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Abstract. If X(t, x) is the density of one-dimensional super-Brownian motion, we prove that

dim
(
∂
{
x : X(t, x) > 0

}) = 2 − 2λ0 ∈ (0,1) a.s. on {Xt �= 0},
where −λ0 ∈ (−1,−1/2) is the lead eigenvalue of a killed Ornstein–Uhlenbeck process. This confirms a conjecture of Mueller,
Mytnik and Perkins (Ann. Probab. 45 (2017) 3481–3543) who proved the above with positive probability. To establish this result we
derive some new basic properties of a boundary local time recently introduced by one of us (Hughes), and analyze the behaviour of
X(t, ·) near the upper edge of its support. Numerical estimates of λ0 suggest that the above Hausdorff dimension is approximately
0.224.

Résumé. Si l’on note X(t, x) la densité du super-mouvement brownien de dimension 1, nous montrons que

dim
(
∂
{
x : X(t, x) > 0

}) = 2 − 2λ0 ∈ (0,1) p.s. sur {Xt �= 0},
ou −λ0 ∈ (−1,−1/2) est la valeur propre dominante d’un processus d’Ornstein–Uhlenbeck tué. Ceci confirme une conjecture de
Mueller, Mytnik et Perkins (Ann. Probab. 45 (2017) 3481–3543), qui avaient montré que cette propriété a lieu avec probabilité
strictement positive. Pour démontrer ce résultat, nous établissons quelques propriétés de base d’un temps local de bord introduit
récemment par T. Hughes, et nous analysons le comportement de X(t, ·) près de la borne supérieure de son support. Des simulations
numériques de λ0 suggèrent que la dimension de Hausdorff ci-dessus est approximativement 0,224.
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1. Introduction and statement of results

Let (Xt , t ≥ 0) denote a super-Brownian motion on the line starting at X0 �= 0 under P X
X0

. Here X0 ∈ MF (R), the

space of finite measures on R with the topology of weak convergence, and P X
X0

will denote any probability under
which X has the above law. Our branching rate is chosen to be one so that the jointly continuous density, X(t, x), of
Xt for t > 0, is the unique in law solution of the stochastic partial differential equation (SPDE)

∂X

∂t
(t, x) = 1

2

∂2X

∂x2
(t, x) + √

X(t, x)Ẇ (t, x), X ≥ 0, X(0) = X0 (1.1)
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(see Section III.4 of [14]). Here Ẇ is a space-time white noise on [0,∞) × R, and the initial condition means that
Xt(dx) = X(t, x) dx → X0(dx) in MF (R) as t ↓ 0.

The boundary of the zero set of Xt ,

BZt = ∂
{
x : X(t, x) = 0

} = ∂
{
x : X(t, x) > 0

}
, (1.2)

was studied in [10]. The increased regularity of X on, and near, this set has played an important role in the study of
SPDE’s such as (1.1) (see [12] and [11]). Mytnik and Perkins (unpublished) had obtained side conditions on X which
would give pathwise uniqueness in (1.1) but which would imply that dim(BZt ), the Hausdorff dimension of BZt , is
zero. The intuition here is that solutions to (1.1) should only separate in their respective zero sets since these are the
only points at which the noise coefficient is non-Lipschitz. So the smaller this set is, the harder it will be for solutions
to separate. In [10] it was shown that if −λ0 ∈ (−1,−1/2) is the lead eigenvalue of the killed Ornstein–Uhlenbeck
operator described below, then (see Theorem 1.3 of [10]) in fact

P X
X0

(
dim(BZt ) = 2 − 2λ0

)
> 0. (1.3)

Here it was also conjectured (see the comment following Theorem 1.3 in [10]) that

dim(BZt ) = 2 − 2λ0 a.s. on {Xt �= 0}. (1.4)

In any case, the rigorous bounds on λ0 mentioned above imply the dimension of BZt is in (0,1), at least with positive
probability, and the aforementioned pathwise uniqueness problem remains unresolved in spite of a recent negative
result in Chen [2]. Here pathwise non-uniqueness to (1.1) was shown if an innocent looking immigration term of
the form ψ(x) (ψ smooth, non-negative and compactly supported) is added to the right-hand side of (1.1). The
immigration term, however, gives BZt positive Lebesgue measure and this is what allows Chen to establish separation
of solutions.

The boundary set itself is rather delicate as small perturbations of X will of course completely change the nature
of BZt . In particular, it is a non-monotone function of the initial condition. This is one reason some of the standard
zero-one arguments (see, e.g., the proof of Theorem 1.3 of [13] for the dimension of the range of X) were not able
to resolve the conjecture (1.4). Our main result (Theorem 1.1 below) will use a recently constructed boundary local
time, Lt(dx) of BZt to confirm (1.4). The local time was constructed by one of us (TH) in [5]. It is a random measure
supported by BZt which we are just beginning to understand, and some of its basic properties derived here will play
a central role in our arguments. As a random measure supported on the set of points where solutions to (1.1) can
separate, Lt(dx) has the potential of playing the same role in the study of SPDE’s arising from population models that
ordinary local time does for stochastic differential equations. Of course, one would need to construct Lt for a much
larger class of random processes.

Numerical estimates of λ0 due to Peiyuan Zhu suggest that (1.4) implies

dim(BZt ) ≈ 0.224 a.s. on
{
Xt(1) > 0

}
, (1.5)

perhaps larger than one may think given that X(t, ·) is Hölder 1 − η in space near its zero set for any η > 0 (see
Theorem 2.3 in [11]). We briefly discuss this approximation below and give some evidence for the accuracy of the
estimate to the digits given.

It will often be more convenient to work with the canonical measure of super-Brownian motion, Nx , which is a
more fundamental object in many ways. Recall that X arises as the scaling limit of the empirical measures of critical
branching random walk. Nx is a σ -finite measure on C([0,∞),MF (R)) (the space of continuous measure-valued
paths) describing the behaviour of the descendants of a single ancestor at x at time 0 (see Theorem II.7.3 of [14]).
A super-Brownian motion under P X

X0
may be constructed as the integral of a Poisson point process with intensity

NX0(·) = ∫
Nx(·) dX0(x) (see (2.5) below). In particular, if we write Xt(φ) = ∫

φ(x)Xt (dx), then for φ ≥ 0,

EX
X0

(
e−Xt (φ)

) = exp

(
−

∫
1 − e−νt (φ) dNX0(ν)

)
. (1.6)
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Our next job is to describe λ0 more carefully. We let

F(x) = − log
(
P X

δ0

(
X(1, x) = 0

)) =N0
(
X(1, x) > 0

)
, (1.7)

where the last equality is a simple consequence of (1.6) with φ = ∞δx and X0 = δ0 (see Proposition 3.3 of [10]).
Then F is the unique positive symmetric C2 solution to

F ′′

2
(y) + y

2
F ′(y) + F(y) − F(y)2

2
= 0, (1.8)

and

F ′(0) = 0, lim
y→∞y2F(y) = 0. (1.9)

(See (1.10) and (1.12) of [10] and the discussion in Section 3 of the same reference.) Let Af (y) = f ′′(y)
2 − yf ′(y)

2 be the
generator of the Ornstein–Uhlenbeck process, Y , on the line. For φ ∈ C([−∞,∞]), the space of continuous functions
on R with finite limits at ±∞, we let Aφ(f ) = Af − φf be the generator of the Ornstein–Uhlenbeck process Yφ ,
now killed when

∫ t

0 φ(Ys) ds exceeds an independent exponential mean one r.v. If m denotes the standard normal law
on R, the resolvent of Aφ is a Hilbert–Schmidt integral operator on the Hilbert space of square integrable functions
with respect to m, L2(m). Therefore Aφ has a complete orthonormal system of eigenfunctions {ψφ

n : n ≥ 0} with
non-positive eigenvalues {−λ

φ
n } ordered so that −λ

φ
n decreases to −∞. The lead eigenvalue −λ

φ
0 ≤ 0 is simple and so

has a unique normalized eigenfunction ψ
φ
0 . See Theorem 2.1 below for this and related information. If we set φ = F ,

then our eigenvalue −λ0 is −λF
0 , which is in (−1,−1/2) by an elementary calculation in Proposition 3.4(b) of [10],

using the fact (Proposition 3.4(b) of [10]) that

λ
F/2
0 = 1/2. (1.10)

Here then is our main result.

Theorem 1.1. For any X0 ∈MF (R) \ {0} and t > 0,

dim(BZt ) = 2 − 2λ0 ∈ (0,1) P X
X0

-a.s. and N0-a.e. on {Xt > 0}. (1.11)

In fact Theorem 1.3(a) in [10] already gives

dim(BZt ) ≤ 2 − 2λ0 P X
X0

-a.s. and N0-a.e. (1.12)

Although the above reference only considers P X
X0

, the result for N0 then follows easily by the Poisson point process
decomposition mentioned above (see (2.5) below), just as in the last six lines of the proof of Theorem 1.2 at the end
of Section 4. Therefore it is the lower bound on dim(BZt ) that we must consider. The lower bound on the dimension
was attained with positive probability in Theorem 5.5 of [10] by first deriving a sufficient capacity condition for BZt

to intersect a given set, A, with positive probability (Theorem 5.2 of [10]) and then taking A to be the range of an
appropriate Lévy process. As was already noted, the authors were unable to use this approach to establish the lower
bound a.s. The standard approach to lower bounds on Hausdorff dimension is through the energy method. That is, first
construct a finite random measure or local time, Lt , supported by BZt such that

E

(∫∫
|x − y|−α dLt (x) dLt (y)

)
< ∞ ∀ 0 < α < 2 − 2λ0. (1.13)

The energy method (see Theorem 4.27 of [9]) would then imply

dim(BZt ) ≥ 2 − 2λ0 a.s. on {Lt �= 0}. (1.14)
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The existence of such a boundary local time was established in [5], confirming a construction conjectured in Section 5
of [10], which we briefly describe now. Define a measure Lλ

t ∈ MF (R) by

Lλ
t (φ) =

∫
φ(x)λ2λ0X(t, x)e−λX(t,x) dx (1.15)

for bounded Borel functions φ. Note that as λ gets large Lλ
t becomes concentrated on the set of points x where

0 < X(t, x) = O(1/λ). The normalization of λ2λ0 comes from the left tail behaviour of X(t, x) in Theorem 1.2 of
[10]. The following result is taken from [5], more specifically it is included in Theorems 1.1, 1.2, 1.3 and 1.5, and
Proposition 1.6 of [5].

Theorem A.

(a) There is a finite atomless random measure, Lt , on the line such that under N0 or P X
X0

,

Lλ
t → Lt in measure in the metric space MF (R) as λ → ∞.

Moreover Lt is supported on BZt a.s.
(b) There is a positive constant CA such that for any Borel φ :R→ [0,∞),∫

Lt(φ)dN0 = CAt−λ0

∫
φ(

√
tz)ψF

0 (z) dm(z). (1.16)

(c) (1.13) holds under both N0 and P X
X0

.
(d) There is a constant CB such that∫

Lt(1)2 dN0 ≤ CBt1−2λ0 . (1.17)

Let S(Xt ) = {x : X(t, x) > 0} be the closed support of Xt and define Ut = sup(S(Xt )) to be the upper most point
of the support. It now follows from Theorem A that (1.14) holds under both P X

X0
and N0 (for the latter one can work

under the probability N0(· | Xt �= 0)). And so Theorem 1.1 is immediate from (1.12) and the following:

Theorem 1.2. Under the measures N0 and P X
X0

, Lt > 0 almost surely on {Xt > 0}. In fact, almost surely on {Xt > 0},
Lt((Ut − δ,Ut )) > 0 for all δ > 0.

