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Abstract. We study lower and upper bounds for the probability that a diffusion process in R
n remains in a tube around a deter-

ministic skeleton path up to a fixed time. The diffusion coefficients σ1, . . . , σd may degenerate, but we assume that they satisfy
a strong Hörmander condition involving the first order Lie brackets around the skeleton of interest. The tube is written in terms
of a norm which accounts for the non-isotropic structure of the problem: in a small time δ, the diffusion process propagates with
speed

√
δ in the direction of the diffusion vector fields σj and with speed δ in the direction of [σi, σj ]. We first prove short-time

(non-asymptotic) lower and upper bounds for the density of the diffusion. Then, we prove the tube estimate using a concatenation
of these short-time density estimates.

Résumé. On étudie des bornes inférieures et supérieures pour la probabilité qu’un processus de diffusion dans Rn reste dans un
petit tube autour d’un squelette déterministe jusqu’à un temps fixé. Les coefficients de diffusion σ1, . . . , σd peuvent dégénérer,
mais on suppose qu’ils satisfont à une condition d’Hörmander forte sur les coefficients et leurs crochets de Lie de premier ordre
autour du squelette d’intérêt. Le tube est écrit en termes d’une norme qui prend en compte la structure non isotrope du problème:
en temps δ petit, le processus de diffusion se propage avec vitesse

√
δ dans la direction des vecteurs de diffusion σj et avec vitesse

δ dans la direction de [σi, σj ]. On prouve d’abord des bornes inférieures et supérieures en temps court (non asymptotiques) pour
la densité de la diffusion. Ensuite, on prouve l’estimée de tube en utilisant une concaténation de ces estimées de densité en temps
court.

MSC: Primary 60H07; 60H10; secondary 60H30
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1. Introduction

We consider a diffusion process in R
n solution to

dXt =
d∑

j=1

σj (t,Xt ) ◦ dW
j
t + b(t,Xt ) dt, X0 = x0, (1.1)

where W = (W 1, . . . ,Wd) is a standard Brownian motion and ◦dW
j
t denotes the Stratonovich integral. We assume

suitable regularity properties for σj , b : R+ × R
n → R

n and that the coefficients σj , b verify the strong Hörmander
condition of order one (that is, involving the σj ’s and their first order Lie brackets [σi, σj ]’s), locally around a skeleton
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path defined by

dxt (φ) =
d∑

j=1

σj

(
t, xt (φ)

)
φ

j
t dt + b

(
t, xt (φ)

)
dt, x0(φ) = x0,

where φ is a deterministic control. In such framework, we find exponential lower and upper bounds for the probability
that the diffusion X remains in a small tube around the skeleton path x(φ). We stress that all the regularity and non
degeneracy assumptions that we need are local, that is, for (t, x) belonging to a tube around the path xt (φ) (see next
(2.11) and (2.12)).

The present article was originally written as two separate preprints [4,5].
Several works have considered this subject, starting from Stroock and Varadhan in [30], where such result is used

to prove the support theorem for diffusion processes. In their work, the tube is written in terms of the Euclidean
norm, but later on different norms have been used to take into account the regularity of the trajectories [10,19] and
their geometric structure [27]. This kind of problems is also related to the Onsager-Machlup functional and large or
moderate deviation theory, see e.g. [14,20,21].

In this work, we construct the tube using a norm which reflects the non-isotropic structure of the problem: roughly
speaking, in a small time interval of length δ, the diffusion process moves with speed

√
δ in the direction of the

diffusion vector fields σj and with speed δ = √
δ × √

δ in the direction of [σi, σj ]. In order to capture the local
geometric structure around (t, x), we construct a matrix Aδ(t, x) based on

√
δσi(t, x) and [√δσi,

√
δσj ](t, x), i, j =

1, . . . , d (see next definition (2.8)), and use it to define a norm | · |Aδ(t,x).
We also consider, as in [23], the time-homogeneous case b(t, x) = b(x) and σ(t, x) = σ(x). In this case, we define

a semi-distance d via: d(x, y) <
√

δ if and only if |x − y|Aδ(x) < 1. We prove the local equivalence of d , the semi-
distance associated with the the matrix norm | · |Aδ , with the Carathéodory distance dc. This gives a rewriting of the
tube estimates in terms of the control distance as well.

