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The estimation of covariance matrices of gene expressions has many
applications in cancer systems biology. Many gene expression studies,
however, are hampered by low sample size and it has therefore become
popular to increase sample size by collecting gene expression data across
studies. Motivated by the traditional meta-analysis using random effects
models, we present a hierarchical random covariance model and use it for
the meta-analysis of gene correlation networks across 11 large-scale gene
expression studies of diffuse large B-cell lymphoma (DLBCL). We suggest
to use a maximum likelihood estimator for the underlying common covari-
ance matrix and introduce an EM algorithm for estimation. By simulation
experiments comparing the estimated covariance matrices by cophenetic cor-
relation and Kullback–Leibler divergence the suggested estimator showed to
perform better or not worse than a simple pooled estimator. In a posthoc anal-
ysis of the estimated common covariance matrix for the DLBCL data we were
able to identify novel biologically meaningful gene correlation networks with
eigengenes of prognostic value. In conclusion, the method seems to provide
a generally applicable framework for meta-analysis, when multiple features
are measured and believed to share a common covariance matrix obscured by
study dependent noise.

1. Introduction. Human cells carry out their function in concerted interac-
tion via intricate protein signalling networks. These networks are according to the
central dogma of molecular biology controlled by expressed genes. It has become
popular to perform genome wide measurements of expressed genes and proteins
and summarizing the information by huge covariance matrices leading to improved
understanding of disease pathology and identification of new drug targets [Agnelli
et al. (2011), Clarke et al. (2013)]. Many gene expression studies, however, are
hampered by low sample size and it has therefore become of interest to increase
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sample size by collecting gene expression data across studies. These data are po-
tentially hampered by severe batch effects, and robust methods are therefore re-
quired to conduct meta-analysis of covariance matrices.

To the best of our knowledge no approaches exist where meta-analysis of co-
variance matrices have been addressed explicitly. We acknowledge, however, that
a number of indirect methods have been constructed. An immediate and tempting
approach is to use one of the many study correcting approaches scattered around in
the literature [Irizarry et al. (2003), Johnson, Li and Rabinovic (2007), Lee, Dob-
bin and Ahn (2014)] followed by estimating the covariance matrix either based on
a pooled data set or by pooling covariance matrices estimated from each individ-
ual study as suggested by Lee, Dobbin and Ahn (2014). This approach, however,
suffers from the same disadvantages as usual meta-analysis based on pooling fixed
effects as it puts too much weight on large outliers in the data [Borenstein et al.
(2010)].

Motivated by the alternative meta-analysis by random effects [DerSimonian and
Laird (1986), Choi et al. (2003)], we suggest a hierarchical model where the co-
variance for each study is assumed to be drawn from an inverse Wishart distri-
bution with a common mean covariance matrix, and data from each study is then
subsequently generated from a multivariate Gaussian distribution with this covari-
ance matrix. We suggest to use a maximum likelihood estimator for the underlying
common covariance matrix and introduce an EM algorithm for its estimation. We
use the method for the meta-analysis of gene correlation networks across 11 large-
scale gene expression studies of diffuse large B-cell lymphoma (DLBCL). It is
our expectation that a more suitable handling of the covariance matrix will lead to
more adequate estimations of covariance matrices and subsequently inferred gene
correlation networks.

In Section 2, we propose the model for a common covariance matrix across mul-
tiple studies, derive estimators thereof, and propose an inter-study homogeneity
measure to aid in assessing the variation between studies. We conduct an extensive
simulation study in Section 3 comparing the proposed estimator and simple pool-
ing of covariance matrices. We then apply the model in Section 4 to 2046 DLBCL
samples across 11 datasets before concluding the manuscript in Section 5.

2. A hierarchical model for the covariance matrix. Let p be the number of
features and k the number of studies. We model an observation x from the ith study
as a p-dimensional zero-mean multivariate Gaussian vector with covariance matrix
realized from an inverse Wishart distribution, that is, x follows the hierarchical
model

�i ∼ W−1
p (�, ν),

x|�i ∼ Np(0p,�i ), i = 1, . . . , k,
(2.1)

where Np(μ,�i ) denotes a p-dimensional multivariate Gaussian distribution with
mean μ and positive definite (p.d.) covariance matrix �i , and probability density
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function (p.d.f.) shown in (B.1) [Bilgrau et al. (2018)], and W−1
p (�, ν) denotes a

p-dimensional inverse Wishart distribution with ν > p − 1 degrees of freedom, a
p.d. p × p scale matrix � , and p.d.f. shown in (B.2) [Bilgrau et al. (2018)]. While
the inverse Wishart distribution is defined for all ν > p − 1, the first order moment
exists only when ν > p + 1 and is given by

E[�i] = � = �

ν − p − 1
for ν > p + 1.(2.2)

Hence, in the Random Covariance Model (RCM) of (2.1), � can be interpreted as
a location-like parameter as it is the expected covariance matrix in each study. The
parameter ν inversely controls the inter-study variation and can as such be consid-
ered an inter-study homogeneity parameter of the covariance structure. A large ν

corresponds to high study homogeneity and vice versa for small ν. This can further
be seen as �i concentrates around � for ν → ∞ which corresponds to a vanish-
ing inter-study variation for increasing ν. This fact is seen directly from variance
and covariance expressions for the inverse Wishart [see (F.2) and (F.3), Bilgrau
et al. (2018)] where the 4th order denominator grows much faster than the 1st or-
der nominator as polynomials in ν and causing the variance to vanish for ν → ∞.
Thus, the true underlying covariance matrix � and the homogeneity parameter ν

are the effects of interest to be estimated.

