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We propose a novel multivariate model for analyzing hybrid traits and
identifying genetic factors for comorbid conditions. Comorbidity is a com-
mon phenomenon in mental health in which an individual suffers from multi-
ple disorders simultaneously. For example, in the Study of Addiction: Genet-
ics and Environment (SAGE), alcohol and nicotine addiction were recorded
through multiple assessments that we refer to as hybrid traits. Statistical
inference for studying the genetic basis of hybrid traits has not been well
developed. Recent rank-based methods have been utilized for conducting
association analyses of hybrid traits but do not inform the strength or direction
of effects. To overcome this limitation, a parametric modeling framework
is imperative. Although such parametric frameworks have been proposed in
theory, they are neither well developed nor extensively used in practice due
to their reliance on complicated likelihood functions that have high compu-
tational complexity. Many existing parametric frameworks tend to instead
use pseudo-likelihoods to reduce computational burdens. Here, we develop
a model fitting algorithm for the full likelihood. Our extensive simulation
studies demonstrate that inference based on the full likelihood can control
the type-I error rate, and gains power and improves the effect size estima-
tion when compared with several existing methods for hybrid models. These
advantages remain even if the distribution of the latent variables is mis-
specified. After analyzing the SAGE data, we identify three genetic variants
(rs7672861, rs958331, rs879330) that are significantly associated with the
comorbidity of alcohol and nicotine addiction at the chromosome-wide level.
Moreover, our approach has greater power in this analysis than several exist-
ing methods for hybrid traits.Although the analysis of the SAGE data moti-
vated us to develop the model, it can be broadly applied to analyze any hybrid
responses.
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1. Introduction. Identifying genetic variants that contribute to diseases is
critically important for understanding their biological etiologies and, in turn, de-
termining optimal treatment programs. Genetic studies in recent years have iden-
tified numerous genetic variants associated with diseases. A comprehensive cat-
alog of findings from Genome-wide Association Studies (GWAS) can be found
at http://www.genome.gov/gwastudies, where millions of genetic variants, namely
single nucleotide polymorphisms (SNPs), are studied. This catalog makes it clear
that genetic studies focus primarily on a single disease or trait.

Genetic studies of single phenotypes are likely to be inadequate for mental ill-
nesses and behavioral disorders, which are characterized by variations in several
traits. Genetic studies of such disorders warrant assessments across multiple phe-
notypes. For example, the Study of Addiction: Genetics and Environment (SAGE)
recorded varying degrees of alcohol addiction through multiple assessments, such
as the maximum alcohol consumption in 24 hours (a continuous trait), whether or
not feeling bad when controlling alcohol use (a binary trait), and the severity of
alcohol symptoms (an ordinal trait). Alcohol addiction was thus characterized by
multiple variables of different types, which are referred to as hybrid traits. Further-
more, in mental health research and behavioral science, comorbidity of multiple
disorders is common. An individual who is addicted to alcohol is more likely to
suffer from nicotine addiction and mood disorders [Li and Burmeister (2009)].
To examine the benefit of analyzing multivariate traits from a statistics perspec-
tive, Zhu and Zhang (2009) conducted extensive simulation studies and found that
jointly testing correlated traits improves power over testing single traits one at
a time. Similar findings have been reported recently; for example, Lange et al.
(2003), Yang et al. (2010), Zhang, Liu and Wang (2010), Zhu, Jiang and Zhang
(2012), He et al. (2012), He, Avery and Lin (2013), Galesloot et al. (2014), Jiang,
Li and Zhang (2014).

In most genetic studies of multivariate traits, traits are assumed to be exclusively
quantitative, binary, or ordinal traits but not a mix of them, as reviewed by Zhang
(2011), Galesloot et al. (2014). This assumption is however overly restrictive in
mental health studies. For example, in SAGE, addiction to alcohol and nicotine is
assessed by the number of drinks, the number of cigarettes smoked, and the sever-
ity of alcohol or nicotine symptoms (no, mild, moderate, and severe). As a conse-
quence, the methods designed for quantitative scales such as MV-PLINK [Ferreira
and Purcell (2009)] and the commonly used principal component approach [Klei
et al. (2008)] are not appropriate.

Several existing methods developed for analyzing ordinal traits can be utilized
for testing associations between hybrid traits and a genetic marker [Zhang, Liu and
Wang (2010), Zhu, Jiang and Zhang (2012), Jiang, Li and Zhang (2014), O’Reilly
et al. (2012), He, Avery and Lin (2013)]. In particular, MultiPhen [O’Reilly et al.
(2012)] is designed to address arbitrary types of traits. However, these methods
do not estimate the size and direction of the effects nor the dependence among
the phenotypes. We aim to resolve this major deficiency in the genetic analysis

http://www.genome.gov/gwastudies
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of hybrid traits, particularly mental disorders, by proposing a parametric multi-
variate hybrid (MH) model for jointly modeling hybrid traits with ordinal com-
ponents. Tests of appropriately fitted parametric models may have considerably
greater power than those relying on nonparametric approaches. More importantly,
the MH model provides useful information that improves our understanding of
comorbidity.

