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A FREQUENCY-CALIBRATED BAYESIAN SEARCH FOR
NEW PARTICLES

BY SHIRIN GOLCHI1 AND RICHARD LOCKHART1

Simon Fraser University

The statistical procedure used in the search for new particles is investi-
gated in this paper. The discovery of the Higgs particles is used to lay out the
problem and the existing procedures. A Bayesian hierarchical model is pro-
posed to address inference about the parameters of interest while incorporat-
ing uncertainty about the nuisance parameters into the model. In addition to
inference, a decision making procedure is proposed. A loss function is intro-
duced that mimics the important features of a discovery problem. Given the
importance of controlling the “false discovery” and “missed detection” error
rates in discovering new phenomena, the proposed procedure is calibrated to
control for these error rates.

1. Introduction. The standard model (SM) of particle physics is a theory that
describes the dynamics of subatomic particles. The Higgs particle is an essential
component of the SM; its existence explains why other elementary particles are
massive [Englert and Brout (1964), Guralnik, Hagen and Kibble (1964), Higgs
(1964), Guralnik (2009)]. The existence of the Higgs boson was confirmed by ex-
periments run at the Large Hadron Collider (LHC) at the European organization
for nuclear research, known as CERN, in 2012 [CMS Collaboration (2012), AT-
LAS Collaboration (2012)]. LHC is a high energy collider specifically designed
and constructed to detect the Higgs particle. Two beams of protons circulating at
very high energies in the LHC collide inside two detectors (ATLAS and CMS).
Collisions between a proton in one beam and a proton in the other beam result in
generation of new particles, possibly including the Higgs boson; each such colli-
sion is an event. Some of the particles generated can be tracked and measured in
the detectors. However, the Higgs particle, if generated, decays extremely quickly
into other known SM particles and cannot be detected directly. Instead, the exis-
tence of the Higgs particle must be inferred by looking for those combinations of
detectable particles that are predicted by the SM.

Once a Higgs particle has been created by one of several “production mecha-
nisms” in a proton–proton collision, there are several different processes, called
“decay modes”, through which the particle may decay. The decay process can
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be reconstructed based on the detected collision byproducts. Events with recon-
structed processes that match one of the possible Higgs decay modes and pass
other selection criteria (called cuts) are recorded as “Higgs candidates”. The “in-
variant mass” of the unobserved particle is computed from masses, energies and
momenta of the decay products such that it reflects the conservation of mass-
energy. A histogram of the estimator of the mass is then created for each decay
mode (some analyses including H → 2 photons, i.e., Higgs decays to two pho-
tons, use unbinned likelihood fits instead of histograms). However, there are other
processes, not involving the Higgs boson, that can result in the generation of Higgs
event byproducts which also pass the cuts; these are called background events.
Thus the histogram created is either a mixture of background events and events in
which a Higgs particle was created or just a histogram of background events if the
Higgs particle does not exist.

Luckily, the SM predicts, as a function of the mass of the Higgs particle and the
energy of the colliding beams, the expected rate at which events generate Higgs
particles (a quantity proportional to the so-called Higgs cross section). It also pre-
dicts, as a function of the same parameters, the probability that the particle will
decay by a given decay mode and produce byproducts which pass the cuts. Effec-
tively then, the SM predicts that if the Higgs particle exists and has mass mH then
there will be a bump on the histogram of invariant masses whose size and shape
are completely predicted by unknown mass, mH , and other measured quantities
such as beam energy. The statistical problem is to determine whether or not such
a bump exists and if so at what mass it is centered.

The search procedure has two stages. The first stage is discovery, or search, and
the second is called exclusion. In the first stage, for each mass in a range of possible
masses the null hypothesis that there is no Higgs particle is tested against the alter-
native that it exists and has this specific mass. A p-value, called a local p-value, is
computed for each mass; this local p-value is then plotted against mass, typically
on a log-scale, and the smallest value of this local value is reported as a quantity of
significance [see Figure 7 and the discussion in Section 7 in ATLAS Collaboration
(2012) and Figure 15 and related discussion in CMS Collaboration (2012)]. At the
same time a global p-value is computed by approximating the distribution of the
smallest local p-value. A claim of “discovery” should require this global p-value
to be less than 1−�(5) (a 5σ effect—� is the standard normal cumulative density
function). The second stage is referred to as exclusion where for each mass in the
range under consideration the null hypothesis that the particle exists, at this mass,
with the predicted signal strength, is tested against a background only hypothesis.

In the searches for the Higgs particle described in CMS Collaboration (2012)
and ATLAS Collaboration (2012), in the discovery phase, theoretical predictions
are used to define the signal function for different production mechanisms and
analysis categories. An overall signal strength parameter in the form of a unitless
scaling factor, generally denoted by μ, is used in the model. The standard model
predicts that μ = 1 and the null hypothesis that there is no Higgs is represented
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by μ = 0. The procedures described in CMS Collaboration (2012) and ATLAS
Collaboration (2012) treat the alternative to μ = 0 as μ > 0. Treating μ as a free
parameter. It is worth noting that the signal strength parameter μ is the focus of
the local likelihood ratio tests since the mass is fixed for each test and the back-
ground model parameters and any other unknown parameters of the signal function
are treated as nuisance parameters. Consequently, simultaneous two dimensional
confidence intervals for the mass of the Higgs particle and the signal strength pa-
rameter are reported for different decay modes.

In order to fix some notation we now give some further details of the two stages
for the current procedure. Some key weaknesses of the existing method are high-
lighted in the process.

Search: For each mass value, m ∈ (m0,mn), in the search window, a likelihood
ratio test [see Cowan et al. (2011) for details] is performed for the hypotheses

(1.1) H0 : μ = 0 vs. HA : μ > 0.

Note that the overall signal strength, μ = 1, is not used under the alternative. For
each m ∈ (m0,mn), a p-value is obtained. The smallest of these local p-values is
described as the local significance and the mass at which this minimum is achieved
is reported as an initial estimate of the mass of the Higgs particle. We note that
this is not the final estimate of the mass; a further detailed analysis of the decay
products in the relevant events is used to provide an estimate with uncertainties.
The plot of local p-values does not itself provide an interval estimate for the mass
of the detected particle.

This local significance corresponds to a testing procedure which rejects the null
hypothesis if any of a family of local test statistics, v(m) (e.g., log likelihood ratios)
indexed by the unknown mass m is larger than a predefined level κ . Gross and
Vitells (2010) proposed a method for estimating the “global p-value” of this testing
procedure as the null probability that the maximum of the local test statistics is
greater than the observed maximum. Their method is based on the results of Davies
(1987) and gives

PG = PH0

(
max

m
v(m) > κ

)
≈ PH0

(
χ2

d > κ
) + EH0

(
N(κ)

)
,

(1.2)

where κ in this case is the observed maximum statistic, χ2
d , denoting a chi-

squared distribution with d degrees of freedom, is the null distribution of v(m)

and EH0(N(κ)) is the expected number of upcrossings of the level κ by the pro-
cess v(m). Using the method of Gross and Vitells (2010), one can estimate the
(global) type I error rate associated with the discovery procedure that is based on
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the local tests,

αG = PH0

(
max

m
v(m) > κα0

)
≈ PH0

(
χ2

d > κα0

) + EH0

(
N(κα0)

)
= α0 + EH0

(
N(κα0)

)
,

(1.3)

where κα0 is the χ2
d quantile corresponding to α0. Since EH0(N(κ)) ≥ 0, the actual

global type I error rate is larger than the controlled local type I error rates. The
size of the difference depends on the specific statistical model and on the search
range. For this very reason, discovery is announced if the global p-value shows a
5σ effect.

Exclusion: In the second stage, further investigation is done to exclude regions
of m which are unlikely values for the mass of the Higgs boson. The theoreti-
cal signal strength is tested at significance level α2 = 0.05 at the exclusion step
[Cowan et al. (2011)],

(1.4) H0 : μ = 1 vs. HA : μ < 1.