2.1. The likelihood function. Suppose xi1, . . . ,xini
are ni i.i.d. observations

from i = 1, . . . , k independent studies from the model given in (2.1). Let Xi =
(xi1, . . . ,xini

)� be the ni × p matrix of observations for the ith study where rows
correspond to samples and columns to variables. By the independence assump-
tions, the log-likelihood for � and ν is given by

�(�, ν|X1, . . . ,Xk)

= logf (X1, . . . ,Xk|�, ν)

= log
∫

f (X1, . . . ,Xk|�1, . . . ,�k,�, ν)f (�1, . . . ,�k|�, ν)d�1 · · ·d�k

= log
k∏

i=1

∫
f (Xi |�i )f (�i |�, ν)d�i .

Throughout, we use the generic notation f (·|·) and f (·) for the conditional and
unconditional p.d.f. of random variables, respectively. Since the inverse Wishart
distribution is conjugate to the multivariate Gaussian distribution, the integral—of
which the integrand forms a Gaussian-inverse-Wishart distribution—can be eval-
uated. Hence �i can be marginalized out, cf. (B.4) in Appendix B [Bilgrau et al.
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(2018)], and we arrive at the following expression for the log-likelihood function,

�(�, ν|X1, . . . ,Xk)

= log
k∏

i=1

|�| ν
2 �p(ν+ni

2 )

π
nip

2 |� + X�
i Xi |

ν+ni
2 �p(ν

2 )

=
k∑

i=1

[
ν

2
log |�| − ν + ni

2
log |� + X�

i Xi | + log
�p(ν+ni

2 )

�p(ν
2 )

]
,

(2.3)

up to an additive constant where �p is the multivariate generalization of the gamma
function �, see (B.3) [Bilgrau et al. (2018)]. The scatter matrix Si = X�

i Xi and
study sample size ni are sufficient statistics for each study. Note that Si is condi-
tionally Wishart distributed, Si |�i ∼ W(�i , ni), by construction.

As stated in the following two propositions, the likelihood is not log-concave
in general. However, it is log-concave as a function of ν. All proofs have been
deferred to Appendix C [Bilgrau et al. (2018)].

PROPOSITION 1 (Non-concavity in �). For a fixed ν, the log-likelihood func-
tion (2.3) is not concave in � .

PROPOSITION 2 (Concavity in ν). For a fixed positive definite � , the log-
likelihood function (2.3) is concave in ν.

While the likelihood function is not concave in � we are able to show the exis-
tence and uniqueness of a global maximum in � .

PROPOSITION 3 (Existence and uniqueness). The log-likelihood (2.3) has a
unique maximum in � for fixed ν and n• = ∑k

a=1 na ≥ p.

In the following section estimators of the parameters are derived using moments
and the EM algorithm assuming ν to be fixed.

2.2. Moment estimator. The pooled empirical covariance matrix can be
viewed as a moment estimator of �. By the model assumptions, the first and sec-
ond moment of the j th observation in the ith study, xij , is given by E[xij ] = 0p

and

E
[
xijx

�
ij

] = E
[
E

[
xijx

�
ij |�i

]] = E[�i] = �

ν − p − 1
= �

for all j = 1, . . . , ni and i = 1, . . . , k. This suggests the estimators

�̂pool = (ν − p − 1)

∑k
i=1 Si∑k
i=1 ni

and �̂pool =
∑k

i=1 Si∑k
i=1 ni

, ν > p + 1,(2.4)

where the latter is obtained by plugging �̂pool into (2.2). This is the well-known
pooled empirical covariance matrix.
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2.3. Maximization using the EM algorithm. Here the updating scheme of the
expectation-maximization (EM) algorithm [Dempster, Laird and Rubin (1977)] for
fixed ν is derived. We now compute the expectation step of the EM-algorithm.

From (2.1) we have that,

�i ∼ W−1
p (�, ν),

Si |�i ∼ Wp(�i , ni) for i = 1, . . . , k.

Let �i = �−1
i be the precision matrix and let � = �−1, then we equivalently have

that

�i ∼ Wp(�, ν),

Si |�i ∼ Wp

(
�−1

i , ni

)
.(2.5)

From the conjugacy of the inverse Wishart and the Wishart distribution, the poste-
rior distribution of the precision matrix is

�i |Si ∼Wp

((
�−1 + Si

)−1
, ni + ν

)
.

