=1(1−δki )

)
,

(2.1)

where λk(t;xt ) is proportional to the probability that a company has an event of
type k between time t and t + dt , where dt is an infinitesimal amount of time,
e−�[t;x(0,t)] gives the probability of observing a company that survives to time t .
The parameters β are then estimated by maximizing the joint likelihood of the
event times in (2.1). In practice, the covariate history xi (0, ti) for company i is
only discretely observable. Therefore, integration of the intensity function of event
type k [i.e.,

∫ ti
0 λk(s;xi,s) ds] can be approximated by discretization.

We remark that the uncertainties associated with the parameter estimation can
be conventionally quantified using the standard errors by inverting the observed
Fisher information matrix. In the literature, this type of standard errors are typi-
cally reported as a measure of level of uncertainties. However, considering only
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uncertainties in the parameter estimations is not yet adequate for assessing the un-
certainties associated with the multiperiod corporate default predictions. The rea-
son is that the parameter estimation procedure is a static one conditioning on the
covariate process so that it fails to incorporate any future dynamics in the covariate
process.

2.3. Covariate process and discrete-time observations. The intensity function,
on one hand, by its definition is a function of continuous time. On the other hand,
those covariates used for modeling the intensity function can only be observed at a
grid of discrete time points. Thus, the survival function, which relates to the inte-
gration of the intensity function, is typically approximated by taking the intensity
function to be piecewise constant between two adjacent observation times. Such
an approximation in fact relates the intensity function modeling to multiperiod bi-
nary response variable regression analysis with the logit or other link functions;
see, for example, Shumway (2001) and Duffie, Saita and Wang (2007). Moreover,
the one-period ahead default predictions using the logistic regression type of ap-
proaches can also be viewed as a result of piecewise constant approximation of
the intensity function; see, among others, the studies of Hillegeist et al. (2004)
and Bharath and Shumway (2008). Clearly, the accuracy of the approximation is
worse with a longer time interval between two observations, and so is the accu-
racy of the prediction using the logistic regression type approaches. Therefore,
multiperiod corporate default predictions require a more accurate account for the
future dynamics; see Duffie, Saita and Wang (2007) and Duan, Sun and Wang
(2012).

In constructing our procedure, the dynamics of the covariates process clearly
play an important role in corporate default predictions. For example, the multi-
period approach of Duffie, Saita and Wang (2007) relies on a parsimonious high-
dimensional vector autoregressive time series model for the covariate process, and
numerical approximation for integrations with respect to the future dynamics is
needed for assessing the multiperiod future corporate default probabilities. Our
model in this investigation for the high-dimensional vector time series incorpo-
rates an autoregressive component for capturing the predictive information in the
conditional mean function. The autoregressive structure is a benchmarking one
and has broad applications in time series analysis; see the overviews in the mono-
graphs Tsay (2010), Durbin and Koopman (2012) and Tsay (2014). To exploit
further the systematic/structural dynamics among the covariates, we further equip
the innovations of the vector time series with a dynamic factor model that disen-
tangles the contributions from a systematic factor component and an idiosyncratic
component.

In statistics and financial econometrics, the dynamic factor models are advan-
tageous for its parsimony and have demonstrated their promising predictive per-
formance in broad areas; see the monograph Durbin and Koopman (2012) for an
overview. In the credit risk modeling literature, the dynamic factor models have
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been demonstrated to be effective and have many successful applications. Among
them, for example, a dynamic factor model is applied in conjunction with the in-
tensity function modeling with parametric baseline hazard in Koopman, Lucas
and Monteiro (2008) for credit rating transitions, incorporating dynamic frailty
accounting for the dependence between defaults. Koopman, Lucas and Schwaab
(2011) investigate the dynamic frailty-correlations between defaults in different
segments and groups of firms, and demonstrate the impact from the latent dy-
namic factors. Equipping the latent factors with attractive practical interpretations
such as those effects from the macro, industrial, regional factors, etc., the dynamic
models are capable of incorporating multiple sources of contributions to assessing
the default risks. Koopman, Lucas and Schwaab (2012) consider the dynamic fac-
tors models incorporating multiple effects for the default counts modeling for the
2008 credit crisis. More recently, Schwaab, Koopman and Lucas (2017) investi-
gate global credit risk concerning multiple countries, and demonstrate the impacts
from the country and industry factors.

An appealing feature of the dynamic factor models is their convenience in com-
putations. For Gaussian models, the Kalman filter can be conveniently applied,
which is the case for our dynamic factor model. The Kalman filter is also capable
of handling missing data and mixed frequency data; see Bräuning and Koopman
(2014) for a recent investigation on forecasting with mixed frequency data. When
additional non-Gaussian observations are incorporated with the dynamic models,
the importance sampling based techniques are demonstrated useful for estimations.
As examples, the defaults counts data are handled together with other covariate in
the dynamic factor models of Koopman and Lucas (2008), Koopman, Lucas and
Schwaab (2011), and Schwaab, Koopman and Lucas (2017).