Any mass whose corresponding theoretical signal strength is rejected is excluded
from the range of possible masses for the Higgs particle.

Some implications of the existing procedure are as follows; the two stages
serve different purposes: the search stage is sensitive to a variety of signals rather
than only that predicted by the SM, potentially searching for any Higgs-like phe-
nomenon. The exclusion stage on the other hand is designed to exclude mass values
at which a signal exactly matching the predicted signal is not observed. Different
significance levels are used for the two steps which implies that much more caution
is taken for testing for signal associated with a new phenomenon than for testing
if an observed signal matches the predicted signal.

Some care is needed in interpreting the local and global significance levels par-
ticularly when both are presented in the same analysis. Use of a global 5σ rule
for declaring “discovery” controls the rate at which incorrect discoveries are an-
nounced provided that the rule is applied without any prior screening. To make
this clear imagine the following reporting procedure: if the local significance level
exceeds 5σ we compute and report the global p-value defined above. If the lo-
cal significance level does not reach 5σ we neither compute nor report the global
p-value. Then the interpretation of any global significance level exceeding 5σ is
clear because whenever the global significance level exceeds 5σ so does the local
significance level. Thus the global p-value will be computed in every case where
it would exceed 5σ and in those cases bears the same interpretation as any small
p-value. But when the global p-value is 4.5σ , say, we might or might not report
it depending on the local significance level. Thus we cannot easily compute the
probability that a reported global significance level will exceed 4.5σ .
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It will be seen that in [ATLAS Collaboration (2012)] the word “discovery” is
used once in the paper (in the conclusion section); the global significance for a
search over the range 110 to 600 GeV is 5.1σ . The word “discovery” is used in
[CMS Collaboration (2012)] only in the introduction to describe the goal because
the global significance, even over the narrower range of 115 to 130 Gev is only
4.6σ . (We note that both paper titles begin by “Observation of a new . . .” and that
except for the crucial word the discussions are quite similar.)

Both papers compute global p-values over more than one mass range, often
increasing the global significance by searching over a smaller range. These smaller
ranges are not without motivation; they often correspond to searching over mass
ranges not excluded in earlier searches.

Data analysis does not end with discovery and exclusion. Having declared a
discovery, for instance, confidence intervals for the mass and joint confidence sets
for the signal strength parameter μ will be computed. The model will be assessed
by checking to see if the signal strength is close to 1 and by checking to see if
the μ’s for different production mechanisms appear to be the same. In this paper
we focus on the discovery/exclusion part of the problem in a partially Bayesian
framework and provide Bayesian tools for this post-discovery analysis.

In the following we consider two strategies. First we propose a purely Bayesian
approach where we treat the discovery of the Higgs particle as an inference prob-
lem. A Bayesian hierarchical model is defined that captures the main features of
the particle discovery problem. Treating the mass of the Higgs boson as the main
parameter of interest we estimate the background, signal strength parameter and
the hyper-parameters in a fully Bayesian framework where uncertainties about the
estimates are expressed by the posterior variance. A joint credible set for the mass
and signal strength is proposed as the basis of discovery.

Our second strategy is decision theoretic. Given that a larger penalty is associ-
ated with false discovery than with missed detection, we propose a hybrid Bayes-
frequentist decision making procedure that allows for controlling frequency error
rates at desired levels while using a Bayesian test statistic such as the posterior
odds. The proposed method can be perceived as a unified search procedure that
takes advantage of the flexibility of the Bayesian framework while adhering to
frequency theory requirements.

Our procedure is similar to that of Feldman and Cousins (1998), a generaliza-
tion of which [Cowan et al. (2011)] is used for construction of two dimensional
confidence intervals for mass and signal strength. Feldman and Cousins (1998)
discuss the coverage issues of confidence intervals that are built based on the two
step procedure without proper conditioning and propose a method for constructing
confidence intervals based on ranking the ratio of the likelihood under null and al-
ternative models. Our method is similar to this approach in that the posterior odds
are used for constructing the decision set. The final decision set is interpreted as
a confidence interval with different confidence levels for values of the parameter
(mass) that represent the null and the alternative hypotheses.
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Note that systematic errors are not considered in the present work. However,
such errors are naturally included in a Bayesian model as priors. More specifically,
some systematic errors are difficult to deal with in a non-Bayesian framework.
For instance, in computing the signal shape and cross section as a function of
beam luminosity it is necessary to carry out quantum mechanical calculations by
expansions where the result is an approximation error that typically can only be
quantified subjectively. Incorporating that subjectivity explicitly in a prior offers
the opportunity to examine the sensitivity of the conclusions to prior uncertainty.

The rest of the paper is organized as follows. In Section 2, we introduce a
Bayesian hierarchical model and describe inference as a Bayesian search for the
Higgs particle. The inference results are reported for simulated data provided by
the CMS group. Section 3 is dedicated to the Bayesian decision making proce-
dure that, while combining the discovery and exclusion steps, is calibrated to ob-
tain desired frequency-theory error-rates. Approximation and sampling techniques
are introduced for efficient implementation of calibration. Section 4 follows with
concluding remarks and discussion of extensions and future work. In addition, a
supplementary document is provided that includes the proposed approach applied
to a simple signal detection problem [Golchi and Lockhart (2018)].

2. Bayesian inference. In this section, we propose a Bayesian hierarchical
model that captures the features of the problem of discovery of the Higgs particle.
The goal is to make inference about two parameters of interest, the mass of the
Higgs particle and the signal strength parameter, while adequately handling the
nuisance parameters that specify the background. The proposed model is fit to
simulated data provided to us by the CMS group and the results are presented.

2.1. Model. Suppose that the data, that is, the invariant masses recorded by
the detector, are realizations of a Poisson process whose intensity function is given
by the sum of a background intensity function �(m) and a signal intensity function
smH

(m). The shape of the signal function is known and its location is determined
by the unknown parameter, mH ∈ M, where M = {∅} ∪ (m0,mn) [(m0,mn) ⊂
R+ − {0}, that is, m0 and mn are strictly positive]. The parameter, mH , is the
unknown mass of the Higgs particle where mH ∈ (m0,mn) means that the Higgs
boson has a mass in the search window, (m0,mn), while mH = ∅ refers to the case
that the particle does not exist, at least not with a mass in (m0,mn). Note that mH

is the parameter of interest and in the Bayesian framework is treated as a random
variable; it should not be confused with m that is used to denote an arbitrary but
fixed mass in M.

We quantify uncertainty in the background by considering the logarithm of the
intensity function to be a realization of a Gaussian process,

(2.1) log�β,η,σ 2(m) ∼ GP
(
ξβ,σ 2(m),ρη,σ2

(
m,m′)), m ∈ (m0,mn),
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with covariance function,

(2.2) ρη,σ2

(
m,m′) = σ 2 exp

(−η
(
m − m′)2)

,

where σ 2 is the variance parameter and η is the correlation parameter that controls
the smoothness of the background function.

We parametrize the mean function, ξβ(m), such that the expectation of the back-
ground, E(�), has one of the typical parametric forms currently used to model the
background function, for example a fourth order Bernstein polynomial [ATLAS
Collaboration (2012)]. Therefore,

(2.3) ξβ,σ 2(m) = log

( 4∑
i=0

βihi

(
z(m)

)) − σ 2

2
,

where z :M → (0,1) is an affine transformation of mass onto the unit interval and
the basis functions are given by

(2.4) hi(z) =
(

4

i

)
zi(1 − z)4−i , z ∈ (0,1).

However, we note that the choice of Bernstein polynomials is commonly made
since they are constrained to be positive. Since under our model the log-Gaussian
prior guarantees the positivity of background, an uncostrained parametric form
may be used for the mean function.

The notation �β,η,σ 2 is used to show the dependence of the background func-
tion on the hyper-parameters. For the sake of brevity the subscript is dropped from
here on.