This theorem shows that as long as Xt has not gone extinct, the part of BZt at its upper edge will have positive
Lt measure, and, in particular, Lt itself is not equal to the zero measure. It is natural to consider a local version of
the above and show that Lt will charge any open interval which contains points in BZt . This clearly fails (note from
Theorem A that Lt is atomless) if Xt(·) has isolated zeros, which clearly would be in BZt . An elementary argument
shows that ∂S(Xt ) ⊆ BZt and the former set clearly will not contain isolated zeros of Xt(·). Given that the existence
of isolated zeros of Xt(·) remains unresolved (we conjecture that they do not exist), here then is our local version of
Theorem 1.2:

Theorem 1.3. For t > 0, P X
X0

-a.s. and N0-a.e., for any a < b, (a, b) ∩ ∂S(Xt ) �=∅ implies Lt((a, b)) > 0.

Evidently we do not know whether or not BZt \ ∂S(Xt ) is non-empty; isolated zeros are not the only possible
points in this set–see Lemma 5.1 below. Nonetheless we make the following conjecture:

Conjecture. Lt is supported on ∂S(Xt ) and so dim(∂S(Xt )) = 2 − 2λ0 on {Xt �= 0} P X
X0

-a.s. and N0-a.e.,

the last conclusion being immediate from the first by (1.12), Theorem 1.2, Theorem A(a)(b) and the energy method
described above.
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Corollary 1.4. For t > 0, P X
X0

-a.s. and N0-a.e., for any a < b, (a, b) ∩ ∂S(Xt ) �= ∅ implies dim(BZt ∩ (a, b)) =
2 − 2λ0.

Proof. By considering rational values we may fix a and b and work under either P X
X0

or N0(· | Xt �= 0). Assume
(a, b) ∩ ∂S(Xt ) �= ∅. In view of (1.13) we may apply the energy method to Lt |(a,b), which is a.s. non-zero by Theo-
rem 1.3, and so conclude that dim(BZt ∩ (a, b)) ≥ 2 − 2λ0 a.s. on {(a, b) ∩ ∂(S(Xt )) �= 0}. The corresponding upper
bound is immediate from (1.12). �

We comment briefly on the numerical approximation of λ0 carried out by Peiyuan Zhu in [15]. One first needs
to numerically approximate F using an an ODE solver and the “shooting method” to find the minimal value of c

so that Fc(0) = c, F ′
c(0) = 0 and Fc satisfying (1.8) remains non-negative. It is known that Fc = F (see, e.g., [1]).

One then approximates this numerically generated F by a linear combination of Gaussians F̂ (with varying means

and variances). We estimate −λF
0 by −λF̂

0 , the lead eigenvalue of the Ornstein–Uhlenbeck operator with F̂ -killing
on a large interval [0,K] with Neumann boundary conditions. K must be taken sufficiently large to approximate the

corresponding operator on [0,∞). The final step is then to use CHEBFUN software to estimate λF̂
0 . One could also

obtain F̂ by interpolating between the numerically generated grid points using Chebychev polynomials–the results
agree to the given accuracy. We have some faith in the resulting approximation of λF

0 ≈ 0.8882 because if we replace

F with F/2, the same method leads to λ
F/2
0 ≈ 0.5000. This compares well with the exact (known) value in (1.10).

The proof of Theorem 1.2 includes some input from the semilinear pde’s associated with super-Brownian motion
(such as (1.19) below) which are carried out in Section 3. This is then used in Section 4, to study Xt(dx) near the
upper end of its support, Ut . For ε > 0, define

τ ε = τ ε(t) = inf
{
x ∈R : Xt

([x,∞)
)
< ε

}
. (1.18)

In particular, if Xt(1) < ε, then τ ε = −∞. The following result gives some insight into the behaviour of Xt near
the upper edge of its support and so the following first moment bound, which is proved in Section 4, may be of
independent interest.

Proposition 1.5. There is a non-increasing function, c1.5(t), such that for all t, ε > 0 and u > 0:

(a) For any X0 ∈MF (R), EX
X0

(
∫ ∞
τ ε(t)−u

X(t, x) dx) ≤ c1.5(t)X0(1)(u2 ∨ ε).

(b) N0(
∫ ∞
τ ε(t)−u

Xt (dx)) ≤ c1.5(t)(u
2 ∨ ε).

One can understand the important u2 behaviour in the above for small u, ε from the improved modulus of continuity
of X(t, ·) near its zero set (mentioned above). Theorem 2.3 of [11] shows that for η > 0 there is δ(ω) > 0 so that
|X(t, x) − X(t, x + h)| ≤ |h|1−η for X(t, x) ≤ |h| ≤ δ(ω). This readily leads to (for ε, u small) X(t, τ ε(t)) ≤ ε0.5−η

and after a short argument (consider u ≥ ε0.5−η and u < ε0.5−η separately) that∫ Ut

τε(t)−u

X(t, x) dx =
∫ τ ε

τ ε(t)−u

X(t, x) dx + ε ≤ c
(
ε1−2η + u2−η

)
,

which comes close to the above mean behaviour. The actual proof uses the unique non-negative solution,
v∞
t (x) = v∞(t, x), in C1,2((0,∞) ×R) of

∂v∞

∂t
(t, x) = 1

2

∂2v∞

∂x2
− (v∞)2

2
, v∞

0 = ∞1(−∞,0]. (1.19)

Such semilinear parabolic equations arise of course as exponential dual functions for super-Brownian motion–see
Section 3 for more on this in general, and Theorem 3.3 for more information on the particular equation above, in-
cluding its precise meaning. More specifically, the proof uses G(x) = v∞

1 (x) which also is the unique C∞ solution of
(1.8) but now with the boundary conditions (see Lemma 3.4(c))

lim
x→∞x2G(x) = 0, lim

x→−∞G(x) = 2. (1.20)
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Using a Palm measure formula for Xt (Theorem 4.1.3 from [4]), the Feynman–Kac Formula and some pde bounds
(notably Proposition 3.7), we show (see (4.10)) that for u2 ≥ ε (from which the general case follows easily),

N0

(∫ ∞

τ ε(t)−u

X(t, x) dx

)
≤ c(t)EY

m

(
exp

(
−

∫ log(1/u2)

0
G(Ys) ds

))
, (1.21)

where Y is an (unkilled) Ornstein–Uhlenbeck process with initial law m under P Y
m . So, as in [10], one can use the

spectral decomposition of AG to see that the right-hand side of (1.21) is at most c(t)e−λG
0 log(1/u2) = c(t)u2λG

0 . Unlike
λF

0 , we can identify the eigenfunction for λG
0 and verify that λG

0 = 1 (Proposition 3.5), and hence obtain the required
bound in Proposition 1.5(b).

Turning to Theorem 1.2 itself, Theorem A(b),(d) and the second moment method easily give (Lemma 4.1)

N0
(
Lδ

([3√
δ,∞)

)
> 0 | Xδ �= 0

) ≥ p > 0 ∀δ > 0.

One can then use this to conclude that the right-most ancestor, say at x, at time t − δ of the population at time t

will have descendants at time t with a positive boundary local time on [x + 3
√

δ,∞) with conditional (on Ft−δ)
probability at least p. Now one must show that the descendants of the other ancestors at time t − δ do not flood into
the boundary region of the right-most ancestor and hence remove it from the overall boundary. This issue captures the
delicate and non-monotone character of the boundary. To resolve it we use a classical hitting estimate for X from [3]
(see Theorem 2.3 below) and Proposition 1.5. This will lead to a uniform lower bound on P X

X0
(Lt > 0 | Ft−δn) with

high probability at least on {Xt �= 0} and the martingale convergence theorem then shows Lt > 0 with high probability
on {Xt �= 0}.

Theorem 1.3 is proved in Section 5. Section 2 reviews a number of standard tools we will need in the proofs
including the spectral decomposition of the killed Ornstein–Uhlenbeck processes, some cluster decompositions of
super-Brownian motion based on historical information, and the aforementioned hitting estimate for super-Brownian
motion.

2. Some preliminaries

2.1. Killed Ornstein–Uhlenbeck processes

Recall that Y is an Ornstein–Uhlenbeck process with generator A, starting at x under P Y
x and starting with the standard

normal law m under P Y
m . As above for φ ∈ C([−∞,∞]), φ ≥ 0, Aφ is the generator of the Ornstein–Uhlenbeck

process, Yφ , killed at time ρφ = inf{t : ∫ t

0 φ(Ys) ds > e}, where e denotes an independent exponential r.v. with mean
one. The result below is standard, and included in Theorem 2.3 of Mueller, Mytnik and Perkins [10].

Theorem 2.1.

(a) Aφ has a complete orthonormal family {ψn : n ≥ 1} of C2 eigenfunctions of L2(m) satisfying Aφψn = −λnψn,
where {−λn}∞n=1 is a non-increasing sequence of non-positive eigenvalues such that λn → ∞. Furthermore, −λ0 is a
simple eigenvalue and ψ0 > 0.

(b) Let θ = ∫
ψ0 dm. For all 0 < δ, there exists cδ such that for all x ∈ R,

∣∣eλ0tP Y
x (ρφ > t) − θψ0(x)

∣∣ ≤ cδe
δx2

e−(λ1−λ0)t , (2.1)

and

ψ0(x) ≤ cδe
δx2

. (2.2)

In particular,

P Y
x

(
ρφ > t

) ≤ Cδe
δx2

e−λ0t (2.3)
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and

P Y
m

(
ρφ > t

) ≤ Ce−λ0t . (2.4)

2.2. Cluster and historical decompositions of super-Brownian motion

We recall the cluster decomposition of super-Brownian motion from Theorem 4 in Section IV.3 of [7]. If
X0 ∈ MF (R), let �X0 be a Poisson point process on the space C([0,∞),MF (R)) of continuous measure-valued
paths with intensity NX0(·) = ∫

Nx(·) dX0(x). Then

Xt(·) =
{∫

νt (·)�X0(dν) if t > 0,

X0(·) if t = 0
(2.5)

defines a super-Brownian motion with initial state X0. In particular this shows that for t > 0, (
D= denotes equality in

law)

Xt
D=

N∑
i=1

Xi
t , (2.6)

where N has a Poisson law with mean 2X0(1)/t =NX0(Xt > 0), and given N , {Xi
t : i ≤ N} are iid random measures

with law NX0(Xt ∈ · | Xt > 0). The summands in (2.6) correspond to the contributions to Xt from each of the finite
number of ancestors at time 0 of the population at time t .

