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TREE-BASED REINFORCEMENT LEARNING FOR ESTIMATING
OPTIMAL DYNAMIC TREATMENT REGIMES1
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Dynamic treatment regimes (DTRs) are sequences of treatment decision
rules, in which treatment may be adapted over time in response to the chang-
ing course of an individual. Motivated by the substance use disorder (SUD)
study, we propose a tree-based reinforcement learning (T-RL) method to di-
rectly estimate optimal DTRs in a multi-stage multi-treatment setting. At
each stage, T-RL builds an unsupervised decision tree that directly handles
the problem of optimization with multiple treatment comparisons, through a
purity measure constructed with augmented inverse probability weighted esti-
mators. For the multiple stages, the algorithm is implemented recursively us-
ing backward induction. By combining semiparametric regression with flex-
ible tree-based learning, T-RL is robust, efficient and easy to interpret for the
identification of optimal DTRs, as shown in the simulation studies. With the
proposed method, we identify dynamic SUD treatment regimes for adoles-
cents.

1. Introduction. In many areas of clinical practice, it is often necessary to
adapt treatment over time, due to significant heterogeneity in how individuals re-
spond to treatment, as well as to account for the progressive (e.g., cyclical) na-
ture of many chronic diseases and conditions. For example, substance use disorder
(SUD) often involves a chronic course of repeated cycles of cessation (or signif-
icant reductions in use) followed by relapse [Hser et al. (1997), McLellan et al.
(2000)]. However, individuals with SUD are vastly heterogeneous in the course of
this disorder, as well as in how they respond to different interventions [Murphy
et al. (2007)]. Dynamic treatment regimes (DTRs) [Robins (1986, 1997, 2004),
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Murphy (2003), Chakraborty and Murphy (2014)] are prespecified sequences of
treatment decision rules, designed to help guide clinicians in whether or how, in-
cluding based on which measures, to adapt (and re-adapt) treatment over time in
response to the changing course of an individual. A DTR has multiple stages of
treatment, and at each stage, information about a patient’s medical history and
current disease status can be used to make a treatment recommendation for the
next stage. The following is a simple example of a two-stage DTR for adolescents
with SUD. First, at treatment program entry, offer adolescents nonresidential (out-
patient) treatment for three months, and monitor them for substance use over the
course of three months. Second, at the end of three months, if an adolescent has
experienced reductions in the frequency of substance use, continue providing out-
patient treatment for an additional three months. Otherwise, offer residential (in-
patient) treatment for an additional three months. Identification of optimal DTRs
offers an effective vehicle for personalized management of diseases, and helps
physicians tailor the treatment strategies dynamically and individually based on
clinical evidence, thus providing a key foundation for better health care [Wagner
et al. (2001)].

Several methods have been developed or modified for the identification of opti-
mal DTRs, which differ in terms of modeling assumptions as well as interpretabil-
ity, that is, the ease with which it is possible to communicate the decision rules that
make up the DTR [Zhang et al. (2015, 2016)]. The interpretability of an estimated
optimal DTR is crucial for facilitating applications in medical practice. Commonly
used statistical methods include marginal structural models with inverse probabil-
ity weighting (IPW) [Murphy, van der Laan and Robins (2001), Wang et al. (2012),
Hernán, Brumback and Robins (2001)], G-estimation of structural nested mean
models [Robins (1994, 1997, 2004)], targeted maximum likelihood estimators [van
der Laan and Rubin (2006)] and likelihood-based approaches [Thall et al. (2007)].
To apply these methods, one needs to specify a series of parametric or semipara-
metric conditional models under a prespecified class of DTRs indexed by unknown
parameters, and then search for DTRs that optimize the expected outcome. They
often result in estimated optimal DTRs that are highly interpretable. However, in
some settings, these methods may be too restrictive; for example, when there is
a moderate-to-large number of covariates to consider or when there is no specific
class of DTRs of particular interest.

To reduce modeling assumptions, more flexible methods have been proposed.
In particular, the problem of developing optimal multi-stage decisions has strong
resemblance to reinforcement learning (RL) [Chakraborty and Moodie (2013)].
Unlike supervised learning (SL) (e.g., regression and classification), the desired
output value (e.g., the true class or the optimal decision), also known as the label,
is not observed. The learning agent has to keep interacting with the environment
to learn the best decision rule. Such methods include Q-learning [Watkins and
Dayan (1992), Sutton and Barto (1998)] and A-learning [Murphy (2003), Schulte
et al. (2014)], both of which use backward induction [Bather (2000)] to account
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for the delayed (or long-term) effects of earlier-stage treatment decisions. Q- and
A-learning rely on maximizing or minimizing an objective function to indirectly
infer the optimal DTRs and thus emphasize prediction accuracy of the clinical re-
sponse model instead of directly optimizing the decision rule [Zhao et al. (2012)].
The modeling flexibility and interpretability of Q- and A-learning depend on the
method for optimizing the objective function.

There has also been considerable interest in converting the RL problem to a SL
problem so as to utilize existing classification methods. These methods are usually
flexible with a nonparametric modeling framework but may introduce additional
uncertainty due to the conversion. Their interpretability rests on the choice of the
classification approach. For example, Zhao et al. (2015) propose outcome weighted
learning (OWL) to transform the optimal DTR problem into an either sequential
or simultaneous classification problem, and then apply support vector machines
(SVM) [Cortes and Vapnik (1995)]. However, it is difficult to interpret the opti-
mal DTRs estimated by SVM. Moreover, OWL is susceptible to trying to retain
the actually observed treatments given a positive outcome, and its estimated indi-
vidualized treatment rule is affected by a simple shift of the outcome [Zhou et al.
(2017)]. For observational data, Tao and Wang (2017) propose a robust method
for multi-treatment DTRs, adaptive contrast weighted learning (ACWL), which
combines doubly robust augmented IPW (AIPW) estimators with classification al-
gorithms. It avoids the challenging multiple treatment comparisons by utilizing
adaptive contrasts that indicate the minimum or maximum expected reduction in
the outcome given any sub-optimal treatment. In other words, ACWL ignores in-
formation on treatments that lead to neither the minimum or maximum expected
reduction in the outcome, likely at the cost of efficiency.

Recently, Laber and Zhao (2015) propose a novel tree-based approach, denoted
as LZ hereafter, to directly estimating optimal treatment regimes. Typically, a de-
cision tree is a SL method that uses tree-like graphs or models to map observations
about an item to conclusions about the item’s target value, for example, the clas-
sification and regression tree (CART) algorithm by Breiman et al. (1984). LZ fits
the RL task into a decision tree with a purity measure that is unsupervised, and
meanwhile maintains the advantages of decision trees, such as simplicity for un-
derstanding and interpretation, and capability of handling multiple treatments and
various types of outcomes (e.g., continuous or categorical) without distributional
assumptions. However, LZ is limited to a single-stage decision problem, and is
also susceptible to propensity model misspecification. More recently, Zhang et al.
(2015, 2016) and Lakkaraju and Rudin (2017) have applied decision lists to con-
struct interpretable DTRs, which comprise a sequence of “if–then” clauses that
map patient covariates to recommended treatments. A decision list can be viewed
as a special case of tree-based rules, where the rules are ordered and learned one af-
ter another [Rivest (1987)]. These list-based methods are particularly useful when
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the goal is not only to gain the maximum health benefits but also to minimize
the cost of measuring covariates. However, without cost information, a list-based
method may be more restrictive than a tree-based method. On the one hand, to en-
sure parsimony and interpretability, Zhang et al. (2015, 2016) restrict each rule to
involve up to two covariates, which may be problematic for more complex treat-
ment regimes. On the other hand, due to the ordered nature of lists, a later rule
is built upon all the previous rules and thus errors can accumulate. In contrast, a
decision tree does not require the exploration of a full rule at the very beginning
of the algorithm, since the rules are learned at the terminal nodes. Instead of being
fully dependent on each other, rules from a decision tree are more related only if
they share more parent nodes, which allows more freedom for exploration.