Hence, by the expectation of the Wishart distribution,

E[�i |Si] = (ni + ν)
(
�−1 + Si

)−1
.

The maximization step, in which the log-likelihood �(�|�1, . . . ,�k) is maxi-
mized, yields the estimate �̂ = 1

kν

∑k
i=1 �i , which is the mean of the scaled preci-

sion matrices 1
ν
�i [derived in Appendix D, Bilgrau et al. (2018)]. Let �̂(t) be the

current estimate of �. This yields the updating scheme

�̂(t+1) = 1

kν

k∑
i=1

(ni + ν)
(
�̂

−1
(t) + Si

)−1(2.6)

for �(t). We denote the inverse of the estimate obtained by repeated iteration of
(2.6) by �̂EM. The EM algorithm can be sensitive to starting values. Hence, start-
ing the algorithm in different starting values can help assesing if a global maximum
has been reached.

An approximate maximum likelihood estimator using a first order approxima-
tion is also possible [derived in Appendix E, Bilgrau et al. (2018)].

2.4. Estimation procedure. We propose a procedure alternating between es-
timating ν and � while keeping the other fixed. Given parameters ν̂(t) and �̂(t)

at iteration t , we estimate �̂(t+1) using fixed ν̂(t). Subsequently, we find ν̂(t+1)

by a standard one-dimensional numerical optimization procedure using the fixed
�̂(t+1). This coordinate ascent approach is repeated until convergence as described
in Algorithm 1. The update function U in the algorithm is defined by the derived
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Algorithm 1 RCM coordinate ascent estimation procedure
1: Input:
2: Sufficient data: (S1, n1), . . . , (Sk, nk)

3: Initial parameters: �̂(0), ν̂(0)

4: Convergence criterion: ε > 0
5: Output:
6: Parameter estimates: �̂, ν̂

7: procedure FITRCM(S1, . . . ,Sk, n1, . . . , nk, �̂(0), ν̂(0), ε)
8: Initialize: l(0) ← �(�̂(0), ν̂(0))

9: for t = 1,2,3, . . . do
10: �̂(t) ← U(�̂(t−1), ν̂(t−1))

11: ν̂(t) ← arg maxν �(�̂(t), ν)

12: l(t) ← �(�̂(t), ν̂(t))

13: if l(t) − l(t−1) < ε then
14: return (�̂(t), ν(t))

15: end if
16: end for
17: end procedure

estimators. That is, equations (2.4), (2.6), or (E.2) [Bilgrau et al. (2018)] define U

as the pooled, EM, or approximate MLE estimates, respectively.
The procedure using the EM step utilizes the results about the RCM log-

likelihood and thus provides a guarantee of convergence along with the advan-
tage of a very simple implementation. Both the EM step and the ν update will
always yield an increase in the likelihood. The disadvantage is that the identified
stationary point might be a local maximum or saddle-point when considering the
log-likelihood function jointly in (�, ν). Intuitively, the latter possibility happens
with zero probability, but it cannot be excluded that the maximum found is not
global.

Variations on the convergence criterion can also be considered, such as (a) using
the difference in successive parameter estimates, or (b) using relative rather than
absolute differences.

2.5. Interpretation and inference.

Intra-study correlation coefficient. The heterogeneity parameter ν has no
straightforward interpretation partly because the values of ν which corresponds
to a large study heterogeneity is dependent on the dimension p. We therefore in-
troduce a descriptive statistic analogous to the intra-study correlation coefficient
(ICC) [Shrout and Fleiss (1979)] well known from ordinary meta-analysis. For the
RCM this follows from the definition of the ICC which is defined to be the ratio of
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the between-study variation Var(�ij ) and the total variation Var(Sij ) of any single
pair of variables. In Appendix F [Bilgrau et al. (2018)] it is shown that the ICC is
given by:

ICC(ν) = 1

ν − p
.(2.7)

The ICC might in this sense be utilized in better quantifying the reproducibility of
the covariance across studies. A straight-forward plug-in estimator ÎCC(ν) of the
ICC of some gene-gene interaction is then ICC(ν̂).

Though v > p+3 is required for the variances to exist, it is clear that ICC(ν) →
1 for ν → (p + 1)+ and ICC(ν) → 0 for ν → ∞ as should be expected.

Test for no study heterogeneity. By the RCM ν parameterizes an inter-study
variance where the size of ν corresponds to the homogeneity between the studies.
A large ν yields high study homogeneity while a small ν yields low homogeneity.
Thus, it might be of interest to test if the estimated homogeneity ν̂ is extreme under
the null-hypothesis of no heterogeneity (i.e., infinite homogeneity). That is, a test
for the hypothesis H0 : ν = ∞ which is equivalent to

H0 : �1 = · · · = �k = �.

