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SENSITIVITY ANALYSIS FOR STRATIFIED COMPARISONS IN AN
OBSERVATIONAL STUDY OF THE EFFECT OF SMOKING ON

HOMOCYSTEINE LEVELS

BY PAUL R. ROSENBAUM

University of Pennsylvania

Sensitivity bounds for randomization inferences exist in several impor-
tant cases, such as matched pairs with any type of outcome or binary out-
comes with any type of stratification, but computationally feasible bounds
for any outcome in any stratification are not currently available. For instance,
with 20 strata, some large, others small, there is no currently available, com-
putationally feasible sensitivity bound testing the null hypothesis of no treat-
ment effect in the presence of a bias from nonrandom treatment assignment
of a specific magnitude. The current paper solves the general problem; it
uses an inequality formed by taking a one-step Taylor approximation from
a near extreme solution, known as the separable approximation, where the
concavity of the underlying function ensures that the Taylor approximation
is, at worst, conservative. In practice, the separable approximation and the
one-step movement away from it provide computationally feasible lower and
upper bounds, thereby providing both a usable, perhaps slightly conservative
statement, together with a check that the conservative statement is not unduly
conservative. In every example that I have tried, the upper and lower bounds
barely differ, although with some effort one can construct examples in which
the separable approximation gives a P -value of 0.0499 and the Taylor ap-
proximation gives 0.0501. The new inequality holds in finite samples, so it
strengthens certain existing asymptotic results, additionally simplifying the
proof of those results. The method is discussed in the context of an obser-
vational study of the effects of smoking on homocysteine levels, a possible
risk factor for several diseases including cardiovascular disease, thrombosis
and Alzheimer’s disease. This study contains two evidence factors, the com-
parison of smokers and nonsmokers and the comparison of smokers to one
another in terms of recent nicotine exposure. A new R package, senstrat,
implements the procedure and illustrates it with the example from the current
paper.

1. Smoking as a possible cause of elevated levels of homocysteine.

1.1. A stratified observational study. Elevated levels of plasma homocysteine
are widely believed to signify increased risk of various diseases, including car-
diovascular disease, thrombosis and Alzheimer’s disease; see Hankey and Eikel-
boom (1999), Seshadri et al. (2002), Wald, Law and Morris (2002) and Welch and
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Loscalzo (1998). Bazzano et al. (2003) suggested that cigarette smoking may cause
elevated levels of homocysteine. This possibility is examined here using more re-
cent data from the 2005–2006 NHANES; see Pimentel, Small and Rosenbaum
(2016) for a different analysis of the NHANES data.

The comparison is restricted to adults, aged at least 20 years, in the 2005–2006
NHANES, and it compares daily smokers to never smokers. Homocysteine was
measured in the 2005–2006 NHANES. Daily smokers smoked every day for the
last 30 days and smoked an average of at least 10 cigarettes each day. Never smok-
ers smoked fewer than 100 cigarettes in their lives, do not smoke now and had no
tobacco use in the previous five days. The outcome is the homocysteine level in
blood plasma in μmol/l.

Individuals were grouped into S = 108 = 2 × 3 × 3 × 3 × 2 strata, s = 1, . . . , S,
based on five observed covariates: (i) gender, female or male, (ii) three age cate-
gories, 20–39, 40–50, ≥ 60 years, (iii) three education categories, < high school,
high school, ≥ some College, (iv) three categories of the body-mass index (BMI),
<30, [30,35), ≥ 35, and (v) federal poverty level, namely income < 2× poverty,
≥ 2×poverty. There were 2475 individuals, consisting of 512 daily smokers and
1963 never smokers. The data are available as homocyst in the senstrat pack-
age in R, and the examples in that package reproduce several of the analyses re-
ported in this paper. Of these 108 strata, 18 strata with a total of 124 individuals
(5% of 2475 individuals) contained only treated subjects or only controls, and
these strata do not affect randomization inferences. For instance, there are three
daily smokers and no controls in the stratum for men under 40 with less than high
school education, a BMI between 30 and 35, with an income more than twice the
poverty level. One can avoid such uninformative strata, so that all 2475 individu-
als contribute to the comparison, using full matching in place of stratification; see
Rosenbaum (1991) and Hansen (2004). In the analysis of this example in Section 6,
the S = 108 strata are used in conjunction with a robust covariance adjustment that
makes a linear correction for continuous versions of age, BMI and income.

Figure 1 shows the 108 stratum sizes, ns , in Tukey’s stem and leaf display,
a histogram in which the final digit is used as a plotting symbol. For instance,
there is one stratum with ns = 1, six strata with ns = 2, two strata with ns = 3, and
so on and one stratum with ns = 192. So Figure 1 shows that the 108 strata varied
in size from one individual, ns = 1, to ns = 192 individuals, with many small strata
and a few large strata. The largest stratum with ns = 192 individuals had 10 daily
smokers and 182 never smokers, and consisted of women under 40 with at least
some college, BMI < 30 and incomes above twice the poverty line. Compared to
all 107 other strata pooled, this stratum was five times more likely to not smoke,
with an odds ratio of 5.1 and a 95% confidence interval of [2.7,11.0]. The nine
largest of 108 strata contain more than a third of 2475 individuals. As discussed in
Section 3.1, there is no existing method for computing sensitivity bounds in this
situation with both large and small strata and continuous outcomes; however, a
completely general method will be developed in Section 4.
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FIG. 1. Stratum sizes, ns , for S = 108 strata, ranging from min(ns) = 1 to max(ns) = 192. The
nine largest strata contain 849 = 192 + 123 + 111 + · · · + 56 individuals, or more than one third of
the total sample, N = 2475.

Figure 2 shows homocysteine levels for each of the five stratifying variables and
for smoking. Because homocysteine levels have a long right tail, they are plotted
on the log scale. The base-2 log is used, so that log2(y) − log2(x) = 1 means y =
2x and log2(y) − log2(x) = k means y = 2kx, and differences signify doublings.
Notably, homocysteine levels are lower for women than for men, increase with age
and are higher for smokers.

If the Hodges and Lehmann (1962) aligned rank randomization test is used to
compare logs of homocysteine levels of daily smokers and never smokers within
the 108 strata, aligning using the Hodges–Lehmann estimate as suggested by the
simulation of Mehrotra, Lu and Li (2010), then the one-sided P -value is 3.3 ×
10−13. However, this is a moderately large sample and randomization was not used
to assign individuals to smoke or not, so a small P -value from a randomization test
has little meaning here. How much bias in treatment assignment would need to be
present to alter the naive impression from a randomization test that smoking causes
an increase in homocysteine levels?

1.2. Outline: A Taylor correction makes a restricted method applicable in gen-
eral. Notation for causal inference and sensitivity analysis is briefly reviewed in
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FIG. 2. Plots of log2(Homocysteine) levels for five stratifying variables and for the treatment,
daily smoking of at least 10 cigarettes or never smoking. A difference of k units on the log2(·) means
doubling k times, so log2(y) − log2(x) = 2 if y = 22x = 4x.