We choose the signal function as a Gaussian probability density function with
the location parameter mH [in the current practice [ATLAS Collaboration (2012),
CMS Collaboration (2012)] a slightly more complex signal shape called the “crys-
tal ball function” is used]. Thus, the signal function is given by

smH
(m) = cmH

φ

(
m − mH

ε

)
for mH ∈ (m0,mn),(2.5)

s∅(m) = 0,(2.6)

where cmH
is a scaling constant (analogous to the cross section), and φ is the

standard normal probability density function. The standard deviation, ε, controls
the spread of the signal function.

The use of finely binned data is common in the physics literature since the size
of the data collected is often large. The likelihood function for the parameters is
given by

(2.7) π(y | mH,μ,�) =
n∏

i=1

exp(−�i)�
yi

i

yi ! ,
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where

(2.8) �i =
∫ mi

mi−1

[
�(m) + μsmH

(m)
]
dm.

Here μ is the signal strength, that is, a unitless parameter that allows for credibil-
ity of signal sizes that do not match the one predicted by the theory (equivalent
to μ = 1). The grid m = (m0,m1, . . . ,mn) is the vector of bin boundaries over
the search window. In practice, bin-wise expectations γi are distributed according
to a multivariate normal distribution whose covariance matrix is obtained by ap-
plying (2.2) to the bin centers. This simplification is made to avoid integration of
the log-Gaussian process at every evaluation of the likelihood for more efficient
computations.

The posterior distribution of the model parameters θ = (mH ,μ,�,β, η, σ 2)

given the data y can be written as

(2.9) π(θ | y) = π(θ)π(y | θ)∫
π(θ)π(y | θ) dθ

,

where

(2.10) π(θ) = π(mH)π(μ)π
(
� | β, η, σ 2)

π(β)π(η)π
(
σ 2)

.

We describe the prior distribution on M by specifying a density with respect to
the measure ν which puts a point mass on ∅ and normalized Lebesgue measure
on (m0,mn). That is,

(2.11) ν(A) = 1(∅ ∈ A) +
∫
A∩(m0,nm)

dm

mn − m0
,

where 1(·) is an indicator function. The prior on mH is specified as a density,
π(mH), with respect to ν given by

(2.12) π(mH) = 0.5.

This prior implies that a priori the two events, “Higgs particle does not exist” and
“Higgs particle exists with mass mH ∈ (m0,mn)” are equally likely. Then given
that the Higgs particle exists, all the mass values in the search window are also
equally likely. For clarity the prior probability of a subset A of M is

�(A) ≡
∫

1(m ∈ A)π(m)ν(dm)

= 1

2
1(∅ ∈ A) + 1

2

∫
A∩(m0,mn)

dm

mn − m0
.

(2.13)

The choice of a particular prior for a real physical parameter like the Higgs
mass will inevitably be controversial. Our frequency adjusted decision theoretic
approach described in Section 3 will remove much of the impact of the prior; the
point is discussed further there.
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The signal strength parameter, μ, is assigned a log-normal prior with mean 1
and standard deviation of 0.6 which allows signals of about two tenth to about
three times the size of the theoretical signal to remain credible under the prior.
Note that the signal strength is meant for searching alternative theories to the SM.
Therefore, the prior distribution needs to be specified in accordance with credible
alternative signal sizes.

The background prior, π(� | β, η, σ 2) is given by (2.1) and the mean hyperpa-
rameters, β , have diffuse normal priors. The correlation parameter, η, is assigned
an inverse-Gamma prior with shape and scale parameters equal to one. This prior
is considered weakly informative given the affine transformation of m onto (0,1)

explained above. The prior over the variance parameter σ 2 is π(σ 2) ∝ 1
σ 2 which is

recommended in the literature as a reference prior [Paulo (2005)].

2.2. Computational issues. The mixture prior on mH results in difficulties in
Markov chain Monte Carlo (MCMC) sampling from (2.9). More specifically, mov-
ing efficiently between ∅ and (m0,mn) in the parameter space is not trivial which
leads to poor mixing of the Markov chain. To overcome computational difficulties
we use sequential Monte Carlo (SMC) [Doucet, de Freitas and Gordon (2001), Del
Moral, Doucet and Jasra (2006)]. The SMC samplers are a family of algorithms
that take advantage of a sequence of distributions that bridge between a distribution
that is straightforward to sample from (for example the prior) and the target dis-
tribution. Samples are filtered through the sequence of densities using importance
sampling to obtain a sample from the target distribution.

A common approach for defining the sequence of densities between the initial
and target distributions is by inducing the likelihood in the model sequentially. Let
the filtering sequence of distributions be denoted by

(2.14) π0, π1, . . . , πT .

Using an annealing schedule {τt , t = 0, . . . , T }, the t th distribution in the sequence
is defined as a power posterior,

(2.15) πt = π(θ)
[
π(y | θ)

]τt ,

where

(2.16) 0 = τ0 < τ1 < · · · < τT = 1.

The SMC sampler comprises iterative steps of weighting and sampling. While the
samples are moved toward the target distribution through re-sampling with weights
calculated according to the current temperature, they are also moved toward higher
probability regions under each distribution, using MCMC steps. These steps are
explained in Algorithm 1.

The form of the incremental weights w̃i depends on the choice of transition
kernel Kt in SMC. For a variety of choices for the forward kernel and importance
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Algorithm 1 Sequential Monte Carlo
Input: A temperature schedule {τt , t = 0, . . . , T }

A MCMC transition kernel Kt

1: Generate an initial sample θ1:N
0 ∼ π0;

2: W 1:N
1 ← 1

N
;

3: for t := 1, . . . , T − 1 do

• Wi
t ← Wi

t−1
w̃i

t∑
w̃i

t

where w̃i
t = π(y | θ (i)

t )τt−τt−1 , i = 1, . . . ,N ;

• Re-sample the particles θ1:N
t with importance weights W 1:N

t ;
• W 1:N

t ← 1
N

;
• Sample θ1:N

t+1 ∼ Kt ;

4: end for
Return: Particles θ1:N

T .

weights in SMC see Del Moral, Doucet and Jasra (2006). In Algorithm 1 Kt is
chosen as an MCMC transition kernel that results in the simplified form of the
incremental weights as the proportion of two consecutive densities evaluated for
the current sample.

The proposal distributions used for the the MCMC step are as follows. For the
background at time t a log-Gaussian distribution is used that has a mean equal to
the background at time t − 1 and covariance matrix following the prior covariance
structure but scaled according to the posterior variances at time t . The proposal
distribution for m is determined by estimating the marginal distribution of m given
y at time t − 1 as

(2.17) π̂t (m | y) =

⎧⎪⎪⎨
⎪⎪⎩

∑N
i=1 1(mi

t = ∅)

N
, m = ∅,∑N

i=1 1(mi
t �= ∅)

N
ζ(m), m �= ∅,

where ζ(m) is a kernel density estimate of the distribution of m �= ∅ at time t .
The rationale for this proposal distribution is that for efficient Metropolis–Hastings
steps, the proposal distribution needs to be chosen close to the target distribution.
Construction of the proposal based on πt−1 is based on the assumption that πt−1

is close to πt . A normal proposal is used for μ and the background mean hyper-
parameters β and the covariance hyper-parameters are generated from chi-squared
proposal distributions.

The temperature schedule, {τt }Tt=1, is specified adaptively using the approach
proposed by Jasra et al. (2011): at each step t , τt is determined such that the ef-
fective sample size (ESS) is equal to a pre-specified value such as half the sample
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size. This is achieved by solving the following equation numerically for τt ,

(2.18) ESS = (
∑N

n=1 wt
n(τt ))

2∑N
n=1(w

t
n(τt ))2

.

The sampling is stopped when τ = 1 satisfies the above condition.
Note that in simpler models, such as the one introduced for the on/off problem

in Golchi and Lockhart (2018), the above computational undertakings would not
be necessary. The posterior in Golchi and Lockhart (2018) is obtained by more
direct numerical calculations.