We will also make use of the historical process associated with a super-Brownian motion. The historical process
encodes the genealogical information of the super-Brownian motion X. Good introductions may be found in [4], or
Sections II.8 and III.1 of [14]. Let C([0,∞),R) denote the space of continuous R-valued paths on [0,∞), endowed
with the compact-open topology. The historical process (Ht : t ≥ 0) is a measure-valued time-inhomogeneous Markov
process taking values in MF (C([0,∞),R)) such that y· = yt∧· for Ht -a.a. y for all t ≥ 0 a.s. If we identify constant
paths with R, then, viewing H0 as an element of MF (R), we can recover the super-Brownian motion X starting
at X0 = H0 from its associated historical process H by projecting Ht onto time t , i.e., Xt(·) = Ht({y : yt ∈ ·}).
Intuitively, (ys, s ≤ t) gives the historical path of the particle yt in the support of Xt . We will use a modulus of
continuity for the paths y governed by Ht . Let S(Ht ) denote the closed support of Ht and set h(r) = (r log(1/r))1/2.
For c > 0 and δ > 0, define K(c, δ) by

K(c, δ) = {
y ∈ C

([0,∞),R
) : |yr − ys | ≤ ch(r − s) ∀r, s ≥ 0 s.t. |r − s| ≤ δ

}
. (2.7)

By Theorem III.1.3(a) of [14], if c > 2 and T > 0, then P X
X0

-a.a. ω, there exists δ = δ(T , c,ω) > 0 a.s. such that

S(Ht) ⊂ K(c, δ) for all t ∈ [0, T ]. (2.8)

Moreover, the proof of the above shows that for any c > 2, T > 0 there are ρ(c) > 0 and C(T ) such that

P X
X0

(
δ(T , c) ≤ r

) ≤ C2.9(T )rρ(c) for all r ∈ (0,1], (2.9)

where

lim
c→∞ρ(c) = ∞. (2.10)

A second decomposition of a superprocess based on historical information will also play an important role in our
arguments. Let (Ft ) be the usual right-continuous completed filtration generated by H and assume 0 ≤ δ ≤ t are fixed.
Assume τ ∈ [−∞,∞] is a σ(Xt−δ)-measurable random variable. We decompose Xt−δ into the sum of two random
measures:

XR
t−δ(dx) = X

R,τ,δ
t−δ (dx) = 1{x≥τ }Xt−δ(dx) and XL

t−δ(dx) = X
L,τ,δ
t−δ (dx) = 1{x<τ }Xt−δ(dx). (2.11)
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We then track the descendants of each of these populations at future times and so define measure-valued processes by

X̂R
s (φ) = X̂R,τ,δ

s (φ) =
∫

φ(yt−δ+s)1(yt−δ ≥ τ)Ht−δ+s(dy),

X̂L
s (φ) = X̂L,τ,δ

s (φ) =
∫

φ(yt−δ+s)1(yt−δ < τ)Ht−δ+s(dy).

Clearly we have

X̂R
s + X̂L

s = Xt−δ+s for all s ≥ 0, and (if s = 0) XR
t−δ + XL

t−δ = Xt−δ. (2.12)

By (III.1.3) on p. 193 of [14] and the Markov property of H , we get:

Conditional on Ft−δ ,
(
X̂R

s

)
and

(
X̂L

s

)
are independent (Ft−δ+s)-super-Brownian

motions with initial laws XR
t−δ and XL

t−δ , respectively. (2.13)

Given the above decompositions of super-Brownian motion into a sum of independent super-Brownian motions, it
is not surprising that we will also need to know how the corresponding boundary local time, Lt , decomposes. Recall
that a sum of n independent super-Brownian motions with initial conditions X1

0, . . . ,X
n
0 is a super-Brownian motion

starting at X1
0 + · · · + Xn

0 . The next result is Theorem 1.9 of [5].

Theorem 2.2. Suppose X1, . . . ,Xn are independent one-dimensional super-Brownian motions, starting at X1
0, . . . ,

Xn
0 ∈ MF (R) and with boundary local times L1

t , . . . ,L
n
t . Let X = ∑n

i=1 Xi and Lt be the boundary local time of X.
Then

dLt (x) =
n∑

i=1

1

(∑
j �=i

Xj (t, x) = 0

)
dLi

t (x) =
n∑

i=1

1
(
X(t, x) = 0

)
dLi

t (x). (2.14)

2.3. Hitting probabilities of super-Brownian motion

The proofs of our main theorems will make use of bounds on hitting probabilities for super-Brownian motion.

Theorem 2.3. There exists a universal constant c2.3 < ∞ such that:

(i) For R > 2
√

t ,

N0
(
Xs

([R,∞)
)
> 0 for some s ≤ t

) ≤ c2.3R
−2

(
R√
t

)3

e−R2/2t .

(ii) For all X0 ∈ MF (R) such that X0 is supported on (−∞,0] and for all R > 2
√

t , we have

P X
X0

(
Xs

([R,∞)
) = 0 for all s ≤ t

) ≥ exp

(
−c2.3

∫ 0

−∞
(R − x)−2

(
R − x√

t

)3

e−(R−x)2/2t dX0(x)

)
.

Proof. (i) is a simple consequence of Theorem 3.3(b) of [3] with d = 1 (and its proof) and (2.5).
We derive (ii) as a consequence of (i) by using (2.5). Indeed, this result and well-known formulas for the Laplace

transform of a Poisson point process (see, for example, Theorem 24.14 of [6]) imply that for R > 2
√

t and θ > 0, we
have

EX
X0

(
exp

(
−θ

∫ t

0
Xs

([R,∞)
)
ds

))
= exp

(
−

∫
Nx

(
1 − exp

(
−θ

∫ t

0
Xs

([R,∞)
)
ds

))
dX0(x)

)
.
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A simple application of Dominated Convergence allows us to let θ → ∞ and conclude that

P X
X0

(
Xs

([R,∞)
) = 0 for all s < t

) = exp

(
−

∫
Nx

(
Xs

([R,∞)
)
> 0 for some s ≤ t

)
dX0(x)

)
.

Part (ii) follows by applying (i) and translation invariance. �

3. Some semi-linear partial differential equations

We recall the relationship of the Laplace functional of super-Brownian motion with solutions of a semi-linear partial
differential equation (PDE). We first present the integral form of the equation. Let Bb+(R) denote the space of non-
negative bounded Borel functions on the line. Let EB

x denote expectation for standard Brownian motion with B0 = x,
and denote the Brownian semigroup by St , ie. Stφ(x) = EB

x (φ(Bt )). By Theorem II.5.11 of [14], for φ ∈ Bb+(R)

there exists a unique non-negative solution to the integral equation

vt = Stφ −
∫ t

0
St−s

(
v2
s /2

)
ds for (t, x) ∈ [0,∞) ×R, (3.1)

which we denote by V
φ
t (x), such that for all X0 ∈ MF (R),

EX
X0

(
e−Xt (φ)

) = e−X0(V
φ
t ). (3.2)

It follows from (2.5) and the above with X0 = δx that

Nx

(
1 − e−Xt (φ)

) = V
φ
t (x). (3.3)

It is clear from (3.1) that V
φ
t (x) ≤ Stφ(x) ≤ ‖φ‖∞, and so V

φ
t (x) − Stφ(x) → 0 as t ↓ 0 pointwise in x. This readily

implies that

V
φ
t

v→ φ = V
φ
0 as t ↓ 0,

where
v→ denotes vague convergence of the Radon measure V

φ
t (x) dx to φ(x)dx. (3.1) is known as the mild form of

the PDE

∂vt

∂t
= 1

2

∂2vt

∂x2
− v2

t

2
for (t, x) ∈ (0,∞) ×R, vt

v→ φ = v0 as t ↓ 0, (3.4)

where it will be understood that solutions of (3.4) will be in the space C1,2((0,∞) ×R) of functions with continuous
partial derivatives up to order 1 in time and 2 in space on the given open set. This formulation allows one to consider
initial conditions which are measures. In this context Marcus and Véron [8] (Theorem 3.5) proved existence and
uniqueness of a (non-negative) solution, V̄ φ , to (3.4) as a rather special case of more general initial conditions which
they classify with their initial trace theory. The use of their general theory may seem like overkill, but it will soon be
convenient to use a stability result in [8]. It is easy to show that their solutions also satisfy the mild form (3.1) as we
now sketch. First, monotonicity of V̄ φ in φ (e.g. Theorem 3.4 of [8]) and comparison with the elementary solution
with initial (constant) value ‖φ‖∞ show that

V̄ φ(t, x) ≤ ‖φ‖∞. (3.5)

For ε > 0, V̄
ε,φ
t := V̄

φ
t+ε defines the unique solution to (3.4) with C2 initial data V̄

φ
ε and evidently the solution is now

in C1,2([0,∞) ×R). Such strong solutions are known to be solutions of the mild equation (3.1) (see, e.g., the outline
following Proposition II.5.10 in [14] and use the above boundedness). We therefore have

V̄
φ
t+ε = St V̄

φ
ε −

∫ t

0
St−s

(
V̄

φ2
s+ε/2

)
ds for (t, x) ∈ [0,∞) ×R.



2404 T. Hughes and E. Perkins

It is easy to justify taking the limit pointwise as ε ↓ 0 (use (3.5)), which shows that V̄
φ
t solves the integral equation

(3.1). By uniqueness of solutions to (3.1) we conclude that V̄
φ
t = V

φ
t . We therefore have that for φ ∈ Bb+(R), there

exists a unique non-negative solution V
φ
t to (3.4) (also satisfying (3.1)) such that (3.2) and (3.3) hold.

For λ > 0, we denote by vλ
t the unique non-negative solution of

∂vt

∂t
= 1

2

∂2vt

∂x2
− v2

t

2
, for (t, x) ∈ (0,∞) ×R, vt

v→ λ1(−∞,0] = vλ
0 as t ↓ 0. (3.6)

Given the above discussion, we see vλ
t is also a solution of (3.1) with φ = λ1(−∞,0]. We will sometimes write

vλ
t (x) = vλ(t, x). By (3.3), translation invariance and symmetry, vλ

t satisfies for all t > 0,

vλ
t (x) =N0

(
1 − e−λXt ((−∞,−x])) =N0

(
1 − e−λXt ([x,∞))

)
. (3.7)

Similarly, by (3.2) we also have for t > 0,

EX
δ0

(
e−λXt ([x,∞))

) = e−vλ
t (x). (3.8)

It is an exercise to use uniqueness in (3.6) or scaling properties of super-Brownian motion to show that vλ satisfies the
following scaling relationship:

vλ(t, x) = rvλ/r (rt,
√

rx) ∀r, λ > 0. (3.9)

Take r = λ to see that

vλ(t, x) = λv1(λt,
√

λx) (3.10)

and r = 1/t to obtain

vλ(t, x) = t−1vλt
(
1, t−1/2x

)
. (3.11)

The following monotonicity properties are clear from (3.7).

Lemma 3.1. The map x → vλ
t (x) is decreasing in x, and λ → vλ

t (x) is increasing in λ.

We may let λ → ∞ in (3.7) and (3.8) and use Dominated Convergence (for this in (3.7), use the fact that
1 − e−λXt ([x,∞)) ≤ 1(Xt ([x,∞)) > 0), which is integrable with respect to N0) to see that vλ(t, x) ↑ v∞(t, x) as
λ ↑ ∞, where

v∞
t (x) =N0

(
Xt

([x,∞)
)
> 0

) = − log
(
P X

δ0

(
Xt

([x,∞)
) = 0

))
. (3.12)

Note that

v∞
t (x) =N0

(
Xt

([x,∞)
)
> 0

) ≤N0
(
Xt(1) > 0

) = 2/t, (3.13)

(see Theorem II.7.2(iii) of [14]) and in particular v∞
t is finite for t > 0.

Proposition 3.2. vλ
t (x) → v∞

t (x) uniformly on compact sets in (0,∞) ×R. In fact, there is uniform convergence for
(t, x) ∈ [a,∞) × [−R,R], for any a > 0 and R > 0.

Proof. Taking λ → ∞ in (3.11), we obtain that

v∞
t (x) = t−1v∞

1

(
t−1/2x

)
. (3.14)

This fact and (3.11) imply that

v∞
t (x) − vλ

t (x) = t−1[v∞
1

(
t−1/2x

) − vλt
1

(
t−1/2x

)]
.
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Let 0 < a,R. Then by the above, for t ≥ a we have

v∞
t (x) − vλ

t (x) ≤ a−1[v∞
1

(
t−1/2x

) − vλa
1

(
t−1/2x

)]
,

where we have used monotonicity in λ. Thus

sup
t≥a

sup
|x|≤R

v∞
t (x) − vλ

t (x) ≤ a−1 sup
t≥a

sup
|x|≤R

v∞
1

(
t−1/2x

) − vλa
1

(
t−1/2x

)
≤ a−1 sup

|x|≤a−1/2R

v∞
1 (x) − vλa

1 (x).