In this paper, we develop a tree-based RL (T-RL) method to directly estimate
optimal DTRs in a multi-stage multi-treatment setting, which builds upon the
strengths of both ACWL and LZ. First of all, through the use of decision trees,
our proposed method is interpretable, capable of handling multinomial or ordinal
treatments and flexible for modeling various types of outcomes. Second, thanks to
the unique purity measures for a series of unsupervised trees at multiple stages,
our method directly incorporates multiple treatment comparisons while maintain-
ing the nature of RL. Last but not least, the proposed method has improved esti-
mation robustness by embedding doubly robust AIPW estimators in the decision
tree algorithm.

The remainder of this paper is organized as follows. In Section 2, we formalize
the problem of estimating the optimal DTR in a multi-stage multi-treatment setting
using the counterfactual framework, derive purity measures for decision trees at
multiple stages and describe the recursive tree growing process. The performance
of our proposed method in various scenarios is evaluated by simulation studies
in Section 3. We further illustrate our method in Section 4 using a case study
to identify optimal dynamic substance abuse treatment regimes for adolescents.
Finally, we conclude with some discussions and suggestions for future research in
Section 5.

2. Tree-based reinforcement learning (T-RL).

2.1. Dynamic treatment regimes (DTRs). Consider a multi-stage decision
problem with T decision stages and Kj (Kj ≥ 2) treatment options at the j th
(j = 1, . . . , T ) stage. Data could come from either a randomized trial or an ob-
servational study. Let Aj denote the multi-categorical treatment indicator with
observed value aj ∈ Aj = {1, . . . ,Kj }. In the SUD data, treatment is multi-
categorical with options being residential, non-residential or no treatment. Let
Xj denote the vector of patient characteristics history just prior to treatment as-
signment Aj , and XT +1 denote the entire characteristics history up to the end of
stage T . Let Rj be the reward (e.g., reduction in the frequency of substance use)
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following Aj , which could depend on the covariate history Xj and treatment his-
tory A1, . . . ,Aj , and is also a part of the covariate history Xj+1. We consider the
overall outcome of interest as Y = f (R1, . . . ,RT ), where f (·) is a prespecified
function (e.g., sum), and we assume that Y is bounded; higher values of Y are
preferable. The observed data are {(A1i , . . . ,AT i,X�

T +1,i)}ni=1, assumed to be in-
dependent and identically distributed for n subjects from a population of interest.
For brevity, we suppress the subject index i in the following text when no confu-
sion exists.

A DTR is a sequence of individualized treatment rules, g = (g1, . . . , gT ),
where gj is a mapping from the domain of covariate and treatment history
Hj = (A1, . . . ,Aj−1,X�

j )� to the domain of treatment assignment Aj , and we set
A0 = ∅. To define and identify the optimal DTR, we consider the counterfactual
framework for causal inference [Robins (1986)].

At stage T , let Y ∗(A1, . . . ,AT −1, aT ), or Y ∗(aT ) for brevity, denote the coun-
terfactual outcome for a patient treated with aT ∈ AT conditional on previous treat-
ments (A1, . . . ,AT −1), and define Y ∗(gT ) as the counterfactual outcome under
regime gT , that is,

Y ∗(gT ) =
KT∑

aT =1

Y ∗(aT )I
{
gT (HT ) = aT

}
.

The performance of gT is measured by the counterfactual mean outcome
E{Y ∗(gT )}, and the optimal regime, g

opt
T , satisfies E{Y ∗(gopt

T )} ≥ E{Y ∗(gT )} for
all gT ∈ GT , where GT is the class of all potential regimes. To connect the counter-
factual outcomes with the observed data, we make the following three standard as-
sumptions [Murphy, van der Laan and Robins (2001), Robins and Hernán (2009),
Orellana, Rotnitzky and Robins (2010)].

ASSUMPTION 1 (Consistency). The observed outcome is the same as the
counterfactual outcome under the treatment a patient is actually given, that is,
Y = ∑KT

aT =1 Y ∗(aT )I (AT = aT ), where I (·) is the indicator function that takes
the value 1 if · is true and 0 otherwise. It also implies that there is no interference
between subjects.

ASSUMPTION 2 (No unmeasured confounding). Treatment AT is randomly
assigned with probability possibly dependent on HT , that is,{

Y ∗(1), . . . , Y ∗(KT )
}

|= AT | HT ,

where |= denotes statistical independence.

ASSUMPTION 3 (Positivity). There exist constants 0 < c0 < c1 < 1 such that,
with probability 1, the propensity score πaT

(HT ) = Pr(AT = aT |HT ) ∈ (c0, c1).



TREE-BASED REINFORCEMENT LEARNING 1919

Following the derivation in Tao and Wang (2017) under the foregoing three
assumptions, we have

E
{
Y ∗

T (gT )
} = EHT

[
KT∑

aT =1

E(Y |AT = aT ,HT )I
{
gT (HT ) = aT

}]
,

where EHT
(·) denotes expectation with respect to the marginal joint distribution

of the observed data HT . If we denote the conditional mean E(Y |AT = aT ,HT )

as μT,aT
(HT ), we have

(2.1) g
opt
T = arg max

gT ∈GT

EHT

[
KT∑

aT =1

μT,aT
(HT )I

{
gT (HT ) = aT

}]
.

At stage j , T − 1 ≥ j ≥ 1, g
opt
j can be expressed in terms of the observed data

via backward induction [Bather (2000)]. Following Murphy (2005) and Moodie,
Chakraborty and Kramer (2012), we define a stage-specific pseudo-outcome POj

for estimating g
opt
j , which is a predicted counterfactual outcome under optimal

treatments at all future stages, also known as the value function. Specifically, we
have

POj = E
{
Y ∗(

A1, . . . ,Aj , g
opt
j+1, . . . , g

opt
T

)}
,

or in a recursive form,

POj = E
{
POj+1|Aj+1 = g

opt
j+1(Hj+1),Hj+1

}
and we set POT = Y .