The main objective of our covariate process modeling concerns the dynamic for
corporate defaults predictions at the individual firm level, with a combination of
the autoregressive and dynamic factor structures. Our approach integrates the co-
variate model with the dynamic intensity function model outlined in Section 2.1,
based on which we conduct the multiperiod corporate default predictions. Here
our attempt targets at the corporate default prediction at the firm level, and it is
different from predicting the default counts as in existing studies, for example,
Koopman, Lucas and Schwaab (2011, 2012) and Schwaab, Koopman and Lucas
(2017). Computationally, it is clearly a more demanding objective. Hence exploit-
ing the impacts and benefits from the latent dynamic factors is clearly desirable
in this scenario. Our approach with the modeling device for corporate default
predictions has a few new methodological features of their own interests. First,
the systematic contributions from the latent factors among the firms are exploited
in conjunction with the autoregressive structure in a dynamic intensity function
for capturing the dynamics in predicting corporate defaults. Second, the separated
treatments of the covariate process and the default mechanism allow feasibility
and convenience for multiperiod predictions for individual firms with the dynamic
factor model—only the computationally more efficient Kalman filter is involved
when handling high-dimensional time series from thousands of firms.
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2.4. Parametric stochastic covariate process and its estimation. We now de-
scribe the parametric model for the covariate process considered in our framework.
Specifically, we denote by Xt , t = 1, . . . , τ the observed covariate process includ-
ing both firm-specific covariates for all the companies and the macroeconomic
covariates at time t . The firm-specific and macroeconomic covariates, serving as
effective reflection of the profitability as well as leverage ratio of assets to debts
of a company, and indicators for the economic condition of the nation, are used to
model the default risks. Inspired by Duffie, Saita and Wang (2007), we focus on
two firm-specific variables—the distance to default (Di,t ) and the trailing one-year
stock log-return (Vi,t ) for company i at time t . Here, the distance to default Merton
(1974) is a classical measure in corporate credit risk analysis especially from a
structural model point of view. Roughly speaking, the distance to default is defined
as the number of standard deviations of annual asset growth by which the log asset
level exceeds the firm’s log liabilities. In the classical model of Merton (1974),
a company’s conditional default probability is completely determined by its dis-
tance to default. In our studies, we use the distance to default calculated by the
method proposed in Duan, Sun and Wang (2012). For macroeconomic variables,
we choose the trailing one-year return on the S&P 500 index (St ) and the three
month Treasury bill rate (rt ). Hence, we have Xt = (DT

t ,VT
t , rt , St )

T, t = 1, . . . , τ

where Dt = (D1,t , . . . ,Dn,t )
T, Vt = (V1,t , . . . , Vn,t )

T, and τ is the total number of
time points. That is, Xt is m × 1 vectors where m = 2n + 2 and n is the number
of firms. In the data set for our studies, the observations are available monthly. To
adjust for evident quarterly seasonal effect in the time series, we take a difference
of order 3, resulting in a new m-dimensional vector time series Xt = Xt+3 − Xt

(t = 1, . . . , τ ′), where τ ′ = τ − 3.
Modeling the dynamics of Xt is the most challenging task in default predic-

tions and assessing the associated level of uncertainties, because of the fact that Xt

is of very high dimensionality. Take, for example, the US market, the total num-
ber of companies has exceeded 10,000 since 1990. Moreover, in an active market,
new companies are almost continuously formed while many existing ones exit the
market for various reasons, resulting in highly un-balanced observations of the
time series, that is, the origin and end times of the components in Xt are different
with possible missing data for some periods of time. Furthermore, the behaviors
of components in Xt are expected to inter-relate with each other in some compli-
cated ways. Thus jointly modeling the tremendously high-dimensional time series
becomes daunting, while further dedicated effort is also necessary for developing
methods of parameter estimation and assessing the associated level of uncertain-
ties.

We consider a highly parsimonious time series model for Xt with two key com-
ponents specifically for default predictions: (a) a mean-reverting autoregressive
structure in the conditional mean of Xt given prior observations, and (b) a dynamic
factor model for the innovations to capture the correlations among the components
in Xt . We refer to Tsay (2010) as an introduction for modeling vector valued time
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series, and Pan and Yao (2008) and Lam and Yao (2012) for recent development
of factor models for multivariate time series.

Specifically, the conditional mean model is a modified version of the one con-
sidered in Duffie, Saita and Wang (2007):

Xt − μ = �(Xt−1 − μ) + εt , t = 2, . . . , τ ′.(2.2)

Model (2.2) is a vector auto-regression model mainly to capture the conditional
dependence with the mean reverting effects of all the covariates. The coefficient
matrix � is designed in a parsimonious way following Duffie, Saita and Wang
(2007) as

� =

⎛⎜⎜⎝
κD 0 b 0
0 κV 0 0
0 0 κr 0
0 0 0 κS

⎞⎟⎟⎠ ,

where κD = κDIn, κV = κV In, b = b1n. In is an n × n identity matrix and 1n

is an n-dimensional vector taking value 1 for all of its elements. Here we de-
fine the mean reverting vector as κ = (κD, κV , κr, κs, b)T. The first four elements
κD, κV , κr, κs of κ capture the mean reverting effects of the four selected covariate
processes. The current distance to default is modeled jointly by the mean reverting
of the previous value, and the effect of departure of Treasury bill rate rt−1 from its
mean at the previous month through the parameter b.

To further capture the serial and cross-sectional dependence between compo-
nents in X, we propose to apply the following dynamic factor model (DFM) for
the innovation vector εt :

εt = �Ft + et ,(2.3)

Ft = AFt−1 + ηt , t = 2, . . . , τ ′,(2.4)

where the latent factor Ft is a q × 1 vector following an auto-regression process
with order 1 [i.e.,VAR(1)]. The principal component analysis (PCA) is a conve-
nient device for the factor model structure (2.3); see, for example, Stock and Wat-
son (2002). The dynamic factor structure introduced by (2.4) has demonstrated its
merits in numerous credit risk modeling; see the discussions in Section 2.3. The
state space methods, Durbin and Koopman (2012) are convenient for handling the
model setting with (2.3) and (2.4). Here, ηt ’s are assumed to be independently and
identically distributed (iid) normal random vectors from N(0,Q), for some posi-
tive definite matrix Q. Here � is a m × q matrix of factor loadings, and A is a
q × q matrix of autoregressive coefficients. The random vectors ηt and et are in-
dependent normal random vectors. The covariance matrix of et is assumed to be a
diagonal matrix P. Here the factor model with loading � is high parsimonious by
the fact that the number of common factor q is usually very small, which drasti-
cally reduces the number of parameters in the covariance matrix of εt . As in our
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data analysis, the number of the factor is chosen as q = 2 by using the method of
Bai and Ng (2008). Facilitated by the dynamic factor model, the future dynamics
of the covariate process can be effectively incorporated in default predictions and
uncertainties assessments.