Section 2, and then known results and open problems about computing sensitiv-
ity bounds are discussed in Section 3. Briefly, computationally feasible sensitivity
bounds exist for: (i) matched pairs, matched sets, and full matching with any out-
come, (ii) treatment-control comparisons without strata, or with two or three strata,
and any outcome, and (iii) any stratification with binary outcomes. Section 4 pro-
vides a computationally feasible general solution to the remaining open cases, that
is, to any stratification with any outcome. The general method builds upon a so-
lution, called the separable approximation, that was designed for many uniformly
small but informative matched sets. Existing results do not justify use of the sep-
arable approximation in the stratification in Section 1.1, because in Figure 1 the
largest stratum is 192 times larger than the smallest. Using a Taylor approximation
to a concave function, that is, a Taylor approximation that always overestimates
the function, a bound is obtained for the error of the separable approximation when
used in cases in which it lacks a theoretical justification, like Figure 1. The Taylor
approximation provides a (very slightly) conservative statement that may be used
in all situations, that is, with a specified magnitude of bias in treatment assignment.
A true null hypothesis about treatment effects is falsely rejected with probability
at most α when the nominal level of the test is α. The procedure also provides
a computable bound on how conservative the test might be. In all of the exam-
ples considered, the Taylor approximation is seen to be negligibly conservative
with the nominal level of the test very close to its actual size. Until Section 5, the
only stratified permutation test that is considered is the Hodges–Lehmann (1962)
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aligned rank test. Maritz (1979) proposed exact permutation tests for matched pairs
using Huber’s M-statistics, and Section 5 extends his method to sensitivity anal-
yses in stratified comparisons. The example in Section 1.1 is then analyzed in
detail in Section 6, using Hodges–Lehmann aligned ranks, M-statistics, and ro-
bust covariance-adjusted stratified permutation tests. The method and examples
are available in an R package senstrat at cran.

1.3. Reading options. The main result is Proposition 1. It says rejection of the
null hypothesis of no treatment effect can or cannot be explained by a bias in treat-
ment assignment of a certain magnitude. More precisely, Proposition 1 provides
a very close upper bound on a numerical quantity that determines the outcome of
a hypothesis test in the presence of a bias of a given magnitude. Unlike previous
work, the method in Proposition 1 works for any outcome with any stratification;
for instance, it does not require matched sets or binary outcomes. To understand
Proposition 1 in all its detail, one needs the background and notation in Section 2,
the known results and open questions in Section 3, the formal result in Section 4.1
and the technical remarks in Section 4.4.

Alternatively, one could initially focus on the examples and software imple-
mentation, trying the software on the examples, returning to the technical ma-
terial later or not at all. The homocysteine example in Section 1.1 is analyzed
in Section 4.3, Section 6.1 and Section 6.2. Additional examples are discussed
in Section 5.2. Using the senstrat package in Remark 3 of Section 4.2, the
analysis in Section 4.3 of the homocysteine data may be reproduced by typ-
ing: data("homocyst"), attach(homocyst), sc<-hodgeslehmann
(log2(homocysteine), z,stf,align="hl") and senstrat(sc,
z,stf,gamma=1.95, detail=TRUE). Here, hodgeslehmann(·) com-
putes the Hodges and Lehmann (1962) aligned ranks, and senstrat(·) does
the sensitivity analysis at � = 1.95. The output is simpler with the default,
detail=FALSE, and this suffices for data analysis. Two of the additional ex-
amples in Section 5.2 are analyzed in the examples in the documentation for the
senstrat(·) function obtained by typing help(senstrat).

2. Notation for randomization inference and sensitivity analysis.

2.1. Causal inference in randomized experiments. There are S strata, s =
1, . . . , S, with ns individuals in stratum s, i = 1, . . . , ns , of whom ms received
treatment, indicated by Zsi = 1, and ns − ms received control, indicated by
Zsi = 0, so ms = ∑ns

i=1 Zsi for each s. Write N = ∑S
s=1 ns for the total num-

ber of individuals, and Z = (Z11,Z12, . . . ,ZS,nS
)T for the N -dimensional vec-

tor of treatment assignments. For a finite set S , write |S| for the number of el-
ements of S . Write Z for the set containing the |Z| = ∏S

s=1
(ns

ms

)
possible val-

ues z = (z11, . . . , zS,nS
)T of Z, so that zsi = 0 or zsi = 1 and ms = ∑ns

i=1 zsi for
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each s. Conditioning on the event Z ∈ Z is abbreviated as conditioning on Z .
Each stratum s is homogeneous in an observed covariate x, so xsi = xsi′ for all
1 ≤ i < i′ ≤ ns , but individuals may differ in terms of an unmeasured covariate u,
so possibly usi �= usi′ for many or all s, i, i ′.

Each subject has two potential responses, rT si if treated with Zsi = 1 or rCsi

if control with Zsi = 0, so the response observed from the ith individual in stra-
tum s is Rsi = ZsirT si + (1 − Zsi)rCsi and the effect caused by the treatment,
namely rT si − rCsi , is not observed for any individual; see Neyman (1923) and
Rubin (1974). Fisher’s (1935) sharp null hypothesis of no treatment effect as-
serts H0 : rT si − rCsi = 0, ∀s, i, and if H0 were true then Rsi = rCsi . Write
R = (R11, . . . ,RS,nS

)T and rC = (rC11, . . . , rCS,nS
)T for the N -dimensional vec-

tors. Write F = {(rT si, rCsi,xsi , usi), s = 1, . . . , S, i = 1, . . . , ns}.
In a stratified randomized experiment, the treatment assignment Z is picked at

random from Z so that Pr(Z = z | F,Z) = |Z|−1 for each z ∈ Z . If T = t (Z,R)

is a test statistic, then in a stratified randomized experiment under Fisher’s null
hypothesis H0, the null distribution of t (Z,R) is its permutation distribution,

(1)

Pr
{
t (Z,R) ≥ k | F,Z

} = Pr
{
t (Z, rC) ≥ k | F,Z

}

= |{z ∈ Z : t (z, rC) ≥ k}|
|Z| ,

because R = rC if H0 is true, rC is fixed by conditioning on F , and Z is uniformly
distributed on Z . Randomization inference about the magnitude of a treatment
effect involves inverting a test of Fisher’s hypothesis of no effect; see Lehmann and
Romano (2005), Section 5.12, or Rosenbaum (2002a), Section 5. As no new issues
arise in this paper when inverting the test of H0, it saves a considerable amount of
otherwise unneeded notation if attention focuses on the test of Fisher’s hypothesis
H0. Confidence intervals for a multiplicative effect of smoking on homocysteine
levels, that is, for an additive effect on the log scale, are computed in Section 6.

2.2. Sensitivity analysis in stratified observational studies. In an observational
study, randomization is not used to assign treatments, so there is no reason to
expect the test statistic T = t (Z,R) to have the randomization distribution (1)
when H0 is true. A sensitivity analysis asks, “How large would the departure from
random assignment need to be to alter the qualitative conclusions reached on the
basis of (1)?” For instance, how much bias would need to be present to lead to
acceptance of H0 at level α when H0 would have been rejected at level α by (1) in
a randomized experiment?