The two are equivalent since sampling the covariance matrix from the inverse
Wishart distribution becomes deterministic for ν = ∞. Therefore, testing this hy-
pothesis can also be interpreted as testing whether the data is adequately explained
when leaving out the hierarchical structure.

The distribution of ν̂ under the null hypothesis is not tractable. However, in
practice under H0 or when ν is extremely large the estimated ν̂obs will be finite as
the intra-study variance dominates the total variance. We note that the null distri-
bution of ν̂ does not depend on �. We propose approximating the distribution of
ν̂ under H0 by resampling. To do this, the model is simply fitted a large number of
times N on datasets re-sampled under H0 mimicked by permuted study labels to
get ν̂

(1)
0 , . . . , ν̂

(N)
0 . As small values of ν̂ are critical for H0 approximate acceptance

regions can be constructed from ν̂
(j)
0 , j = 1, . . . ,N . Likewise, an approximation

of the p-value testing H0 can be obtained by

P = 1

N + 1

(
1 +

N∑
j=1

1
[
ν̂

(j)
0 < ν̂obs

])
,(2.8)

where 1[·] is the indicator function. The addition of one to both nominator and
denominator adds a positive bias to the approximate p-value and is considered
minimally needed according to Phipson and Smyth (2010). This is approximately
the fraction of ν̂

(j)
0 ’s smaller than ν̂obs.
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2.6. Implementation and availability. Algorithm 1 and the different estimators
are implemented in the statistical programming language R [R Core Team (2012)]
with core functions in C++ using packages Rcpp and RcppArmadillo [Eddelbuettel
and François (2011), François, Eddelbuettel and Bates (2012)]. They are incorpo-
rated in the open-source R-package correlateR freely available for forking and
editing [Bilgrau (2014)]. We refer to the information here for further details and
installation instructions. This document was prepared with knitr [Xie (2013)]
and LaTeX. To reproduce this document see http://github.com/AEBilgrau/RCM.

3. Simulation experiments.

3.1. Evalutation of network estimation. To assess the estimation procedures
ability to estimate � we generated data from the hierarchical model (2.1) in two
different scenarios. In the first scenario we define a simple block matrix of di-
mension p = 40 with four blocks of size 10. Each block has an internal pairwise
correlation of 0.5, blocks 1 and 2 and 3 and 4 have a correlation of 0.3 between all
pairs, and the remaing correlations are set at 0.1. In the second scenario we select
the top 100 genes, ranked by variance, from the IDRC dataset (see Table 2) and
used the scatter matrix of these genes, scaled as a correlation matrix, as the � ma-
trix for simulation. For both scenarios we performed agglomerative hierchacical
clustering using Ward-linkage and 1 minus the absolute correlation as a distance
measure. Heatmaps with associated hierarchical clustering of both � matrices are
shown in Supplementary Figure A.1 [Bilgrau et al. (2018)].

For both scenarios we simulate data with k = 3 and a range of values for ni

and ν. Each simulation was repeated 100 times, and the correlation matrix was
estimated using the EM, MLE, and Pool approaches as outlined in Section 2. The
similarity of the estimated and true � matrices and associated networks were eval-
uated using respectively the Kullback–Leibler divergence [Mattiussi et al. (2011)]
and the cophenetic correlation [Sokal and Rohlf (1962)]. The cophenetic correla-
tion is defined as the correlation of cophenetic distances of all pairwise distances
in a tree, where the cophenetic distance is the height of the lowest point on the tree
where two points merge. Results from the first scenario [EM and Pool method in
Table 1, full results in Supplementary Table A.1, Bilgrau et al. (2018)] show that
for heterogenous data (ν = 50,100) and ni ≥ p the EM estimator outperforms the
Pool and MLE estimators using both measures. Examples of tanglegrams compar-
ing networks estimated with the EM and Pool method and the true � matrix are
shown in Supplementary Figure A.2 [Bilgrau et al. (2018)]. Tanglegrams were
constructed using the R-package dendextend [Galili (2015)]. Increasing the
ν parameter, thereby making the data more homogeneous across groups dimin-
ishes the advantage of the EM estimator. Similar results were found in the second
scenario using a � matrix based on the IDRC dataset [Table A.2, Bilgrau et al.
(2018)]. Results furthermore showed that the estimates in terms of cophenetic cor-
relation for the MLE and Pool approaches are nearly identical. We expect this to

http://github.com/AEBilgrau/RCM
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TABLE 1
Mean cophenetic correlation and Kullback–Leibler divergence with 95% confidence, for estimated

vs true network for different values of ν and ni using the EM or Pool method

Cophenetic correlation Kullback–Leibler divergence

ni ν EM Pool EM Pool

20 50 0.19 (0.17; 0.21) 0.2 (0.18; 0.22) 240.37 (232.79; 247.94) 227.33 (220.13; 234.52)
30 50 0.26 (0.23; 0.28) 0.25 (0.23; 0.28) 126.61 (123.81; 129.41) 121.81 (119.1; 124.51)
50 50 0.6 (0.56; 0.64) 0.43 (0.39; 0.46) 75.62 (73.5; 77.74) 73.62 (71.54; 75.69)