2.3. Data and inference results. Confidentiality rules do not allow access to
the real data for nonmembers of the Higgs research groups. In this section we fit the
proposed model to simulated data provided to us by Matthew Kenzie of the CMS
group and described in CMS Collaboration (2014) and CMS Collaboration (2013).
The simulation procedure is very complex because it must model not only the pre-
dicted behavior of the Higgs boson but also the behavior of the extremely complex
CMS detector. Analysis of such simulated data was an essential step in develop-
ing the analytic techniques to be used for the real experiment. The simulated data
available to us represent the diphoton decay mode invariant mass spectrum (in the
range 100 < mγγ < 180 GeV) at centre of mass energy

√
s = 8 TeV. For each of

the decay modes there are different Higgs signatures referred to as analysis cat-
egories. For the diphoton decay mode there are nine analysis categories. We had
access to a list of the invariant mass of each data event together with the corre-
sponding analysis category.

There are several “production mechanisms” through which a Higgs particle can
be generated; five such mechanisms were considered for our data. Each such pro-
duction mechanism leads to a specific predicted signal function. While the pro-
duction mechanism is not identified in the data the signal function is propagated
through the analysis separately for each of the SM Higgs production mechanisms
at the LHC and each analysis category. The shape of the signal function in each
analysis category, for each of the production modes and at three hypothesized
Higgs masses (120, 125 and 130 Gev) has been provided to us in the form of a
histogram; the entry in a single bin of such a histogram is the expected number of
Higgs events produced by a specific production mechanism in a specific analysis
category in the mass range for that bin if the Higgs has the particular hypothesized
mass. A handful of the production mechanism, analysis category combinations
produce so few expected outcomes that we were not provided the corresponding
signal histograms; in the end we have histograms for 41 of the 45 combinations.

We fit the signal function, (2.6), to these histograms and estimate the signal
strength, cmH

, and signal width, ε. We then extrapolate from the three signal
masses we were given to obtain the signal function corresponding to other masses.
We pool the data for all nine analysis categories and bin the data according to the
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FIG. 1. Simulated data representing the invariant masses of events.

signal histograms with 322 bins. Figure 1 shows the histogram of the data. The
reason for pooling the analysis categories is that some of these categories have
very few data points and that the computational burden of a full analysis exceeded
our capabilities. We also use the sum of the signal functions over the production
modes and analysis categories as a single signal function for each mass.

Note that, in principle, our method can handle the complications produced by
having several combinations of production mechanism/decay mode/analysis cate-
gory. However, simulated data is provided to us for only one decay mode and in
practice, low event counts in some of the analysis categories can be a source of
problems in making inference separately in these categories.

The results are summarized in Figures 2(a), 2(b) and 3. Figure 2(a) shows the
marginal posterior density estimates of mass over five selected steps of the sequen-
tial algorithm. The colour of the curves gets darker as the posterior gets closer to

FIG. 2. The results of the analysis of the simulated data representing (a) the posterior density of the
mass evolving through the sequential sampler as the likelihood is induced into the power posterior
sequentially; the estimated mass of the Higgs particle (m̂H ≈ 126) is specified by the vertical red
line, and (b) the joint posterior density contours of mass and signal strength; the red cross shows the
position of mass and μ pair that maximizes the posterior.
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FIG. 3. The results of the analysis of the simulated data representing the evolution of the 95% cred-
ible intervals for the background sample paths from the prior (light blue bands) to the posterior (dark
blue bands). The red dots are the observations; the posterior background mean and the background
posterior mean plus the estimated signal are shown by the solid dark blue line and the dashed line,
respectively.

the target posterior. The red vertical line shows the maximum a posteriori mass
value (m̂H ≈ 126). A 95% credible interval for the mass of the Higgs particle
based on the analysis of the simulated data is (124.58, 127.30).

Figure 2(b) presents the joint posterior of mass and the signal strength parame-
ter. The contours are 2-d kernel density estimates of the joint posterior and the red
cross shows the (mH ,μ) pair that maximizes the posterior.

In Figure 3 the blue bands show the 95% credible intervals for the background
sample paths; the wide bands show the prior uncertainty for the background func-
tion. The background uncertainty decreases at each step of SMC as the data out-
weighs the prior. The background posterior mean and the background posterior
mean plus the estimated signal are shown as a solid dark blue line and a dashed
line, respectively.

3. Decision making. In this section we consider the problem from a deci-
sion theoretic point of view. We define a linear loss function and derive the Bayes
rule that can be used as an alternative to the current discovery/exclusion method
for reporting one or more possible mass values for the Higgs particle. The Bayes
procedure is calibrated to satisfy specified frequency theory error rates.
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3.1. Structure. The required ingredients of a decision theory problem are a
model with the corresponding parameter space, a decision space which is a set of
possible actions to take, and a loss function [Berger (1980)].

The model was introduced in Section 2.1. However, the procedure we now sug-
gest could be used regardless of the specific details of the model. We define the
decision space as the set of all possible subsets, S ⊂ M where M was defined
in Section 2.1 as the union of the interval (m0,mn) and the single point ∅ that
represents the case that the Higgs particle does not exist. The interpretation of S is
that, m ∈ S if, having observed the data, we wish to retain m as a possible value of
the true mass. For instance, if ∅ ∈ S, the results suggest that it is possible that the
Higgs particle does not exist (at least not with a mass in the search window).

The next step is to define a loss function that reflects two goals. First we would
like to include the correct parameter value in the decision set. Therefore we charge
a penalty if the correct value is excluded from the decision set. Second, we would
like to exclude from S any incorrect parameter value. So we charge a penalty for
including any parameter value that is not the true value. For the time being, suppose
that the parameter space, M, and the decision set, S, are discrete. Let �i(mj ) and
�e(mj ) denote the loss values that respectively correspond to the case where mj is
not the mass of the Higgs particle (mj �= mH ) but included in the decision set and
the case where mj is the true mass of the Higgs particle (mj = mH ) but excluded
from the decision set. We refer to �i(mj ) and �e(mj ) as inclusion and exclusion
losses respectively. Allowing �i and �e to depend on mj permits us later on to
adjust these functions to give desired error rates.

The following linear loss function accounts for all the possible decision scenar-
ios with the corresponding losses,

LD(mH ,S) = ∑
mj∈M

�i(mj )1(mj ∈ S)1(mj �= mH)

+ �e(mH )1(mH /∈ S),

(3.1)

where the subscript D in LD shows the momentary discreteness assumption. How-
ever, we wish to treat the mass as a continuous variable over the interval of interest.
Moreover, the case mH =∅ needs to be displayed explicitly in the formulas since
it is treated differently than the rest of the parameter space in terms of error rates.
Therefore, we begin by rewriting the loss function as

LD(mH ,S) =
[ ∑
mj∈S∩(m0,mn)

�i(mj )1(mj �= mH)

+ �∅i 1(∅ ∈ S) + �e(mH )1(mH /∈ S)

]
1
(
mH ∈ (m0,mn)

)

+
[ ∑
mj∈S∩(m0,mn)

�i(mj )1(mj �= mH) + �∅e 1(∅ /∈ S)

]
1(mH = ∅).