A simple model for sensitivity analysis assumes that treatment assignments Zsi

in the population are independent, and that two individuals, i and i′, with the same
value of the observed covariate, xsi = xsi′ , that is, two individuals in the same
stratum s, may differ in their odds of treatment by at most a factor of � ≥ 1,

(2)
1

�
≤ Pr(Zsi = 1 | F)Pr(Zsi′ = 0 | F)

Pr(Zsi′ = 1 | F)Pr(Zsi = 0 | F)
≤ � whenever xsi = xsi′,
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and then returns the distribution of Z to Z by conditioning on Z ∈ Z . Write U =
[0,1]N for the N -dimensional unit cube. Also, write: (i) Zs = (Zs1, . . . ,Zs,ns )

T

for the treatment assignments in stratum s, (ii) Zs for the set containing the
(ns

ms

)
possible values of Zs and (iii) us = (us1, . . . , us,ns )

T for the corresponding values
of usi . The set Z is the direct product of the S sets Zs , that is, z ∈ Z if and only
if zT = (zT

1 , . . . , zT
S ) with zs ∈ Zs , for s = 1, . . . , S. It is straightforward to show

that (2) and conditioning on Z ∈ Z is equivalent to assuming for z ∈ Z ,

(3)

Pr(Z = z | F,Z) = exp(γ zT u)∑
v∈Z exp(γ vT u)

=
S∏

s=1

exp(γ zT
s us)∑

vs∈Zs
exp(γ vT

s us)
with u ∈ U,

where γ = log(�) ≥ 0. The equivalence of (2) and (3) is demonstrated by con-
structing u ∈ U from Pr(Zsi = 1 | F) satisfying (2) and conversely; see Rosen-
baum (2002a), Section 4.2.2. If γ = 0 or equivalently if � = 1, then (3) be-
comes the randomization distribution, Pr(Z = z | F,Z) = |Z|−1 or each z ∈ Z .
As � = eγ increases, (3) permits progressively larger departures from randomiza-
tion, and the question is, “How large must � be to alter inferences obtained from
(1)?”

There is a close connection between (2) and omissions from the propen-
sity score. In principle, we may define usi = Pr(Zsi = 1 | xsi , rT si, rCsi) where
Pr(Zsi = 1 | xsi) is the propensity score; then, (i) usi may be ignored if treat-
ment assignment is ignorable given xsi in the sense that 0 < Pr(Zsi = 1 |
xsi , rT si, rCsi) = Pr(Zsi = 1 | xsi) < 1; (ii) if treatment assignment is not ignor-
able given xsi then it is ignorable given (xsi , usi) providing 0 < usi = Pr(Zsi = 1 |
xsi , rT si, rCsi) < 1. An unobserved covariate usi defined in this way involves the
relationship between treatment assignment Zsi and potential outcomes, (rT si, rCsi)

conditional on covariates, xsi . For details of this view of (2), see Rosenbaum
(2017a), Section 9.

For various methods of sensitivity analysis in observational studies, see
Cornfield et al. (1959), Egleston, Scharfstein and MacKenzie (2009), Fogarty and
Small (2016), Gilbert, Bosch and Hudgens (2003), Hosman, Hansen and Holland
(2010), Liu, Kuramoto and Stuart (2013) and Yu and Gastwirth (2005). In partic-
ular, Fogarty and Small (2016) use the model (3) with multiple outcomes when
matching with multiple controls, ms = 1 and ns ≥ 2 for each s.

3. Computing sensitivity bounds: Known results and open problems.

3.1. Known results about particular situations. In principal, under H0 and
(3) with one fixed � = eγ and u ∈ U , we may compute the tail probability
Pr{t (Z, rC) ≥ k | F,Z} for any k by summing (3) over {z ∈ Z : t (z, rC) ≥ k},
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and we would reject H0 at level α for this (�,u) if Pr{t (Z, rC) ≥ k | F,Z} ≤ α

when k is replaced by the observed value of the statistic, t (Z,R), which equals
t (Z, rC) under H0. More usefully, we would reject H0 at level α in the presence
of a bias of at most � if

(4) max
u∈U Pr

{
t (Z, rC) ≥ k | F,Z

} ≤ α with k replaced by t (Z,R).

If the event (4) occurs, then a bias of magnitude � is too small to explain away
rejection of H0 at level α.

Although the mathematical problem in (4) is well defined, as stated it is not a
feasible computation in general because u is N -dimensional and |Z| is enormous.
In simple cases it is possible to determine the extreme u ∈ U by a mathematical
argument without computation. These simple cases include: (i) matched pairs with
ns = 2 and ms = 1 for every s, with any type of outcome, and (ii) any stratum sizes
ns and ms with binary outcomes (rT si, rCsi); see Rosenbaum (2002a), Section 4.3–
Section 4.4, and Rosenbaum and Small (2017).

Many test statistics have the form t (Z,R) = ZT q =∑S
s=1

∑ns

i=1 Zsiqsi where
q = (q11, . . . , qS,nS

)T is a function of R and hence of rC when H0 is true. For in-
stance, the Mantel (1963) extension statistic, the Hodges–Lehmann (1962) aligned
rank statistic and the stratified Wilcoxon rank sum statistic have this form; see
Lehmann (1975). Many other test statistics that are not explicitly in this form may
be replaced by statistics in this form without changing the permutational P -value;
see Section 5 for M-statistics and means. In determining the null tail probabil-
ity (4), we assume H0 is true so that the qsi are fixed, and then, without loss of
generality, we may sort individuals in stratum s by their qsi , so qs1 ≤ · · · ≤ qs,ns .

For a large class of test statistics, t (Z,R), including t (Z,R) = ZT q, Rosenbaum
and Krieger (1990) showed that the u ∈ U that provides the exact upper bound in
(4) is one of several corners of the cube U = [0,1]N ; specifically, usi = 0 or usi =
1 for every si with u = (u1, . . . ,uS)T , us = (us1, . . . , us,ns ) and 0 = us1 ≤ us2 ≤
· · · ≤ us,ns = 1. In other words, qsi and usi are ordered in the same way within each
stratum s, that is, (usi − usi′)(qsi − qsi′) ≥ 0 for all s, i, i ′. In the unstratified two-
sample problem with S = 1, this means there are only N − 1 = n1 − 1 candidate
u ∈ U that need to be checked to determine whether (4) has occurred, often a
feasible task. Alas, with several or many strata, S > 1, the number of candidates
is

∏S
s=1(ns − 1), so this direct approach is feasible only for fairly small S. For

instance, with S = 20 and each ns = 101, there would be 10020 = 1040 candidate
u’s. Write U+ ⊂ U = [0,1]N for the set containing these |U+| = ∏S

s=1(ns − 1)

candidate values of u. Then, under H0,

(5)

max
u∈U Pr

{
ZT q ≥ k | F,Z

} ≤ α if and only if

max
u∈U+

Pr
{
ZT q ≥ k | F,Z

} ≤ α.
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For a specific � = eγ ≥ 1 in (3), Rosenbaum and Krieger (1990) give simple for-
mula for μs� = E(

∑ns

i=1 Zsiqsi | F,Z) and νs� = var(
∑ns

i=1 Zsiqsi | F,Z) when
us consists of ns − � zeros followed by � ones, for � = 1, . . . , ns − 1. Both μs� and
νs� depend on �, but the notation does not indicate this explicitly. The ev function
in the senstrat package in R computes the expectation μs� and variance νs�.

