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Government agencies offer economic incentives to citizens for conser-
vation actions, such as rebates for installing efficient appliances and com-
pensation for modifications to homes. The intention of these conservation
actions is frequently to reduce the consumption of a utility. Measuring the
conservation impact of incentives is important for guiding policy but doing
so is technically difficult. However, the methods for estimating the impact of
public outreach efforts have seen substantial developments in marketing to
consumers in recent years as marketers seek to substantiate the value of their
services. One such method uses Bayesian Stuctural Time Series (BSTS) to
compare a market exposed to an advertising campaign with control markets
identified through a matching procedure. This paper introduces an extension
of the matching/BSTS method for impact estimation to make it applicable
for general conservation program impact estimation when multihousehold
data is available. This is accomplished by household matching/BSTS steps to
obtain conservation estimates and then aggregating the results using a meta-
regression step to aggregate the findings. A case study examining the impact
of rebates for household turf removal on water consumption in multiple Cali-
fornian water districts is conducted to illustrate the work flow of this method.

1. Introduction. Many government agencies offer economic incentives to
homeowners to reduce the environmental impact of their households. Common
incentives are subsidies for utility reducing appliances or rebates for conservation
actions, such as removing conventional lawns in drought regions. Agencies that
create these programs are faced with two questions during reviews: (1) how effec-
tive is the marketing of the conservation program to households, and (2) by how
much does the incentivized conservation technology or activity reduce consump-
tion of the target utility. Answering the first question is valuable for assessing prior
marketing strategies and improving future outreach efforts, while answering the
second is key to assessing the value of extending the program.

Internet marketing analysts also perform impact assessments to estimate how
effectively an advertising campaign increases the so-called conversion rate of the
public, where online conversion rate is commonly quantified by clicks to an ad.
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Brodersen et al. (2015) propose a method for this type of analysis, where a treat-
ment market exposed to the new advertising campaign is matched to another, sim-
ilar control market. Then, the relationship between these markets prior to the cam-
paign is modeled using Bayesian Structural Time Series (BSTS), and a counter-
factual estimate of clicks per ad is produced during the campaign for the treatment
market. The difference between the treatment (actual) and control (counterfactual)
gives the estimated impact of the campaign.

At the market level internet marketers and conservation program managers are
both interested in understanding if an outreach action was effective in stimulating
engagement by individuals. Internet marketers are interested in clicks, while pro-
gram managers are interested in participation in programs. Assuming that suitable
benchmark markets can be found for conservation programs, it should be straight-
forward to apply the methodology introduced in Brodersen et al. (2015) to assess
the effectiveness of a conservation program’s outreach effort.

However, in this paper we will demonstrate how the matching and BSTS ap-
proach is particularly useful for estimating the impact of conservation programs on
household consumption, in other words, for addressing the second question faced
by agencies. To do so, the method proposed by Brodersen et al. (2015) is applied
to individual households. Instead of estimating the number of clicks generated by
a marketing campaign, the method is used to estimate how many units of a utility
are saved by a household’s participation in a conservation program. The method
is further extended using a meta-regression step to systematically aggregate the
estimates per household into general findings for informing policy.

The paper is developed as follows. First, in Section 2 a case study is introduced
concerning rebate offers made to households for turf removal in California. This
context will serve as the basis for summarizing the matching/BSTS methodology
and its extension in Section 3. Then, in Section 4 the proposed impact estimation
method is carried out and results are discussed. In Section 5 features of the method
proposed in this paper and other approaches are discussed. Section 6 concludes.

2. California turf rebate data. With outdoor landscaping representing ap-
proximately half of urban water usage, the Californian water management com-
munity has identified outdoor water usage in general [Mayer, Lander and Glenn
(2015)] and ornamental lawns specifically [CUWCC (2015)] as a key opportu-
nity in the larger effort to increase water conservation. Between July 2014 and
April 2016, the Metropolitan Water District (MWD), the regional wholesaler of
Colorado and Bay Delta water for Southern California, paid out $270.7 million
directly for turf rebates under its regional program and another $15.1 million
to supplement member agency spending on turf replacement. Metropolitan indi-
rectly serves 6.1 million residential households across Southern California [MWD
(2015)]. In addition millions in local retailer turf rebate supplements have been
paid out (e.g., in Los Angeles, Long Beach, San Diego and Moulton Niguel).
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The data used in this paper to illustrate conservation program impact esti-
mation was provided by three water utilities—Moulton Niguel Water District
(MNWD), Irvine Ranch Water District (IRWD) and Eastern Municipal Water Dis-
trict (EMWD). Each utility provided two data sources. The first is a panel data
set of monthly billed water usage and customer characteristics identified by ac-
count and service point (water meter) identifiers for single family households. The
second is a data set detailing participation in water efficiency rebate programs of
which turf removals are the primary interest for this study.

These two data sets are merged, and any turf rebate instances tied to accounts
that appear more than once are dropped to prevent overcounting. Observations
with clearly extreme values for variables used in a modeling step were also identi-
fied and removed using visual inspection and simple multivariate robust regression
models. The remaining accounts are then further restricted to those that have at
least two years of data (24 observations) in the pre-rebate period and one year of
data (12 observations) in the post-rebate period. The pre- and post-rebate periods
are determined relative to the month that the post-rebate inspection was performed.
Finally, the water districts make use of default values in cases where the actual
value is unknown. Some districts substitute default values for irrigable area when
actual values are not known. Customers with default values were dropped in cases
where this was obvious due to bunching of many customers at the same value of
irrigable area.