The key assumption behind the MH model is that the observed ordinal traits
originate from some latent continuous variables, and this assumption makes it eas-
ier for us to form a joint distribution of the hybrid traits. Using latent variables
for this purpose has previously been explored by many authors. Anderson and
Pemberton (1985) and Poon and Lee (1987) termed it the conditional grouped
continuous model, which de Leon and Carrière (2007, 2013) extended to a more
general mixed data model. Boscardin, Zhang and Belin (2008) proposed a gener-
alized multivariate probit model to study a repeated measures setting in a Bayesian
framework. However, to the best of our knowledge, existing methods avoid directly
computing the maximum likelihood estimate in this MH model. Several compos-
ite likelihood methods, which are less computationally demanding, have also been
studied. For example, de Leon (2005) studied the pairwise likelihood approach,
which is, however, less efficient than the maximum likelihood estimate. Due to
the scarcity of computationally tractable algorithms for computing the maximum
likelihood estimate, the general framework of MH modeling has not been utilized
in practice, especially for applications that require performing a large number of
tests for associating hybrid traits with risk factors, such as in a GWAS of comor-
bid mental health traits. Genetic studies of comorbidity critically need statistically
efficient and computationally practical methods, which we attempt to introduce in
this work.

To obtain the maximum likelihood estimate from the full likelihood, we propose
a Parameter-Expanded Expectation Conditional Maximization (PX-ECM) proce-
dure. It extends the conditional version of the EM algorithm by transforming the
latent variables and expanding the parameter space [Ruud (1991), Meng and Rubin
(1993), Liu, Rubin and Wu (1998), Kawakatsu and Largey (2009)]. Like the EM
algorithm, the PX-ECM possesses an advantageous property that the likelihood is
monotonically increasing in subsequent iterations, which guarantees the solution
to be a local maximizer and, moreover, yields fully efficient parameter estimates
by directly maximizing the full likelihood. Our numerical studies confirm that our
estimation procedure improves both power in hypothesis testing and precision in
estimating effect sizes, as well as provides directions.

In Section 2, we state our aim in analyzing the SAGE data, present the MH
model for analyzing hybrid traits of comorbidity, and present results from the
data analysis. For comparison, we also use the traditional univariate analysis, a
reverse regression method, a multivariate nonparametric test based on the gen-
eralized Kendall’s Tau, and the Fisher’s combination. Our analysis reveals novel
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genetic markers that have not previously been reported as being associated with al-
cohol or nicotine addiction, which provides evidence that our parametric inference
method can be valuable for genetic association studies of comorbid traits more
broadly. To assess the performance of our method, in Section 3, we conduct sim-
ulation studies to compare it with four competing methods. The simulation results
indicate that our parametric inference improves power in most scenarios. In par-
ticular, it compares favorably with the MultiPhen method [O’Reilly et al. (2012)].
Our method also improves, to a great extent, effect size estimation, compared to
univariate analysis. These advantages remain even when the distribution of latent
variables is misspecified. We conclude this work with some remarks in Section 4.
We defer technical details to the Supplementary Material [Zhang et al. (2018)],
including the model fitting algorithm and its properties.

2. A study of comorbidity.

2.1. The study of addiction: Genetics and environment. The Study of Addic-
tion: Genetics and Environment (SAGE) was a major undertaking to identify novel
genetic risk factors for alcohol, smoking, and drug addiction through a large-
scale genome-wide association study. The SAGE data include 4,121 European and
African Americans from three data sets: the Collaborative Study on the Genetics of
Alcoholism (COGA), the Family Study of Cocaine Dependence (FSCD), and the
Collaborative Genetic Study of Nicotine Dependence (COGEND). Each subject
was diagnosed based on DSM-IV symptoms for alcohol, nicotine, and other illicit
drugs. Most studies of these data have been limited to single-trait based analyses
with a few exceptions [Chen et al. (2011), Zhao and Zhang (2016)].

In our analysis, we study alcohol and nicotine dependence simultaneously as
previous research showed that patients’ dependence on these two substances are
closely related [Li and Burmeister (2009)]. We used the following four measures of
addiction as the MH traits: (1) the continuous trait “max-drinks” that measures the
largest number of alcoholic drinks consumed in 24 hours; (2) the ordinal trait “alc-
sx” that measures the severity of alcohol symptoms (no, mild, moderate, and se-
vere); (3) the binary trait “cig-daily” that reflects daily smoking or not; and (4) the
ordinal trait “cig-sx” that measures the severity of nicotine symptoms (no, mild,
moderate, and severe).

2.2. Multivariate hybrid model. We consider M continuous traits Y = (Y (1),

. . . , Y (M))T and L ordinal traits W = (W(1), . . . ,W(L))T . For the SAGE data,
M = 1 and L = 3, if we treat a binary trait as a special case of an ordinal trait.
We use Y (1), W(1), W(2), and W(3) to represent the four traits introduced above,
respectively.
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For each ordinal trait W(l), we assume that there exists a latent continuous vari-
able Z(l) such that

(1) W(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Z(l) ≤ c
(l)
0 ,

2 if c
(l)
0 < Z(l) ≤ c

(l)
1 ,

...
...

kl − 1 if c
(l)
kl−3 < Z(l) ≤ c

(l)
kl−2,

kl if c
(l)
kl−2 < Z(l),

where kl ≥ 2, −∞ < c
(l)
0 < c

(l)
1 < · · · < c

(l)
kl−2 < ∞. The values of W(l),

1,2, . . . , kl , are merely symbols, which represent the order and should not
be interpreted as numerical quantities. The role of the latent variables Z =
(Z(1), . . . ,Z(L))T is to facilitate modeling the joint distribution of Y and W .