The continuity of v∞
1 (e.g., from (3.12)) and Dini’s Theorem imply that vλ

1 ↑ v∞
1 uniformly on compact sets, and the

result follows. �

Theorem 3.3. v∞
t (x) ∈ C1,2((0,∞) ×R) and is the unique non-negative solution to the PDE

(i)
∂vt

∂t
= 1

2

∂2vt

∂x2
− v2

t

2
on (t, x) ∈ (0,∞) ×R,

(ii) lim
t↓0

∫
U

v∞
t (x) dx = +∞ ∀U ⊆R open such that U ∩ (−∞,0] �= ∅, (3.15)

lim
t↓0

∫
K

v∞
t (x) dx = 0 ∀K ⊆ R compact such that K ⊂ (0,∞).

Proof. From Proposition 3.2 we have the local uniform convergence of vλ
t to v∞

t . The family {vλ
t } therefore satisfies

the conditions of Theorem 3.10 of [8], which shows that v∞(t, x) solves (3.15). Uniqueness follows by Theorem 3.5
of the same paper. �

Recall (see (1.20)) that G(x) = v∞
1 (x).

Lemma 3.4.

(a) For all t > 0, v∞
t (x) = t−1G(t−1/2x) for all x ∈ R.

(b) G > 0 and is decreasing.
(c) G ∈ C∞(R) and is the unique positive C2 solution to the ordinary differential equation

1

2
G′′(x) + x

2
G′(x) + G(x) − 1

2
G(x)2 = 0 (3.16)

with boundary conditions limx→∞ x2G(x) = 0, limx→−∞ G(x) = 2.
(d) There is a constant c3.4 such that:

(i)
G(x) ≤ c3.4|x|e−x2/2 ∀x > 2,

0 ≤ 2 − G(x) ≤ c3.4|x|e−x2/2 ∀x < −2.

(ii) G′ ≤ 0, and

∣∣G′(x)
∣∣ ≤ c3.4x

2e−x2/2 ∀x > 2,∣∣G′(x)
∣∣ ≤ c3.4e

−x2/2 ∀x ≤ 0.

Proof. (a) is a restatement of (3.14) and (b) is obvious from (3.12).
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(c) G = v∞
1 is C2 by Theorem 3.3. Noting that v∞

t (x) = t−1G(t−1/2x) solves (3.15)(i), we can use the chain rule
to see

− 1

t2
G

(
t−1/2x

) − 1

2t2

(
t−1/2x

)
G′(t−1/2x

) = 1

2t2
G′′(t−1/2x

) − 1

2t2
G

(
t−1/2x

)2

−G(y) − y

2
G′(y) = 1

2
G′′(y) − 1

2
G(y)2.

This proves that G solves (3.16). To see that it is C3, we note that when we solve (3.16) for G′′, the expression
is differentiable because G and G′ are differentiable. Proceeding by induction we see that G is C∞. The boundary
conditions will clearly follow from (d) below. It remains to prove uniqueness. Let H be any positive C2 solution of
(3.16) satisfying the given boundary conditions and set u(t, x) = t−1H(t−1/2x). Then, reversing the above steps one
easily sees that u is a C2 solution of (3.15)(i). Let 0 < a < b and choose t > 0 small enough so that y2H(y) < εa for
y ≥ at−1/2. Then

∫ b

a

v(t, x) dx = t−1/2
∫ b

a

H
(
t−1/2x

)
t−1/2 dx ≤ t−1/2

∫ ∞

at−1/2
H(y)dy

≤ εat−1/2
∫ ∞

at−1/2
y−2 dy

= ε.

This proves the second boundary condition in (3.15)(ii). The first boundary condition is even easier to establish. So
by the uniqueness in Theorem 3.3, H(x) = u(1, x) = v∞(1, x) = G(x).

(d)(i) To deduce the bound for positive x, we note that

G(x) =N0
(
X1

([x,∞)
)
> 0

)
≤N0

(
Xs

([x,∞)
)
> 0 for some s ≤ 1

)
≤ c2.3|x|e−x2/2,

for all x > 2, by Theorem 2.3(i). The lower bound on 2 − G(x) is immediate from (3.13) (for all x). For x < −2, we
have

2 − G(x) =N0
(
X1(1) > 0

) −N0
(
X1

([x,∞)
)
> 0

)
≤ N0

(
X1

(
(−∞, x]) > 0

)
≤ c2.3|x|e−x2/2, (3.17)

again using Theorem 2.3(i) and symmetry.
(ii) By (b) G′ ≤ 0. Now note that (3.16) can be rewritten as

(
ex2/2G′(x)

)′ = ex2/2G(x)
(
G(x) − 2

)
.

Integrating the above, for x0, x ∈R we get

G′(x) = e−x2/2
[
ex2

0/2G′(x0) +
∫ x

x0

ey2/2G(y)
(
G(y) − 2

)
dy

]
. (3.18)
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For x > x0 ≥ 2, both terms in the above are non-positive, and, if c is the provisional constant arising in (i), we can use
part (i) to deduce that

∣∣G′(x)
∣∣ ≤ e−x2/2

[
ex2

0/2
∣∣G′(x0)

∣∣ + 2c

∫ x

x0

|y|dy

]

≤ (
c1(x0) + c2x

2)e−x2/2 ≤ c′x2ex2/2

for x > 2. For x ≤ 0 = x0, we note that the integral in (3.18) has its sign reversed, so is positive. Because G′(x) ≤ 0,
|G′(x)| is bounded above by the absolute value of the first term in (3.18), which gives the required bound. �

Recall from Section 2.1 that if G is as above, then AG is the generator of a killed Ornstein–Uhlenbeck process with
killing function G, −λG

0 is its lead eigenvalue, and ψG
0 denotes its corresponding unit eigenfunction in L2(m).

Proposition 3.5. For some constant c3.5 > 0, ψG
0 (x) = −c3.5e

x2/2G′(x) with corresponding eigenvalue −λG
0 = −1.

Proof. Recall that G is the C∞ solution of (3.16). Rearranging the equation, we can write G′′(x) = −xG′(x) −
2G(x) + G(x)2. G is C∞, so we can differentiate again to obtain a new ODE.

1

2
G′′′ + 1

2
G′ + 1

2
xG′′ + G′ − 1

2
2GG′ = 0

⇐⇒ 1

2
G′′′ + 1

2
xG′′ + 3

2
G′ − GG′ = 0.

(3.19)

Let ψ(x) = ex2/2G′(x). Let us first observe that ψ ∈ L2(m) because∫
ψ(x)2 dm(x) = (2π)−1/2

∫
G′(x)2ex2/2 dx < ∞,

where the integral converges by Lemma 3.4(d)(ii). We compute the first and second derivatives of ψ :

ψ ′(x) = xex2/2G′(x) + ex2/2G′′(x)

and

ψ ′′(x) = x2ex2/2G′(x) + ex2/2G′(x) + xex2/2G′′(x) + xex2/2G′′(x) + ex2/2G′′′(x)

= x2ex2/2G′(x) + ex2/2G′(x) + 2xex2/2G′′(x) + ex2/2G′′′(x).

Using the above, we evaluate AGψ .

AGψ = 1

2
ψ ′′(x) − 1

2
xψ ′(x) − ψ(x)G(x)

= ex2/2
[

1

2
x2G′(x) + 1

2
G′(x) + xG′′(x) + 1

2
G′′′(x)

]

− ex2/2
[

1

2
x2G′(x) + 1

2
xG′′(x)

]
− ex2/2[G(x)G′(x)

]

= ex2/2
[

1

2
G′′′(x) + 1

2
xG′′(x) + 1

2
G′(x) − G(x)G′(x)

]

= ex2/2
[

1

2
G′′′(x) + 1

2
xG′′(x) + 3

2
G′(x) − G(x)G′(x)

]
− ex2/2G′(x)

= −ψ(x),
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where the last equality is due to (3.19). Moreover, G′(x) ≤ 0 for all x, so −ex2/2G′(x) ≥ 0, and we have already
seen that it is in L2(m). Therefore ψ is a non-positive eigenfunction of AG with eigenvalue −1. Clearly ψ cannot
be orthogonal to the lead eigenfunction ψG

0 > 0 (recall Theorem 2.1(a)). It follows that ψG
0 = −c3.5ψ for some

normalizing constant c3.5 > 0 and hence the corresponding lead eigenvalue is −1. �

The next result gives a bound on the left tail of the distribution of Xt([x,∞)) which will play an important role in
the proof of Proposition 1.5. We do not know what the “correct” power law behaviour is, but see the remark at the end
of this section for a possible answer.

Proposition 3.6. For 0 < p < 1/6 and t > 0 there is a constant C3.6 = C3.6(p, t) such that

P X
δ0

(
0 < Xt

([x,∞)
) ≤ 1

λ

)
≤ C3.6λ

−p for all x ∈R and λ > 0.

Proof. It clearly suffices to consider λ ≥ 1, which is assumed until otherwise indicated. Let 0 < p < 1/6 and ε =
ε(p) ∈ (0,1/6 − p). Assume we are working under a probability, P , for which H is a historical process defining the
super-Brownian motion X starting at δ0 and let Ft be the right-continuous completed filtration generated by H . E

will denote expectation with respect to P . Recall h(r), ρ(c) and δ(t, c) are as in (2.8) and (2.9). By (2.10) we may
choose c = c(p) large enough so that ρ(c)ε ≥ p and so by (2.9),

P
(
δ(t + 1, c) ≤ λ−ε

) ≤ C2.9(t + 1)λ−ερ(c) ≤ C2.9(t + 1)λ−p for all λ ≥ 1. (3.20)

By (II.5.11) and (II.5.12) of [14],

EX
X0

(
e−λXt (1)

) = exp

(−2λX0(1)

2 + λt

)
; P X

X0

(
Xt(1) = 0

) = exp
(−2X0(1)/t

)
, (3.21)

and so for λ ≥ 1,

P
(
0 < Xt(1) ≤ λ−1/6) ≤ eE

(
1
(
Xt(1) > 0

)
exp

(−λ1/6Xt(1)
))

= e

[
exp

( −2λ1/6

2 + λ1/6t

)
− exp(−2/t)

]

≤ 2e

[
1

t
− λ1/6

2 + λ1/6t

]

≤ 4et−2λ−1/6. (3.22)

Let

E = Ex,λ = {
0 < Xt

([x,∞)
) ≤ 1/λ, δ(t + 1, c) > λ−ε,Xt (1) > λ−1/6}.

Then by (3.20) and (3.22), it suffices to show

P(Ex,λ) ≤ C(t,p)λ−p for all x ∈R and λ ≥ 1. (3.23)

Assume for now that x ∈R and λ ≥ 1. Note that if τ(λ) = τλ−2/3
(t) (recall τ ε is as in (1.18)), then

on Ex,λ we have, − ∞ < τ(λ) < x and Xt

([
τ(λ),∞)) = λ−2/3. (3.24)

Introduce

E1
x,λ = E ∩ {

x − τ(λ) ≥ λ−1/6} and E2
x,λ = E ∩ {

x − τ(λ) < λ−1/6}.
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We consider E1 first. Set

β = 1

3
+ ε.