For a fixed � = eγ and a fixed u ∈ U , various central limit theorems imply

that {ZT q − E(ZT q | F,Z)}/
√

var(ZT q | F,Z) converges in distribution to the
standard normal distribution, providing that qsi’s are not too unstable. A con-
ventional central limit theorem lets the number of strata increase, S → ∞, with
1 ≤ ms < ns ≤ ñ for some bound ñ, exploiting the fact that ZT q is the sum of S in-
dependent random variables when (3) is true; see, for instance, Gastwirth, Krieger
and Rosenbaum (2000). An alternative central limit theorem fixes the number of
strata, S, lets ns → ∞ for each s and in this case

∑ns

i=1 Zsiqsi converges to a
normal distribution for each s by Theorem 2.1 of Bickel and van Zwet (1978).
Although Bickel and van Zwet’s Theorem 2.1 nominally provides a normal ap-
proximation and expansion for the nonnull distribution of a randomization test,
their expression (2.9) is mathematically the same as the null sensitivity distribu-
tion Pr{t (Z, rC) ≤ k | F,Z} when S = 1 for one specific u ∈ U . Using such a
normal approximation in large samples, the task of checking (5) for fixed � = eγ

and u ∈ U+ is replaced by a comparison involving k, the various μs� and νs� and a
critical constant from the normal distribution; see (6).

If there are many small strata, S → ∞ with 1 ≤ ms < ns ≤ ñ, then Gastwirth,
Krieger and Rosenbaum (2000) proposed a very fast approximate determination
of whether (5) holds that avoids consideration of |U+| = ∏S

s=1(ns − 1) candidate
values of u ∈ U+. The method picks a single u = (u1, . . . ,uS)T ∈ U+ by picking
one us at a time, for s = 1, . . . , S. The idea is to put as much mass in the upper
tail by maximizing the expectation μs�, and, if there is a tie in doing that, then
also maximizing the variance νs� among us that maximize the expectation. Say-
ing the same thing more precisely, let Js ⊆ {1, . . . , ns − 1} be the set of values �

such that μs� = max1≤d≤ns−1 μsd , and if |Js | > 1 then pick any � ∈ Js that max-
imizes νs�, so νs� = maxd∈Js νsd . This picks a single u = (u1, . . . ,uS)T ∈ U+.
The tail probability Pr{ZT q ≥ k | F,Z} for this single u ∈ U+ need not find
maxu∈U+ Pr{ZT q ≥ k | F,Z} in (5) but, as S → ∞ with 1 ≤ ms < ns ≤ ñ, the
error it makes becomes negligible. The method works because as S increases, the
expectation term μs� becomes more important than the variance term, νs�, a fact
that will also become evident in Proposition 1. This method is called an asymp-
totically separable approximation because: (i) it separates the N -dimensional op-
timization problem in (5) into S very simple, smaller optimization problems and
(ii) shows that as S → ∞ the solution to the N -dimensional optimization problem
and the solution to much easier piecewise optimization problem differ negligibly.
A by-product of the inequality in Proposition 1 will be a new, much simpler, more
general proof of the performance of the asymptotically separable approximation.
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3.2. Open problems and a general solution to them. The specialized methods
described above cover many useful cases but leave substantial gaps with no com-
putationally feasible method. As noted above, for S = 10 and ns = 101 for each s,
no computationally feasible method exists, because the asymptotically separable
approximation may be inapplicable, as S = 10 may be unlike S → ∞. Moreover,
there are many marginal situations, say S = 30 strata with half of individuals in
the first two strata, n1 +n2 = N/2, and it is unclear whether the separable approx-
imation, which assumes many uniformly small strata, ns ≤ ñ, is adequate in these
marginal cases. See also the example in Section 1.1 and Figure 1.

The separable approximation is always a tad liberal. Its solution is never larger
than, and is typically just a little smaller than, the desired maxu∈U+ Pr(ZT q ≥ k |
F,Z) in (5). The main new result in the current paper yields a computation-
ally feasible and entirely general approximation that is always a tad conserva-
tive; it is never smaller than and is typically just a little larger than the desired
maxu∈U+ Pr(ZT q ≥ k | F,Z) in (5). The quantity we want but cannot calculate,
maxu∈U+ Pr(ZT q ≥ k | F,Z), is always sandwiched between two quantities that
we can easily compute, and, in all of the examples I have examined, these two
quantities differ negligibly. The new upper bound is safe to use on its own: the test
achieves its nominal level, falsely rejecting H0 with probability at most α in the
presence of a bias of at most �; however, it may be slightly conservative, with the
size of the test below its nominal level of α. The existing separable approximation
can provide reassurance that the size of the test is very close to its nominal level.

4. A general, computationally feasible method.

4.1. An inequality. Section 4 provides an easily computed approximation to
the general sensitivity analysis in (4), illustrating its use in Section 4.3 for the
example from Section 1.1.

Let a = (a11, a12, . . . , aS,nS
)T be a vector of 1’s and 0’s such that as1 = 0 and

1 = ∑ns

i=2 asi for each s, so that (as1, . . . , as,ns ) contains exactly one 1 and ns −
1 0’s, one of which is as1 = 0. Each such a corresponds with exactly one u =
(u1, . . . ,uS)T ∈ U+; specifically, as� = 1 if us consists of ns − � zeros followed
by � ones, so that as� = 1 for the us that yields the expectation μs� and the variance
νs�. Let A be the set containing the |A| = ∏S

s=1(ns − 1) possible values of a. In
words, as� = 1 signifies use of us = (0, . . . ,0,1, . . . ,1) with � ones. For instance,∑ns

j=1 as�μs� is simply the one μs� for which as� = 1, and it is the null expectation
of

∑ns

j=1 qsjZsj when us = (0, . . . ,0,1, . . . ,1) has � ones.

Let κ = �−1(1 − α) be the upper α critical value of the standard normal distri-
bution. In (5), rejection of H0 at level α is insensitive to a bias in treatment assign-
ment of � if rejection occurs for every u ∈ U , or equivalently for every u ∈ U+, or
equivalently for every a ∈ A. In large samples condition (5) holds under H0 in the
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presence of a bias of at most � if

(6) min
a∈A

k − ∑S
s=1

∑ns

�=1 as�μs�√∑S
s=1

∑ns

�=1 as�νs�

≥ κ,

or equivalently if

(7) max
a∈A λ(a) ≤ 0 where λ(a) =

S∑
s=1

ns∑
j=1

as�μs� − k + κ

√√√√√ S∑
s=1

ns∑
j=1

as�νs�.

Proposition 1 is a key result. In Proposition 1, b ∈ A signifies one choice of
u ∈ U+ and a ∈ A signifies another choice; then, the proposition places a bound
on how different λ(a) and λ(b) can be. In particular if we knew that λ(b) is
large, Proposition 1 would place a bound on how much maxa∈A λ(a) might ex-
ceed λ(b). The separable approximation that maximizes expectations rather than
tail probabilities produces a u ∈ U+ and a corresponding b ∈ A such that λ(b)

is large, even though it may fall a bit short of maxa∈A λ(a). Following the state-
ment and proof of Proposition 1, in Section 4.2, the practical role of Proposition 1
is discussed in three remarks. Proposition 1 assumes that, at the u ∈ U+ corre-
sponding with b ∈ A, the null variance of the test statistic, T = ZT q, namely
var(ZT q | F,Z) = ∑S

s=1
∑ns−1

�=1 bs�νs� is strictly positive. This assumption about
the variance will fail only in pathological situations, such as all responses being
equal in every stratum s. Remark 4 in Section 4.4 shows that we often have reason
to expect most ηs in (8) to be either zero or small.