100 50 0.88 (0.85; 0.9) 0.7 (0.67; 0.74) 33.04 (32.56; 33.52) 30.9 (30.44; 31.36)
500 50 0.99 (0.98; 0.99) 0.91 (0.89; 0.93) 23.64 (23.41; 23.88) 21.31 (21.1; 21.53)

1000 50 0.99 (0.99; 0.99) 0.9 (0.88; 0.92) 22.86 (22.59; 23.14) 20.53 (20.28; 20.78)
20 100 0.35 (0.32; 0.38) 0.35 (0.32; 0.37) 76.69 (74.05; 79.33) 72.36 (69.85; 74.86)
30 100 0.4 (0.37; 0.42) 0.39 (0.37; 0.42) 34.51 (33.76; 35.26) 33.14 (32.42; 33.87)
50 100 0.72 (0.68; 0.75) 0.69 (0.66; 0.72) 27.92 (27.2; 28.65) 27.26 (26.55; 27.97)

100 100 0.97 (0.96; 0.98) 0.96 (0.95; 0.97) 8.02 (7.88; 8.16) 7.85 (7.71; 7.98)
500 100 1 (0.99; 1) 1 (1; 1) 3.34 (3.31; 3.38) 3.18 (3.15; 3.21)

1000 100 1 (1; 1) 1 (1; 1) 2.95 (2.92; 2.98) 2.79 (2.77; 2.82)
20 1000 0.51 (0.48; 0.54) 0.51 (0.48; 0.54) 52.66 (51.04; 54.29) 49.61 (48.07; 51.16)
30 1000 0.61 (0.58; 0.64) 0.61 (0.58; 0.64) 22.5 (22.05; 22.95) 21.59 (21.16; 22.02)
50 1000 0.81 (0.78; 0.84) 0.81 (0.78; 0.84) 20.49 (19.91; 21.08) 20.02 (19.44; 20.59)

100 1000 0.99 (0.98; 0.99) 0.99 (0.99; 0.99) 4.47 (4.36; 4.58) 4.42 (4.31; 4.52)
500 1000 1 (1; 1) 1 (1; 1) 0.71 (0.7; 0.72) 0.71 (0.7; 0.72)

1000 1000 1 (1; 1) 1 (1; 1) 0.41 (0.41; 0.42) 0.41 (0.4; 0.42)
20 10,000 0.53 (0.5; 0.55) 0.52 (0.5; 0.55) 53.15 (51.26; 55.04) 50.07 (48.28; 51.86)
30 10,000 0.65 (0.61; 0.68) 0.64 (0.61; 0.68) 21.91 (21.46; 22.35) 21.01 (20.59; 21.44)
50 10,000 0.83 (0.8; 0.85) 0.82 (0.79; 0.85) 19.88 (19.29; 20.48) 19.42 (18.84; 20.01)

100 10,000 0.99 (0.99; 1) 0.99 (0.99; 1) 4.19 (4.11; 4.27) 4.14 (4.06; 4.22)
500 10,000 1 (1; 1) 1 (1; 1) 0.59 (0.58; 0.6) 0.59 (0.58; 0.6)

1000 10,000 1 (1; 1) 1 (1; 1) 0.28 (0.27; 0.28) 0.28 (0.27; 0.28)

be caused by the fact that the MLE method is initilized with the Pool estimates and
stops after few iterations; presumably a better estimate cannot be found in these
simple scenarios.

3.2. Computation time for the RCM model. Next we tested the performance
of the different methods in terms of computation time. Figure 1 shows computa-
tion times of the methods with varying values of the dimension of the data, and
demonstrates that the increased performance of the EM method comes at an extra
cost in computation time.

3.3. Evaluation of the hypothesis testing. Finally we investigate the perfor-
mance of the p-value for the hypothesis test suggested in (2.8). To do this, we
simulate from the hierarchical model with k = 3 and a range of different values
for p, ν, and ni . For these simulations we used a � matrix with a diagonal of
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FIG. 1. The mean computation time of 10 fits with varying dimension p.

ones and 0.5 for off-diagonal values. Simulations were done 100 times for each
scenario, and 500 permutations were done for each simulation. Results summa-
rized as boxplots of the p-values obtained in the 100 simulations for each scenario
are shown in Supplementary Figure A.3 [Bilgrau et al. (2018)]. We find that for
heterogenous data (e.g., p = 20, ν = 30) the null-hypothesis is clearly rejected if
ni > p. When increasing ν thus making the groups more similar, more observa-
tions are needed to reject the null hypothesis, while for identical groups, that is,
ν = ∞, the null-hypothesis is generally not rejected. The p-values obtained from
the permuation test thus performs as intended.