Then there is a λ = λ(c, ε, t) = λ(p, t) ≥ 1 such that

2ch
(
λ−β

)
< λ−1/6 and λ−β < t/2 for λ ≥ λ. (3.25)

Until otherwise indicated we will assume now that λ ≥ λ. Define

ζt−λ−β = inf
{
s ≥ 0 : Hs+t−λ−β

({
y : yt−λ−β ≥ x − ch

(
λ−β

)}) = 0
}
.

It follows from (2.13) that for u = 0 or λ−β ,

conditional on Ft−u, Zs = Ht−u+s

({
y : yt−λ−β ≥ x − ch

(
λ−β

)})
(s ≥ 0) is equal in law to

the Feller diffusion
(
Xs(1), s ≥ 0

)
starting at Ht−u

({
y : yt−λ−β ≥ x − ch

(
λ−β

)})
. (3.26)

Throughout this proof we will assume the Feller diffusion Xs(1) starts at x0 ≥ 0 under Px0 . On E1 we have
λ−β ≤ λ−ε < δ(t + 1, c) and so by the modulus of continuity (2.8),

Ht

({
y : yt−λ−β ≥ x − ch

(
λ−β

)}) ≥ Ht

({y : yt ≥ x}) = Xt

([x,∞)
)
> 0.

This implies that (use (3.26) with u = λ−β to see that Zs sticks at zero when it hits zero)

ζt−λ−β > λ−β on E1
x,λ. (3.27)

Now again use the modulus of continuity and then (3.25) to that on E1,

Ht

({
y : yt−λ−β ≥ x − ch

(
λ−β

)}) ≤ Ht

({
y : yt ≥ x − 2ch

(
λ−β

)})
≤ Xt

([x − λ−1/6,∞)
)

(by (3.25))

≤ Xt

([τ(λ),∞)
) (

since x − τ(λ) ≥ λ−1/6 on E1)
= λ−2/3,

the last by (3.24). Use the above fact that Ht({y : yt−λ−β ≥ x − ch(λ−β)}) ≤ λ−2/3 on E1 and condition on Ft (recall
(3.26) with u = 0) to conclude that

P
(
E1 ∩ {

ζt−λ−β > λ−β + λ−1/2}) ≤ E
(
1
(
Ht

({y : yt−λ−β ≥ x − ch
(
λ−β

)) ≤ λ−2/3)P(Zt+λ−1/2 > 0 |Ft )
)

≤ Pλ−2/3

(
Xλ−1/2(1) > 0

)
= 1 − exp

(
−2λ−2/3

λ−1/2

)
(by (3.21))

≤ 2λ−1/6. (3.28)

So (3.27) and (3.28) show that

P
(
E1 ∩ {

ζt−λ−β /∈ [
λ−β,λ−β + λ−1/2]}) ≤ 2λ−1/6 for λ ≥ λ(p, t). (3.29)

Let

M(ω) = Xt−λ−β

([x − ch
(
λ−β

)
,∞)

)
.
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If ζ = inf{s ≥ 0 : Xs(1) = 0} is the lifetime of the Feller diffusion Xs(1), then we may apply (3.26) with u = λ−β to
see that

P
(
ζt−λ−β ∈ [

λ−β,λ−β + λ−1/2]) = E
(
EM

(
ζ ∈ [

λ−β,λ−β + λ−1/2]))
= E

(
PM

(
Xλ−β+λ−1/2(1) = 0

) − PM

(
Xλ−β (1) = 0

))
= E

(
exp

( −2M

λ−β + λ−1/2

)
− exp

(−2M

λ−β

))
(by (3.21))

≤ E
(
exp

(−2M/
(
λ−β + λ−1/2))2M

)[
1/λ−β − 1/

(
λ−β + λ−1/2)]

= E
(
exp

(−2M/
(
λ−β + λ−1/2))2M/

(
λ−β + λ−1/2))[λ−1/2/λ−β

]
≤ λ−((1/2)−β) = λ−1/6+ε ≤ λ−p, (3.30)

where we have used supx≥0 xe−x = e−1 ≤ 1 in the last line. Combining (3.29) and (3.30) we arrive at

P
(
E1

x,λ

) ≤ 3λ−p for all λ ≥ λ(p, t), x ∈R.

This then implies that for some c3.31 = c3.31(p, t),

P
(
E1

x,λ

) ≤ c3.31(p, t)λ−p for all λ ≥ 1, x ∈R. (3.31)

Consider next E2 = E2
x,λ where for now λ ≥ 1 and of course x ∈ R. Recall that Us = sup(S(Xs)). On E2, we have

λ−5/6 ≤ λ−ε ≤ δ(t + 1, c) and so by the modulus of continuity (2.8),

P
(
E2 ∩ {

Ut+λ−5/6 ≥ x + ch
(
λ−5/6)}) ≤ P

(
E2 ∩ {

Ht+λ−5/6

({y : yt ≥ x}) > 0
})

≤ Pλ−1

(
Xλ−5/6(1) > 0

)
,

where we have used (2.13) with δ = 0, and Ht({y : yt ≥ x}) ≤ 1/λ on E in the last line. Now use (3.21) to see that the
above equals 1 − exp(−2λ−1λ5/6) ≤ 2λ−1/6, and so conclude that

P
(
E2 ∩ {

Ut+λ−5/6 ≥ x + ch
(
λ−5/6)}) ≤ 2λ−1/6 for all λ ≥ 1, x ∈ R. (3.32)

The modulus of continuity also implies

P
(
E2 ∩ {

Ut+λ−5/6 ≤ x − λ−1/6 − ch
(
λ−5/6)})

≤ P
(
E2 ∩ {

Ht+λ−5/6

({
y : yt ≥ x − λ−1/6}) = 0

})
≤ P

(
E2 ∩ {

Ht+λ−5/6

({
y : yt ≥ τ(λ)

}) = 0
}) (

recall x − τ(λ) < λ−1/6 on E2)
= Pλ−2/3

(
Xλ−5/6(1) = 0

) (
by (2.13) with δ = 0, and (3.24)

)
= exp

(−2λ−2/3

λ−5/6

)
= exp

(−2λ1/6) ≤ λ−1/6,

the last since λ ≥ 1. The above inequality and (3.32) imply that

P
(
E2 ∩ {

Ut+λ−5/6 /∈ (
x − λ−1/6 − ch

(
λ−5/6), x + ch

(
λ−5/6))}) ≤ 3λ−1/6 ∀λ ≥ 1, x ∈ R. (3.33)

Differentiate both sides of the scaling relationship in Lemma 3.4(a) and so get∣∣∣∣ ∂

∂x
v∞(t, x)

∣∣∣∣ ≤ t−3/2
∥∥G′∥∥∞. (3.34)
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If t ′ = t + λ−5/6, x1 = x − λ−1/6 − ch(λ−5/6), x2 = x + ch(λ−5/6), and λ ≥ λ(p, t), then

P
(
Ut ′ ∈ (x1, x2]) = P

(
Xt ′

([x2,∞)
) = 0

) − P
(
Xt ′

([x1,∞)
) = 0

)
= e

−v∞
t ′ (x2) − e

−v∞
t ′ (x1)

(
by (3.12)

)
≤ t−3/2

∥∥G′∥∥∞(x2 − x1)
(
by (3.34)

)
= t−3/2

∥∥G′∥∥∞
(
λ−1/6 + 2ch

(
λ−5/6))

≤ 2t−3/2
∥∥G′∥∥∞λ−1/6,

where in the last line we used (3.25). The above, together with (3.33), implies that

P
(
E2

x,λ

) ≤ (
2t−3/2

∥∥G′∥∥∞ + 3
)
λ−1/6 for all x ∈R, λ ≥ λ(p, t).

This in turn shows that for some c3.35(p, t),

P
(
E2

x,λ

) ≤ c3.35(p, t)λ−1/6 for all x ∈R, λ ≥ 1. (3.35)

Combining (3.31) and (3.35), we derive (3.23), as required. �

An easy consequence of the above is a rate of convergence of vλ to v∞ as λ → ∞. This will play an important role
in the proof of Theorem 1.2 given in the next section.

Proposition 3.7. For any 0 < p < 1/6 there is a C3.7(p) such that

sup
x

∣∣v∞
t (x) − vλ

t (x)
∣∣ ≤ C3.7(p)t−p−1λ−p for all λ, t > 0.

Proof. Let 0 < p < 1/6. By (3.8) and (3.12),

e−vλ
t (x) − e−v∞

t (x) = EX
δ0

(
e−λXt ([x,∞))1

(
Xt

([x,∞)
)
> 0

))
= EX

δ0

(∫ ∞

0
1
(
0 < Xt

([x,∞)
) ≤ u

)
e−λuλdu

)

≤ C3.6(p, t)

∫ ∞

0
upe−λuλdu (Proposition 3.6)

= �(p + 1)C3.6(p, t)λ−p. (3.36)

Recalling from (3.13) that v∞
t (x) ≤ 2/t , we also have

e−vλ
t (x) − e−v∞

t (x) ≥ e−v∞
t (x)

(
v∞
t (x) − vλ

t (x)
) ≥ e−2/t

(
v∞
t (x) − vλ

t (x)
)
. (3.37)

Combine (3.36) and (3.37) and set t = 1 to see that

sup
x

∣∣v∞
1 (x) − vλ

1 (x)
∣∣ ≤ e2�(p + 1)C3.6(p,1)λ−p.

The required relation is now immediate from the scaling relations (3.11) and Lemma 3.4(a). �

Remark. We do not believe p = 1/6 is sharp in any way. Theorem 1.5 of [10] studies solutions of

∂u

∂t
= 1

2

∂2u

∂x2
− u2

2
, u0 = λδ0.
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In particular this paper shows (via a Feynman–Kac argument) that for some 0 < C(K) ≤ C < ∞,

C(K)t−(1/2)−λ0λ−(2λ0−1) ≤ u∞
t (x) − uλ

t (x) ≤ Ct−(1/2)−λ0λ−(2λ0−1),

where λ0 = λF
0 (as in Theorem 1.1) and the lower bound is valid for λ ≥ t−1/2 and |x| ≤ K

√
t . So naively changing

uλ to vλ leads to replacing F = u∞
1 with G = v∞

1 , and one might think that (the t dependence is by scaling (3.11))

v∞
t (x) − vλ

t (x) ≈ Ct−2λG
0 λ−(2λG

0 −1) = Ct−2λ−1 as λ → ∞, (3.38)

where ≈ means bounded below and above for perhaps differing positive constants C. This rate does hold if x = −∞,
where (by (3.21) and (3.12))

v∞
t (−∞) − vλ

t (−∞) = 2

t
− 2λ

2 + λt
∼ 4t−2λ−1 as λ → ∞.

However the proof in [10] relies on the scaling of uλ, which differs from that of vλ. Moreover there is some evidence
that the convergence when x � 0 is slower. In fact a heuristic argument suggests that the correct rate at +∞ is given
by p = G(0) − 1 ∈ (0,1). The last upper bound is obvious because G(0) < G(−∞) = 2. For the lower bound on
G(0), note that by (3.12) we have G(0) =N0({X1([0,∞)) > 0}), so by symmetry,

2G(0) −N0
({

X1
([0,∞)

)
> 0

} ∩ {
X1

(
(−∞,0]) > 0

}) =N0
({

X1(1) > 0
}) = 2,

thus implying that G(0) > 1.

4. Proof of Theorem 1.2

We first establish a lower bound on the probability that Lt has positive mass at distances of order
√

t away from zero
under canonical measure. This follows readily from moment calculations in [5].