We collectively denote by θx = {μ,�,�,A,P,Q} all parameters in the covari-
ate proces. We develop an expectation-maximization (EM) algorithm for estimat-
ing parameters in the dynamic factor model specified by (2.3) and (2.4), whose
detail is given in the Supplementary Material [Yuan et al. (2018)]. Specifically, our
EM algorithm efficiently incorporates the hidden factor Ft in this tremendously
large scale problem with high-dimensional time series and highly un-balanced ob-
servations. In our EM algorithm, both the E-step and M-step can be conveniently
executed for practical implementations. Most remarkably, the matrices inversions
in our EM algorithm only involves those of size q × q , making it most computa-
tionally efficient and feasible for this large scale default prediction problems.

3. Predictions and uncertainties assessments.

3.1. Procedures for future default predictions. In our study, predicting the fu-
ture corporate default probabilities given the available current information is the
key objective. For different levels of interests such as assessing the overall level
of credit risks, one may also need to predict the total number of defaults for the
overall market system and certain market sectors.

Let us begin with the method for individual corporate default predictions, and
then the method for aggregated default predictions.

With the intensity model and the covariate model described in Sections 2.2 and
2.4, the future default probability of company i within s time units in the future
after the last observation time τ is

ρi(s; θ) = E
{
Pr[τ < Ti ≤ τ + s,�1 = 1|T > τ ]|Fτ

}
= E

{[∫ τ+s

τ
λ1(t;xi,t )

× exp
(−{

�
[
t;xi (0, t)

] − �
[
τ ;xi (0, τ )

]})
dt

]∣∣∣Fτ

}
,

(3.1)

where θ = (θT
T , θT

x )T contains the parameters of the covariate model θx and those
of the time-to-event model θT . Here, the expectation is understood as conditioning
on the information up to time τ , denoted by Fτ , and �1 = 1 indicates that it is the
default probability of interest so that the corresponding intensity function λ1(·)
and the cumulative hazard function are involved in (3.1). We note that ρi(s; θ) is a
sub-distribution function because ρi(∞; θ) < 1 due to the existence of other types
of competing events.

Because no simple analytical expression for the expectation in (3.1) is available,
we use a Monte Carlo simulation approach to evaluate ρi(s; θ). The following
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algorithm is for computing ρ̂i(s; θ̂) with the estimate θ̂ from the methods described
in Sections 2.2 and 2.4.

ALGORITHM 1.

1. Simulate X∗(τ ′, τ ′ + s), the future differenced covariate processes, for all the
firm-specific and macroeconomic covariates from their distribution X(τ ′, τ ′ +
s)|Xτ ′ as specified in Section 2.4.

2. By inverting the differencing operator, the simulated covariate processes de-
noted by X

∗(0, τ + s) is reconstructed from the combined differenced data
X∗(0, τ ′ + s) = {X(0, τ ′),X∗(τ ′, τ ′ + s)}, where X(0, τ ′) and X∗(τ ′, τ ′ + s)

are respectively the historical and simulated future data.
3. For each company i, numerically compute

ρ∗
i (s; θ̂) =

∫ τ+s

τ
λ1

(
t;x∗

i,t

)
exp

(−{
�

[
t;x∗

i (0, t)
] − �

[
τ ;xi (0, τ )

]})
dt.

4. Repeat steps 1–3 M times to obtain ρ∗m
i (s; θ̂),m = 1, . . . ,M where M is the

prespecified number of the simulation replications.
5. The prediction of ρi(s; θ) is obtained by ρ̂i(s; θ̂) = M−1 ∑M

m=1 ρ∗m
i (s; θ̂).

In the first step of Algorithm 1, to forecast the differenced covariate process, we
calculate the following for s = 1,2, . . .

ε̃τ ′+s = �̂F̂τ ′+s + êτ ′+s and Xτ ′+s = μ̂ + �̂Xτ ′+s−1 + ε̃τ ′+s,

where F̂τ ′+s is forecasted from the fitted DFM for F̂t and êτ ′+s is drawn from
N(0, P̂).

As for the point prediction for the aggregated number of defaults in the market
coverage of interest, let Ns be the cumulative number of defaults at s time units
after the last observation time τ and RS(t) be the set collecting companies of
interests that are at risk of default at time t . It follows that Ns = ∑

i∈RS(τ ) Ii(s) and
Ii(s) ∼ Bernoulli[ρi(s; θ)]. The point prediction for Ns is N̂s = ∑

i∈RS(τ ) ρ̂i(s; θ̂).
Though both the point predictions for ρi(s) and Ns are informative for measur-

ing future default risks, they do not reflect the uncertain nature of the predictions
that we have discussed earlier. In what follows, we describe how to assess the
uncertainties associated with the predictions.