4. DLBCL meta-analysis. Diffuse large B-cell lymphoma (DLBCL) is an
aggressive cancer subtype accounting for 30%–58% of non-Hodgkin’s lymphomas
(NHL) which constitutes about 90% of all lymphomas [International Lymphoma
Study Group (1997)].

4.1. Data and preprocessing. A large amount of DLBCL gene expression
datasets are now available online at the NCBI (National Center for Biotechnology
Information) Gene Expression Omnibus (GEO) website. 10 large-scale DLBCL
gene expression studies were downloaded and preprocessed using custom brainar-
ray chip definition files (CDF) [Dai et al. (2005)] and RMA-normalized using the
R-package affy [Gautier et al. (2004)]. The corresponding GEO-accession num-
bers and microarray platforms used are seen in Table 2. The downloaded data yield
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TABLE 2
Overview of studies used with GEO accession number from the NCBI Gene expression omnibus

website, the relevant reference, array types used in the study, and number of samples and features
on the used array

GEO no. Name Reference Used arrays n

1 GSE56315 CHEPRETRO Dybkær et al. (2015) hgu133plus2 89
2 GSE19246 BCCA Williams et al. (2010) hgu133plus2 177
3 GSE12195 CUICG Compagno et al. (2009) hgu133plus2 136
4 GSE22895 HMRC Jima et al. (2010) hugene10st 101
5 GSE31312 IDRC Visco et al. (2012) hgu133plus2 469
6 GSE10846 LLMPP R-CHOP Lenz et al. (2008) hgu133plus2 181
7 GSE10846 LLMPP CHOP Lenz et al. (2008) hgu133plus2 233
8 GSE34171 MDFCI Monti et al. (2012) hgu133plus2, snp6 90
9 GSE34171 MDFCI Monti et al. (2012) hgu133a, hgu133b 78

10 GSE22470 MMML Salaverria et al. (2011) hgu133a 271
11 GSE4475 UBCBF Hummel et al. (2006) hgu133a 221

a total of 2046 samples with study sizes in the range 78–469. The summarization
using brainarray CDFs to Ensembl gene identifiers facilitates cross-platform inte-
gration.

After RMA normalization and summarization, the data were brought to a com-
mon scale by quantile normalizing all data to the common cumulative distribution
function of all arrays. Lastly, the datasets were reduced to 11,573 common genes
represented in all studies and array platforms. Supplementary Figure A.4 [Bilgrau
et al. (2018)] shows a plot of the first and second principal components of the com-
bined dataset. We see a clear split on the first principal component, indicitating a
possible batch effect and heterogeneous data, and thus a situation where the EM
estimator might offer an advantage compared to the simpler Pool approach.

4.2. Analysis. For each dataset the scatter matrix Si of the top 300 most vari-
able genes (as measured by the pooled variance across all studies) was computed
as the sufficient statistics along with the number of samples.

The parameters of the RCM were estimated using the EM algorithm and yielded
the 300×300 matrix �̂ , ν̂ = 773.16, and ICC = 0.0021. The RCM was fitted using
three different initial sets of parameters which all converged to the same param-
eter estimates. Log-likelihood traces, iterations used, and computation times are
seen in Figure 2. From the parameter estimate, the common expected covariance
�̂ = (ν̂ −p − 1)−1�̂ was computed and subsequently scaled to the corresponding
correlation matrix R̂.

Despite the low ICC value the permutation test yielded a p-value for the null
hypothesis of study homogeneity of 0.002, clearly rejecting it. This means a sig-
nificant difference has been detected between the estimated covariance structures
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FIG. 2. The trace of the log-likelihood for three different starting values of � and ν using the EM
algorithm and computational times in minutes. The number of iterations used for each fit is shown
above.

across studies. This low ICC might suggest selecting the most variable genes bias
the ICC towards inter-study homogeneity of covariances. To further investigate the
low ICC value we randomly sampled 300 genes and estimated the ν parameter 100
times. This gave a value of ν ranging from 383.5 to 394.76 with a mean of 388.58,
corresponding to an ICC ranging from 0.0106 to 0.012 with a mean of 0.0113;
histograms are shown in Supplementary Figure A.7 [Bilgrau et al. (2018)]. This
indicates a bias towards more homogeneity for the high variance selected genes.

For simplicity we employed a standard network analysis to the estimated com-
mon correlation matrix R̂ across all studies. To identify clusters with high internal
correlation, we used agglomerative hierarchical clustering with Ward-linkage and
distance measure defined as 1 minus the absolute value of the correlation. The
dendrogram was arbitrarily pruned at a height which produced five modules. The
Modules are given different colors. Figure 3 shows the heatmap, associated net-
work modules and suggested function.