(3.2)
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To pass to the continuous case we now replace the sum over S ∩ (m0,mn) by
an integral with respect to the measure ν defined in (2.11). To do so we replace
1(mj �= mH) by 1(mH /∈ (mj−1,mj )) and write∑

mj∈S∩(m0,mn)

�i(mj )1
(
mH /∈ (mj−1,mj )

)

= ∑
mj∈S∩(m0,mn)

�i(mj )(mn − m0)

mj − mj−1

δmj

mn − m0
,

(3.3)

where δmj = mj − mj−1. Then we take a limit as the largest δmi converges to 0
and require the rescaled loss

(3.4)
�i(mj )(mn − m0)

mj − mj−1

to have a limit as n → ∞ (where n represents the number of masses) and mj → m

which we still denote by �i(m); this abuse of notation should cause no confusion.
The new function �i is a “loss density” with respect to normalized Lebesgue mea-
sure on (m0,mn); we also denote �i(∅) = �∅i for compact notation. Values of the
function �i have units of “loss” as do the quantities �∅e and �e(mH). Note that the
exclusion loss is only defined for mi = mH . The result is the loss function

L(mH ,S) =
∫
S
�i(m)1(m �= mH)ν(dm)

+ �e(mH )1(mH /∈ S)1
(
mH ∈ (m0,mn)

)
+ �∅e 1(∅ /∈ S)1(mH = ∅)

=
[∫

S∩(m0,mn)
�i(m)1(m �= mH)

dm

mn − m0

+ �∅i 1(∅ ∈ S) + �e(mH )1(mH /∈ S)

]
1
(
mH ∈ (m0,mn)

)

+
[∫

S∩(m0,mn)
�i(m)1(m �= mH)

dm

mn − m0

+ �∅e 1(∅ /∈ S)

]
1(mH =∅).

(3.5)

The indicator 1(m �= mH) can be dropped from the first integral without changing
its value to give the simplified form

L(mH ,S) =
∫
S∩(m0,mn)

�i(m)
dm

mn − m0

+ [
�∅i 1(∅ ∈ S) + �e(mH )1(mH /∈ S)

]
1
(
mH ∈ (m0,mn)

)
+ �∅e 1(∅ /∈ S)1(mH = ∅),

(3.6)
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where the term
∫
S∩(m0,mn) �i(m)d m

mn−m0
is the loss due to including incorrect mass

values in S.
By averaging the loss function (3.6) with respect to the marginal posterior π(m |

y) the posterior expected loss or the Bayes risk is obtained as follows.

rπ(m|y)(S) = Eπ(m|y)

[
L(m,S)

]
=

∫
S∩(m0,mn)

�i(m)
dm

mn − m0

+
∫
Sc∩(m0,mn)

�e(m)π(m | y)
dm

mn − m0

+ �∅e 1Sc(∅)π(∅ | y) + �∅i 1S(∅)
(
1 − π(∅ | y)

)
.

(3.7)

In (3.7) the terms in (3.6) were rearranged to make it easier to identify the Bayes
procedure. The Bayes rule is obtained by minimizing the Bayes risk with respect
to S.

THEOREM 3.1. The Bayes rule, that is, the decision rule that minimizes
rπ(m|y)(S), is given by

(3.8) S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
m ∈ (m0,mn) : �i(m)

�e(m)
< π(m | y)

}
,

�∅i

�∅e
≥ π(∅ | y)

1 − π(∅ | y)
,

{
m ∈ (m0,mn) : �i(m)

�e(m)
< π(m | y)

}
∪ {∅},

�∅i

�∅e
<

π(∅ | y)

1 − π(∅ | y)
.

A proof is provided in Appendix A.
By the above theorem, the optimal Bayes decision set is obtained by including

all the values of m ∈ (m0,mn) whose posterior density is greater than the ratio of
inclusion loss to exclusion loss. The ∅ is included if the corresponding posterior
odds ratio is greater than its inclusion to exclusion loss ratio. The loss ratios can
be specified such that the Bayes decision set has certain frequency coverage. In the
following we explain the calibration process.

3.2. Calibration and error rate estimation. As mentioned before, the pro-
posed procedure is calibrated to give desired frequency theory properties such as
error rates. The loss ratios �i(m)/�e(m) can be adjusted to satisfy the type I error
rates required in particle physics applications. The same effect could be achieved
in principle by keeping the loss ratio fixed and adjusting the prior. However, fixing
the prior makes the computations below more straightforward. The global Type I
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error rate and false exclusion rates are controlled by solving the following equa-
tions for �i(∅)/�e(∅) and �i(m)/�e(m), respectively.

P(∅ /∈ S | mH = ∅) = P

(
π(∅ | y)

1 − π(∅ | y)
≤ �∅i

�∅e

∣∣∣ mH = ∅

)
= α1(3.9)

and

P(m /∈ S | mH = m,μ = 1)

= P

(
π(m | y) <

�i(m)

�e(m)

∣∣∣ mH = m,μ = 1
)

= α2,

(3.10)

for m ∈ (m0,mn) and where P(A) is the probability of event A.
The Associate Editor has observed that these calibrations are not strictly fre-

quentist in nature because of the way we are handling the background �. A strict
frequentist procedure would regard the function � as a parameter. Thus such a
frequentist procedure would have

P(∅ /∈ Ŝ | mH =∅,�) = α1,(3.11)

P(m /∈ Ŝ | mH = m,�,μ = 1) = α2,(3.12)

where Ŝ is used instead of S to indicate the dependence on data. Such calibration
is likely impossible if we insist on exact calibration in small samples. Traditional
statistical procedures such as likelihood ratio tests are calibrated by letting the crit-
ical value for the test statistic depend on the nuisance parameters. In other words,
equation (3.11) is required to hold only at the estimated value �̂ of �; approxi-
mate calibration is then achieved by parametric bootstrapping. The procedure we
describe below is parallel but averages over those � which remain credible after
seeing the data, that is, according to the posterior distribution of �; details are
given in the next two subsections. Our procedure and parametric bootstrapping are
both properly calibrated in large samples.

In (3.10) and (3.12) exclusion is done for the Standard Model, that is, only
at μ = 1. In (3.12) parametric bootstrapping can be used with � replaced by an
estimate. As for (3.9), standard large sample results predict that this will achieve
calibration at the true but unknown background.

Solving equations (3.9) and (3.10) for the loss ratios �∅i /�∅e and �i(m)/�e(m)

requires obtaining the α1100% and α2100% quantiles of the distributions of the
posterior odds π(∅ | y)/(1−π(∅ | y)), and the posterior probability density, π(m |
y) under the null hypotheses for the two tests, that is, mH = ∅ and mH = m,
respectively.

Unfortunately, under most realistic models the distribution of the posterior func-
tionals cannot be obtained in closed form. In Johnson (2013) the uniformly most
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powerful Bayesian test (UMPBT) for one-parameter exponential family is devel-
oped based on the same idea, that is, maximizing the probability that the Bayes
factor is smaller than a certain threshold under the null model. Johnson (2013)
briefly visits the Higgs problem and reports the size of a Bayes factor equivalent
to the local significance level of α0 = 3 × 10−7. However, to be able to obtain the
UMPBT, a normal model is used.

The results in Johnson (2013) cannot be used under our model. Therefore, we
need to estimate percentiles of the distribution of the posterior using Monte Carlo.
However, this requires intense computation since for each generated data set at
each iteration of the Monte Carlo we need to run the SMC algorithm to estimate the
posterior. This Monte Carlo within Monte Carlo scheme is computationally costly
on its own, while satisfying the small significance level in the physics application
requires a large number of iterations to estimate precise tail quantiles adding to the
computational intensity.

Note that calibration to produce desired frequency error rates offsets the ef-
fect of the prior in decision making. Since the posterior odds can be written as a
product of the prior odds and marginal likelihood ratio, the loss ratio we obtain
and use in decision making, responds to the choice of the prior. Nevertheless the
prior must be expected to influence the inferences and certainly plays a role in the
computational costs of the procedure. In particular the prior of Section 2 is compu-
tationally expensive and we have not implemented our calibration in this context
as a result. Instead we replaced the conditional prior on μ, given mH = m for a
mass m ∈ (m0,mn) by a point mass at μ = 1.

This choice was not popular with reviewers of this paper. Here is some dis-
cussion of the issue from a frequency theory perspective. For a frequentist the
performance of a procedure Ŝ is evaluated by using the frequentist risk. This is the
function of the unknown parameters mH , μ and � given by

(3.13) R(mH ,μ,�; Ŝ) = E
{
L(mH , Ŝ) | mH,μ,�

}
.