PROPOSITION 1. Let b ∈ A with
∑S

s=1
∑ns−1

�=1 bs�νs� = var(ZT q | F,Z) > 0.
Then

(8) λ(b) ≤ max
a∈A λ(a) ≤ λ(b) +

S∑
s=1

ηs,

where ηs = (max1≤�≤ns−1 ζs�) − ∑ns−1
�=1 bs�ζs� and

(9) ζs� = μs� + κνs�

2
√∑S

s=1
∑ns−1

p=1 bspνsp

.

PROOF. The first inequality in (8) holds trivially because b ∈ A. The proof of
the second inequality in (8) will demonstrate a slightly sharper result, namely for
every a ∈A,

(10) λ(a) ≤ λ(b) +
S∑

s=1

ns−1∑
�=1

(as� − bs�)ζs� ≤ λ(b) +
S∑

s=1

ηs.
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We are interested in a large but finite set of values of a ∈ A, but the function
λ(a) is well-defined on the convex set D = {a ∈ R

N : ∑S
s=1

∑ns−1
�=1 as�νs� ≥ 0}.

On D, the function λ(a) is concave because it is the sum of an affine func-
tion, namely

∑S
s=1

∑ns

j=1 as�μs� − k, and a concave function of a linear func-

tion, κ
√∑S

s=1
∑ns

j=1 as�νs�; see Bertsekas (2009), Propositions 1.1.4 and 1.1.5,
or Boyd and Vandenberghe (2004), Section 3.2. Moreover, λ(a) is continuously
differentiable on the open convex set {a ∈ R

N : ∑S
s=1

∑ns−1
�=1 as�νs� > 0} and in

particular at b. Then ∂λ(b)/∂bs� = μs� + κνs�/(2
√∑S

s=1
∑ns−1

p=1 bspνsp) = ζs� in
(9). Because λ(a) is concave, the first-order Taylor approximation evaluated at b
in the direction a exceeds the value of λ(a), yielding the first inequality in (10);
see Bertsekas (2009), Proposition 1.1.7, or Boyd and Vandenberghe (2004), Sec-
tion 3.1.3. Restricting attention to a ∈ A, the quantity

∑S
s=1 ηs is simply the max-

imum value of
∑S

s=1
∑ns−1

�=1 (as� − bs�)ζs� for a ∈ A, proving (10) and hence also
(8). �

4.2. Use of Proposition 1 in data analysis. Remarks 1 through 3 discuss use
of Proposition 1 in a stratified observational study. In particular, Remark 3 dis-
cusses a package in R that performs the required calculations and contains the
homocysteine example from Section 1.1 and Section 4.3.

REMARK 1 (Select b using the separable approximation). Which b ∈ A
should be used in (8)? If � = 1, then all a ∈ A are equivalent and there is
equality throughout (8), so assume � > 1. As maxa∈A λ(a) determines accep-
tance or rejection of H0 at level α in the presence of a bias of at most �, we
would like the interval (8) to be very short. If b is picked so that λ(b) is close
to maxa∈A λ(a), then because (10) is a Taylor approximation to maxa∈A λ(a),
we expect (8) to be a short interval. We cannot compute maxa∈A λ(a) directly
in many cases because |A| = ∏S

s=1(ns − 1) can be very large. The natural can-
didate for b ∈ A is the b produced quickly by the separable approximation. By
definition the b produced by the separable approximation has maximized the ex-
pectation,

∑S
s=1

∑ns

j=1 bs�μs� = maxa∈A
∑S

s=1
∑ns

j=1 as�μs�, and has maximized

the variance
∑S

s=1
∑ns

j=1 as�νs� among all a ∈ A that maximize the expectation,
so it is an attempt to make λ(b) large, even though it may fall slightly short of
maxa∈A λ(a).

REMARK 2 (Testing H0 at level α in the presence of a bias of at most �). In
large samples we reject H0 at level α in the presence of a bias of at most � > 1
if (6) is true with the observed value of the test statistic T = qT Z in place of k,
or equivalently if (7) is true with the same substitution. Pick b using the separable
approximation, and check the (nearly trivial) condition that var(ZT q | F,Z) > 0
at this b, that is, check that

∑S
s=1

∑ns−1
�=1 bs�νs� > 0. A sufficient condition for
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(7), that is, a sufficient condition for rejection of H0, is that λ(b) + ∑S
s=1 ηs ≤ 0

in (10). A necessary condition for (7) is that λ(b) ≤ 0 in (8). The computations
required in (8) are straightforward and very fast because they involve a single b ∈
A that corresponds with a single u ∈ U+. More precisely, computing the interval
(8) involves computing the ζs�, and there are

∑S
s=1(ns − 1) of these, unlike (5) or

(6) that involve
∏S

s=1(ns − 1) cases of u ∈ U+.

REMARK 3 (Software implementation). The senstrat package in R imple-
ments the procedure by: (i) determining the separable approximation b, (ii) cal-
culating λ(b) + ∑S

s=1 ηs , and if this quantity is nonpositive reporting that H0 has
been rejected at level α in the presence of a bias of at most �and (iii) optionally
reporting that the separable approximation concurs if λ(b) and λ(b) + ∑S

s=1 ηs

have the same sign. If, as is common, λ(b) and λ(b) + ∑S
s=1 ηs do concur, if they

have the same sign, then the slight conservatism of the inequality (10) could not
have affected whether H0 was rejected. See Section 4.3 for numerical results in the
smoking example.

4.3. Numerical illustration in the homocysteine example. To clarify Proposi-
tion 1, the current section briefly illustrates calculations using the smoking data,
whereas Section 6 presents an analysis of the same data. That is, Section 4.3 is
about Proposition 1, while Section 6 is about the effects of smoking on homo-
cysteine. Consider again the 90 strata with at least one smoker and one control in
Section 1.1. The separable approximation in Section 3.1 picks u ∈ U+ to maxi-
mize the null expectation of the test statistic, T , and to maximize its null variance
among all u ∈ U+ that maximize its null expectation. Because expectations and
variances from independent strata are additive, this maximization may be carried
out one stratum at a time with the results combined at the end, that is, this max-
imization problem for expectations and variances is separable; however, it is not
quite the original optimization problem that we were trying to solve, namely the
maximization of a tail probability. At � = 1.95, the separable approximation sug-
gests an upper bound on the P -value from the Hodges–Lehmann aligned rank test
of 0.04663. Because the separable approximation picks a u ∈ U+, but may pick
only a very bad u rather than the absolute worst u ∈ U+, its P -value bound is a tad
liberal, a tad too small. Asymptotic results of Gastwirth, Krieger and Rosenbaum
(2000) concerning the separable approximation say that it errs trivially if S → ∞
with ns uniformly bounded, but it is unclear whether this approximation should
be expected to work in Section 1.1 where the nine largest strata contain more than
a third of 2475 individuals, and the largest stratum is 192 times larger than the
smallest. The separable approximation determines the b ∈ A that will be used in
Proposition 1 and, as discussed below, Proposition 1 then confirms rejection of the
null hypothesis H0 of no effect at level α = 0.05 in the presence of a bias of at
most � = 1.95. This statement from Proposition 1 is a tad conservative, unlike the
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separable approximation which is a tad liberal. Indeed, the approximate P -value
bound from Proposition 1 is 0.04688 > 0.04663, so the two bounds—the liberal
and the conservative—differ trivially in this example. Both the separable approx-
imation and Proposition 1 reject H0 at level α = 0.05 for � = 1.95, whereas they
both accept H0 for � = 1.96. At � = 1.9578, the two approximations disagree
about rejection at α = 0.05, with the separable approximation quoting a slightly
liberal P -value bound of 0.04990 and Proposition 1 quoting 0.05016; however, in
most contexts a difference of this magnitude is too small to be of practical concern.
The practical point is that we lack any theoretical justification for using the sep-
arable approximation in an example like Section 1.1, but Proposition 1 provides
an easily computed conservative bound on its error in any stratification, so we can
always use the conservative statement with confidence, and we can often confirm
that the separable approximation erred negligibly, and the conservative statement
is trivially conservative using λ(b).