After cleaning, the California Turf Rebate Dataset (henceforth, CTRD) that
serves as the working dataset in this paper contains 545 households that received
either traditional or synthetic turf rebates. The variables are defined as follows:

• Customer ID: unique identifier for each household.
• Month and Year: the month and year of the water bill.
• HH Size: number of permanent residents at the property.
• Irr Area Sf and Rebate Quantity: the square feet of irrigable area and

square feet of turf removed during rebate respectively.
• Rebate Area Ratio: the proportion of turf area removed, calculated as

Rebate Quantity
Irr Area Sf .

• Evapotranspiration: The reference evapotranspiration, ET0, in inches.
• Population density 2015: population density of the zip code where a

household is located.
• Pre-turf removal efficiency: a measure of a household’s deviation

from that household’s allocated water budget. A water budget is the quantity
of water calculated by the district as adequate for a given household. With p

denoting the last time point prior to turf removal for treatment household and
that household’s consumption denoted as tr, the mean log ratio of used water
over budgeted water at each period prior to turf removal is

(2.1)
1

p

p∑
t=1

log
trt + 1

[budget tr]t + 1
,
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where 1 is added to the usage and budget to avoid dividing by zero. Values
below 1 indicate that the household is a water conserver prior to turf removal,
while values above 1 indicate the opposite. This variable gives an indication of
the water usage behavior of the household prior to turf removal.

3. Methodology. The matching/BSTS methodology outlined by Brodersen
et al. (2015) focuses on measuring the impact of a discrete marketing event. In
the conservation program context analogous example events are a rebate offer, a
change in pricing structure or an advertising campaign, but the focus of this paper
is on the nonanalogous application of measuring the impact of a physical change to
a household on utility usage. The aim of the matching/BSTS analysis is to quantify
the event’s impact on a response metric of interest (e.g., household consumption
of a utility). The causal impact of a conservation action, or treatment, is the dif-
ference between the observed value of the response and the (unobserved) value
that would have been obtained under an alternative set of circumstances. Usually
the alternative circumstances of interest are those that would have occurred had no
marketing or monetary offering event occurred or when no physical change to a
household occurred. This case is frequently referred to as the counterfactual.

The innovation of the matching/BSTS methodology for causal impact estima-
tion is the construction of a counterfactual based on two steps. First, one or more
time series from a pool of candidates are classified by a matching algorithm as
similar enough to the treated time series in the pre-treatment period that they can
be used to infer trends that would influence the behavior in the treated series post-
treatment. Second, using a BSTS, the relationship between the matched series and
the treated series is modeled pre-treatment and used to predict the treated series
post-treatment. This post-treatment prediction is the matching/BSTS counterfac-
tual of the treated series under the scenario where no treatment was applied. The
difference between the actual and predicted consumption of the treatment series is
considered the impact of the treatment.

Many utilities collect data on utility consumption and conservation program par-
ticipation at the consumer level. One can apply the methodology just described to a
consumer that has participated in a conservation program. In this case the method-
ology detailed in Brodersen et al. (2015) and used in market impact analysis by
online marketers is suitable. However, unlike a single market, a single consumer
is rarely of much interest. Rather, it is desirable to apply this method to many
users to gain deeper insights into broad consumer behaviors and the behaviors of
subgroups of consumers. One way to obtain an aggregated estimate of consumer
behavior is to perform a meta-regression.

Meta-analysis is the practice of pooling estimates from multiple studies on the
same effect to expose general properties of the effect. This approach is popular in
the medical statistics literature, where it is common to pool estimates from studies
of a medical phenomenon or treatments conducted in different regions or through
different programs because there is typically reason to believe that a study in a
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single location will not completely explore the characterstics of the phenomenon
or treatment due to cultural or institutional confounding. In the CTRD, estimates
of turf removal impact on water consumption are obtained for 545 households that
filed rebates. Each estimate of the rebate impact might be thought of as an estimate
for the effect of a medical treatment obtained by a single study.

The steps below describe the matching/BSTS process and its extension in more
detail in the context of the turf rebate case study data. Given N = 545 treatment ac-
counts which participated in a turf removal rebate and are examined in this study:

1. Each treatment account tri , i ∈ 1, . . . ,N which has participated in a turf re-
bate is matched with a set of control accounts Ck = {cj

k }, j ∈ 1, . . . ,6, k ∈ 1, . . . ,K

from the same zip code which did not participate in a turf rebate. These control ac-
counts are chosen by how similar their historical usage patterns are to the usage
patterns of the treatment account tri , based on a weighted combination of their
Pearson correlation and their warping distance.

2. After the ck have been chosen, we fit a BSTS model and use it to estimate the
monthly impact of turf removal on water savings. The BSTS model uses the water
usage patterns of the control accounts to create a synthetic control corresponding
to the expected water usage of tri if there had been no turf removal. The predicted
usage in the post-rebate period is then subtracted from observed usage to obtain a
monthly water savings estimate for tri .

3. After water savings estimates have been calculated for each treatment ac-
count, the last step is to obtain an overall summary estimate. This is done with a
meta-regression approach that uses the estimates and a measure of estimate accu-
racy from each treatment account as the inputs into a random effects model.