A key step in proving our tube estimates is the proof of lower and upper bounds for the density of the solution to
(1.1) at a small (but not asymptotic) time, say δ, under the strong Hörmander condition of order one.

Let us give a hint on the main idea of our approach. Usually, when studying the short time behavior of the density
of a diffusion process, one employs a stochastic Taylor development of order one in order to isolate a principal term,
which is a Gaussian random variable of covariance matrix σσT (x). In the elliptic case, this matrix is non degenerated
and then, in short time, the density of Xt behaves as the density of σσT (x)�, where � is a standard normal random
variable. On the contrary, if we just assume the Hörmander’s condition, σ1(x), . . . , σn(x) do not span the whole space.
In this case we have to involve [σi, σj ](x),1 ≤ i < j ≤ n as well. This is a non trivial problem and we deal with it using
a decomposition which leads to a Gaussian random variable with a stochastic covariance matrix. In order to prove that
this matrix is non degenerated, we use a result due to Donati-Martin and Yor on the variance of the Brownian path [17].
In this context, the Brownian trajectory t → Wt appears as a control, and the fact that this trajectory has sufficiently
large variance gives the non degeneracy of our covariance matrix. The argument presented here seems to be new, when
compared to classical density estimates in hypoelliptic setting. In the context of a degenerate diffusion coefficient
which fulfills a strong Hörmander condition, the main result in this direction is due to Kusuoka and Stroock. In the
celebrated paper [23], they prove a two-sided Gaussian bound for the density in the control (Carathéodory) distance,
assuming that the coefficients do not depend on the time variable and that the drift is generated by the vector fields
of the diffusive part, which is a quite restrictive hypothesis. Other notable estimates for the heat kernel under strong
Hörmander conditions are provided in [11,12]. The subject has also been widely studied with analytical methods - see
for example [22,29]. We stress that these are asymptotic results, whereas we prove estimates for a finite, positive and
fixed time. Non-isotropic norms similar to the one used here have been used in [16,27] to provide density estimates for
SDEs under Hörmander conditions of weak type. We also refer to [15], which considers the existence of the density
for SDEs with time dependent coefficients, under very weak regularity assumptions.

In the present paper, we obtain the tube estimate from a concatenation of short-time density estimates, the fact
that our density estimates are not asymptotic being crucial. Examples of application of tube estimates can be found
in [7], where the authors prove tube estimates for locally elliptic diffusions; these estimates are then applied to find
lower bounds for the probability to be in a ball at fixed time and bounds for the distribution function. In [6], tube
estimates are applied to local-stochastic volatility models, finding estimates for the tails of the log-price distribution
and estimates on the implied volatility.
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The paper is organized as follows. In Section 2 we set-up the framework and give the precise statement of our main
results (Theorem 2.4 and 2.9). The lower bound for the density is proved in Section 3, the upper bound in Section 4.
The proof of the tube estimate is developed in Section 5. In Appendix A we study the local equivalence between the
control metric and our matrix norm. Some technical issues are postponed to the other appendices of the paper.

2. Notation and main results

2.1. Notations

Let W be a standard Brownian motion in R
d and let X denote the process in R

n already introduced in (1.1), that is

dXt =
d∑

j=1

σj (t,Xt ) ◦ dW
j
t + b(t,Xt ) dt, X0 = x0. (2.1)

Here, the vector fields σj , b : R+ × R
n → R

n are four time differentiable in x ∈ R
n and one time differentiable in

t ∈ R
+, and we suppose that the derivatives with respect to the space variable x ∈R

n are one time differentiable with
respect to the time variable t .

Hereafter, for k ≥ 1, α = (α1, . . . , αk) ∈ {1, . . . , n}k represents a multi-index with length |α| = k and ∂α
x =

∂xα1
· · · ∂xαk

. We allow the case k = 0 by setting α =∅ (the void multi-index), |α| = 0 and ∂α
x = Id.