For aj = 1, . . . ,Kj , let μj,aj
(Hj ) denote the conditional mean E[POj |Aj =

aj ,Hj ], and we have POj = μ
j+1,g

opt
j+1

(Hj+1). Let PO∗
j (aj ) denote the counter-

factual pseudo-outcome for a patient with treatment aj at stage j . For the three

assumptions, we have positivity as POj = ∑Kj

aj=1 PO∗
j (aj )I (Aj = aj ), no unmea-

sured confounding as {PO∗
j (1), . . . ,PO∗

j (Kj )} |= Hj and positivity as πaj
(Hj ) =

Pr(Aj = aj |Hj ) bounded away from zero and one. Under these three assumptions,
the optimization problem at stage j , among all potential regimes Gj , can be written
as

(2.2) g
opt
j = arg max

gj∈Gj

EHj

[ Kj∑
aj=1

μj,aj
(Hj )I

{
gj (Hj ) = aj

}]
.

2.2. Purity measures for decision trees at multiple stages. We propose to use
a tree-based method to solve (2.1) and (2.2). Typically, a CART tree is a binary
decision tree constructed by splitting a parent node into two child nodes repeat-
edly, starting with the root node which contains the entire learning samples. The
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basic idea of tree growing is to choose a split among all possible splits at each node
so that the resulting child nodes are the purest (e.g., having the lowest misclassi-
fication rate). Thus the purity or impurity measure is crucial to the tree growing.
Traditional classification and regression trees are SL methods, with the goal of
inferring a function that describes the relationship between the outcome and co-
variates. The desired output value, also known as the label, is observed and can be
used directly to measure purity. Commonly used impurity measures include Gini
index and information index for categorical outcomes, and least squares deviation
for continuous outcomes [Breiman et al. (1984)].

However, the estimation target of a DTR problem, which is the optimal treat-
ment for a patient with characteristics Hj at stage j , that is, g

opt
j (Hj ), j =

1, . . . , T , is not directly observed. Information about g
opt
j (Hj ) can only be inferred

indirectly through the observed treatments and outcomes. Using the causal frame-
work and the foregoing three assumptions, we can pool over all subject-level data
to estimate the counterfactual mean outcomes given all possible treatments. With
the overall goal of maximizing the counterfactual mean outcome in the entire pop-
ulation of interest, the selected split at each node should also improve the coun-
terfactual mean outcome, which can serve as a measure of purity in DTR trees.
Figure 1 illustrates a decision tree for a single-stage (T = 1) optimal treatment
rule with A = {0,1,2}. Let �m,m = 1,2, . . . , denote the nodes which are regions
defined by the covariate space following all precedent binary splits, with the root
node �1 = R

p (p is the covariate dimension). We number the rectangular region
�m,m ≥ 2, so that its parent node is ��m/2�, where �·� means taking the smallest
integer not less than ·. Figure 1 shows the chosen covariate and best split at each
node, as well as the counterfactual mean outcome after assigning a single optimal
treatment to that node. The splits are selected to increase the counterfactual mean
outcome. At the root node, if we select a single treatment for all subjects, treatment

FIG. 1. (A) A decision tree for optimal treatment rules and the expected counterfactual outcome by
assigning a single best treatment to each node that represents a subset covariate space. (B) Regions
divided by the terminal nodes in the decision tree indicating different optimal treatments.
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1 is the most beneficial overall, yielding a counterfactual mean outcome of 0.7.
Splitting via X1 and X2, the optimal regime gopt is to assign treatment 2 to region
�3 = {X1 > 0}, treatment 0 to region �4 = {X1 ≤ 0,X2 ≤ 0.5}, and treatment 1 to
region �5 = {X1 ≤ 0,X2 > 0.5}. We can see that this tree is fundamentally differ-
ent from a CART tree as it does not attempt to describe the relationship between
the outcome and covariates or the rule for the assignment of the observed treat-
ments, and instead it describes the rule by which treatments should be assigned to
future subjects in order to maximize the purity, which is the counterfactual mean
outcome.

Laber and Zhao (2015) propose a measure of node purity based on the IPW
estimator of the counterfactual mean outcome [Zhang et al. (2012), Zhao et al.
(2012)],

E
{
Y ∗(g)

} = EH

[
I (A = g(H))

πA(H)
Y

]
,

for a single-stage (T = 1, omitted for brevity) decision problem. Given known
propensity score πA(H), they propose a purity measure PLZ(�,ω) as

max
a1,a2∈A

Pn[ {Y−m̂(H)}I {A=gω,a1,a2 (H)}
πA(H)

I (H ∈ �)]
Pn[ I {A=gω,a1,a2 (H)}

πA(H)
I (H ∈ �)]

,

where Pn is the empirical expectation operator, m̂(H) is maxa∈A μ̂a(H) with
μa(H) = E(Y |A = a,H), � denotes the node to be split, ω and ωc is a partition
of �, and for a given partition ω and ωc, gω,a1,a2 denotes the decision rule that as-
signs treatment a1 to subjects in ω and treatment a2 to subjects in ωc. PLZ(�,ω)

is the estimated counterfactual mean outcome for node � by the best decision rule
that assigns a single treatment to all subjects in ω and a second treatment to all
subjects in ωc. However, in an observational study where πA(H) has to be esti-
mated, PLZ(�,ω) is subject to misspecification of the propensity model. More-
over, as the node size decreases, the IPW-based purity measure will become less
stable.

To improve robustness, we propose to use an AIPW estimator for the counter-
factual mean outcome as in Tao and Wang (2017). By regarding the K treatment
options as K arbitrary missing data patterns [Rotnitzky, Robins and Scharfstein
(1998)], the AIPW estimator for E{Y ∗(a)} is Pn{μ̂AIPW

a (H)}, with

(2.3) μ̂AIPW
a (H) = I (A = a)

π̂a(H)
Y +

{
1 − I (A = a)

π̂a(H)

}
μ̂a(H).

Under the foregoing three assumptions, Pn{μ̂AIPW
a (H)} is a consistent estimator

of E{Y ∗(a)} if either the propensity model πa(H) or the conditional mean model
μa(H) is correctly specified, and thus the method is doubly robust.
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In our multi-stage setting, for stage T , given estimated conditional mean
μ̂AIPW

T ,aT
(HT ) and estimated propensity score π̂T ,AT

(HT ), the proposed estimator
of E{Y ∗

T (gT )} is

Pn

[
KT∑

aT =1

μ̂AIPW
T ,aT

(HT )I
{
gT (HT ) = aT

}]

= Pn

[
I (AT = gT (HT ))

π̂T ,AT
(HT )

Y +
{

1 − I (AT = gT (HT ))

π̂T ,AT
(HT )

}
μ̂T ,gT

(HT )

]
,

which has the augmented term in addition to the IPW estimator used by Laber and
Zhao (2015). Similarly, for stage j (T − 1 ≤ j ≤ 1), the proposed estimator of
E{PO∗

j (gj )} is

Pn

[
I (Aj = gj (Hj ))

π̂j,Aj
(Hj )

P̂Oj +
{

1 − I (Aj = gj (Hj ))

π̂j,Aj
(Hj )

}
μ̂j,gj

(Hj )

]
,

where π̂j,Aj
(Hj ) is the estimated propensity score, μ̂j,aj

(Hj ) is the estimated
conditional mean and P̂Oj = μ̂

j+1,ĝ
opt
j+1

(Hj+1) is the estimated pseudo-outcome.