The remainder of this section performs calculations at � = 1.95 using Hodges
and Lehmann’s aligned ranks and is intended to provide a sense for how (8) and
(9) work in practice. Also, b ∈ A was picked by the separable approximation. So,
b ∈ A is nearly the worst a ∈ A and the conservative Taylor approximation in
Proposition 1 is seeking something a tad worse than b ∈ A, which in fact it finds.
Finally, the test is at α = 0.05, so κ = �−1(1 − α) = 1.6449.

For 68 of the 90 informative strata, ηs = 0 in (10), thereby making no adjust-
ment to the separable b ∈ A. In these 68 strata, the separable approximation and
the Taylor correction agree, picking the same us as the worst. For instance, the
largest stratum with ns = 192, discussed in Section 1.1, had ηs = 0, requiring no
correction. Also, λ(b) = −452.54 < 0, suggesting rejection at α = 0.05, while
λ(b) + ∑S

s=1 ηs = −419.92 < 0 thereby confirming rejection at α = 0.05. Strictly
speaking, Proposition 1 makes a formal statement about rejection or acceptance of
H0 at a fixed level α; here the conventional α = 0.05, and one would have to repeat
the calculations for various α to obtain a P -value. Typically, however, a sensitiv-
ity analysis fixes α, perhaps α = 0.05, and then asks, “What is the largest bias in
treatment assignment, �, that would lead to rejection at level α?” In the example
H0 is rejected at level α = 0.05 for � = 1.95 but not for � = 1.96. As noted above,
at � = 1.9578, the two ends of the interval (8) do not concur, but the difference is
trivially small. Whenever

∑S
s=1 ηs > 0 in (10), the Taylor approximation in (10)

has found an a ∈ A that it judges worse than the separable approximation b ∈ A,
yielding a smaller minimum deviate in (6), and the R package informally reports a
P -value at this a ∈ A, even though the formal content of Proposition 1 is confined
to acceptance or rejection at a fixed α.

4.4. Understanding technical aspects of Proposition 1. Unlike Remarks 1–
3 in Section 4.2, Remarks 4 through 6 in the current section discuss technical
implications of Proposition 1. In particular, although it is possible that ηs > 0 in
(8), we often see that ηs = 0 for many or all strata s. Remark 4 discusses why this
happens, while Remarks 5 and 6 discuss some consequences.
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REMARK 4 (Behavior of the Taylor formula at the separable approximation).
In examples with b picked by the separable approximation, many ηs in (10) are not
just small but are actually zero. Why does this happen? For � > 1, consider (10)
with b produced by the separable approximation, so b maximizes the expectation
μs� in each stratum s, and among all a that achieve this maximum expectation, b
maximizes the variance νs�, that is, for all a ∈ A,

(11)

ns−1∑
�=1

(as� − bs�)μs� ≤ 0 with equality if and only if

ns−1∑
�=1

(as� − bs�)νs� ≤ 0.

Recalling formula (9), it follows that in (10),
∑ns−1

�=1 (as� − bs�)ζs� > 0 if and only
if

(12)
ns−1∑
�=1

(as� − bs�)μs� < 0 and
ns−1∑
�=1

(as� − bs�)(μs� + hsνs�) > 0,

where

hs = κ

2
√∑S

s=1
∑ns−1

�=1 bs�νs�

.

In finite samples condition (12) can occur. Suppose, however, that the total sample
size increases while leaving stratum s unchanged, so that

∑S
s=1

∑ns−1
�=1 bs�νs� =

var(ZT q | F,Z) → ∞; then, hs → 0 and eventually condition (12) cannot occur,
so that eventually ηs = 0. Indeed, as seen in Section 4.3, 68 of the 90 nondegener-
ate strata s in the smoking example in Section 1.1 had ηs = 0 in (10).

REMARK 5 (An alternative justification for the separable approximation).
Gastwirth, Krieger and Rosenbaum (2000) proposed the separable approximation
b ∈ A as an asymptotic approximation for the situation with a growing number
of uniformly small but informative strata, S → ∞ with 1 ≤ ms < ns ≤ ñ and
var(ZT q | F,Z) = ∑S

s=1
∑ns−1

�=1 bs�νs� → ∞. In light of Remark 4, Proposition 1
is an alternative proof of the result in Gastwirth, Krieger and Rosenbaum (2000)
that the separable approximation errs negligibly with many uniformly small but in-
formative strata. Indeed, Proposition 1 is a simpler proof under weaker conditions.
In Section 5.2, an example is considered with S = 397 matched sets in which one
treated individual is matched to two controls, ns = 3 and ms = 1, and in this exam-
ple, ηs = 0 for s = 1, . . . , S = 397, so that there is equality throughout (8). To re-
peat Remark 4, ηs > 0 is the same as condition (12), so ηs > 0 eventually becomes
impossible if stratum s remains unchanged while

∑S
s=1

∑ns−1
�=1 bs�νs� → ∞.
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REMARK 6 (Uniformly small strata are not needed). Remark 5 observed
that each ηs in (8) is driven to zero with many uniformly small strata providing
var(ZT q | F,Z) = ∑S

s=1
∑ns−1

�=1 bs�νs� → ∞. Actually, ηs is driven toward zero
much more generally. For instance, the stratum sizes in the smoking study in Fig-
ure 1 are quite varied, not uniformly small, yet as discussed in Section 4.3, ηs = 0
for the stratum in Figure 1 with ns = 192. In another illustration in Section 5.2
with just S = 2 strata, (8) holds as an equality with η1 = η2 = 0. Although ηs > 0
does occur in many instances, so (8) is not an equality in general, and although the
Taylor bound on the right of (8) can be conservative in the sense that there can be
strict inequality, maxa∈A λ(a) < λ(b) + ∑S

s=1 ηs , nonetheless the degree of con-
servatism has been trivially small in every example I have tried. In any actual study
an investigator can check whether the degree of conservatism is trivially small by
computing both λ(b) and λ(b) + ∑S

s=1 ηs when finding the largest � that leads to
rejection at level α. See Section 4.3 and Section 5.2 for several examples.

5. Stratified permutation tests using M-statistics.

5.1. Expressing M-statistics as a sum of scores, T = ZT q. Maritz (1979) pro-
posed exact permutation tests of H0 based on Huber’s (1981) M-statistics for
matched pairs, and there is a straightforward extension to matching with multiple
controls; see Rosenbaum (2014). The current section briefly extends this method
to stratified permutation inferences. In the current section H0 is assumed to be true
for the purpose of testing it, so Rsi = rCsi .