For f,g : R+ × R
n → R

n we define the directional derivative (w.r.t. the space variable x) ∂gf (t, x) =∑n
i=1 gi(t, x)∂xi

f (t, x), and we recall that the Lie bracket (again w.r.t. the space variable) is defined as [g,f ](t, x) =
∂gf (t, x) − ∂f g(t, x).

Let M ∈ Mn×m be a matrix with full row rank. We write MT for the transposed matrix, and MMT is invertible.
We denote by λ∗(M) (respectively λ∗(M)) the smallest (respectively the largest) singular value of M . We recall that
singular values are the square roots of the eigenvalues of MMT , and that, when M is symmetric, singular values
coincide with the absolute values of the eigenvalues of M . In particular, when M is a covariance matrix, λ∗(M) and
λ∗(M) coincide with the smallest and the largest eigenvalues of M . We consider the following norm on R

n:

|y|M =
√〈(

MMT
)−1

y, y
〉
. (2.2)

We introduce the n × d2 matrix A(t, x) defined as follows. We set m = d2 and define the function

l(i,p) = (p − 1)d + i ∈ {1, . . . ,m}, p, i ∈ {1, . . . , d}. (2.3)

Notice that l(i,p) is invertible. For l = 1, . . . ,m, we set the (column) vector field Al(t, x) in R
n as follows:

Al(t, x) = [σi, σp](t, x) if l = l(i,p) with i 	= p,

= σi(t, x) if l = l(i,p) with i = p (2.4)

and we set the n × m matrix A(t, x) to be the one having A1(t, x), . . . ,Am(t, x) as its columns, that is

A(t, x) = [A1(t, x), . . . ,Am(t, x)
]
. (2.5)

We denote by λ(t, x) the smallest singular value of A(t, x), so

λ(t, x)2 = λ∗
(
A(t, x)

)2 = inf|ξ |=1

m∑
i=1

〈
Ai(t, x), ξ

〉2
. (2.6)

For fixed R > 0 we define the m × m diagonal scaling matrix DR as

(DR)l,l = R if l = l(i,p) with i 	= p,

= √
R if l = l(i,p) with i = p (2.7)
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and the scaled directional matrix

AR(t, x) = A(t, x)DR. (2.8)

Notice that the lth column of the matrix AR(t, x) is given by
√

Rσi(t, x) if l = l(i,p) with i = p, and if i 	= p then
the lth column of AR(t, x) is R[σi, σp](t, x) = [√Rσi,

√
Rσp](t, x).

This matrix and the associated norm | · |AR(·,·) in (2.2) are the tools that allow us to account of the different speeds
of propagation of the diffusion:

√
R (diffusive scaling) in the direction of σ and R in the direction of the first order

Lie brackets. In particular, straightforward computations easily give that

1√
Rλ∗(A(t, x))

|y| ≤ |y|AR(t,x) ≤ 1

Rλ∗(A(t, x))
|y|. (2.9)

2.2. Short-time density estimates

We suppose that the diffusion coefficients fulfill the following requests:

Assumption 2.1. There exists a constant κ > 0 such that, ∀t ∈ [0,1],∀x ∈R
n:

d∑
j=1

∣∣σj (t, x)
∣∣+ ∣∣b(t, x)

∣∣+ d∑
j=1

∑
0≤|α|≤2

∣∣∂α
x ∂tσj (t, x)

∣∣≤ κ
(
1 + |x|),

d∑
j=1

∑
1≤|α|≤4

∣∣∂α
x σj (t, x)

∣∣+ ∑
1≤|α|≤3

∣∣∂α
x b(t, x)

∣∣≤ κ.

Remark that Assumption 2.1 ensures the strong existence and uniqueness of the solution to (2.1). We do not assume
here ellipticity but a non degeneracy of Hörmander type:

Assumption 2.2. Let x0 denote the starting point of the diffusion X solving (2.1). We suppose that the smallest
eigenvalues of A at the initial condition satisfies

λ(0, x0) > 0.

Notice that Assumption 2.2 is actually equivalent to requiring that the first order Hörmander condition holds at the
starting point x0, i.e. the vector fields σi(0, x0), [σj , σp](0, x0), as i, j,p = 1, . . . , d , span the whole R

n. In particular,
it is known that under this assumption the law of Xt is absolutely continuous w.r.t. the Lebesgue measure, see [21,26].