Our proposed method maximizes the counterfactual mean outcome through
each of the nodes. For a given partition ω and ωc of node �, let gj,ω,a1,a2 de-
note the decision rule that assigns treatment a1 to subjects in ω and treatment a2 to
subjects in ωc at stage j (T ≤ j ≤ 1), and we define the purity measure Pj (�,ω)

as

max
a1,a2∈Aj

Pn

[ Kj∑
aj=1

μ̂AIPW
j,aj

(Hj )I
{
gj,ω,a1,a2(Hj ) = aj

}
I (Hj ∈ �)

]
.

We can see that Pj (�,ω) is the estimated counterfactual mean outcome for node
� and it works as the performance measure for the best decision rule which as-
signs a single treatment to each of the two arms under the partition ω. Comparing
Pj (�,ω) and PLZ(�,ω), the primary difference is in the underlying estimator for
the counterfactual mean outcome. Another difference is that in Pj (�,ω), one is
utilizing all subjects at node � with the counterfactual outcomes μ̂AIPW

j,aj
(Hj ) cal-

culated using all samples at the root node, while in PLZ(�,ω), one is only using a
subset of subjects, depending on compatibility to gω,a1,a2(Hj ), which is why there
is a denominator in PLZ(�,ω) but not in Pj (�,ω). These differences may lead
to better stability for Pj (�,ω).

2.3. Recursive partitioning. As we have mentioned, the purity measures for
our T-RL are different from the ones in supervised decision trees. However, after
defining Pj (�,ω), j = 1, . . . , T , the recursive partitioning to grow the tree is sim-
ilar. Each split depends on the value of only one covariate. A nominal covariate
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with C categories has 2C−1 − 1 possible splits and an ordinal or continuous co-
variate with L different values has L − 1 unique splits. Therefore, at a given node
�, a possible split ω indicates either a subset of categories for a nominal covariate
or values no larger than a threshold for an ordinal or continuous covariate. The best
split ωopt is chosen to maximize the improvement in the purity, Pj (�,ω)−Pj (�),
where Pj (�) means to assign a single best treatment to all subjects in � without
splitting. It is straightforward to see that Pj (�,ω) ≥ Pj (�). In order to control
overfitting as well as to make meaningful splitting, a positive constant λ is given
to represent a threshold for practical significance and another positive integer n0
is given as the minimal node size which is dictated by problem-specific considera-
tions. Under these conditions, we first evaluate the following three Stopping Rules
for node �.

RULE 1. If the node size is less than 2n0, the node will not be split.

RULE 2. If all possible splits of a node result in a child node with size smaller
than n0, the node will not be split.

RULE 3. If the current tree depth reaches the user-specified maximum depth,
the tree growing process will stop.

If none of the foregoing Stopping Rules are met, we compute the best split by

ω̂opt = arg max
ω

[
Pj (�,ω) : min

{
nPnI (Hj ∈ ω),nPnI

(
Hj ∈ ωc)} ≥ n0

]
.

Before deciding whether or not to split � into ω and ωc, we evaluate the following
Stopping Rule 4.

RULE 4. If the maximum purity improvement Pj (�, ω̂opt) − Pj (�) is less
than λ, the node will not be split.

We split � into ω and ωc if none of the four stopping rules apply.
When there is no clear scientific guidance on λ to indicate practical significance,

one approach is to choose a relatively small positive value to build a complete tree
and then prune the tree back in order to minimize a measure of cost for the tree.
Following the CART algorithm, the cost is a measure of the total impurity of the
tree with a penalty term on the number of terminal nodes, and the complexity pa-
rameter for the penalty term can be tuned by cross-validation (CV) [Breiman et al.
(1984)]. Alternatively, we propose to select λ directly by CV, similar to the method
by Laber and Zhao (2015). As a direct measure of purity is not available in RL,
we again incorporate the idea of maximizing the counterfactual mean outcome and
use a 10-fold CV estimator of the counterfactual mean outcome. Theoretically, CV
can be conducted at each stage separately and one can use a potentially different
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λ for each stage. To reduce modeling uncertainty in the pseudo-outcomes and also
simplify the process, we carry out CV only at stage T using the overall outcome
Y directly. Specifically, we use nine subsamples as training data to estimate the
function of μT,aT

(·) following (2.3) and g
opt
T (·) using T-RL for a given λ, and then

plug in HT of the remaining subsample to get μ̂
AIPW,CV
T ,aT

(HT ) and ĝ
opt,CV,λ
T (HT ).

We repeat the process 10 times with each subsample being the test data once. Then
the CV-based counterfactual mean outcome under λ is

Ê
{
Y ∗(

ĝ
opt,CV,λ
T

)} = Pn

[
KT∑

aT =1

μ̂
AIPW,CV
T ,aT

(HT )I
{
ĝ

opt,CV,λ
T (HT ) = aT

}]
,

and the best value for λ is λ̂ = arg maxλ Ê{Y ∗(ĝopt,CV,λ
T )}. As the scale of the

outcome affects the scale of Pj (�,ω) − Pj (�), we search over a sequence of
candidate λ’s as a sequence of percentages of PT (�1), that is, the estimated coun-
terfactual mean outcome under a single best treatment for all subjects (�1 is the
root node).

2.4. Implementation of T-RL. The AIPW estimator μ̂AIPW
j,aj

(Hj ), j = 1, . . . , T ,

aj = 1, . . . ,Kj , consists of three parts to be estimated, the pesudo-outcome POj ,
the propensity score πj,aj

(Hj ) and the conditional mean model μj,aj
(Hj ).

We start the estimation with stage T and conduct backward induction. At stage
T , we use the outcome Y directly, that is, POT = Y . For stage j, T − 1 ≥ j ≥ 1,
given a cumulative outcome (e.g., the sum of longitudinally observed values or a
single continuous final outcome), we use a modified version of pseudo-outcomes to
reduce accumulated bias from the conditional mean models [Huang et al. (2015)].
Instead of using only the model-based values under optimal future treatments, that
is, μ

j+1,g
opt
j+1

(Hj+1), we use the actual observed outcomes plus the expected future

loss due to sub-optimal treatments, which means

PO′
j = PO′

j+1 + μ
j+1,g

opt
j+1

(Hj+1) − μj+1,Aj+1(Hj+1),

where μ
j+1,g

opt
j+1

(Hj+1)−μj+1,aj+1(Hj+1) is the expected loss due to sub-optimal

treatments at stage j + 1 for a given patient, which is zero if g
opt
j+1(Hj+1) = Aj+1

and positive otherwise. Given PO′
T = Y , it is easy to see that

PO′
j = Y +

T∑
t=j+1

{
μ

t,g
opt
t

(Ht ) − μt,At (Ht )
}
.

This modification leads to more robustness against model misspecification and
is less likely to accumulate bias from stage to stage during backward induction
[Huang et al. (2015)]. In our simulations, we estimate PO′

j by using random
forests-based conditional mean estimates [Breiman (2001)].



TREE-BASED REINFORCEMENT LEARNING 1925

The propensity score πj,aj
(Hj ) can be estimated via multinomial logistic re-

gression [Menard (2002)]. A working model could include linear main effect terms
for all variables in Hj . Summary variables or interaction terms may also be in-
cluded based on scientific knowledge.