This risk can be written as a sum of two components, R∅ and RE , given by

R∅(mH ,μ,�)

= {
�∅i 1(mH �= ∅) + �∅e 1(mH = ∅)

}
P(∅ ∈ Ŝ | mH,μ,�)

(3.14)

and

RE(mH ,μ,�) =
∫ mn

m0

�i(m)P (m ∈ Ŝ | mH,μ,�)
dm

mn − m0

+ �e(mH)1(mH �=∅)P (mH ∈ Ŝ | mH,μ,�).

(3.15)

The component R∅ depends only on the random set Ŝ ∩ {∅} while the second
depends only on Ŝ ∩ (m0,mn). Any such random subset of {∅} has a natural inter-
pretation as a hypothesis test which rejects the null hypothesis of no Higgs if and
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only if the random subset is empty. The level of this test is

(3.16) P(∅ /∈ Ŝ | mH = ∅,μ,�),

and the power at m �=∅, μ and � is

(3.17) Pow(m,μ,�) = P(∅ /∈ S | mH = m,μ,�).

Since the frequentist risk is additive our procedure minimizes

(3.18) R∅(mH ,μ,�; Ŝ)

calibrated as at (3.9), that is, it minimizes the (Bayesian) expected risk averaged
over � subject to our constraint. It can also be thought of as incorporating a hy-
pothesis test of H0 : mH =∅. The level of the test is

(3.19) α1 = P(∅ /∈ Ŝ | mH =∅,�),

and the power is the function

(3.20) Pow(m,μ,�) = P(∅ /∈ Ŝ | mH = m,μ,�),

for m ∈ (m0,mn). Using a prior on μ which puts a point mass on μ = 1 will
maximize Pow(m,1,�) (averaged over �). The prior of Section 2 will maximize
Pow(m,μ,�) averaged over μ and �. Our reviewers argue that we should not
limit our attention to μ = 1 but we observe that this amounts to trading sensitivity
at the theory being considered, the Standard Model, against sensitivity at theories
which make similar predictions to those of the Standard Model but with μ �= 1.

The issue is important so we take the time to consider some elementary ana-
logues. In a problem testing a one-sided hypothesis about a normal mean the most
powerful level α test does not depend on the particular alternative; there is a uni-
formly most powerful test. After calibration any Bayesian procedure analogous to
ours will then simply give back this uniformly most powerful test. In more com-
plex problems the most powerful test, produced by the Neyman–Pearson Lemma,
will depend on the alternative. For each given prior on the alternative we would
get a different calibrated Bayesian-frequentist test which maximized the power,
averaged with respect to that prior. This sort of problem is our situation. The pro-
cedure we present below makes the choice to use the highly informative point
mass prior on μ largely for computational reasons. To highlight the computational
intensity for the case that μ is allowed to vary, consider that the SMC algorithm
when tun in serial to generate 1000 samples takes about two hours. Calibration
requires simulating the posterior multiple times to obtain the distribution of the
test statistic. Even 100 simulations would take about eight days which needs to be
repeated for each pair of mass and μ to obtain the exclusion threshold. [The time
complexity is O(N × M × G), where N is the number of posterior samples, M

is the number of Monte Carlo simulations and G is the number of (m,μ) pairs.]
Of course, by parallelizing over a large number of processors, full calibration can
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be feasible. However, such computational undertaking is beyond the scope of the
present work. These computational considerations also make it very challenging
to carry out a full power study comparing a variety of priors on the signal strength
parameter.

To address calibration with affordable computation, we combine importance
sampling and approximation techniques: we replace the SMC algorithm with a
Laplace approximation in each Monte Carlo algorithm and use importance sam-
pling to reduce the number of iterations required to obtain tail probability estimates
for the Bayesian statistic’s distribution for a fixed level of precision. Again, for the
on/off problem [Golchi and Lockhart (2018)] approximation is not required as the
posterior can be obtained by simpler numerical calculations.

3.2.1. Approximation. In the following, we explain the Laplace approxima-
tion to the marginal posterior distribution of the mass of the Higgs particle. This
approximation is used as a fast alternative to sampling the posterior distribution
to speed up the calibration Monte Carlo. The hyper-parameters, β , η and σ 2 are
held fixed at their maximum a posteriori estimates in the calibration. Consider
reparametrizing the model in terms of � = log�. The approximation method, in-
spired by Rue, Martino and Chopin (2009), is based on a Gaussian approximation
to the conditional distribution, π̃ (� | m,y), that is,

(3.21) π̃ (m | y) = π(m,� | y)

π̃(� | m,y)

∣∣∣
�=�∗ .

The Gaussian approximation, π̃ (� | y,m), is obtained by numerically approximat-
ing the mode and curvature of π(� | y,m);

(3.22) π(� | y,m) ∝ exp
{
−1

2
(� − ξ)T �−1(� − ξ) + logπ(y | �,m)

}
,

where ξ and � are the mean vector and covariance matrix, respectively. Consider
the Taylor expansion of the n components of the log likelihood around the initial
values �0,

logπ(y | �,m)

=
n∑

i=1

gi(�i)

≈
n∑

i=1

[
gi(�0i ) + g′

i (�0i )(�i − �0i ) + g′′
i (�0i )

2
(�i − �0i )

2
]

=
n∑

i=1

[
ai(�0i ) + bi(�0i )�i − 1

2
ci(�0i )�

2
i

]
,

(3.23)
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where

gi(�) = log
(
π(yi | �,m)

)
,(3.24)

ai(�0i ) = gi(�0i ) − g′
i (�0i )�0i + g′′

i (�0i )

2
�2

0i ,(3.25)

bi(�0i ) = g′
i(�0i ) − �0ig

′′
i (�0i ),(3.26)

ci(�0i ) = −g′′
i (�0i )

2
.(3.27)

The above expressions are given explicitly in Appendix B. Note that gi and its
derivatives and consequently (3.24)–(3.27) depend on m but the dependence is not
explicitly expressed for the sake of conciseness. Therefore, we have

π̃(� | y,m) ∝ exp

{
−1

2
(� − ξ)T �−1(� − ξ)

+
n∑

i=1

[
ai(�0i ) + bi(�0i )�i − 1

2
ci(�0i )�

2
i

]}

∝ exp
{
−1

2
�T (

�−1 + diag(c0)
)
� + (

�−1ξ + b0
)T

�

}
,

(3.28)

where b0 = (b1(�01), . . . , bn(�0n))
T and c0 = (c1(�01), . . . , cn(�0n))

T . The
mean (mode) of the approximate Gaussian distribution, π̃(� | y,m), is obtained
by repeatedly solving (�−1 + diag(ct ))�t+1 = (�−1ξ + bt ) for �t+1 until con-
vergence, where bt and ct are updated matrices at iteration t . The approximate
covariance matrix of � is �−1 + diag(c), where c is the convergent value of the
sequence ct . Therefore, the approximate marginal distribution can be obtained up
to a normalizing constant as follows,

π̃ (m | y) ∝ π(m)

∫
π̃(� | m,y) d�

∝ π(m)
∣∣�−1 + diag(c)

∣∣− 1
2 .

(3.29)

3.2.2. Importance sampling for estimating error rates. As mentioned before,
to evaluate the error rates associated with the Bayesian testing procedure, tail prob-
abilities of the posterior functionals need to be estimated. Accurate Monte Carlo
estimates for probabilities of rare events are only obtained with large Monte Carlo
samples (in the order of 107 and larger in this application). In this section we in-
troduce an importance Monte Carlo algorithm that is used to obtain tail probability
estimates with lower variances.

We focus on the global type I error rate of the Bayesian testing procedure, that
is,

(3.30) α1 = P

(
π(∅ | y)

1 − π(∅ | y)
<

�∅i

�∅e

∣∣∣ mH =∅

)
= P

(
π(∅ | y) < q∅ | mH =∅

)
,
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where q∅ = �∅i /(�∅e + �∅i ). While in calibrating the Bayes procedure the goal is
to estimate q∅ to satisfy a determined α1, suppose, for the time being, that α1 is to
be estimated for a given q∅.