We checked if the identified modules were prognostic for overall survival (OS)
in the CHOP and R-CHOP-treated cohort datasets of GSE10846. To do this, the
eigengene [Horvath (2011)] for each module was computed. The module eigen-
gene is the first principal component of the expression matrix of the module which
thus can be represented by a linear combination of the module genes. We also re-
port the amount of variation the eigengene represents by calculating the explained
variation of the first pricipal component. Multiple Cox proportional hazards model
for OS was fitted with the module eigengenes as covariates. For the prognostically
interesting and tightly clustered olivegreen module, the Kaplan–Meier estimates
were computed for groups arising when dichotomizing the values of the corre-
sponding eigengene as above or below the median value. These results are shown
in Figure 4. The proportion of variance explained by the eigengene in the CHOP
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FIG. 3. Heatmap and correlation network for the estimated correlation matrices of the top 300
genes for the DLBCL data using the EM method. The network is cut at a height producing five
clusters.

and R-CHOP datasets for respectively the coral, olivegreen, gray, skyblue, and
orchid modules were 0.72, 0.6, 0.11, 0.7, 0.31, and 0.77, 0.55, 0.11, 0.7, 0.31.

Next, the modules were screened for biological relevance using GO (Gene On-
tology) Biological Process, Molecular Function, and Cellular Component as well
as REACTOME and KEGG pathway enrichment analysis. This was done using
the g:profiler web server [Reimand et al. (2016)] via the accompanying R-package
gProfileR [Reimand, Kolde and Arak (2016)]. Since we pre-selected the top
300 genes by variance, the enrichment analysis was done using only these as the
background genes. Top genes for each module, ranked by connectivity, are shown
in Table 3, while results of the enrichment analysis for each of the modules are
shown in Supplementary Table A.3 [Bilgrau et al. (2018)]. Inspection of the en-
richment analysis and most connected genes allowed us to hypothesize that the
coral module is involved in “Tissue development”, the skyblue module is involved
in “metastasis” (strong association to extracellular processes), the orchid module
involved in “immune regulation” (large overlap with GO:0002376-immune system
process), and the olivegreen module involved in “immune surveillance” (strong
association with GO:0006952-defense response and GO:0045087-innate immune
response).

From the gene enrichment and survival analysis the olivegreen module ap-
peared particularly interesting, as we notice a strong involvement of immune re-
sponse and an association between high value of the eigengene expression and
poor survival, which eventually could make these patients candidates for exper-
imental immunotherapies. Several of the genes, for example, S100A8, S100A9,
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TABLE 3
The identified modules, their sizes, and member genes. The genes are sorted decreasingly by their

intra-module connectivity (sum of the incident edge weights). Only the top 40 genes are shown

Gray Olivegreen Orchid Skyblue Coral

n = 159 n = 50 n = 50 n = 31 n = 10

MYBL1 FCER1G CD2 COL5A2 KRT6A
BATF C1QB CD3D COL1A2 SPRR1A
STAP1 C1QA GIMAP4 COL3A1 SPRR1B
CYB5R2 GBP1 PTGDS THBS2 KRT13
TNFRSF13B RARRES3 TRAT1 COL6A3 SPRR3
CD44 IDO1 CCL19 COL1A1 S100A2
MARCKSL1 CD14 CLU COL5A1 KRT14
LRMP LILRB2 ADAMDEC1 VCAN DSP
HCK SERPING1 TRBC2 FAP KRT5
MME PSTPIP2 ITM2A PLOD2 SFN
LMO2 GZMA LGALS2 MMP2
VPREB3 CCL8 ITK SULF1
BCL2A1 VSIG4 PLA2G2D MXRA5
BLNK NKG7 IL7R DCN
HLA-DOB IFNG PLA2G7 LUM
RRAS2 GBP2 ENPP2 SPARC
JADE3 CXCL10 IL18 POSTN
STAG3 SLAMF7 CHI3L1 COL15A1
BACH2 FGL2 TFEC TMEM45A
CCND2 CD163 CXCL13 COL11A1
PDGFD CXCL11 CCL21 CTSK
NCF2 GZMH CSTA EMP1
SPINK2 ALDH1A1 MMP9 AEBP1
MNDA CXCL9 LYZ TGFBI
MS4A1 GZMK HSD11B1 GJA1
CD22 GZMB APOC1 EGFL6
EBI3 KCNJ2 CXCL14 PLS3
OSBPL10 LAG3 C3 TIMP1
GPR137B CPVL MAL ANXA1
GRHPR IGSF6 CYP27B1 TNFAIP6
CHST2 LGMN LAMP3 SPP1
SORL1 MT2A CHIT1
IGF2BP3 MT1G PLAC8
SYBU IFI27 SELL
TCL1A CD8A KLRB1
ZNF804A MS4A4A CD69
SLC12A8 CRTAM ROBO1
CTGF S100A9 ORM1
FCRL2 MARCO S1PR1
DUSP5 S100A8 CCR7
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FIG. 4. The top row shows 95% and 99% CI for the hazard ratio for each eigengene in the multi-
ple Cox proportional hazards model containing all eigengenes in the CHOP and R-CHOP dataset.
The bottom row shows Kaplan–Meier estimates (and 95% CI) for the overall survival for patients
stratified by the dichotomized olivegreen eigengene.