In addition to the traits, the observed variables include the genotype G and p-
dimensional covariate X. Conditional on G and X, each continuous trait follows

Y (m) = αm + βmG + γ T
m X + εm

where εm follows the normal distribution with mean zero and variance σ 2
m. There-

fore,

Pr
(
Y (m) ≤ y(m)) = �

(
σ−1

m

(
y(m) − αm − βmg − γ T

m x
))

.

We use the similar technique to define the marginal distribution of Z(l):

Z(l) = μl + θlG + ηT
l X + εl.

We have

(2) Pr
(
W(l) ≤ i

) = Pr
(
Z(l) ≤ c

(l)
i−1

) = �

(
c
(l)
i−1 − (μl + θlG + ηT

l X)

σM+l

)
.

Furthermore, for jointly modeling hybrid traits, we assume that the (M + L)-
dimensional random vector (σ−1

1 ε1, . . . , σ
−1
M εM,σ−1

M+1εM+1, . . . , σ
−1
M+LεM+L)

follows the multivariate normal distribution with mean zero and correlation ma-
trix �.

In genetic association studies, the parameters βm’s and θl’s represent the ge-
netic effects, γm’s and ηl’s represent the environmental effects, the off-diagonal
elements in the correlation matrix � reflect the trait-trait correlation (conditional
on the known risk factors). In the Supplementary Material, we will discuss the
technical aspects of fitting this model and making statistical inference.

Here we also briefly introduce testing procedures to study the association be-
tween multivariate traits (Y,W) and the genotype G; that is,

H0 : β = 0, θ = 0 vs H1 : β �= 0 or θ �= 0.
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Computational burdens of variance estimation raise challenges for efficiently using
the classical Wald’s test. Our proposed PX-ECM algorithm is feasible for comput-
ing the likelihood ratio test. Under H0, the PX-ECM algorithm can also be im-
plemented by removing biomarker G. Suppose the maximum likelihood estimate
is �̂ in the whole parameter space and �̃ when restricting to H0. For simplic-
ity, we denote the p.d.f. of [Y,W |G,X] for each individual by f (�;Yi,Wi), that
is, Lik(�) = 
n

i=1f (�;Yi,Wi). Following the classic likelihood theory, we can
show that, under H0, as sample size n → ∞, we have

−2 log
Lik(�̃)

Lik(�̂)

d−→ χ2
M+L.

Therefore, the null hypothesis H0 is rejected if −2 log Lik(�̃)

Lik(�̂)
> χ2

M+L,α , where

χ2
M+L,α is the (1 − α)-th quantile of the chi-square distribution χ2

M+L, and α is a
pre-specified nominal level of significance.

2.3. Data analysis results. We performed a genome-wide association study
to identify SNPs associated with comorbid addiction in the SAGE sample. After
following data quality control steps in Jiang, Li and Zhang (2014), we used data
from 3564 subjects with 950,705 SNPs in our analysis.

To use the MH model, we code the genotype G of each SNP as the observed
number of minor alleles. Covariates X include gender, race (European or African),
study (COGA, FSCD, or COGEND), and the first two principal components of the
genetic relatedness matrix to adjust for population stratification (Figure 1 reveals
two major principal components for population stratification based on the genotype
data).

For comparison, we consider four competitors including univariate analysis
with Bonferroni correction (Univariate-BC), the MultiPhen method, the gener-
alized Kendall’s Tau method (G-Kendall), and Fisher’s combination of p-values
method with a bootstrap correction (Fisher-boot). The Univariate-BC method fits
a (linear or probit) regression model to each trait, and the p-value from Wald test is
then adjusted by Bonferroni correction [Laird and Lange (2011)]. The MultiPhen
method [O’Reilly et al. (2012)] is based on reverse regression, that is, treating the
genotype as an ordinal response and regressing it on phenotypes including the dis-
ease traits and covariates. For implementation, we use the R package “MultiPhen.”
The G-Kendall method is a nonparametric method based on Kendall’s Tau while
adjusting for covariates [Zhu, Jiang and Zhang (2012)]. The Fisher-boot method
uses Fisher’s method to combine p-values from univariate trait analysis. The cor-
relation between the p-values is corrected by bootstrap [Kwak, Zheng and Wu
(2013)].

Because we are particularly interested in p-values that are extremely small, we
first screened the entire genomewide with simple tests. Specifically, we impose
a screening criterion of requiring the p-value from the univariate analysis with
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FIG. 1. Principal component (PC) analysis of the quality-controlled SAGE genotype data to
demonstrate population stratification.

Bonferroni correction less than 0.05, as well as the p-value from the Kendall’s
Tau less than 1 × 10−4, which led to 86 candidate SNPs for intensive computation
of their p-values. An R code is available upon request.