Lemma 4.1. There is a finite constant C4.1 and for all k ≥ 0, positive constants c4.1(k), such that for all t > 0 and
k ≥ 0,

N0
(
Lt

([k√
t,∞)

)2) ≤ N0
(
Lt(R)2) ≤ C4.1t

1−2λ0 , (4.1)

and

N0
({

Lt

([k√
t,∞)

)
> 0

} | Xt > 0
)
> c4.1(k). (4.2)

Proof. The first claim is immediate from Theorem A(d). The second claim is an easy application of the second
moment method as we now show. By Theorem A(b) the first moment of Lt([k√

t,∞)) is

N0
(
Lt

([k√
t,∞)

)) = CAt−λ0

∫
1(

√
tz ≥ k

√
t)ψ0(z) dm(z) = CAt−λ0

∫ ∞

k

ψ0 dm = c(k)t−λ0 ,

where c(k) > 0. Thus by the second moment method, we have

N0
({

Lt(k
√

t,∞) > 0
}) ≥ N0(Lt (k

√
t,∞))2

N0(Lt (k
√

t,∞)2)
≥ (c(k)t−λ0)2

C4.1t1−2λ0
=: 2c4.1(k)t−1.

Because Lt = 0 when Xt = 0 and N0({Xt > 0}) = 2/t , this implies that

N0
({

Lt(k
√

t,∞) > 0
} | Xt > 0

) ≥ c4.1(k). �

We begin the study of Xt near the upper edge of its support. Recall the notation τ ε(t) from (1.18) in the Introduc-
tion. We first obtain a preliminary upper bound for the mass of Xt near τ ε(t).
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Lemma 4.2. Let t, ε > 0 and u > 0. Then

N0

(∫ ∞

τ ε(t)−u

X(t, x) dx

)
≤ eEB

0

(
exp

{
−

∫ t

0
vε−1

s (Bs + u)ds

})
,

where B is a standard Brownian motion under P B
0 and vε−1

is as in (3.6). If X0 ∈ MF (R) \ {0}, then
EX

X0
(
∫ ∞
τ ε(t)−u

X(t, x) dx)/X0(1) is bounded by the same expression.

Proof. As t is fixed we will write τ ε for τ ε(t). We begin by examining N0(
∫ ∞
τ ε−u

X(t, x) dx). It is equal to

N0

(∫
1
(
x + u > τε

)
X(t, x) dx

)
=N0

(∫
1
(
Xt

([x + u,∞)
)
< ε

)
X(t, x) dx

)

≤ eN0

(∫
e−ε−1Xt ([x+u,∞))X(t, x) dx

)
.

(We note that the above is true when τ ε ∈ R and when τ ε = −∞, in which case Xt(x + u,∞) ≤ ε for all x ∈ R.) By
Theorem 4.1.3 of Dawson and Perkins [4] and translation invariance, the above is equal to

eEB
0

(
exp

(
−

∫ t

0
uε−1

t−s(Ws − Wt − u)ds

))
, (4.3)

where W is a standard Brownian motion under P B
0 and uλ

s (x) solves (3.6), but with uλ
0 = λ1[0,∞). Clearly uλ

t (x) =
vλ
t (−x) (vλ

t as in (3.6)). So if Bs = −Wt−s + Wt , a new standard Brownian motion under P B
0 , the above equals

eEB
0

(
exp

{
−

∫ t

0
uε−1

t−s(−Bt−s − u)ds

})
= eEB

0

(
exp

{
−

∫ t

0
vε−1

s (Bs + u)ds

})
. (4.4)

Consider next P X
X0

, for a non-zero initial condition X0. Then, as above, EX
X0

(
∫ ∞
τ ε+u

X(t, x) dx) equals

EX
X0

(∫
1
(
Xt

([x + u,∞)
)
< ε

)
X(t, x) dx

)
,

which by Theorem 4.1.1 of [4] is bounded by

∫∫
1
(
Xt

([x + u,∞)
)
< ε

)
dNx0 dX0(x0) ≤ X0(1)eEB

0

(
exp

{
−

∫ t

0
vε−1

s (Bs + u)ds

})
.

To obtain the left-hand side of the above, we have ignored the contribution to Xt from particles unrelated to the
individual selected at x by Xt (the quoted theorem in [4] giving the rigorous justification), and the inequality follows
from the bound (4.4) and the fact that the above calculation applies, where now W0 = x0, because B remains a
Brownian motion starting at 0. �

We can now give the proof of Proposition 1.5 (restated below for convenience). The quantity of interest is bounded
in terms of the survival probability of an Ornstein–Uhlenbeck process Y killed at rate G(Ys), for which we know the
lead eigenvalue is −1 by Proposition 3.5. This leads to the u2 term in the upper bound. Proposition 3.7 allows us to
make the approximations which lead to the eigenvalue problem.

Proposition 1.5. There is a non-increasing function, c1.5(t), such that for all t, ε > 0 and u > 0:

(a) For any X0 ∈MF (R), EX
X0

(
∫ ∞
τ ε(t)−u

X(t, x) dx) ≤ c1.5(t)X0(1)(u2 ∨ ε).

(b) N0(
∫ ∞
τ ε(t)−u

Xt (dx)) ≤ c1.5(t)(u
2 ∨ ε).
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Proof. The results are trivial if u > 1 so we may assume u ≤ 1. Suppose first that 1 ≥ u2 ≥ ε. By Lemma 4.2 it
suffices to show

EB
0

(
exp

{
−

∫ t

0
vε−1

s (Bs + u)ds

})
≤ c1.5(t)

(
u2 ∨ ε

)
. (4.5)

By the scaling relation (3.11) the left-hand side of the above equals

EB
0

(
exp

(
−

∫ t

0

1

s
vε−1s

1

(
Bs√

s
+ u√

s

)
ds

))
. (4.6)

We define Ŷs = e−s/2Bes , which defines a stationary Ornstein–Uhlenbeck process on R. As this process is reversible
with respect to its stationary measure m, Ys = Ŷ−s = es/2Be−s is also a stationary Ornstein–Uhlenbeck process. We
denote its expectation by EY . An exponential time change (s = e−ŝ ) shows that (4.6) is equal to

EY

(
exp

(
−

∫ ∞

− log t

vε−1e−ŝ

1

(
Yŝ + ueŝ/2))dŝ

)

= EY
m

(
exp

(
−

∫ ∞

0
vε−1te−s′

1

(
Ys′ + ut−1/2es′/2)ds′

))
. (4.7)

The equality follows from changing variables to s′ = ŝ + log t and the stationarity of Y . We next truncate the integral
and then add and subtract a v∞

1 term. This shows that if p ∈ (0,1/6), then (4.6) is at most

EY
m

(
exp

(
−

∫ log (1/u2)

0
vε−1te−s

1

(
Ys + ut−1/2es/2))ds

)

= EY
m

(
exp

(∫ log(1/u2)

0

(
v∞

1 − vε−1te−s

1

)(
Ys + ut−1/2es/2)ds

)

× exp

(
−

∫ log(1/u2)

0
v∞

1

(
Ys + ut−1/2es/2)ds

))

≤ EY
m

(
exp

(
C3.7(p)

∫ log(1/u2)

0

(
ε−1te−s

)−p
ds

)
exp

(
−

∫ log(1/u2)

0
v∞

1

(
Ys + ut−1/2es/2)ds

))
. (4.8)

The inequality follows by Proposition 3.7. Moreover, since u2 ≥ ε,

∫ log(1/u2)

0

(
ε−1te−s

)−p
ds = t−pεp

[
eps/p

]log(1/u2)

0 ≤ t−p

p

(
ε

u2

)p

≤ t−p

p
.

This bounds (4.6) above by

eC3.7t
−p/pEY

m

(
exp

(
−

∫ log(1/u2)

0
G

(
Ys + ut−1/2es/2)ds

))
, (4.9)

where C3.7 = C3.7(p) and we recall G = v∞
1 . Define �(s) by

�(s) = ∣∣G(Ys) − G
(
Ys + ut−1/2es/2)∣∣.

G′ is continuous and has limit 0 at ±∞, thus ‖G′‖∞ < ∞. By the Mean Value Theorem,

�(s) ≤ ∥∥G′∥∥∞t−1/2ues/2.
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Thus (4.9) is bounded above by

eC3.7t
−p/pEY

m

(
exp

(∫ log(1/u2)

0
�(s)ds

)
exp

(
−

∫ log(1/u2)

0
G(Ys) ds

))

≤ eC3.7t
−p/pEY

m

(
exp

(∥∥G′∥∥∞t−1/2u

∫ log(1/u2)

0
es/2 ds

)
exp

(
−

∫ log(1/u2)

0
G(Ys) ds

))

≤ eC3.7t
−p/p+2‖G′‖∞t−1/2

EY
m

(
exp

(
−

∫ log(1/u2)

0
G(Ys) ds

))
. (4.10)

Let c(t) = eC3.7t
−p/p+2‖G′‖∞t−1/2

. The remaining term is the probability that an Ornstein–Uhlenbeck process killed at
rate G(Ys) survives until time log(1/u2). If ρG is the lifetime of this process, we have bounded (4.6) by

c(t)EY
m

(
exp

(
−

∫ log(1/u2)

0
G(Ys) ds

))
= c(t)P Y

m

(
ρG > log

(
1/u2))

≤ c(t)Ce−λG
0 (log(1/u2)) = c1.5(t)u

2.

The inequality follows from (2.4) in Theorem 2.1(b) and the final equality is by Proposition 3.5 and setting c1.5(t) =
Cc(t). This completes the proof when u2 ≥ ε. If u2 < ε, we have for (b), say,

N0

(∫ ∞

τ ε−u

Xt (dx)

)
≤ N0

(∫ ∞

τ ε−√
ε

Xt (dx)

)
≤ c1.5(t)ε,

where the final inequality follows by applying the (u′)2 ≥ ε case with u′ = √
ε. The argument for (a) is the same. �

We are now ready to give the proof of Theorem 1.2. As suggested in the Introduction, the method of proof is
to decompose the measure Xt−δ into two measures, to the right and left of τ δ(t − δ). We then show that there is a
uniformly positive probability that, the measure to the right of τ δ(t − δ) produces positive mass (at time t ) in Lt on a
set far enough to the right that the mass from the measure to the left of τ δ(t − δ) does not interfere with it.

Proof of Theorem 1.2. First, consider P X
X0

. Let (Ft ) denote the usual completed right-continuous filtration generated
by the associated historical process, H . Fix t > 0. Let δn = 2−n and only consider n so that δn < t/2. We will show that
the martingale P X

X0
(Lt > 0 | Ft−δn) is bounded below by a positive number a.s. on {Xt > 0}, and so, as it converges

to 1{Lt>0} a.s., the latter must be 1 a.s. on {Xt > 0}.
Set τn = τ δn(t − δn), that is,

τn = inf
{
x ∈R : Xt−δn

([x,∞)
)
< δn

} ≥ −∞.