For the sake of brevity this workflow will be referred to henceforth as M123:
(1) Matching, (2) Modeling, (3) Meta. As shorthand, steps will be referred to as,
for example, M1 for matching, or M13 for matching and meta. The first two steps
are implemented into a workflow by the MarketMatching package.2

The M123 methodology is useful when the practitioner is working with data
containing multiple treatment subjects; households removing turf in this case. An-
other scenario commonly encountered in conservation program analysis and policy
analysis more generally is one where data is only available at a highly aggregated
level and there are no matchable candidates. In this context, other methods could be
more appropriate. The literature in this area is well developed in microeconomics
and macroeconomics. For a purely time series approach, vector autoregression and
its extensions are options. Policy information may also be available, and methods
such as the one employed in Romer and Romer (1989) can also be used. A recent
work also details a way to combine benefits of both of the approaches to causal
impact analysis on aggregated data [Angrist, Jordà and Kuersteiner (2018)].

2The code was modified and is available at https://github.com/christophertull/marketmatching.

https://github.com/christophertull/marketmatching


2522 E. SCHMITT, C. TULL AND P. ATWATER

3.1. Choosing control accounts. The first step in obtaining an estimate of the
turf removal impact for account tri is to find accounts that did not remove their turf
that show similar behavior to tri . Candidate accounts were identified by choosing
controls from within the same zip code as tri . Within each zip code there may
still be thousands of possible controls. These remaining possibilities are ranked
by how similar their historical water usage patterns are to the historical usage of
tri . Zip codes are used to restrict the candidate pool to other households that are
likely to have some unobserved properties in common and in particular that share
common conditions that are correlated with geography, such as weather or soil.
Alternative criteria for determining the candidate pool, such as Euclidian distance
to the address, can also be considered when partitioning by zip codes excludes
viable candidates and results in a shortage of suitable candidates for matching to
treatment households.

Account matching is often based on variables like property size, property value,
or education levels. However, the importance of environmental attitudes, for ex-
ample arising from public awareness actions and social change has been shown to
influence water consumption [Hollis (2016); Quesnel and Ajami (2017)]. The dif-
ficulty of incorporating these and other difficult-to-quantify factors driving house-
hold water usage and the fairly stable water consumption patterns observed by
most households make matching based on water consumption patterns attractive.
The premise of using historically predictive relationships between accounts to per-
form counterfactual analysis in this fashion has been advocated by, for example,
Abadie, Diamond and Hainmueller (2007) and Brodersen et al. (2015).

Let tr and c be a treatment and control time series with p observations each
for which a similarity ranking is desired. This similarity ranking is specified as a
weighted composite of the rankings of two similarity measures. The first measure
is the Pearson correlation

ρ(tr, c) =
∑p

t=1(trt − t̄r)(ct − c̄)√∑p
t=1(trt − t̄r)2

√∑p
t=1(ct − c̄)2

.

The second second measure is the dynamic time warping (DTW) distance from
tri . To compute the warping distance between two time series, we must identify
the warping curve φ(t) = (φtr(t), φc(t)) that has the minimum warping distance,

D(tr, c) =
p∑

t=1

d
(
φtr(t), φc(t)

)
mφ(t),

where d(φtr(t), φc(t)) is the local of the points at time t after they have been
remapped by the warping functions φtr(t) and φc(t), and mφ(t) is a per-step weight
that control the slope of the warping curve. The calculation of the DTW distance is
done using the dtw package in R. For details about the package and about dynamic
time warping, see Giorgino (2009).
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For a set of K candidate control accounts ck with respect to tri , let R
ρ
k represent

the index of account ck when sorted in decreasing order of its Pearson correlation
with tri . Likewise let RD

k represent the index of account ck when sorted in increas-
ing order of its DTW distance from tri .Then the vector rrr denotes the similarity
rankings for K candidate control accounts ck with respect to tri , where the kth
element of rrr is given by

(3.1) rk = (1 − α)R
ρ
k + αRD

k ; α ∈ [0,1].
Then, the control households corresponding to the first m smallest values in rrr

are used as controls for tr in the structural time series model for tr discussed in the
next section.

3.2. Estimating water savings. A widely used approach for estimating the im-
pact of interventions, like rebate offerings, is differences-in-differences. Taking
this approach in the turf removal context, the estimated impact of turf removal
on water savings is the difference between water usage when turf was removed
and the amount of water that would have been used if no turf had been removed
[Bamezai (1995)].

To accurately estimate the reduction in water usage due to turf removal, a model
for the counterfactual case needs to account for other variables determining water
usage. Water use is determined by a multitude of factors, such as weather, house-
hold size, social perspectives on water usage and turf removal. Covariates like
weather and household size are measured by agencies and are straightforward to
account for as covariates in a model.

This leaves the matter of accounting for dynamic behavioral patterns. Recog-
nizing the need to address this aspect of water use, Hollis (2016) examined how
variables measuring media factors, such as advertising volume, explain water use
patterns. The inclusion of media presence explicitly in a usage model is desir-
able, but two issues that arise with this approach are properly quantifying media
presence and accounting for the different levels of exposure experienced by water
users.

Another way to account for dynamic behavior and classical covariates simul-
taneously is to explicitly model the counterfactual of a time series observed both
before and after the rebate and use the resulting model to construct a synthetic con-
trol [cf. Abadie, Diamond and Hainmueller (2007)]. The approach of Brodersen
et al. (2015) is to construct a synthetic control by combining three sources of in-
formation using a state-space time-series model: (1) behavior of the pre-treatment
target series (2) other time series that were predictive of the target series before the
turf removal and (3) in a Bayesian framework, prior knowledge about the model
parameters, from earlier studies.