We also consider the following assumption, as a stronger version of Assumption 2.1 (morally we ask for bounded-
ness instead of sublinearity of the coefficients, in the spirit of Kusuoka-Stroock estimates in [23]).

Assumption 2.3. There exists a constant κ > 0 such that for every t ∈ [0,1] and x ∈ R
n one has

∑
0≤|α|≤4

[∣∣∂α
x b(t, x)

∣∣+ d∑
j=1

∣∣∂α
x σj (t, x)

∣∣+ ∣∣∂α
x ∂tσj (t, x)

∣∣]≤ κ.

The first result of this paper is the following:

Theorem 2.4. Let Assumption 2.1 and 2.2 hold. Let pXt denote the density of Xt , t > 0, with starting condition
X0 = x0. Then the following statements hold.
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(1) There exist positive constants r, δ∗,C, depending on λ(0, x0) and κ , such that for every δ ≤ δ∗ and for every y

such that |y − x0 − b(0, x0)δ|Aδ(0,x0) ≤ r ,

1

C

√
detAδA

T
δ (0, x0)

≤ pXδ (y).

(2) For any p > 1, there exists a positive constant C, depending on λ(0, x0) and κ , such that for every δ ≤ 1 and
for every y ∈ R

n,

pXδ (y) ≤ 1√
detAδA

T
δ (0, x0)

× C

1 + |y − x0|pAδ(0,x0)

.

(3) If also Assumption 2.3 holds (boundedness of coefficients) there exists a constant C, depending on λ(0, x0)

and κ , such that for every δ ≤ 1 and for every y ∈R
n,

pXδ (y) ≤ C√
detAδA

T
δ (0, x0)

exp

(
− 1

C
|y − x0|Aδ(0,x0)

)
.

Remark 2.5. It might appear contradictory that the lower estimate (1) in Theorem 2.4 is centered in x0 + δb(0, x0),
whereas the upper estimates are centered in x0. In fact, this is important only for the lower bound, the upper bounds (2)
and (3) holding either if we write |y − x0 − δb(0, x0)|Aδ(0,x0) or |y − x0|Aδ(0,x0) (see next Remark 4.5). When proving
the tube estimate we are mostly interested in the diagonal density estimates, meaning the local estimate around the
drifted initial condition x0 + b(0, x0)δ.

For the application to the tube estimate it is also crucial that our results are not asymptotic, but hold uniformly for
δ small enough. Also notice that the upper bounds in (2) and (3) of Theorem 2.4 give the tail estimates, which are
exponential if we assume the boundedness of the coefficients, polynomial otherwise.

Remark 2.6. A global two-sided bound for the density of Xt is proved in [23], under the strong Hörmander non-
degeneracy condition. It is also assumed that the coefficients do not depend on time, i.e. b(t, x) = b(x), σ (t, x) =
σ(x), and that b(x) =∑d

j=1 αiσi(x), with αi ∈ C∞
b (Rn) (i.e. the drift is generated by the vector fields of the diffusive

part, which is a quite restrictive hypothesis). In the present paper, on the contrary, we allow for a general drift and time
dependence in the coefficients, but we consider only first order Lie brackets. Moreover, in Assumption 2.1, we also
relax the hypothesis of bounded coefficients. Anyway, the two estimates are strictly related, since our matrix norm is
locally equivalent to the Carathéodory control metric, as we discuss in Appendix A.

2.3. Tube estimates

For a control φ ∈ L2([0, T ],Rn) we consider the skeleton x(φ) associated to (2.1), that is,

dxt (φ) =
d∑

j=1

σj

(
t, xt (φ)

)
φ

j
t dt + b

(
t, xt (φ)

)
dt, x0(φ) = x0. (2.10)

In the following, we use a function R : [0, T ] → (0,1] that plays the role of radius function for the tube around
x(φ).