To estimate α1 using basic Monte Carlo, data, yi , is generated in each iteration
under the null hypothesis, mH = ∅, and π(∅ | yi ) is obtained. The Monte Carlo
estimate of α1 based on a (large) sample of N posterior values is given by

(3.31) α̂1 = 1

N

N∑
i=1

1
(
π(∅ | yi ) ∈ (0, q∅)

)
.

However, under the null hypothesis, the event that π(∅ | yi ) falls bellow q0 is rare
and an unaffordably large N is required to obtain a nonzero estimate for α1.

Importance sampling is a popular method for simulating rare events [Rubino
and Tuffin (2009)]. The idea is to generate samples from an importance distribution
under which the event of interest is more likely to occur and weight the samples
according to the original distribution of interest. To use importance Monte Carlo,
here, we seek an importance distribution under which small values of π(∅ | y) are
more likely to occur.

Let us remind ourselves of the model under the null and alternative hypotheses,

H0 : The Higgs particle does not exist, that is, mH = ∅,(3.32)

HA : The Higgs particle exists with a mass mH ∈ (m0,mn).(3.33)

Clearly we expect the event π(∅ | y) < q∅ to occur with high probability under
the alternative. Therefore we can use the model under HA as the importance dis-
tribution. The importance weights are then given by

Wi = π(y | H0)

π(y | HA)

= π(y | m = ∅)∫ mn
m0

π(y | m)dm

= π(∅ | y)π(y)/π(∅)∫ mn
m0

[π(m | y)π(y)/πA(m)]dm

= π(∅ | y)

π(∅)
∫ mn
m0

[π(m | y)/πA(m)]dm
,

(3.34)

where π(∅) and πA(m) are the priors over the mass under H0 and HA, respec-
tively. The importance Monte Carlo estimate of α1 based on a sample generated
under the alternative model is given by

(3.35) α̃1 = 1

N

N∑
i=1

1
(
π(∅ | yi ) ∈ (0, q∅)

)
Wi.
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Algorithm 2 Importance Monte Carlo calibration algorithm
Input: Predetermined significance level, α1.

1: for i := 0,1, . . . ,N do

a- Generate mi ∼ πA(m);
b- Generate �i ∼ π(� | yobs) (sample a realization from the posterior sample

generated by Algorithm 1);
c- Generate data, yi ∼ π(y | �i ,mi);
d- Obtain π̃(m | yi ) using (3.29);
e- Obtain Wi using (3.34).

2: end for
3: Solve (3.35) to obtain q0.

Return: Discovery threshold q0.

For calibration, however, (3.35) is solved for q∅ with a given significance level, α1.
Algorithm 2 outlines the calibration steps. As mentioned earlier, the marginal pos-
terior of the mass is obtained by integrating the background over its posterior dis-
tribution, that is, the procedure is calibrated for the most likely realizations of the
background function. This is done by repeatedly sampling from the posterior sam-
ple of the background generated by Algorithm 1 in step 1-b of Algorithm 2.

3.3. Calibrated discovery threshold and the decision set. We run Algorithm 2
for the model introduced in Section 2.1 with μ = 1 to obtain the discovery thresh-
old. The lower (3 × 10−7)100% quantile of the null distribution of the posterior
probability, π(∅ | y) is q0 = 0.0066. The discovery decision based on the simu-
lated data, ysim is made by comparing the estimated null posterior probability to
the obtained threshold. The SMC-based point estimate of π(∅ | ysim) is zero, that
is, no samples with m = ∅ remain in the final posterior sample. Therefore, we
conclude that the simulated data contains adequate evidence of the existence of
the Higgs particle and we do not include m = ∅ in the decision set.

Having concluded that ∅ /∈ S, to obtain the final decision set we only need to
obtain the exclusion thresholds, q(m), for m ∈ (100,180), such that,

(3.36) P
(
π(m | y) < q(m) | mH = m

) = α2,

where α2 = 0.05 is a common choice. Obtaining the exclusion thresholds is anal-
ogous to that of discovery threshold given in Section 3.2. Since the exclusion con-
trolled error rates are not as small as the discovery thresholds even basic Monte
Carlo can provide accurate estimates. However, the approximation in (3.21) is
pointwise and the computational burden increases with the size of the mass grid.
Therefore, the time complexity of the exclusion step is O(N2 × M) for a mass
grid of size N and M Monte Carlo iterations. To reduce the computational cost we
use a coarse discretization of the mass spectrum and use a kernel smooth of the
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FIG. 4. Exclusion threshold curve (red line) over the marginal posterior density estimate of mass
together with the decision interval (the interval within two gray vertical lines). In (b) the graph is
zoomed in for better visualization, the points are the decision thresholds obtained for the coarse grid
over mass.

exclusion thresholds for this coarse grid. Figure 4 shows the exclusion threshold
together with the histogram of the posterior sample of mass in the search window.
The boundaries of the decision set are determined by the mass values where the es-
timated posterior density is higher than the exclusion threshold. These boundaries
are specified in Figure 4 by the grey vertical lines. The decision set obtained by the
exclusion threshold cuts is Ŝ = (122.40,129.57) which is more conservative than
the 95% Bayesian credible set reported in Section 2.3, that is, (124.58, 127.30).

4. Conclusion and discussion. In this article a Bayesian hierarchical model
is introduced to make inference about the mass and signal strength of the Higgs
particle as well as estimating the background function and its hyper-parameters
in a fully Bayesian framework. A sequential Monte Carlo algorithm is used to
sample the posterior distributions of the model parameters. The model is fit to data
produced by computer models that simulate the behaviours of the detectors. The
analysis results resemble the analysis of the real Higgs data reported in physics
literature—the posterior distribution of the mass is peaked around the reported
mass of the Higgs particle, that is, m̂H ≈ 126 [ATLAS Collaboration (2012), CMS
Collaboration (2012)]. The 95% credible Bayesian interval is reported as the set of
credible values of the Higgs boson based on this analysis.

In addition, we have proposed a frequency-calibrated Bayesian procedure that
can be used as an alternative to the detection/exclusion method used in the search
for the Higgs particle. In a decision theoretic framework, we define a linear loss
function that summarizes the possible outcomes of searching for a new particle
with the associated losses. The Bayes rule is obtained by minimizing the expected
loss and is the basis of decision making.

Our procedure is calibrated to give required frequency theory error rates. A cal-
ibration algorithm is proposed in which the posterior distributions are obtained
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by a fast Laplace approximation instead of SMC, thereby making the calibration
step computationally feasible. An importance Monte Carlo for simulation of rare
events is proposed that allows for calibration of the Bayes procedure to meet the
small type I error rate typically used in discovery of new phenomena. We calibrate
our procedure according to the error rate requirements in particle physics. A deci-
sion set is reported that excludes the null hypothesis (the hypothesis of “no Higgs”)
and contains a range of masses that remain plausible according to discovery and
exclusion error rates of 3 × 10−7 and 0.05 respectively.

As mentioned earlier, the nature of our procedure resembles that of Feldman
and Cousins (1998) for constructing confidence intervals that discuss the coverage
issues of confidence intervals built based on the two step procedure without proper
conditioning. However, we use the posterior odds ratios instead of likelihood ratios
and report confidence sets with different levels of confidence for parameter values
that represent the null hypothesis than those under the alternative hypothesis.

We conclude with a number of issues deserving acknowledgment and/or further
work: There are a number of issues surrounding the inclusion of μ as an unknown
parameter to be estimated. In Section 2 we have described a fully Bayesian analysis
including μ. There will inevitably be controversy surrounding any choice of prior;
we believe that the prior need to captures the physicists’ consensus view of likely
signal strength parameter values. Prior specification should, of course, involve a
sensitivity analysis to study the robustness of the results to prior choice. Such
sensitivity analysis is out of scope of the present paper but can be the focus of
further investigations.