CD14, and CD163 with the highest connectivity in this module have been as-
sociated to immunotherapy [Cheng et al. (2008), Fulmer (2008), Stroncek et al.
(2017)]. As prominent examples S100A8 (MRP8; calgranulin A) and the gene
S100A9 (MRP14; calgranulin B) appear in the list. This is interesting as com-
pelling research has shown that the S100 family of calciumbinding proteins main-
tain immunosuppressive myeloid-derived suppressor (MDS) cells at the tumor
site [Fulmer (2008)]. Notably, in mice injected with lymphoma cells, knockout
of S100A9 resulted in greater tumor infiltration of T-cells and less accumulation
of MDS cells than that seen in wild-type mice [Cheng et al. (2008)]. The knockout
mice had higher rates of tumor rejection and lower tumor size than their wild-type
littermates. This result indicates that knockdown of these proteins may improve
the outcome of immunotherapy strategies in patients with values of the eigengene
of the olivegreen module.

Finally, we compared the network analyses based on the covariance matrix ob-
tained by the EM to that obtained by the Pool methods, results are shown in the
Supplementary Material [Bilgrau et al. (2018)]. The upper row of Supplemen-
tary Figure A.5 shows the heatmap and associated network modules for the Pool
method, when the dendogram is cut at five modules, Supplementary Figure A.6
shows plots for the survival analysis, and top genes and gene enrichments are
given in Supplementary Tables A.4 and A.5. For the Pool method, we chose for
each module the same color as the module of the EM based clustering with most
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overlapping genes. In the lower row of Figure A.5 a tangleram was constructed
and the cophenetic correlation was calculated. We noticed generally a great over-
lap between the modules, but a low cophenetic correlation. With background in
the simulation we anticipate the Pool method has lower efficiency than the EM
method.

The olivegreen and coral modules seem to be so tightly regulated that they man-
ifest themselves for both methods, which is also seen in the enrichment analyses.
However, the size of the skyblue module is increased for the pool method by ac-
quiring genes from the grey module identified by the EM method, but the overall
enrichment is not changed. For the orchid module, we notice a number of genes
ending up in the grey module for the pool method. This has the consequence that
the immune regulation fingerprint disappers using the Pool method. Morever, if we
look at the less correlated intramodular connections the noise plays a larger role
leading to a less clear separation between the modules for the Pool method. This
can have potential biological implications, when regulating hub genes resulting in
intra-module cascades of reactions.

5. Discussion. The RCM for meta-analysis of covariance structures was
shown to be superior to simple pooling as suggested previously in the literature.
The estimated covariance matrix was also capable of providing a dissimilarity
measure, which was able to pinpoint alternative biologically meaningful gene cor-
relation networks in DLBCL, which can be used to formulate new hypothesis about
the role of immune therapy in DLBCL.

However, the proposed testing is computationally demanding and only feasible
when p is sufficiently small. This could for example, be overcome by improved
and faster fitting procedures or by deriving the distribution of ν̂ under the null hy-
pothesis. Yet the latter is seemingly intractable as ν̂ is a very complex function of
the data. The fact that the null-hypothesis lies on the edge of the parameter space
also seems to constrain the feasibility of deriving such a distribution. One might
question whether the added utility of the ν parameter provides sufficient relaxation
of the covariance homogeneity. Therefore, the present work should be considered
a first step in the direction of explicitly modelling the inter-study variation of co-
variance matrices. It is also worth noticing, that although the suggested method
proved to be superior to simple pooling, it only works for small or moderate num-
bers of features p. This can partly be alleviated by combining multiple studies to
yield a sufficiently large total sample size n• that allows for the estimation of large
covariance matrices. Turning to using p-values seems tempting, but one should be
aware, as with all hypothesis testing, that the exact threshold of ICC (or ν) needed
to claim homogeneous studies is dependent on the sample size and the relevant
effect size. In this respect the relevant effect size is unclear and will be problem
dependent.

The moderate size of p is a severe drawback as many methods have been pub-
lished concerning estimation of large covariance matrices by various regularization
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methods [Friedman, Hastie and Tibshirani (2008), Meinshausen and Bühlmann
(2006), van Wieringen and Peeters (2016)]. Therefore we believe this work could
be further enriched by combining the method with regularized estimation. In the
future such generalizations of the model to p 	 n• is extremely interesting though
out of scope for this article.

In conclusion the article demonstrates an advantageous model based way of
conducting meta-analaysis of covariance matrices—especially in a setting with
moderate number of features compared to the dimension. One should also notice
the method seems to provide a generally applicable framework making it usable
in other settings where multiple features are measured and believed to share a
common covariance matrix obscured by group dependent noise.
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plementary figures, tables and proofs available online.

Supplement B: Documents for reproducibility (http://github.com/AEBilgrau/
RCM). The documents and other needed files to perform the analyses to reproduce
this article. See the README file herein.
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