The conditional mean estimate μ̂j,aj
(Hj ) in the augmentation term of

μ̂AIPW
j,aj

(Hj ) can be obtained from a parametric regression model. For continuous
outcomes, a simple and oftentimes reasonable example is the parametric linear
model with coefficients dependent on treatment:

(2.4) E
(
P̂O

′
j |Aj ,Hj

) =
Kj∑

aj=1

(
β�

aj
Hj

)
I (Aj = aj ),

where βa is a parameter vector for Hj under treatment aj . For binary and count
outcomes, one may extend the method by using generalized linear models. For sur-
vival outcomes with noninformative censoring, it is possible to use an accelerated
failure time model to predict survival time for all patients. Survival outcomes with
more complex censoring issues are beyond the scope of the current study.

The T-RL algorithm starting with stage j = T is carried out as follows:

STEP 1. Obtain AIPW estimates μ̂AIPW
j,aj

(Hj ), aj = 1, . . . ,Kj , using full data.

STEP 2. At root node �j,m,m = 1, set values for λ and n0.

STEP 3. At node �j,m, evaluate the four Stopping Rules. If any of the Stop-
ping Rules is satisfied, assign a single best treatment

arg max
aj∈Aj

Pn

[
μ̂AIPW

j,aj
(Hj )I (Hj ∈ �j,m)

]
to all subject in �j,m. Otherwise, split �j,m into child nodes �j,2m and �j,2m+1
by ω̂opt.

STEP 4. Set m = m + 1 and repeat Step 3 until all nodes are terminal.

STEP 5. If j > 1, set j = j − 1 and repeat steps 1 to 4. If j = 1, stop.

Similar to the CART algorithm, T-RL is greedy as it chooses splits only at
the current node for purity improvement, which may not lead to a global maxi-
mum. One way to potentially enhance the performance is lookahead [Murthy and
Salzberg (1995)]. We test this in our simulation by fixed-depth lookahead: evalu-
ating the purity improvement after splitting the parent node as well as its two child
nodes, comparing the total purity improvement after splitting up to four nodes
to the purity improvement without splitting the parent node, and finally deciding
whether or not to split the parent node. We denote this method as T-RL-LH.
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3. Simulation studies. We conduct simulation studies to investigate the per-
formance of our proposed method. We set all regression models μ to be misspeci-
fied, which is the case for most real data applications, while allowing the specifica-
tion of the propensity model π be either correct (e.g., randomized trials) or incor-
rect (e.g., most observational studies). We consider first a single-stage scenario so
as to facilitate the comparison with existing methods, particularly Laber and Zhao
(2015), and then a multi-stage scenario. For each scenario, we consider sample
sizes of either 500 or 1000 for the training datasets and 1000 for the test datasets,
and repeat the simulation 500 times. We use the training datasets to estimate the
optimal regime and then predict the optimal treatments in the test datasets, where
the underlying truth is known. We denote the percentage of subjects correctly clas-
sified to their optimal treatments as opt%. We also use the true outcome model
and the estimated optimal regime in the test datasets to estimate the counterfactual
mean outcome, denoted as Ê{Y ∗(ĝopt)}. For both scenarios, we generate five base-
line covariates X1, . . . ,X5 according to N(0,1), and for Scenario 1, we further
consider a setting with additional covariates X6, . . . ,X20 simulated independently
from N(0,1).

3.1. Scenario 1: T = 1 and K = 3. In Scenario 1, we consider a single stage
with three treatment options and sample size of 500. The treatment A is set to
take values in {0,1,2}, and we generate it from Multinomial(π0, π1, π2), with
π0 = 1/{1 + exp(0.5X1 + 0.5X4) + exp(−0.5X1 + 0.5X5)}, π1 = exp(0.5X1 +
0.5X4)/{1+exp(0.5X1 +0.5X4)+exp(−0.5X1 +0.5X5)} and π2 = 1−π0 −π1.
The underlying optimal regime is

gopt(H) =

⎧⎪⎪⎨⎪⎪⎩
0 X1 ≤ 0,X2 ≤ 0.5,

2 X1 > 0,X3 ≤ 0.5,

1 otherwise.

For the outcomes, we first consider equal penalties for sub-optimal treatments
through outcome generating model (a), which is

Y = 1 + X4 + X5 +
2∑

a=0

[
I (A = a)

{
2I

(
gopt = a

) − 1
}] + ε.

Then we consider varying penalties for sub-optimal treatments through outcome
generating model (b), which is

Y = 0.79 + X4 + X5 + 2I (A = 0)
{
2I

(
gopt = 0

) − 1
}

+ 1.5I (A = 2)
{
2I

(
gopt = 2

) − 1
} + ε.

In both outcome models, we have ε ∼ N(0,1) and E{Y ∗(gopt)} = 2.
In the application of the proposed T-RL algorithm, we consider both a correctly

specified model log(πd/π0) = β0d + β1dX1 + β2dX4 + β3dX5, d = 1,2, and an
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incorrectly specified one log(πd/π0) = β0d + β1dX2 + β2dX3. We also apply T-
RL-LH to Scenario 1 as mentioned in Section 2.4. For comparison, we use both
the linear regression-based and random forests-based conditional mean models to
infer the optimal regimes, which we denote as RG and RF, respectively. We also
apply the tree-based method LZ by Laber and Zhao (2015). Furthermore, we apply
the OWL method by Zhao et al. (2012), and the ACWL algorithm by Tao and
Wang (2017), denoted as ACWL-C1 and ACWL-C2, where C1 and C2 indicate
respectively the minimum and maximum expected loss in the outcome given any
sub-optimal treatment for each patient. Given outcome model (a), all sub-optimal
treatments have the same expected loss in the outcome and we expect ACWL to
perform similarly well as T-RL. However, given outcome model (b) when the sub-
optimal treatments have different expected losses in the outcome, we expect T-RL
to perform better as it incorporates multiple treatment comparison. Both OWL and
ACWL are implemented using the R package rpart for classification.

Table 1 summarizes the performances of all methods considered in Scenario 1
with five baseline covariates. We present the percentage of subjects correctly clas-
sified to their optimal treatments in the testing datasets, denoted as opt%, and the
expected counterfactual outcome obtained using the true outcome model and the
estimated optimal regime, denoted as Ê{Y ∗(ĝopt)}. opt% shows on average how
accurately the estimated optimal regime assigns future patients to their true opti-
mal treatments and Ê{Y ∗(ĝopt)} shows how much the entire population of interest
will benefit from following ĝopt. T-RL-LH has the best performance among all the
methods considered, classifying over 93% of subjects to their optimal treatments.
However, lookahead has led to significant increase in computational time com-
pared to T-RL, while the improvement is only moderate with ≤ 1% more subjects
being correctly classified. T-RL also has an estimated counterfactual mean out-
come very close to the true value 2. As expected, ACWL-C1 and ACWL-C2 have
performances comparable to T-RL under outcome model (a) with equal penalties
for treatment misclassification, and the performance discrepancy gets larger under
outcome model (b) with varying penalties, due to the approximation by adaptive
contrasts C1 and C2. Similar results can be found in the Supplementary Table S1.
LZ, using an IPW-based decision tree, works well only when the propensity score
model is correctly specified and is less efficient than T-RL with larger empirical
standard deviations (SDs). In contrast, T-RL-LH, T-RL, ACWL-C1 and ACWL-
C2 are all highly robust to model misclassification, thanks to the combination of
doubly robust AIPW estimators and flexible machine learning methods. OWL per-
forms far worse than all other competing methods likely due to the low percentage
of truly optimal treatments in the observed treatments, the shift in the outcome,
which was intended to ensure positive weights, and its moderate efficiency.