We find that the SNP rs958331, located on the gene CARD11 in Chromosome
7, has a p-value of 4.51 × 10−7, reaching the chromosome wide significance level
(α = 0.05/50138 = 9.97×10−7). CARD11 is an oncogene in human diffuse large
B cell lymphoma [Lenz et al. (2008)], and has not been previously associated with
addiction. For the same SNP, as reported in Table 1, the p-values are 3.01 × 10−6,
3.33 × 10−2, 1.61 × 10−2 and 9.51 × 10−5, using the MultiPhen [O’Reilly et al.
(2012)], the Fisher’s approach, the univariate approach with the Bonferroni correc-
tion (an extra multiplier of 4 must be factored in the Bonferroni correction due to
the four traits), and the nonparametric multivariate approach based on generalized
Kendall’s Tau, respectively. Tests for this SNP using the competing approaches
were not significant at the chromosome wide level.

Meanwhile, we find that SNP rs7672861, located in the intergenic region on
Chromosome 4, has a p-value of 5.22×10−7, reaching the chromosome wide sig-
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TABLE 1
A summary of significant results by MultiPhen, Fisher’s approach, univariate analysis with

Bonferroni correction, Kendall’s Tau, and the proposed method PX-ECM. Chromosome-wide
significance level is provided as threshold. Fisher’s approach is based on a permutation test of
3,000 replications. More replications are expected but are not conducted due to computational

restriction. Chromosome-wide significant results are highlighted in bold

SNP Gene Chromosome

rs7672861 intergenic 4
rs958331 CARD11 7
rs879330 COL18A1 21

SNP Threshold MultiPhen Fisher Univariate-BC Kendall’s Tau PX-ECM

rs7672861 8.99 × 10−7 7.57 × 10−7 0 1.36 × 10−5 9.04 × 10−8 5.22 × 10−7

rs958331 9.97 × 10−7 3.01 × 10−6 3.33 × 10−2 1.61 × 10−2 9.51 × 10−5 4.51 × 10−7

rs879330 3.99 × 10−6 2.91 × 10−6 1.67 × 10−3 1.26 × 10−5 2.10 × 10−3 1.01 × 10−5

nificance level (α = 0.05/55634 = 8.99 × 10−7). Although SNP rs7672861 was
not previously identified as a risk factor of comorbid addiction, it is in linkage dis-
equilibrium with SNPs in gene RNF150, which is well known as being associated
with chronic obstructive pulmonary disease [Kim et al. (2012)]. A haploview for
the LD blocks in the proximity of SNP rs7672861 is provided in Figure 2, which
demonstrates the relative proximity of the SNP 7672861 and the gene RNF150.
We should note that all competing methods except the univariate approach also
detect SNP rs7672861, as presented in Table 1. In addition, SNP rs879330 located
in gene COL18A1 on chromosome 21 passes the chromosome wide significance
from the MultiPhen method, and our proposed method provides a p-value of sim-
ilar magnitude to that from the MultiPhen.

In the following, we further investigate the effects of three identified SNPs. For
our joint model, Table 2 presents the estimates for parameters that are of inter-
est in genetic studies. The rows corresponding to the three identified SNPs reveal
that, if we examine the association with each single trait, only Y (1) (the continuous
trait “max-drinks”) yields a p-value (1.3 × 10−7) below the chromosome-wide
significance level. This observation underscores again the benefit of considering
comorbidity of alcohol and nicotine dependence and modeling comorbid traits si-
multaneously. The gain of power is due to the strong correlation (conditional on
the known risk factors) between the traits, as seen in Table 2. More specifically,
the conditional correlations between alcohol-related and nicotine-related traits are
0.51 or greater. This magnitude implies that, in addition to those risk factors identi-
fied in the model, there remain other unknown but major genetic or environmental
factors that account for the comorbidity of alcohol and nicotine dependence. Such
information is also critical for genetic association studies, as it provides additional
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FIG. 2. Haploview of the proximity of SNP 7672861, which is at the right end of the plot. The gene
RNF150 covers from the left end to the right of SNP 9308138, which is about 33kb from the SNP
7672861.

TABLE 2
Parameter estimation of the detected SNPs rs7672861, rs958331, and rs879330 based on the MH

model for the SAGE data analysis

Alcohol-related Nicotine-related

Max-drinks Alc-sx Cig-daily Cig-sx

rs7672861 0.095 (0.018) 0.059 (0.025) 0.156 (0.037) 0.082 (0.028)
rs958331 0.021 (0.025) −0.084 (0.035) 0.030 (0.041) 0.059 (0.031)
rs879330 0.029 (0.032) 0.068 (0.043) 0.073 (0.053) 0.195 (0.047)
Gender −0.693 (0.028) −0.556 (0.040) −0.166 (0.051) −0.209 (0.043)
Race 0.045 (0.038) −0.228 (0.055) −0.344 (0.062) 0.075 (0.052)

Max-drinks 1 0.766 (0.009) 0.513 (0.020) 0.539 (0.016)
Alc-sx 1 0.585 (0.023) 0.663 (0.014)
Cig-daily 1 0.939 (0.012)
Cig-sx 1

Alc-sx and Cig-sx represent the severity of alcohol and nicotine symptoms, respectively. Within
the parentheses is the estimated standard error of the corresponding parameter estimate. The upper
section is the coefficient estimates and the lower section is the dependence among the four traits.
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knowledge of comorbidity and calls for further search of other risk factors. We note
that neither the nonparametric method nor combining univariate analyses method
can unveil the conditional correlation among the traits as a result of unknown fac-
tors.