For (t, x) ∈R
+ ×R

n we denote by n(t, x) a constant such that

∀s ∈ [(t − 1) ∨ 0, t + 1
]
,∀y ∈ B(x,1) one has

4∑
|α|=0

(∣∣∂α
x b(s, y)

∣∣+ ∣∣∂t ∂
α
x b(s, y)

∣∣+ d∑
j=1

∣∣∂α
x σj (s, y)

∣∣+ ∣∣∂t ∂
α
x σj (s, y)

∣∣)≤ n(t, x). (2.11)
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We consider now a “regularity property” already introduced in [8], which is needed to control the growth of certain
quantities along the skeleton path. For μ ≥ 1 and 0 < h ≤ 1 we denote by L(μ,h) the following class of functions:

L(μ,h) = {f : R+ →R
+ such that f (t) ≤ μf (s) for |t − s| ≤ h

}
.

To prove the tube estimate, we make use of the following hypotheses: there exist some functions n : [0, T ] →
[1,∞) and λ : [0, T ] → (0,1] such that for some μ ≥ 1 and 0 < h ≤ 1 we have

(H1) n
(
t, xt (φ)

)≤ nt , ∀t ∈ [0, T ],
(H2) λ

(
t, xt (φ)

)≥ λt , ∀t ∈ [0, T ],
(H3) R., |φ.|2, n., λ. ∈ L(μ,h).

(2.12)

Recall that φ ∈ L2([0, T ],Rn) is the control giving the skeleton path and R : [0, T ] → (0,1] stands for the radius
function. Notice that the functions nt and λt depend on the control φ through (2.12).

Remark 2.7. Hypothesis (H2) implies that for each t ∈ (0, T ), the space R
n is spanned by the vectors (σi(t, xt (φ)),

[σj , σp](t, xt (φ)))i,j,p=1,...,d,j<p , meaning that a strong Hörmander condition holds locally along the curve xt (φ).

Remark 2.8. Hypotheses (2.11) and (2.12) are local assumptions around the skeleton path xt (φ), t ∈ [0, T ], in the
sense that inequality (2.11) concerns (s, y) with s ∈ [(t − 1) ∨ 0, t + 1] and y ∈ B(x,1) with x = xt (φ). In particular
we do not assume any Lipschitz or global growth conditions, so it is not guaranteed that a unique strong solution to
equation (2.1) exists. In the following, X is just a process that satisfies (2.1) on the time interval [0, T ].

For K,q > 0, μ ≥ 1, h ∈ (0,1], n : [0, T ] → [1,+∞), λ : [0, T ] → (0,1] and φ ∈ L2([0, T ],Rn), we set the
functions

Ht = K

(
μnt

λt

)q

,

R∗
t (φ) = exp

(
−K

(
μnt

λt

)q/3)(1

h
+ |φ|2t

)−1
(2.13)

The main result of this paper is the following:

Theorem 2.9. Let μ ≥ 1, h ∈ (0,1], n : [0, T ] → [1,+∞), λ : [0, T ] → (0,1], R : [0, T ] → (0,1] and φ ∈
L2([0, T ],Rn) be such that (H1)–(H3) in (2.12) hold. Then there exist K,q such that, for H as in (2.13),

exp

(
−
∫ T

0
Ht

(
1

Rt

+ 1

h
+ |φt |2

)
dt

)
≤ P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
)
.

Moreover, there exist K,q such that, for H and R∗· (φ) as in (2.13), if Rt ≤ R∗
t (φ) for every t ∈ [0, T ], one has

P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
)

≤ exp

(
−
∫ T

0

e−Ht

Rt

+ 1

Ht

(
1

h
+ |φt |2

)
dt

)
.

Remark 2.10. The estimates in Theorem 2.9 allow for a regime shift, meaning that the dimension of the space
generated by the σi ’s and the [σi, σj ]’s may change along the tube, and this is accounted by the variation of AR along
xt (φ).