After the inclusion of more noise covariates in Table 2, all methods have worse
performances compared to Table 1, with RF suffering the most. T-RL and T-RL-
LH have the slightest decreases in opt% and Ê{Y ∗(ĝopt)}, showing satisfactory
stability against noise interference. Thanks to the built-in variable selection feature
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TABLE 1
Simulation results for Scenario 1 with a single stage, three treatment options and five baseline

covariates (500 replications, n = 500). π is the propensity score model. (a) and (b) indicate equal
and varying penalties for treatment misclassification in the generative outcome model. opt% shows
the empirical mean and standard deviation (SD) of the percentage of subjects correctly classified to

their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical mean and SD of the expected
counterfactual outcome obtained using the true outcome model and the estimated optimal regime.

E{Y ∗(gopt)} = 2

π Method (a) (b)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}
– RG 74.2 (2.3) 1.49 (0.07) 68.8 (4.0) 1.42 (0.09)

RF 75.3 (4.5) 1.51 (0.11) 81.1 (4.5) 1.69 (0.10)

Correct OWL 44.3 (7.6) 0.89 (0.16) 47.1 (8.1) 0.89 (0.21)
LZ 91.5 (7.5) 1.83 (0.16) 89.4 (9.5) 1.81 (0.18)

ACWL-C1 93.7 (4.1) 1.87 (0.10) 89.1 (5.3) 1.80 (0.11)
ACWL-C2 94.7 (3.3) 1.89 (0.09) 87.8 (5.5) 1.79 (0.11)

T-RL 97.2 (3.3) 1.95 (0.08) 95.1 (5.6) 1.92 (0.11)
T-RL-LH 97.5 (3.1) 1.96 (0.08) 96.1 (4.0) 1.94 (0.08)

Incorrect OWL 33.5 (6.0) 0.67 (0.13) 36.7 (5.7) 0.64 (0.19)
LZ 87.8 (12.0) 1.75 (0.25) 81.8 (14.7) 1.68 (0.27)

ACWL-C1 92.1 (4.7) 1.84 (0.10) 87.9 (5.6) 1.79 (0.11)
ACWL-C2 94.7 (3.4) 1.89 (0.09) 86.5 (6.1) 1.78 (0.12)

T-RL 97.8 (1.8) 1.94 (0.06) 92.9 (7.2) 1.89 (0.13)
T-RL-LH 98.2 (1.6) 1.95 (0.06) 93.7 (6.2) 1.91 (0.10)

RG, linear regression; RF, random forests; OWL, outcome weighted learning; LZ, method by Laber
and Zhao (2015); ACWL-C1 and ACWL-C2, method by Tao and Wang (2017); T-RL, tree-based
reinforcement learning; T-RL-LH, T-RL with one step lookahead.

of decision trees, LZ and ACWL with CART are also relatively stable. Figure 2
shows the density plots for Ê{Y ∗(ĝopt)} under outcome model (b), with each panel
showing correctly or incorrectly specified propensity model and five or 20 baseline
covariates. LZ is the least efficient method with the density plots more spread out.
T-RL has the least density in lower values of Ê{Y ∗(ĝopt)} and the highest density
in higher values.

3.2. Scenario 2: T = 2 and K1 = K2 = 3. In Scenario 2, we generate data
under a two-stage DTR with three treatment options at each stage and consider
sample sizes of 500 and 1000. The outcome of interest is the sum of the rewards
from each stage, that is, Y = R1 + R2. Furthermore, we consider both a tree-type
underlying optimal DTR and a non-tree-type one.

Treatment variables are set to take values in {0,1,2} at each stage. For stage
1, we generate A1 from the same model as A in Scenario 1, and generate stage 1
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TABLE 2
Simulation results for Scenario 1 with a single stage, three treatment options and twenty baseline
covariates (500 replications, n = 500). π is the propensity score model. (a) and (b) indicate equal
and varying penalties for treatment misclassification in the generative outcome model. opt% shows
the empirical mean and standard deviation (SD) of the percentage of subjects correctly classified to

their optimal treatments. Ê{Y ∗(ĝopt)} shows the empirical mean and SD of the expected
counterfactual outcome obtained using the true outcome model and the estimated optimal regime.

E{Y ∗(gopt)} = 2

π Method (a) (b)

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}
– RG 66.7 (2.8) 1.34 (0.08) 63.5 (3.4) 1.30 (0.09)

RF 51.6 (5.7) 1.03 (0.13) 62.7 (5.8) 1.37 (0.12)

Correct OWL 36.3 (4.2) 0.73 (0.10) 38.4 (5.4) 0.63 (0.17)
LZ 88.6 (9.4) 1.77 (0.20) 85.5 (0.11) 1.74 (0.21)

ACWL-C1 89.6 (5.0) 1.79 (0.11) 83.7 (6.0) 1.70 (0.13)
ACWL-C2 90.7 (4.6) 1.82 (0.11) 82.5 (6.2) 1.70 (0.13)

T-RL 96.3 (4.1) 1.93 (0.10) 91.9 (6.7) 1.86 (0.13)
T-RL-LH 96.8 (3.9) 1.94 (0.09) 92.8 (5.4) 1.89 (0.10)

Incorrect OWL 32.6 (4.0) 0.65 (0.10) 34.5 (4.3) 0.56 (0.15)
LZ 85.9 (12.6) 1.72 (0.26) 78.4 (15.4) 1.62 (0.30)

ACWL-C1 87.8 (5.5) 1.76 (0.12) 82.6 (6.3) 1.70 (0.13)
ACWL-C2 90.8 (4.3) 1.82 (0.10) 81.7 (6.3) 1.70 (0.13)

T-RL 97.4 (2.4) 1.95 (0.07) 90.7 (7.7) 1.85 (0.14)
T-RL-LH 97.9 (2.0) 1.96 (0.07) 92.0 (6.5) 1.87 (0.11)

RG, linear regression; RF, random forests; OWL, outcome weighted learning; LZ, method b Laber
and Zhao (2015); ACWL-C1 and ACWL-C2, method by Tao and Wang (2017); T-RL, tree-based
reinforcement learning; T-RL-LH, T-RL with one step lookahead.

reward as

R1 = exp
[
1.5 + 0.3X4 − |1.5X1 − 2|{A1 − g

opt
1 (H1)

}2] + ε1,

with tree-type g
opt
1 (H1) = I (X1 > −1){I (X2 > −0.5)+I (X2 > 0.5)} or non-tree-

type g
opt
1 (H1) = I (X1 > −0.5){1 + I (X1 + X2 > 0)}, and ε1 ∼ N(0,1).