Now invoke the decomposition in (2.12) and (2.13) with τ = τn and δ = δn. That is, we define random measures by

XR
t−δn

(dx) = 1{x≥τn}Xt−δn(dx), XL
t−δn

(dx) = 1{x<τn}Xt−δn(dx), (4.11)

and define measure-valued processes by

X̂R
s (φ) = X̂R,τn,δn

s (φ) =
∫

φ(yt−δn+s)1(yt−δn ≥ τn)Ht−δn+s(dy),

X̂L
s (φ) = X̂L,τn,δn

s (φ) =
∫

φ(yt−δn+s)1(yt−δn < τn)Ht−δn+s(dy),

X̂s(φ) = X̂R
s (φ) + X̂L

s (φ)
(= Xt−δn+s(φ)

)
.
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Therefore by (2.12) and (2.13),

Xt = X̂δn = X̂R
δn

+ X̂L
δn

,where, conditional on Ft−δn , X̂R and X̂L are independent

super-Brownian motions with initial states XR
t−δn

and XL
t−δn

, respectively. (4.12)

Below we will argue conditionally on Ft−δn and hence work with this pair of independent super-Brownian motions,
X̂R and X̂L, with initial laws XR

t−δn
and XL

t−δn
. We apply the cluster decomposition (2.6) to each of these super-

Brownian motions to conclude

X̂R
δn

D=
NR∑
i=1

X̂
R,i
δn

, X̂L
δn

D=
NL∑
i=1

X̂
L,i
δn

, (4.13)

where NR is a Poisson r.v. with rate 2XR
t−δn

(1)/δn, NL is an independent Poisson r.v. with rate 2XL
t−δn

(1)/δn, and,

conditional on (NR,NL), the clusters {X̂R,i
δn

: i ≤ NR} are iid with law
∫
Nx(Xδn ∈ · | Xδn > 0)XR

t−δn
(dx)/XR

t−δn
(1)

and similarly {X̂L,i
δn

: i ≤ NL} are iid with law
∫
Nx(Xδn ∈ · | Xδn > 0)XL

t−δn
(dx)/XL

t−δn
(1). These last two collections

are also conditionally independent. (Note also that if XL
t−δn

= 0, say, then NL = 0 and so there are no clusters to

describe.) Let L̂R
δn

, L̂L
δn

and L̂δndenote the boundary local times of X̂R
δn

, X̂L
δn

and X̂δn , respectively. By (4.12) and
applying Theorem 2.2 conditionally on Ft−δn we have

L̂δn(dx) = 1{X̂L
δn

(x)=0}L̂
R
δn

(dx) + 1{X̂R
δn

(x)=0}L̂
L
δn

(dx). (4.14)

We also let L̂
R,i
δn

denote the boundary local time of X̂
R,i
δn

. If μ ⊗ ν denotes product measure, it follows that

P X
X0

(
Lt

([τn + 3
√

δn,∞)
)
> 0 |Ft−δn

)
= P X

X0

(
L̂δn

([τn + 3
√

δn,∞)
)
> 0 | Ft−δn

)
≥ P X

XR
t−δn

⊗ P X

XL
t−δn

(∫
1(x ≥ τn + 3

√
δn)1

(
X̂L

δn
(x) = 0

)
L̂R

δn
(dx) > 0

) (
by (4.12) and (4.14)

)
≥ P X

XR
t−δn

(
L̂R

δn

([τn + 3
√

δn,∞)
)
> 0

)
P X

XL
t−δn

(
X̂L

δn

([τn + 3
√

δn,∞)
) = 0

)
. (4.15)

Now work on {τn > −∞} ∈ Ft−δn and consider the first term in (4.15). In this case XR
t−δn

(1) = δn, and so NR is

Poisson with mean 2. Therefore by restricting to {NR = 1} and noting that in this case L̂R
δn

= L̂
R,1
δn

, we have

P X

XR
t−δn

(
L̂R

δn

([τn + 3
√

δn,∞)
)
> 0

)
≥ 2e−2P X

XR
t−δn

(
L̂R

δn

([τn + 3
√

δn,∞)
)
> 0 | NR = 1

)
= 2e−2

∫ ∞

τn

Nx

(
Lδn

([τn + 3
√

δn,∞)
)
> 0 | Xδn > 0

)
XR

t−δn
(dx)/δn

= 2e−2
∫ ∞

τn

N0
(
Lδn

([τn − x + 3
√

δn,∞)
)
> 0 | Xδn > 0

)
XR

t−δn
(dx)/δn

≥ 2e−2N0
(
Lδn

([3√
δn,∞)

)
> 0 | Xδn > 0

)
,

where the last line again uses XR
t−δn

(1) = δn on {τn > −∞}. Therefore Lemma 4.1 and (4.15) now imply that on
{τn > −∞},

P X
X0

(
Lt

([τn + 3
√

δn,∞)
)
> 0 |Ft−δn

) ≥ 2e−2c4.1(3)P X

XL
t−δn

(
X̂L

δn

([τn + 3
√

δn,∞)
) = 0

)
. (4.16)



Boundary of super-Brownian motion 2417

It remains to handle the final probability. We will consider events on which it has a uniform lower bound and which
will occur infinitely often in n. For K ∈N, define an event AK,n ∈Ft−δn by

AK,n =
{∫ ∞

3
we−w2/2Xt−δn

(
τn − (w − 3)

√
δn

)
dw ≤ K

√
δn

}
. (4.17)

(Note that the AK,n depends only on mass to the left of τn, and so the measure in the integral is equal to XL
t−δn

.)
Noting that Xt−δn(−∞) = 0, we see that {τn = −∞} ⊂ AK,n. On AK,n, we have the following lower bound on the
probability on the right-hand side of (4.16):

P X

XL
t−δn

(
X̂δn

([τn + 3
√

δn,∞)
) = 0

) ≥ e−c2.3K =: qK. (4.18)

To prove (4.18), first note it is trivial when τn = −∞, because in this case XL
t−δn

= 0. To see it when τn > −∞ we

apply Theorem 2.3(ii) with R = 3
√

δn and initial state XL
t−δn

, along with translation invariance and the change of
variables w = (τn + 3

√
δn − x)/

√
δn, to obtain (on AK,n)

P X

XL
t−δn

(
X̂δn

([τn + 3
√

δn,∞)
) = 0

)

≥ exp

(
−c2.3

∫ τn

−∞
(τn + 3

√
δn − x)−2

(
τn + 3

√
δn − x√

δn

)3

× exp
(−(τn + 3

√
δn − x)2/2δn

)
Xt−δn(x) dx

)

= exp

(
−c2.3

1√
δn

∫ ∞

3
we−w2/2Xt−δn

(
τn − (w − 3)

√
δn

)
dw

)

≥ e−c2.3K, (4.19)

which proves (4.18), with the final inequality using the fact that ω ∈ AK,n.
Let �K = {AK,n ∩ {τn > −∞} infinitely often in n}. That is,

�K =
∞⋂

M=1

⋃
n≥M

(
AK,n ∩ {τn > −∞}). (4.20)

By (4.16) and (4.18), for all ω ∈ �K , we have

P X
X0

(
Lt

([τn + 3
√

δn,∞)
)
> 0 |Ft−δn

) ≥ 2e−2c4.1(3)qK =: pK for infinitely many n.

It follows that

lim sup
n→∞

P X
X0

(Lt > 0 |Ft−δn) ≥ lim sup
n→∞

P X
X0

(
Lt

([τn + 3
√

δn,∞)
)
> 0 |Ft−δn

)
≥ pK a.s. on �K. (4.21)

Moreover, P X
X0

(Lt > 0 | Ft−δn) is a bounded martingale and converges a.s. to P X
X0

(Lt > 0 | Ft−). Because s → Xs

is a continuous map, we have Xt = Xt− and so Xt is measurable with respect to Ft− . Moreover, Lt is defined as a
measurable functional of Xt (recall Theorem A(a)). Thus we have

P X
X0

(Lt > 0 | Ft−δn) → P X
X0

(Lt > 0 | Ft−) = 1{Lt>0} a.s. (4.22)

By (4.21), this implies that 1{Lt>0}(ω) ≥ pK > 0 a.s. on �K , and hence

Lt > 0 almost surely on �K . (4.23)
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The final ingredient of the proof is to show that �K ↑ {Xt > 0} as K → ∞ a.s. We proceed by bounding the probability
of Ac

K,n. Using (4.17) and Markov’s inequality, we have

P X
X0

(
Ac

K,n

) = P X
X0

(
Ac

K,n ∩ {τn > −∞})
≤ 1

K
√

δn

EX
X0

(
1{τn>−∞}

∫ ∞

3
we−w2/2Xt−δn

(
τn − (w − 3)

√
δn

)
dw

)
. (4.24)

The first equality follows because Ac
K,n ⊆ {τn > −∞}. We proceed by integration by parts. For w > 3, define g(w)

by

g(w) = 1√
δn

Xt−δn

([
τn − (w − 3)

√
δn, τn

]) =
(∫ w

3
Xt−δn

(
τn − (u − 3)

√
δn

)
du

)
.

The last expression, which follows from a change of variables, makes it clear that

g′(w) = Xt−δn

(
τn − (w − 3)

√
δn

)
.

Clearly g(3) = 0. Taking f (w) = we−w2/2 and integrating by parts, on {τn > −∞} we have∫ ∞

3
we−w2/2Xt−δn

(
τn − (w − 3)

√
δn

)
dw

= [
f (w)g(w)

]∞
3 −

∫ ∞

3
f ′(w)g(w)dw

= 0 + 1√
δn

∫ ∞

3

(
w2 − 1

)
e−w2/2Xt−δn

([
τn − (w − 3)

√
δn, τn

])
dw.

We substitute this into (4.24) and exchange the order of integration (the integrand is positive) to obtain

P X
X0

(
Ac

K,n

) ≤ 1

δnK

∫ ∞

3

(
w2 − 1

)
e−w2/2P X

X0

(
1{τn>−∞}Xt−δn

([
τn − (w − 3)

√
δn, τn

]))
dw. (4.25)

We now note that the mass term appearing in the integral can be controlled by Proposition 1.5. We have for w ≥ 3

P X
X0

(
1{τn>−∞}Xt−δn

(
τn − (w − 3)

√
δn, τn

)) ≤ P X
X0

(∫ ∞

τn−√
δn(w−3)

Xt−δn(x) dx

)

≤ c1.5(t/2)X0(1)
(
δn + (

(w − 3)
√

δn

)2)
= c1.5(t/2)X0(1)δn

(
1 + (w − 3)2). (4.26)

The second inequality is by Proposition 1.5 and our initial assumption that δn < t/2. Using (4.26) in (4.25), we obtain
for n ≥ n0,

P X
X0

(
Ac

K,n

) ≤ c1.5(t/2)X0(1)

K

∫ ∞

3

(
w2 − 1

)(
1 + (w − 3)2)e−w2/2 dw = c0(t,X0(1))

K
=: c0

K
. (4.27)

This allows us to bound P X
X0

({Xt > 0} ∩ �c
K) as follows:

P X
X0

({Xt > 0} ∩ �c
K

) = lim
M→∞P X

X0

(
{Xt > 0} ∩

[ ∞⋂
n=M

Ac
K,n ∪ {τn = −∞}

])

≤ lim
M→∞P X

X0

(
{Xt > 0} ∩

[( ⋂
n≥M

Ac
K,n

)
∪

( ∞⋃
n=M

{τn = −∞}
)])
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≤ lim
M→∞P X

X0

(( ⋂
n≥M

Ac
K,n

)
∪

( ∞⋃
n=M

{τn = −∞} ∩ {Xt > 0}
))

≤
[

lim
M→∞P X

X0

(
Ac

K,M

)] + P X
X0

({
Xt(1) > 0

} ∩ {
Xt−δn(1) ≤ δn i.o.

})
≤ c0

K
. (4.28)

The second term vanishes because s → Xs(1) is continuous almost surely, and the bound on the first is by (4.27). We
therefore have that

P X
X0

({Xt > 0}\�K

) ≤ c0

K
, (4.29)

and hence for P X
X0

-almost all ω ∈ {Xt > 0}, ω ∈ �K for K sufficiently large. Here we also use the fact that �K is
increasing in K . This and (4.23) completes the proof that Lt > 0 a.s. on {Xt > 0}.