3.2. Assessing uncertainties at the aggregate level. Prediction intervals (PIs)
are used to quantify uncertainty in prediction of future random quantities. Let Ns

be the cumulative number of events at a future point. A 100(1 − α)% PI for Ns

is defined as Pr(Ns˜ ≤ Ns ≤ Ñs) = 1 − α. To assess the uncertainties associated
with the predicted number of defaults, a natural choice is to supply a PI denoted
by [Ns˜ , Ñs]. A naive (plug-in) PI for this purpose is obtained by solving

(3.2) FNs (Ns˜; θ̂) = α

2
and FNs (Ñs; θ̂) = 1 − α

2
.
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Here FNs (ns; θ), ns = 0,1, . . . , n′ is the cdf of Ns where n′ is the number of com-
panies in the RS(τ ), 1 − α is the desired coverage probability. Note that Ns is a
sum of non-identically distributed Bernoulli random variables. An explicit form
for FNs (ns; θ) is

FNs (ns; θ)

= 1

n′ + 1

n′∑
l=0

{
1 − exp[−iωl(ns + 1)]

1 − exp(−iωl)

× ∏
i∈RS

[
1 − ρi(s; θ) + ρi(s; θ) exp(iωl)

]}
,

(3.3)

where i = √−1 and ω = 2π/(n′ + 1). The cdf in (3.3) is obtained from a discrete
Fourier transform of the characteristic function of Ns , which can be viewed as a
generalization of the binomial distribution for a collection of firms with homoge-
neous default probability. We refer to Hong (2013) for more details on the deriva-
tion and an efficient implementation for computing FNs (ns; θ). Alternatively, one
can use some approximation methods such as the ordinary normal approximation
or normal approximation with second order correction [e.g., Volkova (1996)].

The PI in (3.2) ignores the uncertainties in θ̂ . Thus the coverage probability
is generally smaller than the nominal 1 − α level. These PIs can be calibrated to
improve the coverage probability. We will use resampling method by parametric
bootstrap to do the calibration.

Using the predictive distribution in Lawless and Fredette (2005), a 100(1−α)%
PI for Ns , denoted by [Ns˜ , Ñs], is obtained by

(3.4) Ns˜ = vα/2 and Ñs = v1−α/2.

Here vα is the α lower quantile of random variable N∗
s specified by distribution

FNs (·; θ̂) in which θ̂ is also treated as a random variable. In practice, vα can be
computed by simulations. That is, vα is approximated by the α sample quan-

tile of N∗b
s , b = 1, . . . ,B . Specifically, we obtain N∗b

s from FNs (ns; θ̂∗b
) given

θ̂
∗b = (̂θ

∗bT
T , θ̂

∗bT
x )T, in which θ̂

∗b

T was simulated from N(̂θT ,θ̂T
) and θ̂

∗b

x was
estimated from the simulated covariate processes.

The simulation procedure based on parametric bootstrap is as follows.

ALGORITHM 2.

1. Simulate the differenced covariate processes X∗(1, τ ′) from the model (2.2),
(2.3), and (2.4) with θ̂ . For each company, the differenced observations at the
first month are kept and we do not extrapolate any period with no observations
in the original data set.
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2. Re-estimate parameters in the covariate model θ̂
∗
x based on the simulated pro-

cesses through the EM algorithm in the Supplementary Material [Yuan et al.
(2018)].

3. Take a random sample of θ̂
∗
T from its asymptotic distribution N(̂θT ,θ̂T

),
where θ̂T and θ̂T

are estimated from the observed data by the methods in
Section 2.2.

4. With the simulated data X∗(1, τ ′) and the new parameter estimates θ̂
∗ =

(̂θ
∗T
T , θ̂

∗T
x )T, Algorithm 1 is implemented to predict the default probabilities

ρ∗
i (s; θ̂∗

), i = 1, . . . , n.
5. Take a random sample N∗

s from its distribution (3.3) with parameter values θ̂
∗
.

6. Repeat steps 1 to 5 B times to obtain N∗b
s , b = 1, . . . ,B .

7. The 100(1 − α)% calibrated PI for Ns is {N∗([(α/2)B])
s ,N

∗([(1−α/2)B])
s }, where

N
∗(·)
s is the ordered version of N∗b

s and [·] is the round function.

The fundamental rationale of the above algorithm and the one in the next sec-
tion is to incorporate all sources of uncertainties as discussed earlier, that is, those
from the stochastic default mechanism, the stochastic covariate process, and the
parameter estimation procedures.

3.3. Assessing uncertainties for corporate default probabilities. By applying
Algorithm 1, one may predict the multiperiod ahead of the default probabilities for
individual corporations for evaluating the future default risk. Clearly, all sources
of uncertainties are contributing in the point default probability estimations. For
example, the final point prediction is the average of a range of possible default
probabilities, and the different level of variations among those re-generated de-
fault probabilities are reflecting different levels of uncertainties associated with
point default probability predictions. For reflecting the level of uncertainties asso-
ciated with the default probability predictions, we propose to construct calibrated
prediction intervals based on historical data for companies that are at risk incorpo-
rating all contributing sources of uncertainties.

The procedure for constructing the prediction interval is based on a large scale
parametric bootstrap, similar to the one for the aggregated defaults prediction.
Specifically, to incorporate the uncertainties in parameter estimation, in each it-
eration of resampling, we first simulate the differenced processes from the fitted
covariate model and estimate parameters using the simulated data. To incorporate
uncertainties associated with the parameter estimation of the time-to-event model,
we re-generate model parameters from the estimated joint asymptotic distributions.
Finally, we simulate multiperiod ahead values of the covariate process given the
last observation in the historical data with the re-estimated parameter. Then, for
each replication of the resampling procedure and for each at risk company, one
multiperiod ahead default probability can be obtained. By repeating the procedure
a number of times, we obtain the distribution of the predicted default probabilities
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and construct the prediction interval correspondingly. More specifically, we have
the following algorithm.

ALGORITHM 3.

1. Simulate the differenced covariate processes X∗(1, τ ′) from the model (2.2),
(2.3), and (2.4) with θ̂ . For each company, the differenced observations at the
first month are kept and we do not extrapolate any period with no observations
in the original data set.

2. Re-estimate parameters in the covariate model θ̂
∗
x based on the simulated pro-

cesses through the EM algorithm in the Supplementary Material [Yuan et al.
(2018)].

3. Take a random sample of θ̂
∗
T from its asymptotic distribution N(̂θT ,θ̂T

),
where θ̂T and θ̂T

are estimated from the observed data by the methods in
Section 2.2.