According to Table 2, rs958331 appears to be associated positively with Y (1),
W(2), and W(3), but negatively with W(1), despite the fact that the four traits are
positively associated with each other. Our analysis also reveals that a large propor-
tion of the comorbidity of alcohol and nicotine dependence has not been explained
by the known risk factors in the SAGE data, and hence further studies are war-
ranted.

3. Simulation study. We use simulation studies to examine the performance
of the jointly modeling approach with respect to (1) the power of detecting signals;
(2) the bias and efficiency in parameter estimation; and (3) the robustness to model
misspecifications. We consider again the four competing methods: the Univariate-
BC, MultiPhen, G-Kendall, and Fisher-boot methods.

We first simulate six traits: two continuous, two binary, and two ordinal traits.
The genotype variable G takes values 0, 1, or 2 with the minor allele frequency
(MAF) being 0.3 or 0.1. Two covariates X1 and X2 are generated from the normal
distributions N(0,1) and N(0,4), independent of G. We set the regression coef-
ficients such that the genetic effects are much smaller than the covariate effects
(e.g., 0.1 versus 1.0), which is often the case in genetic studies. The correlation of
the latent error components is set to be 0.7. Discretizing the latent continuous vari-
ables yields the binary and ordinal traits. The two ordinal traits have 4 and 3 levels,
respectively. This simulation setting involves 44 parameters for us to estimate in
the MH model. We consider sample sizes ranging from n = 600 to 3000.

Table 3 reveals that all methods control the type I error reasonably well when all
the genetic effects βm = θl = 0, with the Univariate-BC method being relatively
conservative. Table 4 presents the power analysis results when the genetic effects
βm = θl = 0.1. We observe that the likelihood ratio test (LRT) from our MH model
gains considerable power relative to the Univariate-BC and MultiPhen methods,
the two most popular methods for genetic association studies. Our method is ex-
pected to be more powerful than the Univariate-BC because we explicitly model
the between-trait correlations. A striking observation is that the MultiPhen method,
which also accommodates the multivariate traits, is sometimes less powerful than
the Univariate-BC method. It is slightly better than the nonparametric G-Kendall
method. One explanation is that the MultiPhen method ignores the relationship
among the traits. We also observe that the power of our MH-LRT method is com-
parable to the Fisher-boot method, which adjusts the correlation using bootstrap.
The latter method, however, is even more computationally intensive. For exam-
ple, in the current simulation setting, it needs at least 3000 bootstrap replicates to
ensure a reasonably controlled type I error rate. Moreover, unlike our method, it
does not improve the precision of the effect size estimation. We also examine the
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TABLE 3
Empirical type I error rate for association test when MAF = 0.3 and 0.1

MAF = 0.3 MAF = 0.1

Sample size Method α = 0.1 α = 0.05 α = 0.01 α = 0.1 α = 0.05 α = 0.01

n = 600 Univariate-BC 0.068 0.032 0.006 0.068 0.030 0.007
MultiPhen 0.100 0.051 0.009 0.106 0.054 0.012
G-Kendall’s Tau 0.090 0.045 0.008 0.098 0.047 0.009
Fisher-boot 0.100 0.048 0.009 0.094 0.046 0.010
MH-LRT 0.107 0.054 0.011 0.112 0.059 0.014

n = 1,200 Univariate-BC 0.070 0.034 0.006 0.064 0.031 0.007
MultiPhen 0.103 0.050 0.010 0.095 0.049 0.012
G-Kendall’s Tau 0.096 0.050 0.010 0.092 0.041 0.010
Fisher-boot 0.102 0.051 0.010 0.100 0.046 0.010
MH-LRT 0.111 0.058 0.011 0.109 0.057 0.010

n = 2,000 Univariate-BC 0.062 0.031 0.006 0.061 0.030 0.006
MultiPhen 0.104 0.054 0.010 0.109 0.058 0.011
G-Kendall’s Tau 0.098 0.048 0.009 0.101 0.053 0.009
Fisher-boot 0.104 0.051 0.011 0.101 0.050 0.011
MH-LRT 0.111 0.059 0.012 0.113 0.054 0.011

Results are based on 5,000 simulation replicates; standard errors of entries do not exceed 0.007.

TABLE 4
Empirical power for association test when MAF = 0.3 and 0.1

MAF = 0.3 MAF = 0.1

Method n α = 0.1 α = 0.05 α = 0.01 n α = 0.1 α = 0.05 α = 0.01

Univariate-BC 600 0.285 0.198 0.065 1,200 0.200 0.124 0.043
MultiPhen 0.226 0.137 0.030 0.198 0.129 0.047
G-Kendall’s Tau 0.200 0.121 0.024 0.193 0.116 0.033
Fisher-boot 0.337 0.234 0.091 0.330 0.223 0.070
MH-LRT 0.326 0.209 0.075 0.290 0.183 0.060

Univariate-BC 1,200 0.394 0.290 0.122 2,000 0.295 0.198 0.070
MultiPhen 0.365 0.249 0.099 0.277 0.186 0.064
G-Kendall’s Tau 0.337 0.227 0.080 0.267 0.164 0.052
Fisher-boot 0.517 0.410 0.204 0.401 0.309 0.149
MH-LRT 0.513 0.382 0.188 0.418 0.289 0.131