The claim that Lt((Ut − δ,Ut )) > 0 almost surely on {Xt > 0} now follows from two elementary lemmas, the
second of which is left as a standard exercise (a variant is known as Hunt’s Lemma).

Lemma 4.3. For all δ > 0, almost surely we have

lim sup
n→∞

1{Lt ([τn+3
√

δn,∞))>0} ≤ 1{Lt ((Ut−δ,Ut ))>0}. (4.30)

Lemma 4.4. Let (Fn)n∈N be an arbitrary filtration, F∞ the minimal σ -algebra containing Fn for all n, and let
{Yn}n∈N be a sequence of random variables such that |Yn| ≤ W for all n ∈ N for some integrable W . Then

lim sup
n

E(Yn |Fn) ≤ E
(

lim sup
n

Yn

∣∣ F∞
)
.

Lemma 4.3 is proved at the end of the section. First we see how they complete the proof of Theorem 1.2 for P X
X0

.
Applying (4.21) and the Lemmas, with Yn = 1{Lt ([τn+3

√
δn,∞))>0} in Lemma 4.4, we have

1{Lt ((Ut−δ,Ut ))>0} ≥ lim sup
n→∞

EX
X0

(1{Lt ([τn+3
√

δn,∞))>0} | Ft−δn)

≥ pK a.s. on �K.

So by (4.29), Lt((Ut − δ,Ut )) > 0 P X
X0

-a.s. on {Xt > 0}.

Proof of Lemma 4.3. We may work on {Xt > 0} as both sides are zero if Xt = 0. By Dominated Convergence we
have

lim
n→∞

∫ Ut

Ut−δ

Xt−δn(x) dx =
∫ Ut

Ut−δ

X(t, x) dx > 0 on {Xt > 0}.

This implies that for n large enough,
∫ Ut

Ut−δ
Xt−δn(x) dx > 2−n = δn, and so

τn + 3
√

δn > τn > Ut − δ for n large.

Therefore for n sufficiently large,

Lt

([τn + 3
√

δn,∞)
) ≤ Lt

(
(Ut − δ,∞)

) = Lt

(
(Ut − δ,Ut )

)
,

and the result follows. �
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This completes the proof of Theorem 1.2 under P X
X0

. To see that the same holds under N0, we apply the above result
with X0 = δ0. We may assume that Xt is defined by the right-hand side of the cluster decomposition (2.6). So Xt is
a sum of N ∼ Poisson(2/t) independent canonical clusters with law N0(Xt ∈ · | Xt > 0), and N = 1 with probability
2t−1e−2/t > 0. In particular we can condition on N = 1, which gives

N0
(
Xt

(
(Ut − δ,Ut )

)
> 0 for all δ > 0 | Xt > 0

)
= P X

δ0

(
Xt

(
(Ut − δ,Ut )

)
> 0 for all δ > 0 | N = 1

) = 1

by the result under P X
δ0

and the inclusion {N = 1} ⊂ {Xt > 0}. Thus the result also holds under N0. �

5. Localization

In this section we prove Theorem 1.3, which states that Lt has positive mass on any neighborhood of any point
in ∂S(Xt ) almost surely. The proof uses both decompositions from Section 2.2, Theorem 1.2, and the elementary
topological fact that if x ∈ ∂S(Xt ), there is a sequence of open “holes” in the support near x (Lemma 5.1 below).

Let dH denote the Hausdorff metric on non-empty compact subsets of R. That is, dH (K1,K2) = d0(K1,K2) +
d0(K2,K1), where d0(K1,K2) = inf{δ > 0 : K1 ⊂ Kδ

2} and Kδ
2 is the set of points which are less than distance δ from

K2.

Lemma 5.1. For x0 ∈ R, x0 ∈ ∂S(Xt ) if and only if there exists two sequences of non-empty open intervals Im and
Jm such that dH (Im, {x0}), dH (Jm, {x0}) → 0 as m → ∞, which satisfy Xt(·)|Im

= 0 and Xt(·)|Jm
> 0 for all m.

Proof. Let x0 ∈ ∂S(Xt ). A sequence (Jm)∞m=1 with the described conditions must exist because Xt(·) is continuous.
We know B(x0,2−m) �⊂ {Xt > 0} because x0 is not an interior point of {Xt > 0}. So we may choose an open interval
Im inside the non-empty open set B(x0,2−m) ∩ {Xt > 0}c which is contained in B(x0,2−m) ∩ {Xt = 0}, as required.
We leave the converse as an easy exercise. �

Proof of Theorem 1.3. We first work under P X
X0

and may assume Xt = Ht({yt ∈ ·}) where H is an associated
historical process. Let t > 0, q ∈Q, and δn = 2−n where we may consider only δn < t . We again use the decomposition
(2.12), now with τ = q and δ = δn, that is

X̂
L,q,δn
s (φ) =

∫
φ(yt−δn+s)1(yt−δn < q)Ht−δn+s(dy),

X̂
R,q,δn
s (φ) =

∫
φ(yt−δn+s)1(yt−δn ≥ q)Ht−δn+s(dy).

(5.1)

As X̂
L,q,δn
s + X̂

R,q,δn
s = Xt−δn+s , both X̂

L,q,δn
s and X̂

R,q,δn
s have densities, which we denote by X̂

L,q,δn
s (x) and

X̂
R,q,δn
s (x). Recall from (2.11) that X

L,q,δn

t−δn
(A) = Xt−δn(A ∩ (−∞, q)) and X

R,q,δn

t−δn
(A) = Xt−δn(A ∩ [q,∞)) for

measurable A ⊆ R. Let Ft be the usual right continuous, completed filtration generated by H . By (2.12) and (2.13),
we have

Xt = X̂
R,q,δn

δn
+ X̂

L,q,δn

δn
, and conditional on Ft−δn , X̂L,q,δn and X̂R,q,δn are independent

super-Brownian motions with initial laws X
L,q,δn

t−δn
and X

R,q,δn

t−δn
, respectively. (5.2)

Therefore by Theorem A, for each s > 0, X̂
R,q,δn
s and X̂

L,q,δn
s each have a boundary local time, which we denote by

L̂
R,q,δn
s and L̂

L,q,δn
s , respectively. By (5.2) and applying Theorem 2.2 conditionally on Ft−δn , we have the following

decomposition of Lt :

Lt(φ) =
∫

φ(x)1
(
X̂

R,q,δn

δn
(x) = 0

)
dL̂

L,q,δn

δn
(x) +

∫
φ(x)1

(
X̂

L,q,δn

δn
(x) = 0

)
dL̂

R,q,δn

δn
(x). (5.3)
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Now define Uq,δn = supS(X̂
L,q,δn

δn
). By (5.2) and an application Theorem 1.2, (conditionally on Ft−δn ) it follows that

L̂
L,q,δn

δn
((Uq,δn − δ,Uq,δn)) > 0 for all δ > 0 almost surely on {X̂L,q,δn

δn
> 0}. Taking a union over countable events,

we see this implies that

(∀n ∈ N,∀q ∈ Q, X̂
L,q,δn

δn
(1) > 0 ⇒ L̂

L,q,δn

δn

((
Uq,δn − δ,Uq,δn

))
> 0 ∀δ > 0

)
P X

X0
-a.s. (5.4)

The fact that S(L̂
R,q,δn

δn
) ⊂ ∂{x : X̂R,q,δn

δn
(x) > 0} implies that

X̂
R,q,δn

δn

((−∞,Uq,δn
)) = 0 ⇒ L̂

R,q,δn

δn

((−∞,Uq,δn
)) = 0 a.s.

Therefore by (5.3) and (5.4),

(∀n ∈ N,∀q ∈Q, X̂
L,q,δn

δn
(1) > 0 and X̂

R,q,δn

δn

((−∞,Uq,δn
)) = 0 imply

Lt

((
Uq,δn − δ,Uq,δn

)) = L̂
L,q,δn

δn

((
Uq,δn − δ,Uq,δn

))
> 0 ∀δ > 0

)
P X

X0
-a.s. (5.5)

Recall the definitions of h and K(c, δ) from Section 2.2 (see (2.7)). By the modulus of continuity for S(Ht ), (2.8), if
c > 2, then P X

X0
-a.a. ω, there exists δ = δ(c,ω) > 0 such that S(Ht ) ⊂ K(c, δ). Thus there exists �0 ⊂ � such that

P X
X0

(�c
0) = 0 and for all ω ∈ �0, the event in (5.5) and S(Ht ) ⊂ K(3, δ) for some δ(3,ω) > 0 both hold. Let ω ∈ �0.

Let a < b and suppose that (a, b) ∩ ∂S(Xt ) �= ∅. Then there exists x0 ∈ ∂S(Xt ) ∩ (a, b). By Lemma 5.1 there are
sequences (Im)∞m=1, (Jm)∞m=1 of non-empty open intervals converging to x0 with respect to dH such that Xt(·)|Im

= 0
and Xt(·)|Jm

> 0. Suppose Im = (am, bm) and Jm = (dm, em). Since Im,Jm → {x0}, we can consider m large enough

so that Im,Jm ⊂ (a, b). Without loss of generality we assume that Jm lies to the left of Im, ie. that em < am. (If Jm lies
to the right of Im, a symmetrical argument dealing with the left-hand endpoints Lr,δn of the supports of Xr,δn applies.)

Let I ′
m be the open middle third of Im, i.e., bm − am = lm and I ′

m = (am + lm/3, am + 2lm/3). Choose q ∈ Q∩ I ′
m

and n ∈ N large enough so that 3h(δn) < lm/3 and δn < δ(3,ω). By (5.1) and the modulus of continuity,

S
(
X̂

R,q,δn

δn

) ⊆ (
q − 3h(δn),∞

) ⊆ (am,∞),

and hence

X̂
R,q,δn

δn

(
(−∞, am]) = 0. (5.6)

Moreover, because (X̂
L,q,δn

δn
+ X̂

R,q,δn

δn
)(·) = Xt(·) > 0 on Jm = (dm, em), and em < am, we have that

X̂
L,q,δn

δn

(
(dm, am)

)
> 0. (5.7)

Furthermore, the modulus of continuity also implies that

S
(
X̂

L,q,δn

δn

) ⊆ (−∞, q + 3h(δn)
) ⊆ (−∞, bm),

where the last inclusion holds since 3h(δn) < lm/3 and q ∈ I ′
m. The above, together with Xt((am,bm)) = 0, im-

plies that S(X̂
L,q,δn

δn
) ⊆ (−∞, am]. This and (5.7) imply Uq,δn ∈ (dm, am] ⊂ (a, b). By (5.6) this implies that

X̂
R,q,δn

δn
((−∞,Uq,δn)) = 0 and so by (5.7) we may apply (5.5) and conclude that Lt((U

q,δn − δ,Uq,δn)) > 0 for

all δ > 0. Since Uq,δn ∈ (dm, am], choosing δ = (dm − a)/2 > 0 (the last by Jm ⊂ (a, b)) gives

(Uq,δn − δ,Uq,δn) ⊂ (a, b),

and hence Lt((a, b)) > 0. This proves the result for P X
X0

.
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To see that the same holds under N0, we proceed as in the proof of Theorem 1.2 and condition that the Poisson
number of clusters, N in (2.6), is one to get

N0
(
(a, b) ∩ ∂S(Xt ) �=∅⇒ Lt

(
(a, b)

)
> 0 | Xt > 0

)
= P X

δ0

(
(a, b) ∩ ∂S(Xt ) �=∅ ⇒ Lt

(
(a, b)

)
> 0 | N = 1

) = 1.

Thus, under N0 the result holds almost surely on {Xt > 0} for all rational a, b, and hence holds almost surely. �
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