For stage 2, we have treatment A2 ∼ Multinomial(π20, π21, π22), with π20 =
1/{1+exp(0.2R1 −0.5)+exp(0.5X2)}, π21 = exp(0.2R1−0.5)/{1+exp(0.2R1−
0.5) + exp(0.5X2)} and π22 = 1 − π20 − π21. We generate stage 2 reward as

R2 = exp
[
1.18 + 0.2X2 − |1.5X3 + 2|{A2 − g

opt
2 (H2)

}2] + ε2,

with tree-type g
opt
2 (H2) = I (X3 > −1){I (R1 > 0) + I (R1 > 2)} or non-tree-type

g
opt
2 (H2) = I (X3 > −0.5){1 + I (X3 + R1 > 2)}, and ε2 ∼ N(0,1).

We apply the proposed T-RL algorithm with the modified pseudo-outcomes. For
comparison, we apply Q-learning which uses the conditional mean models directly
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FIG. 2. Density plots for the estimated counterfactual mean outcome in Scenario 1 with varying
penalties for misclassification in the generative outcome model (500 replications, n = 500). The four
panels are under correctly or incorrectly specified propensity model (π ) and five or twenty baseline
covariates (p).

to infer the optimal regimes. We apply both the linear regression-based and random
forests-based conditional mean models, denoted as Q-RG and Q-RF, respectively.
We also apply the backward OWL (BOWL) method by Zhao et al. (2015) and
the ACWL algorithm, both of which are implemented using the R package rpart
for classification. In this scenario, we attempt to see how sample size and tree- or
non-tree-type underlying DTRs affect the performances of various methods.

Results for Scenario 2 are shown in Table 3. ACWL and T-RL both work much
better than Q-RG and BOWL in all settings. Q-RF is a competitive method only
when the true optimal DTR is of a tree type, but it is consistently inferior to T-
RL, likely due to its weakness in emphasizing prediction accuracy of the clinical
response model instead of directly optimizing the decision rule. Given a tree-type
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TABLE 3
Simulation results for Scenario 2 with two stages and three treatment options at each stage (500 replications). π is the propensity score model. opt%

shows the empirical mean and standard deviation (SD) of the percentage of subjects correctly classified to their optimal treatments. Ê{Y ∗(ĝopt)} shows
the empirical mean and SD of the expected counterfactual outcome obtained using the true outcome model and the estimated optimal DTR.

E{Y ∗(gopt)} = 8

π Method Tree-type DTR Non-tree-type DTR

n = 500 n = 1000 n = 500 n = 1000

opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)} opt% Ê{Y ∗(ĝopt)}
– Q-RG 54.9 (3.0) 6.24 (0.16) 57.3 (2.5) 6.35 (0.13) 69.2 (4.4) 6.87 (0.17) 72.6 (3.5) 7.01 (0.13)

Q-RF 84.0 (4.1) 7.53 (0.14) 92.1 (2.5) 7.80 (0.10) 74.4 (2.8) 7.11 (0.14) 77.5 (1.8) 7.25 (0.09)

Correct BOWL 22.4 (5.1) 4.23 (0.38) 27.9 (5.7) 4.45 (0.43) 25.3 (6.0) 4.53 (0.42) 34.8 (7.0) 4.98 (0.47)
ACWL-C1 83.6 (5.9) 7.58 (0.18) 92.1 (4.4) 7.82 (0.11) 80.1 (6.1) 7.40 (0.18) 88.3 (3.4) 7.65 (0.11)
ACWL-C2 81.3 (6.6) 7.53 (0.20) 89.1 (5.7) 7.80 (0.12) 83.3 (5.5) 7.51 (0.16) 89.2 (3.0) 7.68 (0.11)

T-RL 90.5 (7.0) 7.75 (0.22) 95.7 (3.6) 7.88 (0.11) 82.2 (4.6) 7.45 (0.14) 84.7 (2.9) 7.54 (0.11)

Incorrect BOWL 16.4 (4.3) 4.20 (0.30) 16.5 (4.9) 4.29 (0.32) 16.3 (4.9) 4.29 (0.34) 17.9 (6.0) 4.56 (0.37)
ACWL-C1 80.9 (5.9) 7.55 (0.18) 89.1 (4.9) 7.80 (0.11) 73.4 (6.7) 7.30 (0.20) 81.0 (6.3) 7.56 (0.14)
ACWL-C2 80.4 (6.7) 7.54 (0.19) 86.4 (6.2) 7.76 (0.13) 79.8 (5.9) 7.46 (0.17) 86.3 (4.2) 7.66 (0.11)

T-RL 90.2 (7.4) 7.74 (0.17) 93.9 (6.0) 7.87 (0.11) 82.2 (6.3) 7.47 (0.15) 84.8 (3.8) 7.55 (0.11)

Q-RG, Q-learning with linear regression; Q-RF, Q-learning with random forests; BOWL, backward outcome weighted learning; ACWL-C1 and ACWL-
C2, method by Tao and Wang (2017); T-RL, tree-based reinforcement learning.
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underlying DTR, T-RL has the best performance among all methods considered,
regardless of the specification of the propensity score model. It has average opt%
over 90% and Ê{Y ∗(ĝopt)} closest to the truth 8. The results are a bit more complex
when the underlying DTR is non-tree-type. The tree-based methods of ACWL with
CART and T-RL both have misspecified DTR structures and thus show less satis-
factory performances. However, ACWL seems more robust to the DTR misspecifi-
cation with ACWL-C2 showing larger opt% and Ê{Y ∗(ĝopt)} in all settings except
when sample size is 500 and π is misspecified, in which case T-RL’s stronger
robustness to propensity score misspecification dominates. With non-rectangular
boundaries in a non-tree-type DTR, a split may not improve the counterfactual
mean estimates at the current node but may achieve such a goal in the future nodes.
T-RL, with a purity measure based on E{Y ∗(g)}, will terminate the splitting as
soon as the best split of the current node fails to improve the counterfactual mean
outcome. In contrast, the misclassification error-based impurity measure in CART
may continue the recursive partitioning as the best split may still reduce misclas-
sification error without improving the counterfactual mean outcome at the current
node. In other words, T-RL may be more myopic when it comes to non-tree-type
DTRs.

Additional simulation results can be found in the Supplementary Material A
[Tao, Wang and Almirall (2018a)], which leads to similar conclusions for these
methods in comparison. In addition, the comparison of T-RL and the list-based
method by Zhang et al. (2015) shows slightly better performance for T-RL given
no cost information for measuring covariates. To implement the proposed method
and the competing methods, the R codes and sample data can be found in the
Supplementary Material B [Tao, Wang and Almirall (2018b)].

4. Application to substance abuse disorder data. We apply T-RL to the data
of an observational study, where 2870 adolescents entered community-based sub-
stance abuse treatment programs, which are pooled from several adolescent treat-
ment studies funded by the Center for Substance Abuse Treatment (CSAT) of the
Substance Abuse and Mental Health Services Administration (SAMHSA). The
measurements on individual characteristics and functioning are collected at base-
line and at the end of three and six months. We use subscript values t = 0,1,2 to
denote baseline, month three, and month six respectively.