Univariate-BC 2,000 0.574 0.431 0.223 3,000 0.353 0.235 0.090
MultiPhen 0.557 0.441 0.205 0.347 0.241 0.095
G-Kendall’s Tau 0.537 0.400 0.169 0.348 0.226 0.082
Fisher-boot 0.703 0.592 0.349 0.544 0.397 0.178
MH-LRT 0.731 0.633 0.399 0.550 0.408 0.202

Results are based on 5,000 simulation replicates; standard errors of entries do not exceed 0.007.
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TABLE 5
Type I error and power when mimicking the effect size in analysis for rs958331

Method α = 0.1 α = 0.05 α = 0.01

Type I error Univariate-BC 0.078 0.039 0.007
MultiPhen 0.186 0.109 0.035
G-Kendall’s Tau 0.073 0.032 0.006
Fisher-boot 0.102 0.047 0.009
MH-LRT 0.091 0.044 0.008

Power Univariate-BC 0.882 0.765 0.462
MultiPhen 0.996 0.994 0.975
G-Kendall’s Tau 0.998 0.992 0.965
Fisher-boot 0.841 0.607 0.153
MH-LRT 0.999 0.996 0.974

Results are obtained based on 5,000 simulation replicates.

type I error and power while mimicking our real data analysis in Section 2. Table 5
shows the results when we simulate data using the effect sizes from the regression
model for rs958331. In this scenario, we have two new observations: the Multi-
Phen method has severely inflated type I error rates; and the Fisher-boot method
is much less powerful. Our method controls the type I error and has the highest
power.

Unlike the four competitors, the MH model explicitly models the between-trait
association. Therefore, our inference on the regression slope parameters, which
represent genetic and environmental effects, is expected to be more efficient than
that based on the univariate-trait analysis. The PX-ECM algorithm helps us achieve
the efficiency by maximizing the full likelihood, rather than marginal or pseudo
likelihoods. Table 6 exemplifies our gain of efficiency over the univariate-trait
(marginal) analysis (n = 2000, MAF = 0.3). For the regression slope and cor-
relation parameters, it tabulates their true values, the mean, and standard deviation
of their estimates from multivariate and univariate analyses. To assess the relative
efficiency, we calculate the ratio of the mean squared error (MSE) of the two types
of estimates. Table 6 suggests: for the slope parameters associated with contin-
uous traits, the univariate trait analysis is fully efficient, and for the binary and
ordinal traits, our inference can be 10 to 40 times more efficient than the univariate
method. It is important to note that unlike our proposed method, the univariate trait
analysis does not estimate the strength of the association, marked as “NA”s in the
table.

Similar to the Univariate-BC and Fisher-boot methods, the MH model requires
some parametric assumptions. In particular, we require that the latent variables
underlying the categorical traits follow normal distributions. In what follows, we
numerically examine the robustness of our inference to misspecification of latent
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TABLE 6
Parameter estimation using full and marginal likelihoods (n = 2,000)

Joint Marginal
estimation estimation

True value Mean SE Mean SE ratio.MSE

Regression coefficients
Trait 1 1.00 1.00 0.10 1.00 0.10 1.00

0.10 0.10 0.07 0.10 0.07 1.00
1.00 1.00 0.04 1.00 0.04 1.00
1.00 1.00 0.02 1.00 0.02 1.00

Trait 2 1.00 1.01 0.15 1.01 0.15 1.00
0.10 0.10 0.10 0.10 0.10 1.00
1.00 1.00 0.07 1.00 0.07 1.00
1.00 1.00 0.03 1.00 0.03 1.00

Trait 3 −1.40 −1.41 0.11 −1.30 0.14 2.53
0.10 0.10 0.06 0.09 0.07 1.11
1.00 1.00 0.05 0.92 0.08 4.21
1.00 1.01 0.04 0.93 0.07 6.10

Trait 4 −2.20 −2.21 0.13 −1.90 0.17 6.54
0.10 0.10 0.07 0.09 0.07 1.04
1.00 1.01 0.06 0.86 0.07 6.75
1.00 1.01 0.05 0.85 0.07 11.65

Trait 5 1.90 1.91 0.08 1.62 0.14 14.20
0.10 0.10 0.04 0.08 0.04 0.95
1.00 1.00 0.04 0.85 0.07 19.63
1.00 1.00 0.03 0.85 0.06 37.11

Trait 6 1.10 1.11 0.09 1.01 0.11 2.50
0.10 0.10 0.05 0.09 0.05 1.00
1.00 1.00 0.04 0.92 0.07 7.04
1.00 1.00 0.03 0.92 0.07 11.53

Correlation coefficients
0.70 0.70 0.01 NA NA
0.70 0.70 0.03 NA NA
0.70 0.70 0.03 NA NA
0.70 0.70 0.02 NA NA
0.70 0.70 0.02 NA NA
0.70 0.70 0.03 NA NA
0.70 0.70 0.03 NA NA
0.70 0.70 0.02 NA NA
0.70 0.70 0.02 NA NA
0.70 0.70 0.04 NA NA
0.70 0.70 0.03 NA NA
0.70 0.70 0.03 NA NA
0.70 0.70 0.04 NA NA
0.70 0.70 0.04 NA NA
0.70 0.70 0.03 NA NA
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TABLE 6
(Continued)