4. With the simulated data X∗(1, τ ′) and the new ML estimates θ̂
∗ = (̂θ

∗T
T , θ̂

∗T
x )T,

Algorithm 1 is implemented to predict the default probabilities ρ∗
i (s; θ̂∗

), i =
1, . . . , n.

5. Repeat steps 1 to 4 B times to obtain ρ∗b
i (s), b = 1, . . . ,B .

6. The 100(1 − α)% PI of default probability for the ith company at s time units
after the last observation time τ is {ρ∗([(α/2)B])

i (s), ρ
∗([(1−α/2)B])
i (s)}, where

ρ
∗(·)
i (s) is the ordered version of ρ∗b

i (s) and [·] is the round function.

4. US corporate default data analysis.

4.1. Data overview. We now illustrate an application of our prediction frame-
work on a US Corporate data set containing observations from January 1990 to
November 2009. The data set contains defaults and other credit events information
of the United States (US) public firms together with their stock market data from
the CRSP (i.e., The Center for Research in Security Prices) database and account-
ing data from the Compustat database. The entire data set has around 12,000 US
companies and more than 1,000,000 firm-specific monthly observations. Handling
the entire data set is difficult given our limited resources, and it could take a very
long time because we need to perform a reasonable number of replicated stud-
ies for validation and assessment purposes. So we choose a subset of the data with
three industrial sectors—electronic product manufacturers, holding and investment
offices, and business services. These three industrial sectors contain 3271 firms of
the US market and have experienced a majority number of defaults. Specifically,
among the 3271 companies on the market from January 1990 up to November
2009, 164 defaulted and 2049 exited due to other reasons, leaving 1058 companies
at risk at the end of November 2009. Time-to-event information is available in the
data set in terms of the occurrence time of an event and its type which is used to
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determine if it is a default or an exit due to other reasons. For the firm specific
covariate, we consider the distance to default (Dt ) and the trailing one year stock
return (Vt ) of each company following our discussion in Section 2.4. To incorpo-
rate macroeconomic conditions, we consider monthly data of the trailing one-year
S&P 500 return (St ) and the three-month Treasury bill rate (rt ) as covariates as
well.

4.2. Model estimations. By applying the proportional hazard model intro-
duced in Section 2.2 using the covariate described in Section 2.4, the default
and other exit intensity functions are modeled by λk(t;xt ) = exp(βk0 + βk1Dt +
βk2Vt + βk3rt + βk4St where k = 1,2 are respectively corresponding to defaults
and other exits. We estimate parameters in the time-to-event model by maximizing
the log likelihood function as described in Section 2.2. Standard errors for the ML
estimates are calculated by inverting the observed information matrix. The point
estimates and 95% confidence intervals based on asymptotic normality are given
in Table 1.

From Table 1, we see negative β̂11 but positive β̂21, indicating that lower risk
is associated with larger value of distance to default, but in that case the firm is
associated with higher chance of exit the market due to other reasons. Negative
β̂12 and β̂22 show that higher stock return implies lower risk for both default and
other forms of exits which may be due to that the trailing one-year stock return is
an important indicator for a company’s profitability. As for the effect of macroe-
conomic variables, negative β̂13 and β̂23 indicate that an increase in three-month
Treasury bill rate manifests lower risks for both default and other exits, demon-
strating the impacts on credit events from the overall economic condition of the
environment. As for the effect from the trailing one-year return of the S&P 500
index upon controlling the level of other covariates, an increase in its value is as-
sociated with higher default risk, but its impact on other exits is not statistically
significant. The negative impact might be due to the correlations between the in-
dividual stock returns and the S&P 500 index; see also the discussion in Duffie,
Saita and Wang (2007).

To predict future dynamics of the covariates, we apply the dynamic factor model
specified by (2.2), (2.3), and (2.4) described in Section 2.4. To estimate the param-
eters, we apply our EM algorithm discussed in Section 2.4 whose detail is given in
the Supplementary Material [Yuan et al. (2018)].

The mean reverting parameters in (2.2) are estimated as κ̂ = (0.63766,0.63551,

0.89208,0.63546,−0.00714)T with estimated standard errors (0.0031,0.0049,

0.0343,0.0333,0.0176)T. The parameter A in the vector autoregressive model
(2.4) for the hidden factors Ft is estimated as

Â =
(

0.3734 0.2144
−0.0599 0.4803

)
,
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TABLE 1
ML estimates for parameters and their asymptotic standard errors based data over January 1990 to

December 2008

Default Other Exits

Para. Est. SE 95% CI Para. Est. SE 95% CI

Lower Upper Lower Upper

β10 −6.9126 0.2018 −7.3081 −6.5171 β20 −5.2646 0.0666 −5.3950 −5.1341
β11 −0.6803 0.0867 −0.8502 −0.5105 β21 0.0504 0.0084 0.0339 0.0669
β12 −1.1467 0.0646 −1.2734 −1.0200 β22 −0.3295 0.0401 −0.4081 −0.2509
β13 −0.3091 0.0542 −0.4153 −0.2028 β23 −0.0450 0.0160 −0.0763 −0.0137
β14 1.9431 0.3974 1.1642 2.7219 β24 −0.0839 0.1404 −0.3590 0.1913

whose entry wise estimated standard errors are 0.0955, 0.1368, 0.0364, 0.0598 for
Â11, Â12, Â21, and Â22 where Âij is the ij th component of Â. The EM algorithm
also returns estimations of the loading matrix � and covariance matrix P of et in
(2.3) containing many components that are omitted here.

4.3. Total defaults predictions and uncertainties. In what follows, when we
are conducting multiple-period predictions, only data up to the origin of predic-
tions are used when applying our prediction framework. For each prediction pe-
riod, the actual observed defaults and covariate processes after the origin of pre-
dictions were held out and only used for validation and assessments afterward. For
example, observed data from January 1990 to December 2008 were used to predict
the default risks one year ahead in 2009 and so forth.