Substance abuse treatments were given twice, first during months zero ∼ three,
denoted as A1 and second during months three ∼ six, denoted as A2. At each
stage, subjects were provided with one of the three options: no treatment, non-
residential treatment (outpatient only) and residential treatment (i.e., inpatient re-
hab) [Marlatt and Donovan (2005)], which we denote as 0, 1 and 2, respectively.
At stage 1, 93% of the subjects received treatment, either residential (56%), or
nonresidential (27%), while at stage 2, only 28% and 13% were treated residen-
tially or non-residentially. We denote the baseline covariate vector for predicting
the assignment of A1 as X1 and the covariate history just before assigning A2 as
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X1 (X1 includes X0). The detailed list of variables used can be found in Almirall
et al. (2012). The outcome of interest is the Substance Frequency Scale (SFS) col-
lected during six ∼ nine months (mean and SD: 0.09 and 0.13), with higher values
indicating increased frequency of substance use in terms of days used, days stay-
ing high most of the day, and days causing problems. We take Y = −1 × SFS so
that higher values are more desired, making it consistent with our foregoing nota-
tion and method derivation. Missing data is imputed using IVEware [Raghunathan,
Solenberger and Van Hoewyk (2002)].

We apply the T-RL algorithm to the data described above. Specifically, the co-
variate and treatment history just prior to stage 2 treatment is H2 = (X�

1 ,A1)
�

and the number of treatment options at stage 2 is K2 = 3. We fit a linear regression
model for μ2,A2(H2) similar to (2.4) using Y as the outcome; all variables in H2
are included as interaction terms with A2. For the propensity score π2,A2(H2), we
fit a multinomial logistic regression model including main effects of all variables
in H2. We set the minimal node size to be 50 and maximum tree depth to be 5, and
use a 10-fold CV to select λ, the minimum purity improvement for splitting. We
repeat a similar procedure for stage 1 except that we have H1 = X0, K1 = 3 and
P̂O

′
1 = Y + μ̂2,ĝ

opt
2

(H2) − μ̂2,A2(H2).

At stage 2, the variables in the estimated optimal regime are yearly substance
dependence scale measured at the end of month three [sdsy3, median (range): 3
(0 − 7)], age [median (range): 16 (12 − 25) years], and yearly substance problem
scale measured at baseline [spsy0, median (range): 8 (0 − 16)]. At stage 1, the
variables in the estimated optimal regime are emotional problem scale measured
at baseline [eps7p0, median (range): 0.22 (0 − 1)], drug crime scale measured at
baseline [dcs0, median (range): 0 (0 − 5)], and environmental risk scale measured
at baseline [ers0, median (range): 35 (0−77)]. All these scale variables have higher
values indicating more risk or problems. Specifically, the estimated optimal DTR
is ĝopt = (ĝ

opt
1 , ĝ

opt
2 ), with

ĝ
opt
1 (H1) =

⎧⎪⎪⎨⎪⎪⎩
no treatment if eps7p0 ≤ 0.286 & ers0 ≤ 46,

non-residential if eps7p0 ≥ 0.286 & dcs0 ≤ 2,

residential otherwise,

and

ĝ
opt
2 (H2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
residential

if sdsy3 > 0, or sdsy3 = 0 & age ≤ 16 & spsy0 > 5,

non-residential

otherwise.

According to the estimated optimal DTR, at stage 1, subjects with fewer emo-
tional problems and lower environmental risk do not need to be treated, while
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those with more emotional problems but lower drug crime scale should be of-
fered outpatient treatment only. At stage 2, all subjects should be treated. Those
with higher yearly substance dependence as well as those with no yearly substance
dependence but younger age and more yearly substance problems should receive
residential treatment, that is, receiving treatment in rehab facilities. In contrast,
subjects with older age or fewer yearly substance problems should be provided
with outpatient treatment. The majority of subjects at both stages would benefit
most from residential treatment. In our data, about 70% of the subjects at stage
1 have the estimated optimal treatment to be residential treatment and the num-
ber goes up to 85% at stage 2. Residential treatment is generally more intensive
and subjects are in a safe and structured environment, which may explain why
subjects with more substance, emotional or environmental problems would bene-
fit more from this type of treatment. Existing studies have found a moderate level
of evidence for the effectiveness of residential treatment for substance use disor-
ders [Reif et al. (2014)]. Generally, outpatient programs allow subjects to return
to their own environments during treatment. Subjects are encouraged to develop a
strong support network of non-using peers and sponsors, and are expected to apply
the lessons learned from outpatient treatment programs to their daily experiences
[Gifford (2015)]. Nonetheless, subjects may respond sub-optimally to outpatient
treatment (relative to residential treatment) if they have a larger network of peers
that are using or at risk of using substances. Therefore, it may not be surprising that
subjects with a lower environmental risk scale would benefit more from outpatient
treatment.

5. Discussion. We have developed T-RL to identify optimal DTRs in a multi-
stage multi-treatment setting, through a sequence of unsupervised decision trees
with backward induction. T-RL enjoys the advantages of typical tree-based meth-
ods as being straightforward to understand and interpret, and capable of handling
various types of data without distributional assumptions. T-RL can also handle
multinomial or ordinal treatments by incorporating multiple treatment compar-
isons directly in the purity measure for node splitting, and thus works better than
ACWL when the underlying optimal DTR is tree-type. Moreover, T-RL main-
tains the robust and efficient property of ACWL by virtue of the combination of
robust semiparametric regression estimators with flexible machine learning meth-
ods, which is superior to IPW-based methods such as LZ. However, when the true
optimal DTR is non-tree-type, ACWL has slightly more robust performances.

Several improvements and extensions can be explored in future studies. As
shown by the simulation, the fixed-depth lookahead is costly and only brings mod-
erate improvement. Alternatively, one can use embedded models to select split-
ting variables which also enjoys the lookahead feature [Zhu, Zeng and Kosorok
(2015)], or consider other variants of lookahead methods [Elomaa and Malinen
(2003), Esmeir and Markovitch (2004)]. The method by Zhu, Zeng and Kosorok
(2015) enables progressively muting noise variables as one goes further down a
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tree, which facilitates the modeling in high-dimensional sparse settings, and it also
incorporates linear combination splitting rules, which may improve the identifi-
cation of non-tree-type optimal DTRs. Furthermore, it is of great importance to
explore how to handle continuous treatment options in the proposed T-RL frame-
work. One way is to follow LZ to use a kernel smoother in the purity measure,
which may suffer from the difficulty in selecting the optimal bandwidth. A simpler
approach is to discretize the continuous treatments by certain quantiles and con-
sider it as ordinal treatments, which may improve estimation stability and is also
of practical interest as medical practitioners tend to prescribe treatments by several
fixed levels instead of a continuous fashion.
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Supplementary material A for article “Tree-based reinforcement learn-
ing for estimating optimal dynamic treatment regimes” (DOI: 10.1214/18-
AOAS1137SUPPA; .pdf). Additional simulation results for the proposed method
and competing methods.

Supplementary material B for article “Tree-based reinforcement learn-
ing for estimating optimal dynamic treatment regimes” (DOI: 10.1214/18-
AOAS1137SUPPB; .zip). R codes and sample data to implement the proposed
method.
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