We will use static regression coefficients in our Bayesian structural time series
model, which assumes that the linear usage relationship between the controls and
the counterfactual expected usage for customers who did remove turf from their
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lawn remains fixed even after the turf is removed. Furthermore, we will allow for
a local linear trend. For a treatment time series tr, this model has the form

trt = μt︸︷︷︸
level

+ Zt︸︷︷︸
regression

+ εt ,

Zt = β ′xxx,

μt+1 = μt + δt + ημ,t︸ ︷︷ ︸
random walk and trend

,

δt+1 = δt + ηδ,t︸ ︷︷ ︸
random walk for trend

,

where εt ∼ N (0, σ 2
t ), ημ,t ∼ N (0, σ 2

μ,t ) and ηδ,t ∼ N (0, σ 2
δ,t ). The regression

component, Zt captures the static linear relationship between the control series and
the treatment series, while the level component μt captures local linear trends, en-
abling the model to react to unobserved sources of variability to which the control
and treatment series are exposed. For the local linear trend component of the model
to be completely valid, unobserved sources of variability should have the same
impact on the treatment and control series, and the dynamics of those sources of
variability should not be influenced by the intervention. Note that while the vector
xxx can contain covariates besides an intercept, classic covariates, such as household
size, are not explicitly included in the model implemented in this paper [nor in the
model implemented by Brodersen et al. (2015)] but are implicitly captured since
the modeled trend is conditional on them. The fixed effects are explicitly accounted
for in the meta-regression described in Section 3.3. This is done to overcome a
number of drawbacks to including the covariates in the BSTS models. First, is
to make inference more organized by performing the inference in one step rather
than obtaining inferences per BSTS model. As a practical matter variables which
exhibit variation, such as climate variables, the pre-treatment series would need to
be long enough to estimate their effect. Mostly static features, such as household
size, might not exhibit sufficient variation within a treatment/control group to yield
a reliable estimate. To overcome these issues and potentially gain some statistical
efficiency, an option might be to develop a method for joint estimation of these
fixed effects within the BSTS models based on between treatment/control group
information. However, doing so would likely make the type of parallelization de-
scribed in Section 3.2.3 impossible.

By placing a spike-and-slab prior on the set of regression coefficients and by al-
lowing the model to average over the set of controls, it is possible to choose from
many candidate controls [George and McCulloch (1997)]. To combine information
about tr and the controls, the posterior distribution of the counterfactual time series
is computed given the values of tr in the pre-intervention period along with the val-
ues of the controls in the post-intervention period. Given a predicted and observed
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water use t̂rt and trt , the difference trt − t̂rt yields a semi-parametric Bayesian
posterior distribution for the water savings attributable to the turf removal at time
t which can be used to obtain credible intervals. When water is considered saved,
the value of trt − t̂rt is negative since less water was consumed than expected given
the counterfactual water consumption t̂rt . We take these estimates and adjust them
from CCF/hundred cubic feet to gallons saved per square foot to obtain estimated
monthly gallons saved per square foot of turf removed, calculated as

(3.2) ĝpsf t = 748.052 × (trt − t̂rt )

Rebate Quantity
.

The structural time series model was fitted using the CausalImpact pack-
age provided by Google for estimating the effectiveness of marketing campaigns
[Brodersen et al. (2015)]. A number of differences exist between the Google mar-
keting context described in Brodersen et al. (2015), for which this approach was
originally proposed, and the turf removal rebate context. First, Google is able to
assess the impact of the marketing campaign in terms of participation using this
method, where participation is measured in number of clicks because they have
data on number of clicks prior to the campaign. It is in their interest to distinguish
how many clicks after the start of the campaign were driven by the campaign as
opposed to organic. In contrast, prior to the rebate programs, the water districts
did not track turf removal. The number of filed rebate claims before the start of the
rebate programs is zero, so the rebates do not definitively show that turf removal
has increased, unlike advertising clicks which are monitored before and after an
marketing action.

Another difference is that in the marketing context, the impact to estimate is the
number of clicks generated as a consequence of a marketing campaign, where a
marketing campaign is either active or is not. The scale of the marketing campaign
is not addressed. We could stop at estimating an average savings of a household
that removes turf, but this neglects the important relationship between how much
water use is reduced and the amount of the turf removed. To account for this, the
estimated savings are divided by the square feet of turf removed, as calculated by
utility staff in a post-rebate inspection [equation (3.2)]. This allows for a normal-
ized measure of rebate impact in terms of gallons per square foot of turf removed.
Additionally, variables to quantify the magnitude of the turf removal are included
in the meta-model in the final step.

An added complexity in this study is that in place of a single treatment cohort,
or perhaps a few, hundreds of customers participated in the rebate program. The
approach proposed in Brodersen et al. (2015) stops at providing impact estimates
on a single time series at a time. To obtain a broad overview of the impact of turf
removal, it is desirable to aggregate estimates from all of the customers. This issue
and the inclusion of the amount of turf removed in our framework will be addressed
using a meta-regression approach. This meta-regression step will also allow us to
explicitly extract the contribution of classical covariates, such as household size,
whose influence is only implicitly modeled in the M2 step.
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FIG. 1. The first row shows the expected and observed gpsf water usage patterns for two participat-
ing rebate accounts (T1 and T2), where the difference between expected and observed after removal
(dashed) is the estimated savings. The account on the left shows a visible reduction in usage com-
pared to the counterfactual, while the right side has more ambiguous results. The shaded regions
correspond to the 95% posterior probability intervals of the Expected series. The bottom row shows
the raw time series of water usage for the treatment and corresponding matched controls.