Let ς be a quantile, typically the median, of the
∑S

s=1
(n2

2

)
pairwise absolute

differences |rCsi − rCsi′ |, 1 ≤ i < i′ ≤ ns , within the S strata. Under H0, this
scale factor ς is fixed by conditioning on F in (3), not changing with the treat-
ment assignment Z. Define the M-statistic to be T = ∑S

s=1 ws

∑ns

i=1
∑ns

i′=1 Zsi(1−
Zsi′)ψ{(rCsi − rCsi′)/ς}, where ws ≥ 0 is a weight for stratum s and ψ(·) is
a monotone increasing odd function, ψ(y) = −ψ(−y), so that, in particular,
ψ(0) = 0. Huber (1981) favored ψhu(y) = max{−κ,min(y,κ)} for some κ > 0,
which is analogous to a trimmed mean, but ψt(y) = y is analogous to a mean.
In the examples, κ = 3. The median of |y| is 0.674 if y is standard normal, so
ψhu(y/.674) trims a standard normal y at about y = ±2.02 for κ = 3. The weight
ws for stratum s is, under H0, a function of the (ns,ms) and F , so it is fixed by
conditioning on (F,Z) in (3).

Within each stratum s, the statistic T compares every treated subject, Zsi = 1
to every control, (1 − Zsi′) = 1. It will now be shown that T equals a sum of fixed
scores q for treated individuals, T = ZT q, for suitable q. Because ψ(·) is odd,
ψ{(rCsi − rCsi′)/ς} = −ψ{(rCsi′ − rCsi)/ς} and 0 = ψ{(rCsi − rCsi)/ς}. It fol-
lows that for every Z ∈ Z , we have 0 = ∑ns

i=1
∑ns

i′=1 ZsiZsi′ψ{(rCsi − rCsi′)/ς},
because if ZsiZsi′ = 1 then ψ{(rCsi − rCsi′)/ς} and ψ{(rCsi′ − rCsi)/ς} both ap-
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pear once in this sum and they cancel. So, T = ∑S
s=1

∑ns

i=1 Zsiqsi where

(13) qsi = ws

∑
i′∈{1,...,i−1,i+1,...,ns}

ψ
{
(rCsi − rCsi′)/ς

}
.

Also, 0 = ∑ns

i=1 qsi for each s, because ψ{(rCsi − rCsi′)/ς} and ψ{(rCsi′ −
rCsi)/ς} both appear once in

∑ns

i=1 qsi, and they cancel. Under H0, the score
qsi in (13) is a function of F and hence is fixed by conditioning on F in (2).
So T = ∑S

s=1
∑ns

i=1 Zsiqsi is a statistic of the general form discussed in Sec-
tion 3.1 despite initially appearing to have a different form. If H0 were true, if
rCsi = asi − βs for arbitrary block parameters βs , then qsi in (13) would be un-
changed by changes in the βs , so in this specific respect the scores in (13) resemble
Hodges and Lehmann’s (1962) aligned ranks.

The score qsi in (13) compares individual i and the other ns − 1 individuals in
stratum s measured by ψ{(rCsi − rCsi′)/ς}. If ws = (ns − 1)−1, then qsi in (13)
is an average of ψ{(rCsi − rCsi′)/ς}, and these weights are used in the examples.
For varied objectives and methods for weighting strata, see Hodges and Lehmann
(1962), Puri (1965), Mehrotra, Lu and Li (2010) and Rosenbaum (2014).

5.2. Further numerical examples. Three additional numerical examples shed
light on the method in Remark 2. For more about these examples see the documen-
tation in the senstrat package in R. In two of the examples the extreme u ∈ U
can be determined theoretically. Does the method in Remark 2 find this known
extreme u ∈ U? The third example satisfies the conditions required for use of the
separable approximation, that is, many small strata. Is the method in Remark 2
unduly conservative when the separable approximation is adequate? In each ex-
ample, the value of � is set to a round number such that H0 is barely rejected at
level α = 0.05 in the presence of a bias of at most �.

The first example is from Werfel et al. (1998) and is contained in the
sensitivitymw package in R. There are S = 39 matched pairs, ns = 2 and
ms = 1, of a welder and a control, and the outcome is a measure of DNA damage.
In this case using M-scores, at � = 3 and α = 0.05, both the separable approxima-
tion and the Taylor correction method in Remark 2 yield exactly the same answer
as the extreme u ∈ U determined theoretically. Indeed, ηs = 0 for every s and there
is equality in (8) essentially because both U+ and A contain only one vector, and
this will be true in every case involving matched pairs.

The second example is a 2 × 2 × 2 table from Satagopan et al. (2001) link-
ing BRCA mutations and breast cancer, adjusting for S = 2 age strata, as reana-
lyzed by Rosenbaum and Small (2017) and in the sensitivity2x2xk package
in R. Under H0, Rsi = rCsi and the stratified permutation statistic is the Mantel–
Haenszel statistic, T = ∑S

s=1
∑ns

i=1 ZsirCsi where rCsi = 0 or rCsi = 1. In this 2 ×
2×2 table, U+ and A each contain (n1 −1)× (n2 −1) = (753−1)× (3411−1) =
2,564,320 candidate u ∈ U+ or a ∈ A to consider. With binary responses a theo-
retical argument identifies the one extreme u ∈ U+ as usi = rCsi ; see Rosenbaum
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(1995), Section 5; Rosenbaum (2002b), Section 4.4.1. Not knowing this theoret-
ical argument, at � = 7 and α = 0.05, both the separable approximation and the
method in Remark 2 identify this extreme u, again yielding equality in (8) with
η1 = η2 = 0. Importantly, neither the separable approximation nor the method in
Remark 2 considered the 2,564,320 candidate u ∈ U+.

The third example from Rosenbaum (2014) uses NHANES data to compare
methylmercury in the blood of each of 397 heavy consumers of fish to two matched
controls who consume little fish, so ns = 3 and ms = 1 for s = 1, . . . , S = 397. The
separable approximation of Gastwirth, Krieger and Rosenbaum (2000) has good
asymptotic properties in a situation like this, as there are many small strata. In
this example, U+ and A contain

∏S
s=1(ns − 1) = 2397 = 3.2 × 10119 candidate

u ∈ U+ or a ∈ A. Without considering these candidates, at � = 15 and α = 0.05,
the separable approximation and the method in Remark 2 find the extreme u with
λ(b) = maxa∈A λ(a) = λ(b) + ∑S

s=1 ηs with ηs = 0 for every s.
In brief in these three examples, there was no gap between the slightly lib-

eral separable approximation, λ(b), and the slightly conservative Taylor adjust-
ment, λ(b) + ∑S

s=1 ηs . In the first two examples the unique extreme u ∈ U+ is
known from theory, and both the separable approximation and the Taylor adjust-
ment found that known extreme u ∈ U+. Because the

∏S
s=1(ns − 1) candidates

were not considered, the computations were extremely fast.