Joint Marginal
estimation estimation

True value Mean SE Mean SE ratio.MSE

Cutoff points
2.10 2.10 0.07 1.79 0.14 23.75
2.10 2.10 0.07 1.78 0.14 27.41
2.60 2.61 0.08 2.39 0.18 11.60

Results are obtained based on 1,000 simulation replicates.

distributions. Specifically, we simulate the latent errors from χ2 distributions with
4 degrees of freedom, which is a highly skewed distribution with a skewness value
of

√
2. We examine the type I error, power, and parameter estimation using the

same simulation setting as above. The results are reported in Tables 7–9. Table 7
reassures the robustness of all methods in terms of the type I error rates. Table 8 in-
dicates that our method is much more powerful than the MultiPhen and Univariate-
BC methods. As for the effect size estimation, recall that the distribution assumed
for the latent variable in the model was different from the one from which the

TABLE 7
Empirical type I error rate for association test when the latent distributions are misspecified as χ2

(MAF = 0.3)

Sample size Method α = 0.1 α = 0.05 α = 0.01

n = 600 Univariate-BC 0.083 0.042 0.007
MultiPhen 0.109 0.047 0.008
G-Kendall’s Tau 0.088 0.044 0.009
Fisher-boot 0.102 0.050 0.013
MH-LRT 0.102 0.060 0.008

n = 1,200 Univariate-BC 0.069 0.034 0.007
MultiPhen 0.101 0.049 0.010
G-Kendall’s Tau 0.094 0.048 0.010
Fisher-boot 0.100 0.051 0.010
MH-LRT 0.108 0.056 0.011

n = 2,000 Univariate-BC 0.061 0.033 0.009
MultiPhen 0.109 0.061 0.009
G-Kendall’s Tau 0.092 0.053 0.006
Fisher-boot 0.082 0.046 0.009
MH-LRT 0.107 0.057 0.016

Results are obtained based on 1,000 simulation replicates.
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TABLE 8
Empirical power for association test when the latent distributions are misspecified as χ2

(MAF = 0.3)

Sample size Method α = 0.1 α = 0.05 α = 0.01

n = 600 Univariate-BC 0.207 0.143 0.050
MultiPhen 0.244 0.155 0.056
G-Kendall’s Tau 0.220 0.121 0.032
Fisher-boot 0.307 0.219 0.088
MH-LRT 0.310 0.197 0.072

n = 1,200 Univariate-BC 0.391 0.254 0.094
MultiPhen 0.383 0.259 0.099
G-Kendall’s Tau 0.349 0.247 0.090
Fisher-boot 0.516 0.380 0.169
MH-LRT 0.506 0.376 0.171

n = 2,000 Univariate-BC 0.568 0.439 0.242
MultiPhen 0.519 0.409 0.209
G-Kendall’s Tau 0.541 0.405 0.208
Fisher-boot 0.709 0.600 0.360
MH-LRT 0.686 0.580 0.347

Results are obtained based on 1,000 simulation replicates.

data were simulated. As a result from this misspecification, we can observe from
Table 9 that both methods are biased. However, our joint modeling approach is
less biased than the method based on the marginal likelihood (see the 3rd and 5th
columns of Table 9). Moreover, the last column confirms that our inference is still
much more efficient than marginal inference.

To summarize, our method has the following advantages. First, it gains sub-
stantial power relative to several existing methods such as the MultiPhen Method
and univariate-trait analysis. Second, it improves, to a great extent, effect size (re-
gression slope) estimation over the univariate-trait analysis. Third, our method is
the only one to estimate the between-trait correlation while adjusting for covari-
ates. The partial correlation estimates can provide deeper insight into comorbidity.
These advantages remain even when the distribution of the latent variables of our
MH model is misspecified.

4. Discussion. Studying comorbidity is important for mental health research
where psychiatric conditions are characterized by multiple assessments. Because
these assessments typically consist of a hybrid of continuous and ordinal variables,
comorbidity raises major challenges for statistical inference. This problem is ev-
ident from the analysis of the SAGE data. To meet the challenges of analyzing
such data, we proposed to use the multivariate hybrid model and develop sound
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TABLE 9
Parameter estimation when the latent distributions are misspecified as χ2 (n = 2,000)

Joint Marginal
estimation estimation

True value Mean SE Mean SE ratio.MSE

Regression coefficients
Trait 1 1.00 0.99 0.11 0.99 0.11 1.00

0.10 0.10 0.07 0.10 0.07 1.00
1.00 1.00 0.04 1.00 0.04 1.00
1.00 1.00 0.02 1.00 0.02 1.00

Trait 2 1.00 1.00 0.16 1.00 0.16 1.00
0.10 0.10 0.11 0.10 0.11 1.00
1.00 1.00 0.07 1.00 0.07 1.00
1.00 1.00 0.03 1.00 0.03 1.00