3.2.1. Example of M12. Figure 1 shows two examples of the process de-
scribed above. Specifically, the output of the matching process is shown through
charts of water usage over time for the treatment household and its six closest
matches. The output of the BSTS model is given by showing the actual and pre-
dicted consumption for the two examples. The example households were chosen
for their wildly different behavior patterns in the post-rebate period. One house-
hold appears to cease outdoor watering completely after their turf removal, causing
their usage to stabilize at winter levels and achieving an estimated 66% reduction
in overall water use. The other example household shows a decrease in usage rel-
ative to its own past behavior, but shows no significant reduction compared to its
similarly behaving peers. This effect may be due to increased awareness of the Cal-
ifornia drought and the mandatory restrictions put in place in April 2015. Thus, the
water savings would be attributed to behavioral change among households in the
region but not directly to the removal of turf.

3.2.2. Parameter selection. A number of parameters must be chosen when
applying the matching procedure and BSTS model. We assessed these in terms of
their impact on the mean water savings estimates obtained from the BSTS models.

A sensitivity analysis was performed to determine the effect of parameter
choices at the matching stage on final estimates of water savings. Specifically, a
random sample of 150 accounts were rerun under all combinations of the different
parameter configurations visible in Table 1. While these are not the only parame-
ters in the model, they are three of the ones most likely to impact the water savings
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TABLE 1
Parameter values tested in sensitivity analysis

Parameter Values

Warping limit 0, 1
DTW emphasis 0, 0.25, 0.5, 0.75, 1
Number of matches 6, 12

estimates because they directly impact the choice of control accounts. These val-
ues in the table were selected to provide a good coverage of the parameter values.
For the warping limit the allowed values are zero and one, so both possibilities are
given. The values for the DTW emphasis provide an evenly spaced grid to explore
the influence of this parameter over. Only two values for the number of matches,
six and twelve, were plotted for the sake of brevity. Other values were explored
with the objective of finding a number of matching candidates which contained a
high number of similar matches while still being computationally feasible. When
six and twelve matches were used, the matched controls did display pre-treatment
behavior that was very similar to the treatment household. At more than twelve
households it was our observation that households were being included that did
not seem to be particularly similar to the treatment household. The displayed per-
formance of the estimation procedure using six and twelve matched control house-
holds is intended to show how increasing the number of similar control households
changes the estimation results. Practitioners are encouraged to investigate their
matches to see how large the number of matches might be before the matched
candidates frequently display behavior that is not consistent with the treatment
household in the pre-treatment period.

In the BSTS model the value for σ 2
μ,t in the local linear trend must also be se-

lected. This is the local level standard deviation which controls the prior standard
deviation of the local linear trend submodel. The local level term modifies how
adaptable the model is to short term changes, and its standard deviation is impor-
tant because it affects the breadth of the posterior intervals. Brodersen et al. (2015)
recommend that the value of 0.01 can be used when the relationship between the
controls and the treatment is strong enough to obtain an informative model. The au-
thors indicate that this is more likely when many control candidates are available.
The water usage data set contains a large pool of control candidates, and matching
results are typically strong (high values in the rrr vector, and visually convincing
matches), so 0.01 is taken.

After calculating savings estimates under each parameter set, the mean of esti-
mated savings for the sample under each parameter set was calculated. This gives
an idea of how sensitive the matching process is to changes in the parameters.
These estimates are visible in Figure 2.
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FIG. 2. The charts display the sensitivity of the meta-estimate results under various values of the
DTW EMPHASIS parameter. Each chart in turn uses a different warping limit or number of control
account matches.

3.2.3. Computation. A drawback of the M12 approach in conservation anal-
yses is that the procedure needs to be applied to hundreds or thousands of house-
holds, but it is computationally heavy. This burden can be managed by cutting the
time of individual operations or parallelizing them.

The most computationally expensive step in the M12 steps is the search for
suitable matches. A major source of computational cost of this step is the DTW
calculations used to obtain D in equation (3.1). Figure 2 shows the average wa-
ter savings per square foot removed across the treatment households under dif-
ferent settings. Standard error bars calculated as the standard deviation of the
meta-estimate results over the households, divided by the square root of the num-
ber of meta-estimates are also given. We observe that there is some sensitivity in
the meta-regression estimates (the analytical end-point of this methodology) as a
function of α, the DTW emphasis parameter. However, if the analyst reaches the
conclusion that matching results are not sensitive to the emphasis on the DTW
component, then a choice can be made to set α in equation (3.1) to 0. This elimi-
nates the DTW calculations and substantially increases the computation speed of
the procedure.

A second way to improve operation time is to parallelize the M12 steps. This
topic is not addressed in Brodersen et al. (2015), possibly because the authors are
addressing the normal situation in market impact analysis where an ad campaign
is applied to one or a small number of markets and matches need to be found from
perhaps a few hundred markets. Such a small number of M12 operations does not
justify parallelization since even a single core can complete the task quickly. In
contrast, when assessing the impact of a conservation action on hundreds or thou-
sands of households, with thousands of candidates to match against, it becomes
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TABLE 2
Key Parameter choices in the modeling process

Parameter Value Description

Min. months post-period 12 Require at least 12 months since the rebate took place.
Min. months pre-period 24 Require at least 24 months before the rebate for accurate

matching.
Zip sample size 500 Randomly sample a maximum of 500 control accounts within

the zip code as possible matches.
Min. matching series 100 Require a pool of at least 100 possible matches within the zip

code.
Warping limit 1 The size of the Sakoe–Chiba band limiting how much the time

series are allowed to warp.
DTW emphasis 0.7 Controls the trade-off between the DTW distance and Pearson

correlation.
Number of matches 6 The number of control accounts to match with and pass into

the STS model.

highly beneficial to take advantage of the distinctness of the household-level M12
calculations. The Appendix details two approaches for parallelizing these calcula-
tions.