We first consider four respective one-year periods during 2006–2009, and for
each period we conduct a one-year ahead prediction of the total number of defaults.
We apply Algorithm 2 in Section 3.2 to obtain the prediction intervals for the total
numbers. Figure 1 summarizes the results. Specifically for each one-year period,
Figure 1 shows the predicted cumulative number of defaults and the associated
90% two-sided PI. In each panel of Figure 1, the solid step plot with dots indicates
the actual cumulative numbers of defaults by month, and the solid straight line
represents the predicted average number of defaults.

From Figure 1, we find that the predictive assessments of the overall credit
risk levels are different between these four years by observing that, for example,
the total predicted number of defaults in 2006 is much smaller than that of 2007.
Such an observation well matches the situations that actually happened. Hence, for
assessing the overall level of future credit risks, historical data are informative, and
it is promising evidence for using quantitative methods to incorporate historical
data information for future predictions. We also note that Figure 1 is reporting
the cumulative number of predicted defaults, and the widening trend of the PIs
reflect an expected fact that the level of uncertainties associated with predictions is
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FIG. 1. Cumulative number of defaults in the one-year periods and the associated PI for all the
units at risk.

increasing over time. That is, one always needs to take more caution when applying
predictions over a longer term due to higher level of associated uncertainties.

Additionally, we also see that predictions with the same model are not working
equally well for all four one-year periods. For 2007 and 2008, the mean predictions
agrees well with the actual cumulative numbers of defaults, showing that the model
works very well for these periods of time. For 2006, the actual number of defaults
is above the mean prediction but still falls between the mean prediction and the
upper bounds of the PI (i.e., the 95% percentile). Such an observation may indi-
cate that the actual situation in 2006 was somewhat different from what happened
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before so that the model used was not able to perfectly reflect the future situation.
Nevertheless, the approach still performs reasonably well by observing the fact
that the PI is narrow for 2006 and the actual number of defaults still fall within
the PI. In 2009, the mean predictions well matches the actual cumulative number
of defaults in the first six months. However, as we can see from the figure, there
is an abrupt change in the defaults occurrence by observing that no default was
recorded in the second half of 2009, a phenomenon that may be due to the govern-
mental interventions. Our data used for prediction are only up to the beginning of
2009, thus predicting such an abruption is hard for a quantitative method. Further
investigation on modifying the parametric modeling may be needed to incorporate
sudden change of the market conditions.

4.4. Individual default risk predictions and uncertainties. We now present the
performance of the point predictions and PIs for future default probabilities of
individual firms. We find from our studies that the level of uncertainties associated
with the point predictions, quantified by the width of PIs, can be highly informative
in analyzing and predicting default risks.

For the same four one-year periods (2006, 2007, 2008, and 2009) as in Sec-
tion 4.3, we assess each individual firm’s default risks with monthly point predic-
tions for its future default probabilities and the associated PIs using Algorithm 3
in Section 3.3. The results for some selected firms are reported in Figure 2. We
choose four companies that actually went default during the periods of time. For
comparisons, we also present side by side another four companies from the same
industrial sector but did not go default. By presenting the results in the same scale,
we clearly see striking differences between the profiles of the default predictions.
Specifically, those companies who actually went default are predicted to have sub-
stantially higher probabilities of going default. Additionally, the associated PIs are
also much wider than those companies who actually did not go default.

From the predictions for individual firms, it is promising to observe that the
predicted default probabilities for those companies who actually went default are
among the highest, providing us a crucial device for differentiating companies
based on quantitative credit risk assessments. Emerge Interactive Inc., defaulted in
2006, was a technology company providing food-safety, individual-animal track-
ing, and supply-management services. According to the point default probability
predictions at the end of 2006, Emerge Interactive Inc. has the highest default risk
among all the five companies that actually defaulted in 2006. Overall, its predicted
default probability is ranked the 8th out of all 1352 companies at risk. Lehman
Brothers Holdings Inc., defaulted in 2007, was the fourth largest investment bank
in the US. The predicted default probability of Lehman Brothers in 2007 is ranked
the 141st out of all 1287 companies at risks. Bankunited Financial Corp, defaulted
in 2008, was a savings and loan association. Its predicted default probability is the
4th out of all 1228 companies at risk. TierOne Corporation, defaulted in 2009, was
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FIG. 2. Predictions for individual default probabilities and the associated 90% PI.
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the holding company for TierOne Bank. Its predicted default probability in 2009
is ranked the 9th out of all 1228 companies at risk.

Besides the level of default risks assessed by the point predictions, the associ-
ated PIs are providing information from a new dimension. Visually, it is clear to
see that the PIs are wider for those actually defaulted companies. Numerically, for
example, the point prediction for the probability of Emerge Interactive Inc going
default in 2016 is 0.0347 and the associated 90% PI is (0.0087, 0.1319). In con-
trast, the counterparts for Microsoft are 0.00002 and (0, 0.00005), indicating strik-
ing differences between high risk and low risk companies. As shown in the coming
Section 4.6, we actually find that the level of uncertainties measured by the length
of the PIs can provide extra information additional to the point predictions that can
be potentially used for improving the accuracy of default predictions.

4.5. Power curves and prediction performances. We now evaluate the out-of-
sample default prediction performances for the four one-year periods. For such a
purpose, we plot the receiver operating characteristic (ROC) curves in Figure 3,
which are also referred to as power curves in the literature, for example, Duffie,
Saita and Wang (2007). A power curve is constructed by plotting the cumulative
fraction of actual defaults versus the corresponding percentile the quantitative mea-
sure used to predictively rank all firms at risk. That is, a steeply increasing curve
is the evidence of good performance using the corresponding ranking measure.
Equivalently, larger area under the curve (AUC) means better predictive perfor-
mance. Here, we consider two quantities—the predicted default probabilities and
the lengths of the associated PIs—for ranking all firms at risk to differentiate the
defaulted firms. Figure 3(a) and 3(b) respectively show the power curves corre-
sponding to these two quantities.