Another issue with μ is the possibility of including it in our decision theoretic
approach. The decision theoretic procedure of Section 3 may be extended to con-
sider the parameter space

(4.1) M2 := {∅} ∪ {
(m,μ) | m0 < m < mn,μ > 0

}
to give a set S2 ⊂ M2 which would be a variable level confidence set for the pair
(mH ,μ). The losses would be extended to such pairs and we could try to calibrate
more error rates than just those at (3.9) and (3.10). The resulting calibrations would
be computationally much more demanding and would often yield a complex set of
pairs (mH ,μ) for μ near 0. Preliminary testing has shown that calibration will
require a lot more computation and likely some care in implementation; as a result
we have not yet pursued this problem.

The set S of Section 3 combines discovery and exclusion in the sense that a
value of m is excluded if it is not in S. The new set S2 can be interpreted to do
exclusion if we declare m to be excluded provided (m,1) /∈ S2. The key is that we
are excluding the standard model value of μ.

The Bayes procedure will be quite sensitive to the prior for μ; the decision
theoretic procedure should be less so because calibration of the error rates reduces
the impact of the prior. It does not eliminate the effect since the prior determines
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an ordering on the possible data sets which is used to determine which data sets
correspond to a set S2 including a given pair (m,μ).

We remark that a likelihood ratio statistic is a maximum over mass values of a
family of test statistics depending on a mass m. This maximization produces the
well known irregularities in the large sample theory of the test. Our proposal effec-
tively uses the Bayes factor as a test statistic; this statistic replaces maximization
with averaging, a much more regular process. We expect this regularization will
make our calibration procedures work better with our test statistic than they might
with a likelihood ratio.

A power study of the procedure in Section 3, comparing the effects of priors
should be carried out. Such a study would require significant computational re-
sources.

After the set S has been found further data analysis will be needed. If ∅ /∈ S, a
discovery will be declared and it will be necessary to continue the analysis. One
needs to:

• Give a suitable confidence set or credible region for mH ;
• Give a suitable confidence set or credible region for the pair (mH ,μ);
• Assess the assertion that μ = 1—If μ �= 1 then we might be discovering a par-

ticle which is Higgs-like but not the specific object predicted by the standard
model; alternatively we might be discovering that systematic errors have not
been adequately handled;

• Assess the assertion that μ does not depend on the production mechanism of the
particle in question.

Our procedure and the standard procedure could, in principle, have discovered
more than one peak had these been present, in the sense that our confidence set
might find two or more disjoint intervals in (m0,mn).

Interpretation of such an occurrence is properly part of the post discovery anal-
ysis described above if we do not want that interpretation to contribute, potentially,
to error rates in the formal discovery declaration step.

Finally, systematic errors were ignored in our discussion. Those errors are nat-
urally included in a Bayesian model as priors. For systematic errors that result
from measurement errors for parameters in the calculations leading to the mass
histogram, one might imagine non-Bayesian (frequentist) approaches. But there
are systematic errors which are much harder to deal with in frequentist terms. For
instance, in computing the signal shape and cross section as a function of beam
luminosity it is necessary to carry out quantum mechanical calculations by expan-
sions. These expansions are carried out at some order described by phrases such as
next to leading order (NLO) or next to next to leading order (NNLO). The result
is an approximation error which typically can only be quantified subjectively. In-
corporating that subjectivity explicitly in a prior offers the opportunity to examine
the sensitivity of the conclusions to the specification of this prior uncertainty.
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An adaptation of the proposed approach is presented for a signal detection prob-
lem, referred to as the on/off problem, in Golchi and Lockhart (2018). As men-
tioned before, due to simplicity of the problem and model, the proposed approach
can be implemented with less computational cost in this framework.

APPENDIX A: PROOF OF THEOREM 3.1

PROOF. Consider the problem of deciding whether or not mass value m∗ ∈M
should be included in the decision set. Following the Bayes rule, m∗ is included
if the change in risk associated with inclusion of m∗ is negative. To avoid mea-
sure theoretic complications we restrict the decision space to finite unions of open
intervals and {∅}. First, consider the case that m∗ ∈ (m0,mn). Since the prior dis-
tribution of m on the interval (m0,mn) is absolutely continuous, the addition of
any point like m∗ (as well as any other zero measure set) to the decision set leaves
the risk unchanged. Let S be the decision set before including m∗. We consider the
change in the risk as a result of adding the interval (m∗ − δ,m∗ + δ) for very small
δ to S. Let S0 = S ∪ (m∗ − δ,m∗ + δ). We include m∗ in the final decision set if
and only if

(A.1) r(S0) − r(S) < 0,

where

r(S0) − r(S)

=
∫
S∩(m0,mn)

�i(m)
dm

mn − m0
+

∫ m∗+δ

m∗−δ
�i(m)

dm

mn − m0

+
∫
Sc∩(m0,mn)

�e(m)π(m | y)
dm

mn − m0

−
∫ m∗+δ

m∗−δ
�e(m)π(m | y)

dm

mn − m0
−

∫
S∩(m0,mn)

�i(m)
dm

mn − m0

−
∫
Sc∩(m0,mn)

�e(m)π(m | y)
dm

mn − m0

= {
�i

(
m∗) − �e

(
m∗)

π
(
m∗ | y

)}
2δ + o(δ).

(A.2)

The above expression is negative for all sufficiently small δ > 0 if and only if

(A.3) �i

(
m∗) − �e

(
m∗)

π
(
m∗ | y

)
< 0,

or

(A.4)
�i(m

∗)
�e(m∗)

< π
(
m∗ | y

)
.
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For the case that m∗ =∅, let S0 = S ∪ {∅},
r(S0) − r(S)

=
∫
S∩(m0,mn)

�i(m)
dm

mn − m0
+ �∅i

(
1 − π(∅ | y)

)

+
∫
Sc∩(m0,mn)

�e(m)π(m | y)
dm

mn − m0

− �∅e π(∅ | y) −
∫
S∩(m0,mn)

�i(m)
dm

mn − m0

−
∫
Sc∩(m0,mn)

�e(m)π(m | y)
dm

mn − m0

= �∅i
(
1 − π(∅ | y)

) − �∅e π(∅ | y).

(A.5)

Therefore, 0 is added to S if

�∅i
(
1 − π(∅ | y)

) − �∅e π(∅ | y) < 0,(A.6)

�∅i

�∅e
<

π(∅ | y)

1 − π(∅ | y)
.(A.7) �

APPENDIX B: LIKELIHOOD EXPANSION TERMS

The explicit expressions for (3.24)–(3.27) are given below:

(B.1) gi(�) = − exp(�) − si + yi log
(
exp(�) + si

) − log(yi !),
where

si =
∫ mi

mi−1

smH
(m)dm,(B.2)

ai(�) = gi(�) − g′
i (�)� + g′′

i (�)

2
�2

= − exp(�) − si + yi log
(
exp(�) + si

) − log(yi !)
(B.3)

+
(

exp(�) − yi

exp(�)

exp(�) + si

)
�

+
(
− exp(�) + yi

exp(�)si

(exp(�) + si)2

)
�2,

bi(�) = g′
i (�)� + �g′′

i (�)
(B.4)

= − exp(�)(1 − �) + yi

exp(�)

exp(�) + si

(
1 − �si

exp(�) + si

)
,
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and

ci(�) = −g′′
i (�)

2
= 1

2
exp(�)

(
1 − yi

exp(�)si

(exp(�) + si)2

)
.(B.5)

Data and code. The data and code required for reproducing the results in the
paper are provided at https://github.com/sgolchi/BPD.
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SUPPLEMENTARY MATERIAL

Supplement A: Frequency-calibrated Bayesian analysis of the on/off prob-
lem (DOI: 10.1214/18-AOAS1138SUPP; .pdf). In this supplementary file, an
adaptation of the proposed approach is described for a simple signal detection
problem referred to as the on/off problem that helps better understanding of the
methods.
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