Table 2 shows the values of the matching procedure parameters based on the re-
sults from the sensitivity analysis, as well as required minimum observation period
lengths and matching pool sizes.

3.3. Meta-regression on the savings estimates. Monthly estimated water sav-
ings attributable to turf removal are obtained from each of the BSTS models, yield-
ing a total of 10,759 impact estimates for 545 households. Furthermore, a credible
interval can be calculated for each of these estimates. In addition to considering
this large collection of estimates in their own right, we can also model them to
reveal general patterns linking estimated savings to known household characteris-
tics. Doing so allows us to make a step from the household BSTS models, which
do not distinguish between behavioral trends and the influence of covariates, to
general insights into drivers of water savings that are classically of interest.

The aggregation of the household savings estimates can be accomplished with
meta-regression which allows us to include covariates that we expect to drive water
consumption, such as household size, and to account for variability between the
households. More specifically, we will use a mixed-effects model for ĝpsf i,t , the
savings of the ith household at time t ,

(3.3) ĝpsf i,t = β0 + β1xi,1,t + · · · + βpxi,p,t + ui + εi,t ,

where β1, . . . , βp are coefficients for selected fixed effects, ui ∼ N (0, τ 2) is a ran-
dom intercept per household and εi,t ∼ N (0, vi,t ) is a random error term. One of
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the underlying assumptions of many modeling techniques is that each observation
is measured with equal precision. However, in this context we have an estimate
of the precision for each water usage prediction, courtesy of the highest posterior
density credible intervals returned by the BSTS. Each credible interval can be char-
acterized by an estimated variance si,t which can be used to compute weights for
each observation: wi = 1/(si,t ). By applying these weights to the observations in
the meta-regression, observations for which the BSTS model was able to provide
good predictions are given the most influence. The meta-regression is performed
using the metafor package [Viechtbauer (2010)]. The sources in Viechtbauer
(2010) also provide background on the respective methods used in meta-analysis.
An alternative to the frequentist framework employed in the metafor package
is to perform a Bayesian meta-regression. The authors are not aware of a pack-
age for Bayesian meta-regression that offers the same level of user support as the
metafor package, but for a practitioner familiar with programming Bayesian
models implementing a basic mixed effects meta-regression model is an option.

4. Case study: Analyzing the CTRD. Having outlined the steps for perform-
ing a conservation impact analysis using the M123 approach, we return to the
CTRD. Our goal is to understand how turf removal and other variables influence
household water consumption.

After matching and performing the BSTS step, we obtain an estimated change
in water consumption per household that participated in the rebate program. This
estimate is a quantification of the total difference between the expected and re-
alized water consumption at each time period. To better understand how turf re-
moval influences water usage, the meta-regression step can be used to decompose
this change in consumption into factors of interest, such as the magnitude of turf
removal and household size.

The meta-regression we conduct to aggregate the results from the Bayesian STS
model estimates of the water savings from the ith turf-removing household at time
t is a mixed effects model with the following fixed effects structure

μgpsf i,t = αi + β0 + β1 × HH Sizei,t

+ β2 × Pre-turf removal efficiencyi,t

+ β3 × ln(Rebate Quantityi,t )

+ β4 × ln(Rebate Area Ratioi,t )

+ β5 × Household incomei,t

+ β6 × Evapotranspirationi,t

+ β7 × Population densityi,t

+ β8 × sin(2π/12 Monthi,t )
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TABLE 3
Fixed effect estimates for the meta-model of turf removal water savings

Variable Estimate SE t-stat p-value

Intercept −17.66 5.07 −3.48 0
HH size 0.08 0.05 1.5 0.13
Pre-removal efficiency −4.36 1.06 −4.1 0
ln(rebate quantity) 0.55 0.23 2.36 0.02
ln(rebate area ratio) 0.81 0.27 3.02 0
ln(med. HH income) 1.06 0.41 2.6 0.01
Population density 1E−4 1E−4 1.65 0.1
ET −0.08 0.03 −2.86 0
Month sin 2 0.43 0.03 13.14 0
Month cos 2 0.27 0.07 3.98 0
Month sin 4 0.09 0.03 3.45 0
Month cos 4 0.02 0.03 0.7 0.48

+ β9 × cos(2π/12 Monthi,t )

+ β10 × sin(4π/12 Monthi,t )

+ β11 × cos(4π/12 Monthi,t )

+ ui + εi,t ,

where μgpsf is the monthly savings in gallons per square foot. The trigonometric
terms in the model account for seasonality and general time trends in savings not
captured by the BSTS model in the pre-removal period. Month, in this model, is a
unique number for each of the months in the study and runs from 1, . . . ,51.

Table 3 contains the fixed effects estimates of the fitted model. Negative val-
ues indicate that as the value of the variable increases, water is increasingly saved.
The response variable is estimated water savings from households that removed
turf, and the intercept gives a baseline value of around 17 gallons saved per square
foot per month. Household size is not significant, though the direction is posi-
tive. Pre-removal efficiency has a strong, negative effect. This result indicates that
households which tend toward excessive consumption prior to turf removal save
more per square foot. The log of rebate quantity is positive and significant, indicat-
ing that there are diminishing returns per square foot removed. The variable rebate
area ratio displays similar behavior.