6. Effects of smoking on homocysteine levels.

6.1. Sensitivity analysis for the effects of smoking on homocysteine levels. Us-
ing Hodges–Lehmann (1962) aligned ranks, the null hypothesis H0 of no effect of
smoking on the log2 of homocysteine levels is rejected at level 3.3 × 10−13 in a
one-sided, stratified randomization test that assumes no bias in treatment assign-
ment, � = 1, and the 95% one-sided confidence interval for a multiplicative effect
β is β ≥ 1.086, or an 8.6% increase in homocysteine from smoking. Rejection
of H0 at one-tailed level α = 0.05 is insensitive to a bias of � = 1.95, but not
� = 1.96. In a matched pair, a bias of � = 1.95 is equivalent to a covariate that
increased the odds of smoking by 4-fold and increased the odds of a positive pair
difference in homocysteine levels by 3.3-fold; see Rosenbaum (2017a), Table 9.1
or the amplify function in the R package sensitivitymult. Using the M-
statistic in Section 5 instead, rejection of H0 is insensitive to a bias of � = 2.1 but
not � = 2.2. The M-scores and the Hodges–Lehmann aligned ranks have correla-
tion 0.97 in this example, but the M-scores do a little more to limit the influence
of the most extreme values.

Instead of permuting the responses, a randomization test may permute residu-
als from a robust regression of the response, Rsi , on covariates, xsi , providing the
regression does not include the treatment Zsi ; see Rosenbaum (2002b). Figure 3
resembles Figure 2, using the same covariates that define the 108 strata, but Fig-
ure 3 depicts residuals of log2 homocysteine from a robust regression on: (i) the
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FIG. 3. Plots of residuals from a robust regression of log2(Homocysteine) levels on a binary in-
dicator of gender, three continuous variables, namely age in years, BMI, and ratio of income to the
poverty level, and an integer variable recording five levels of education. Smoking is not included in
the regression.

binary indicator of gender, (ii) age in years as a continuous variable, (iii) educa-
tion as a five-level integer score, (iv) BMI as a continuous variable and (v) the
ratio of income to the poverty level as a continuous variable. The robust regression
used M-estimation as implemented in the rlm function of the MASS package in
R, using the default settings. Notably, in comparison with Figure 2, in Figure 3
homocysteine no longer appears associated with gender or age but continues to
be associated with smoking. The usual multiple correlation coefficient in a least
squares regression is the Pearson correlation between the outcome and the pre-
dicted values. The Spearman and Pearson correlations between log2 homocysteine
levels and their predicted values in the robust regression are 0.612 and 0.572, re-
spectively, with squares 0.37 and 0.33. Although coarser than the robust linear
adjustment, the 108 strata attend to interactions and nonlinearities involving the
covariates.

Applied to the residuals in Figure 3, the stratified Hodges–Lehmann aligned
rank test rejects H0 at level α = 0.05 in the presence of a bias of � = 2.1 but
not � = 2.2. The analogous test on residuals using M-scores rejects H0 in the
presence of a bias of � = 2.35. In a matched pair a bias of � = 2.35 is equivalent
to a covariate that increased the odds of smoking by 4-fold and increased the odds
of a positive pair difference in homocysteine levels by 5.1-fold, noticeably higher
than for � = 1.95 above; again, see Rosenbaum (2017a), Table 9.1.
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By removing the hypothesized treatment effect before robust residuals are
computed, a confidence interval may be computed; see Rosenbaum (2002b). At
� = 1.25, using M-scores applied to residuals, the one-sided 95% confidence in-
terval for a multiplicative effect β on homocysteine levels is β ≥ 1.077 or a 7.7%
increase in homocysteine levels. In a matched pair a bias � = 1.25 corresponds
with a covariate that doubles the odds of smoking and doubles the odds of a posi-
tive pair difference in outcomes.

In brief, a 7.7% increase in homocysteine levels caused by smoking is insensi-
tive to a nontrivial bias in treatment assignment of � = 1.25, and rejection of the
null hypothesis H0 of no effect of smoking is insensitive to a moderately large bias
of � = 2.35.

6.2. A second, independent consideration in evaluating the effects of smoking
on homocysteine levels. Self-reported doses of exposure to addictive substances
may be inaccurate, perhaps biased toward understatement. Cotinine in the blood is
a marker of the extent of recent exposure to nicotine, in effect an objective dose of
exposure. The Centers for Disease Control (2016) write:

Once absorbed, nicotine has a half-life in blood plasma of several hours. Cotinine, the
primary metabolite of nicotine, is currently regarded as the best biomarker of tobacco
smoke exposure. Measuring cotinine is preferable to measuring nicotine because coti-
nine persists longer in the body with a plasma half-life of about 16 hours.

If everyone metabolized nicotine in the same way, then the level of cotinine in
the blood would be a measure of the dose of nicotine recently consumed. In fact,
people vary somewhat in how they metabolize nicotine, so cotinine is an imperfect
dose of treatment, but let us set that concern aside for a moment, revisiting the
concern after examining the data.

Figure 4 compares the homocysteine levels of smokers with high or low levels
of cotinine. The right panel of Figure 4 uses the same residuals as in Figure 3, but
Figure 4 is confined to smokers. Tentatively, if perhaps naively, viewing the level
of cotinine as the recent dose of nicotine, we may conduct stratified analyses of the
effects of high versus low doses of nicotine on the homocysteine levels of smokers.
Using the 108 strata from Section 1.1 together with M-scores, at level α = 0.05,
the null hypothesis of no effect of dose on log2(homocysteine) is rejected in the
presence of a bias in dose assignments of � = 2.4, whereas the null hypothesis of
no effect on the residuals is rejected at � = 2.5. In brief, there is evidence insen-
sitive to small biases that higher recent doses of nicotine produce higher levels of
homocysteine in smokers.

Sections 6.1 and 6.2 have twice analyzed the same data from smokers, have
twice tested hypotheses of no treatment effect and have twice considered the mag-
nitude of bias needed to explain rejection as a bias rather than a treatment effect.
What is the relationship between these two analyses of the same data? The two
analyses would be nearly independent if there were no treatment effect, and enor-
mous biases affecting either analysis alone would have no impact on the other
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FIG. 4. Homocysteine levels among smokers with high or low levels of serum cotinine. The left
panel depicts log2(Homocysteine) levels, whereas the right panel depicts their residuals from a
robust regression on five covariates. The boxplot for low cotinine describes 128 smokers with cotinine
levels at or below the lower quartile of cotinine for smokers, while the boxplot for high cotinine
describes 129 smokers with cotinine levels at or above the upper quartile.

analysis. That is, these two analyses are two evidence factors as developed infor-
mally in Rosenbaum (2017a), Section 7, and formally in Rosenbaum (2017b).

Returning to an issue mentioned above, strictly speaking cotinine is imperfect
as a dose of nicotine. It is possible, in principle, that two people who received
the same dose of nicotine would metabolize it differently, yielding different levels
of cotinine. In that sense Figure 4 has two possible interpretations. Figure 4 may
indicate that higher doses of nicotine produce higher levels of homocysteine in
smokers. Alternatively, Figure 4 may indicate that the metabolism of nicotine into
cotinine and the level of homocysteine are interrelated in such a way that smokers
who produce higher cotinine levels also produce higher homocysteine levels. As
noted above, the Centers for Disease Control regard cotinine as “the best biomarker
of tobacco smoke exposure,” a view that favors the first interpretation.
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