From Figure 3, we can see that both predictive quantities have reasonable pre-
diction performances, achieving AUCs near 0.9 out of the maximum 1. This again
demonstrates the promising applications of quantitative methods for predicatively
assessing corporate default risks. The predicted point default probability overall
performs slightly better than the width of the PI. Since the width of PI is not in-
tended for predicting future defaults, such an observation itself is interesting and
informative and further research on credit risks and their evaluations are needed
for understanding such a phenomenon. Moreover, we find that the width of PI is
complementary to the point prediction of default probability; see Section 4.6.

4.6. Default predictions and associated uncertainties. We see from Sec-
tion 4.5 that point default probability predictions and the width of the associated
PIs perform similarly effective for differentiating defaulted firms. Then a natural
question of interests is can the level of uncertainties measured by the width of
PIs provide extra information for enhancing the prediction performance? As an at-
tempt to explore the answer for that question, we conduct a logistic regression with
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the default status as the response variable and both the predicted default probabil-
ity and the width of the associated PIs as predictor. Summary of the model fitting
is reported in Table 2.

As for the adequacy of the logistic regression model fitting, the deviance of the
model is 578.61, while the deviance for the null model is 400.79. A chi-square
test yields a p-value less than 0.001, showing that the model is highly significant.
For the overall goodness of fit, we also did the Hosmer–Lemeshow test whose
p-value is 0.5335, indicating that the model provides a good fit to the data. For
comparison, we fit another logistic regression model dropping the length of the
prediction interval from the model. As a result, the Hosmer–Lemshow test Hosmer,
Lemeshow and Sturdivant (2013) of the reduced model has a p-value less than
0.001, a significant evidence that the reduced model without the PI length is not
adequate.

Table 2 confirms that both larger predicted default probability and wider PI in-
dicate higher default risk. However, given the point prediction and the interaction
between the two variables, the width of PI is no longer significantly associated
with the default risk. Most interestingly, however, a highly significant interaction
between the two predictors is detected by the logistic regression, telling that using
the PI width besides the point default predictions is statistically informative. Such
an observation is quite reasonable from the perspective that one could be more con-
fident in predicting a company’s future default with smaller range of the prediction
intervals. That is, the width of PI has the potential of providing extra information
for assessing the corporate default risks, suggesting an interesting topic for further
investigations.

4.7. Model diagnostics. For assessing the adequacy of the model fitting to
the data set, we conduct some model diagnostics. For assessing the effect of the

FIG. 3. Out of sample prediction power curves by the point prediction and width of PI.
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TABLE 2
Summary of the Logistic regression model

Estimate Std. Error z value Pr(> |z|)
Intercept −6.1340 0.2898 −21.1691 < 0.0001
PI width 2.0742 3.3577 0.6177 0.5367
Point prediction 49.6683 6.9704 7.1256 < 0.0001
PI width × Point prediction −99.8712 14.4081 −6.9316 < 0.0001

FIG. 4. Empirical frequency of monthly defaults vs values of the estimated linear combinations
broken down into ten intervals. The red solid line is the estimated exponential function.

dynamic factor model specified by (2.3) and (2.4), we attempted a fitting of a two-
factor model but with no dynamic structure (2.4). As a result, we found that the
dynamic model improves the fitting in the sense of reducing the mean residual sum
of squares by 10%. To check the exponential linear form of the intensity functions,
we calculate the estimated values of the specified linear functions and break down
the range of the values into 10 intervals. Then we aggregate the companies accord-
ing to 10 intervals of the values of the estimated linear functions, and then obtain
the respective total numbers of the companies. The empirical frequencies of the
defaults respectively on each interval are reported by bars in Figure 4(a), over-
layed by the values of the exponential linear functions. The shape of the red line in
Figure 4(a) satisfactorily validates exponential linear form of the intensity function
for defaults. Similarly, we obtain Figure 4(b) and validates the exponential form of
the intensity function for other types of exits.

For checking the adequacy of the model for the covariate process, we conducted
some numerical and graphical model diagnostics for checking the goodness of
fit. We compute the fitted covariate values according to the model and compare
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FIG. 5. Correlations between the fitted covariates and observed covariates for the two firm specific
variables.

them with the actual observed values. In an ideal situation the fitted values and
the observed values should display strong positive correlations. Figure 5 shows the
histograms of the correlations between the fitted covariates and the observed values
for the two firm specific covariate. From Figure 5, we can see that a majority of the
correlations are reasonably high, indicating an overall good fit of the models. The
average correlations for the distance to default and the trailing returns are 0.57 and
0.52 respectively. Given the large number of individual companies, some lack of
fit is inevitable, and some dedicated further adjustment for the models can also be
possible. The fitting of the covariate model for the two macro economic variables is
also reasonably good. The correlations between the fitted values and the observed
values are 0.56 and 0.82 respectively for the returns of the Treasury bill and the
SP 500 index. Overall, the model for the covariates modeling is flexible and fit the
data reasonably well considering that we use one model for covariates of so many
companies.

5. A simulation study. The simulation setting is constructed based on the
data set of Section 4 on US corporate defaults from 1990 to 2009. Specifically, we
first take a random sample of size n from the set of the companies that are at risk
as of the end of year 2008. We vary n ∈ {400,600,800,1000} to assess the impact
from the scale of the problem on the accuracy of the framework. Intuitively with
the same period of time, the larger the n is, the more difficult it is to predict future
defaults.