Above the single household level, zip codes with higher median household in-
comes tend to save less water per square foot of turf removed. This may be because
these households practice less conservative gardening to start with. Population is
only significant at the 10% level, but the direction is that areas with denser popu-
lation save less per square foot removed. Finally, higher ET values result in higher
savings which is because when ET is high, yards that would normally be watered
heavily, are not watered at all.
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The trigonometric effects used by the model to capture general time trends in
water savings are significant. The fact that time terms are significant indicates that
the BSTS model does not completely anticipate how monthly developments influ-
ence water usage in houses that removed turf relative to their controls. An expla-
nation for this is that during the training period the BSTS models a relationship
between control and treatment houses that have lawns which are generally fixed
in size. After turf removal the relationship between these houses changes; water
consumption by houses that remove turf reacts differently in the dry months than
before removal because less watering is required. This explanation also applies to
the ET variable which explains higher savings than the BSTS models expect be-
cause the water savings benefits of turf removal are not available when fitting the
BSTS model since that is pre-removal.

In preliminary specifications of the model, dummy variables were included for
the different districts in the data set. An attractive feature of a multidistrict dataset
is the potential that different implementation regimes will create conditions for a
natural experiment. However, the district effects were insignificant. This is poten-
tially due to the similarity of the districts in this study which are geographically
nearby in Southern California. A greater variety of districts in the dataset could
offer the potential for more insights.

The first post-modeling analysis we conduct is a comparison of average house-
hold savings by year. We do this for the sample in this study by using the model to
predict the household savings given their moderator variables. Predicted savings
are then grouped by household and year and averaged. The resulting savings esti-
mates give an impression of the distributions of savings outcomes that would be
expected by an analyst or policymaker on this population (Figure 3). We see that
annual savings were about 20 gallons per square foot. However, by aggregating
the monthly savings to an annual level, we lose important details about the savings
patterns.

A more nuanced approach is to use the model to predict the monthly household
savings. Overlaying the predictions are their quantiles, ranging from 5% to 95%.
The savings pattern illustrated in Figure 4 is highly intuitive. The highest savings
are in the months of July, August and September, reaching a monthly average re-
duction of 2.7 gallons per square foot. During the months of January, February and
March, the reduction is much smaller but still valuable at −1.5 gallons per square
foot. Additionally, the plot depicts the skewness of the savings distribution. Turf
removal nearly always results in some savings, and savings for most households
that save more than the average fall within a bandwidth of one gallon more than
the average with a small proportion of extreme savers. Examining the predictions
against their quantiles is similar to the practice advocated by Riley, Higgins and
Deeks (2011) of examining prediction intervals in random-effects meta-analysis
in order to have a more complete overview of the range of potential treatment
outcomes.
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FIG. 3. Average yearly savings for each household over five years.

5. Discussion. The M123 results for the CTRD quantify the contribution of
turf removal to water savings and elaborate on how these savings are realized.
However, M123 is not the only approach for obtaining these estimates.

5.1. Time series vs. traditional matching. One remaining question of interest
is whether time series matching on historical usage produces comparable results
to traditional matching on static attributes. In order to address this question, the
mean distance from each treatment account to its matched control accounts was

FIG. 4. Predicted monthly savings for each household in the dataset. The dark green line corre-
sponds to median savings. Seasonal variation leads to swings in average savings from −1.5 to −2.7
gallons per square foot.
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FIG. 5. The top histogram shows the distribution of mean distances between treatments and their
matched controls with similar historical usage. The bottom shows the distances between treatments
and the unmatched accounts with more dissimilar usage patterns. On average accounts with similar
usage tend to be more similar in household size and irrigable area than those with very different
usage patterns.

compared to the mean distance from each treatment to its potential controls that
were not matched.

Distance was calculated by standardizing the covariates for household size and
irrigable area within each zip code and customer class. The mean Euclidean dis-
tance was then calculated between the treatment and each of the matched and un-
matched groups. The results of this calculation are visible in Figure 5. One can
see that matching on usage patterns tends to result, on average, in matches that
are also similar in their household size and irrigable area. However, this was not
universally true and manual inspection revealed a large variation even among the
matched control accounts. This aligns with the intuition that static covariates do
not capture all aspects of water usage, and that dissimilar accounts may have very
similar water usage patterns.

5.2. BSTS vs. mixed model with dummies. The M123 approach uses a BSTS
model to obtain ĝspf . Consider instead an approach based on a linear mixed model
with dummy variables for post-rebate observations,

(5.1) usei,t = β0 + β1x1,i,t + · · · + βpxp,i,t + δdi,t + ui + εi,t ,

where di,t is a dummy variable indicating if a household has removed turf, and
δ is a coefficient quantifying this effect. Given that we know the impact of turf
rebates is conditional on climate factors, we could also expand the list of dummy
variables to include interactions with season and ET. Along this line many pa-
pers concerned with modeling water consumption use mixed models containing
covariates thought to correlate with water usage and random intercepts to con-
trol for between-consumer variation [Endter–Wada et al. (2008), Fielding et al.
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(2013), Harlan et al. (2009), Mitchell and Chesnutt (2013), Olmstead, Hanemann
and Stavins (2007)].