Trait 3 −1.40 −1.37 0.11 −1.27 0.12 2.18
0.10 0.10 0.06 0.09 0.07 1.18
1.00 0.96 0.06 0.89 0.07 2.96
1.00 0.96 0.05 0.89 0.05 3.55

Trait 4 −2.20 −1.98 0.13 −1.87 0.15 2.02
0.10 0.09 0.06 0.08 0.07 1.22
1.00 0.88 0.06 0.82 0.06 1.86
1.00 0.88 0.05 0.82 0.05 1.91

Trait 5 1.90 1.95 0.08 1.63 0.13 10.76
0.10 0.10 0.04 0.08 0.04 0.89
1.00 1.02 0.04 0.86 0.07 12.37
1.00 1.02 0.03 0.86 0.06 16.53

Trait 6 1.20 1.21 0.08 1.10 0.12 3.47
0.10 0.10 0.05 0.09 0.05 0.96
1.00 1.03 0.05 0.93 0.08 3.33
1.00 1.03 0.04 0.93 0.07 4.15

Correlation coefficients
0.70 0.70 0.01 NA NA
0.70 0.67 0.03 NA NA
0.70 0.68 0.03 NA NA
0.70 0.67 0.02 NA NA
0.70 0.67 0.02 NA NA
0.70 0.67 0.03 NA NA
0.70 0.68 0.03 NA NA
0.70 0.67 0.02 NA NA
0.70 0.67 0.02 NA NA
0.70 0.69 0.04 NA NA
0.70 0.66 0.03 NA NA
0.70 0.71 0.04 NA NA
0.70 0.70 0.03 NA NA
0.70 0.69 0.04 NA NA
0.70 0.66 0.03 NA NA
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TABLE 9
(Continued)

Joint Marginal
estimation estimation

True value Mean SE Mean SE ratio.MSE

Cutoff points
2.00 2.09 0.08 1.75 0.14 6.18
2.10 2.09 0.08 1.77 0.14 22.23
2.60 2.63 0.10 2.39 0.19 7.17

Results are obtained based on 1,000 simulation replicates.

methods for computation and inference. Although parametric models have previ-
ously been proposed to analyze hybrid responses, they have been underdeveloped
and have limited applications. Our work presents the first major attempt to tackle
this challenging problem. After applying our model to the SAGE, we unraveled a
novel gene that is commonly known as an oncogene in human diffuse large B cell
lymphoma, but was not previously associated with addiction. Our finding under-
scores the potential of our model to improve power for genetic association studies
of comorbidity. Not only did we provide statistically significant evidence for our
finding, but also we assessed the validity of our model and offered insights into
how we were able to discover this SNP that was otherwise not detectable by the
existing methods.

While our own primary motivation was to evaluate the genetic contribution to
complex traits, such data are common in many areas, especially in behavioral sci-
ences. As we noted above, there are a limited number of methods to analyze mixed
types of outcomes. Nonparametric tests are among one of the main approaches,
which yield p-values, but offer no explicit information on the association direction
and strength. Thus, a parametric framework is critical to fill in this need. More-
over, parametric models are far more convenient for the purpose of incorporating
covariates in the analysis which allows, in turn, an examination of confounding
and interactive effects. These are critical aspects of regression analysis involving a
range of known and unknown attributing factors.

Given the complexity involved in modeling the mixed outcomes, it is not sur-
prising that we must resolve some major technical challenges. In fact, model fitting
for such outcomes is particularly difficult, and has rarely been discussed in the lit-
erature. We developed a stable and feasible PX-ECM algorithm to compute the
maximum likelihood estimates. Our PX-ECM algorithm is designed to accommo-
date the mixture of continuous and ordinal traits simultaneously. It still retains the
key feature of EM-type algorithms such as monotonicity of the observed likeli-
hood.
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In the analysis of multiple traits, the proposed parametric model has clear ad-
vantages over the rank-based nonparametric methods proposed in Zhang, Liu and
Wang (2010) and Zhu, Jiang and Zhang (2012). First, since our parametric ap-
proach explicitly models the correlation structure of continuous and categorical
traits, it can achieve remarkable gain of power in detecting plausible association
of genetic variants with the complex disease of interest, as we demonstrated in
the simulation and real data studies. Importantly, the parametric framework can
yield other important inference outcomes such as the direction and strength of the
association (captured by the regression coefficients), which play a crucial role in
understanding the genetic and environmental effect in the development of a com-
plex disease.

The normality (or other distributional) assumption for continuous data is com-
monly used for convenience in parametric models. When the response variable is
binary or ordinal and if an ordered probit/logistic model is used, we can assume a
certain density function of the latent variable for the categorical response. Our sim-
ulation studies demonstrate that our model is robust to the misspecification of the
distribution of the latent variables. Nonetheless, if such an assumption is of clear
concern, we may consider rank-based methods such as the generalized Kendall’s
Tau method. But the rank-based methods are generally not as powerful as paramet-
ric methods as we also demonstrated in our simulation studies. Thus, parametric
and nonparametric methods complement each other and both are useful.
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SUPPLEMENTARY MATERIAL

Supplement to “Modeling hybrid traits for comorbidity and genetic stud-
ies of alcohol and nicotine co-dependence” (DOI: 10.1214/18-AOAS1156SUPP;
.pdf). Supplementary materials provide all the technical details for the model fit-
ting.
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