Upon selecting the n companies, we generate both the events of default and
other types of exist based on the parametric intensity models outlined in Sections
2.3 and 4.2. To ensure reasonable numbers of events in the simulations and for
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simplicity, we set the same intensity functions for both events of defaults and other
exists, particularly, with the same parameters β = (−5.26,0.1,−1.2,−0.045,

−0.084)T. These values closely mimic those estimated from the real data set as
reported in Table 1.

We then estimate the parameters of the covariate model outlined in Section 2.4
based on the n companies, and fixed the values of the parameters throughout the
simulations with size n. With the estimated parameters, we simulate the monthly
differenced values of the covariate from the same model as outlined in Section 2.4.
Then we generate the covariate process from the simulated differenced values, with
the first observations of the companies taken from that of the random sample of
size n. Then, with the simulated covariate process, we generate both events of de-
faults and other exits with the parametric intensity functions specified as described
earlier.

Upon generating the simulated data set with both the covariate process and the
time-to-events, we apply our method to produce prediction intervals of the cumu-
lative number of defaults in each month of 2008. We also compare the two types of
prediction intervals—calibrated and uncalibrated ones—as outlined in Section 3.2.
The simulations for each sample size n are repeated 240 times. The results of the
accuracy in terms of the percentage that the prediction intervals cover the true
cumulative default numbers are reported in Figure 6.

From Figure 6, we have a few observations. First and foremost on the empirical
accuracy of the uncertainties assessment, we observe that the empirical frequen-
cies of the prediction coverages are close to the nominal levels for all multiple
period predictions when n is smaller. When n is larger, the coverage of the PI is
also very accurate for the cumulative default counts within a closer time horizon
from the origin of predictions. Second, we see that the coverages generally get
worse for larger time horizon cumulative predictions. Since we are examining the
cumulative predictions, the main reason should be the error aggregations in the cu-
mulative counts predictions. That is, even the coverages of the prediction intervals
for the number of events at each individual month are close to the nominal level,
the performance of the PI for cumulative counts will still be more off the target
due to that all errors are aggregating together. Given the same amount of informa-
tion, this also reflects the practical difficulty in obtaining accurate predictions for
longer time horizons. Third, the calibrated intervals perform substantially better
than the uncalibrated ones, indicating the merits of applying calibrated procedures
for prediction intervals. Since the naive prediction intervals (without calibration)
only capture the intrinsic randomness in the random variables and ignores the un-
certainty from parameter estimations, they tend to be narrow so that the coverage
tends to be smaller than the nominal level. In contrast, the advantage of calibration
relies on the fact that it takes the additional source of uncertainties into account.
Hence the coverage of the calibrated prediction intervals tend to be closer to the
nominal level.
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6. Discussions and future work. We consider the challenging problem of
assessing uncertainties associated with corporate default predictions by carefully
disentangling and quantifying the contributing sources for the point predictions.
An application of our framework to a large-scale US Corporate data set shows that
our point predictions have good out-of-sample performance, and is promising in
quantifying the uncertainties in predictions. Our framework also helps for a better
understanding of the default mechanism by providing an additional dimension of
insights from assessing the level of uncertainties associated with point predictions.
With limited access to a powerful modern computational facility (160 hours in
parallel on 80 CPUs), we accomplish the tasks for assessing the uncertainties as-
sociated with corporate default predictions, demonstrate the feasibility for solving

FIG. 6. Coverage probability of calibrated and uncalibrated PI from simulation study.
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this long overdue important large scale practical problem with many challenging
practical features. Our study reveals high level of uncertainties associated default
predictions especially when conducting longer term predictions. We believe that
is mainly due to the nature of the prediction problem involving unknown future
dynamics of those factors affecting the default mechanism. Hence more cautions
are necessary when using quantitative tools for mid- and long-term default pre-
dictions. We also note that the rationale of the quantitative modeling is to predict
future events based on historical information. Thus for all model based quantitative
predictions, they should be interpreted as if the market conditions are consistent
with the historical scenarios, then the predictions are valid. Otherwise, one has to
take serious cautions.

Further investigations for assessing the uncertainties associated with corporate
default risk predictions are clearly desirable. Our framework needs parametric
models for the default mechanism and the covariate processes. Extending the scope
of the framework and evaluating its robustness are clearly important. For example,
other methods dealing with the default mechanism may be considered. Additional
considerations on features such as the cycling effect Koopman and Lucas (2005)
and systemic risk Giesecke and Kim (2011) can also be investigated. Interesting
questions also include how to efficiently incorporate more variables, and how a
violation of the parametric models may affect the accuracy of the assessed level of
uncertainties. There is another important consideration on the correlations between
defaults. Recent investigations reveal the correlations and even clustering effect of
the occurrences of corporate defaults; see, among others, the frailty modeling ap-
proaches with random effects in Duffie et al. (2009), the dynamic frailty modeling
approaches of Koopman, Lucas and Monteiro (2008) and Koopman, Lucas and
Schwaab (2011), and the jump cumulative default intensity function approach of
Peng and Kou (2009). It will also be interesting to explore the impact from the ran-
dom and even clustering effects in constructing the prediction intervals. We hope
to conduct further investigations on these problems in future. Both theoretical and
practical investigations are also needed for exploring the high-dimensional covari-
ate process for large number of companies with the global market data. Instead
of resorting to the simulation based approach we take, a potential direction for
assessing uncertainties associated with default predictions could be applying the
Bayesian approaches that are capable of producing the posterior distribution of the
quantities of interests. How to develop parsimonious and effective Bayesian mod-
eling, and how to design and implement efficient practical computational frame-
work are interesting and open challenging problems.
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SUPPLEMENTARY MATERIAL

Supplement to “Disentangling and assessing uncertainties in multiperiod
corporate default risk predictions” (DOI: 10.1214/18-AOAS1170SUPP; .pdf).
Detail of the EM algorithm.
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