Although both M123 and the mixed-model approach both include individual
unit information in the model, they obtain estimates for different questions. The
M123 estimates to what extent a participating household’s consumption is differ-
ent from what it would have consumed if it had not participated. A mixed model
estimates how consumption by participating households is different from nonpar-
ticipating households by means of the dummy variable. The M12 approach is in-
teresting if one is concerned with selection bias, wherein households that partici-
pate in conservation programs are likely to consume less water to begin with. The
mixed-model approach can not disentangle the a household’s concern for water use
and water use reduction incurred by technical savings from a modification, such
as turf removal. In contrast the M12 approach makes some progress in this direc-
tion by modeling household water use idiosyncrasies in the pre-treatment phase
that may be accounted for by unmeasurable preferences, such as concern for water
use.

5.3. Improvement with quantile regression. Figure 4 gives a broader overview
of the impact of turf removal than point estimates for a model of the mean, such
as a table of coefficient estimates would. Ultimately, however, Figure 4 is a de-
tailed view of the prediction intervals generated by the model of the mean shown
in Table 3. It is of interest to understand better how the behavior of households
in different water consumption brackets relate to descriptive covariates. Quantile
regression provides one tool for exploring these relationships [Koenker (2005)].
Employing a form of hierarchical spline models to estimate conditional quantiles,
Hendricks and Koenker (1992) explains that in studying electricity consumption
in Chicago households that the relationships between consumption and covariates
differ across consumption quantiles. The methodology applied by the authors bears
some resemblance to the M123 method in that models are fitted per household, and
the results are aggregated up to general results. As the authors state, this “hierar-
chical” linear models approach was introduced by Lindley and Smith (1972) and
has been widely applied.

The M123 method differs from Hendricks and Koenker (1992), Lindley and
Smith (1972) and others in the methods used in the M12 steps. Regarding the M3
step, an option which post-dates Hendricks and Koenker (1992) and is particularly
suitable in concept is quantile regression with random effects [Arellano and Bon-
homme (2013), Koenker (2004)]. In application, functions from the rqpd pack-
age [Koenker and H (2014)] can be applied in the M3 step to perform the meta-
regression. This approach was tested on the CTRD with some promising results,
but the computational speed makes it prohibitively slow to apply to datasets of
this size. Applying it to smaller datasets would be feasible, and there are prospects
that methods such as Arellano and Bonhomme (2013) will allow for more rapid
computation of these models in the near future.
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6. Conclusions. The M123 methodology enables estimation of conservation
program impacts using contextual customer attribute data of interest to policy mak-
ers and characterizations of usage dynamics based on observed household con-
sumption. This is in contrast to approaches which rely purely on extensive lists of
covariates that are at best proxies for consumption behavior.

In the CTRD case study the impact estimate of 24.6 gallons saved per year per
square foot of turf removed was calculated by randomly sampling 10,000 estimates
with replacement and calculating the mean of the obtained empirical distribution.
Standard errors of those predicted water savings obtained from the empirical dis-
tribution are 0.11 gallons per year per square foot of turf removed. Those water
savings are stable across district and vary sinusoidally over time highlighting the
structural water savings of turf market transformation for regional and statewide
water reliability initiatives. At $2 paid per square foot turf removed and assuming
a hyperbolic discount rate of five percent over a landscape conversion lifespan of
30 years that translates into a present value of $1422 plus or minus seven dollars
per acre foot of water saved.

The M123 approach can be used to evaluate the water savings associated with
other conservation rebates, other customer-level demand management interven-
tions and potentially other natural resource conservation programs in energy or
natural gas. As the old adage goes, “You cannot manage what you cannot mea-
sure,” and such rigorous impact evaluations can help public managers navigate the
uncertainties of program design in conservation policy development.

Measuring savings at the household level, as in the CTRD, allows managers
to highlight promising technical solutions, like turf removal, but also target edu-
cational materials on efficient consumption practices to customers that have seen
dissavings in their post-implementation period compared to their expected coun-
terfactual ultility use. In the CTRD case this would mean, for example, sending
educational materials to households that removed turf but have saved less water
than expected, perhaps because they are not aware of proper watering practices for
their new native landscapes.

APPENDIX: PARALLELIZATION OF THE M12 STEPS

Two levels of the M12 steps can be parallelized. In the simpler approach, par-
allelization is performed at the participating household level according to the fol-
lowing steps:

Parallelization scheme 1.

1. Select a participating household i and candidates for matching (based on
geographic proximity, zip code, etc).

2. Distribute the data for the selected participating i and matching candidate
households to a core.
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3. Perform the M12 steps and return the estimated conservation impact ĝpsfgpsfgpsf i

from the core for each time point in the post-rebate period.
4. Perform prior steps for all participating households as cores become avail-

able.

When the number of cores available is large and the number of candidates to
match is extremely large, it may be advantageous to further distribute the comput-
ing as follows:

Parallelization scheme 2.

1. Determine a number of cores C that will be devoted to matching for a house-
hold i.

2. Select a participating household i.
3. Select C subsets of �K/C� matching candidates (based on geographic prox-

imity, zip code, etc), such that for any two subsets, Cc ∩ C¬c = ∅, or nearly so,
where only slight overlap occurs due to rounding.

4. Distribute the data for the selected participating i and matching candidate
households to core c.

5. Perform the matching step and return the similarity index for each candiate
in Cc.

6. Combine the similarity indexes to obtain the vector rrri and select the match-
ing households.

7. Run the BSTS step and estimate the conservation impact series ĝpsfgpsfgpsf i on an
available core.

8. Perform prior steps for all participating households as cores become avail-
able.
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