Remark 2.11. The fact that R ∈ L(μ,h) implies that inft∈[0,T ] Rt > 0. So, the radius of the tube is small, but cannot
go to 0 at any time. Notice also that the upper bound in Theorem 2.9 only holds for small Rt ≤ R∗

t (φ). This depends
on the fact that, to obtain an upper bound, we need to be able to use our density estimate on the whole tube. For
the lower bound it is enough that the density estimate holds on a smaller tube, contained in the one that we mean to
estimate. For this reason, in this case the estimate holds for all t → Rt ≤ 1.
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Remark 2.12. Let us look at the lower bound. If Rt is large enough (for every t ∈ [0, T ]), meaning Rt ≥ ( 1
h
+|φt |2)−1,

then 1
Rt

≤ ( 1
h

+ |φt |2) and the significant contribution in the exponential is given by h (regularity parameter) and the

energy
∫ T

0 |φt |2 dt . Something similar also holds for the lower bound: if Rt is large enough, meaning Hte
−Ht ( 1

h
+

|φt |2)−1 ≤ Rt ≤ R∗
t (φ), then e−Ht

Rt
≤ 1

Ht
( 1
h

+ |φt |2) and the significant contribution is given by h and
∫ T

0 |φt |2 dt . In
what follows we give also explicit examples where the significant contribution comes from the radius R.

Remark 2.13. Suppose Xt = Wt and x(φ) = 0, so that nt = 1, λt = 1, μ = 1 and φt = 0. Take Rt = R constant. Then
|Xt − xt (φ)|AR(t,xt (φ)) = R−1/2Wt and we obtain exp(−C1T/R) ≤ P(supt≤T |Wt | ≤

√
R) ≤ exp(−C2T/R) which is

consistent with the standard estimate (see [21]).

Let us suppose now, as in [23], σ(t, x) = σ(x). We recall that we have defined the semi-distance d through
d(x, y) <

√
R if |x − y|AR(x) < 1. We prove in Appendix A the local equivalence of d and the Carathéodory dis-

tance dc. Such equivalence allows us to state Theorem 2.9 in the control metric:

Theorem 2.14. Suppose that the diffusion coefficients σj , j = 1, . . . , d , in (2.1) depend on the space variable x only
and that the hypotheses of Theorem 2.9 hold. Then, denoting dc the Carathéodory distance, we have that there exist
K,q such that, for H as in (2.13),

exp

(
−
∫ T

0
Ht

(
1

Rt

+ 1

h
+ |φt |2

)
dt

)
≤ P

(
sup
t≤T

dc

(
Xt, xt (φ)

)≤√Rt

)
.

Moreover, there exist K,q such that, for H and R∗· (φ) as in (2.13), if Rt ≤ R∗
t (φ) for every t ∈ [0, T ], one has

P

(
sup
t≤T

dc

(
Xt, xt (φ)

)≤√Rt

)
≤ exp

(
−
∫ T

0

e−Ht

Rt

+ 1

Ht

(
1

h
+ |φt |2

)
dt

)
.

We present now two examples of application.

Example 1 (Grushin diffusion). Consider a positive, fixed R and the two dimensional diffusion process

X1
t = x1 + W 1

t , X2
t = x2 +

∫ t

0
X1

s dW 2
s .

Here

ARAT
R(x) =

(
R 0
0 R(x2

1 + 2R)

)
,

so the associated norm is |ξ |2AR(x) = ξ2
1
R

+ ξ2
2

R(x2
1+2R)

. On {x1 = 0}, |ξ |2AR(x) = ξ2
1
R

+ ξ2
2

2R2 and consequently {ξ : |ξ |AR(x) ≤
1} is an ellipsoid.

If we take a path x(t) with x1(t) which keeps far from zero then we have ellipticity along the path and we may
use estimates for elliptic SDEs (see [7]). If x1(t) = 0 for some t ∈ [0, T ] we need our estimate. Let us compare the
norm in the two cases: if x1 > 0 the diffusion matrix is non-degenerate and we can consider the norm |ξ |BR(x) with
BR(x) = Rσ(x). We have

|ξ |2BR(x) = 1

R
ξ2

1 + 1

Rx2
1

ξ2
2 ≥ 1

R
ξ2

1 + 1

R(x2
1 + 2R)

ξ2
2 = |ξ |2AR(x),
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and the two norms are equivalent for R small. Let us now take xt (φ) = (0,0). We have ns = 1 and λs = 1. Let
It (W) = ∫ t

0 W 1
s dW 2

s . With this notation, Xt − xt (φ) = (W 1
t , It (W)) and using a scaling argument, we obtain

e−C1T/R ≤ P

(
sup

t≤T/R

{∣∣W 1
t

∣∣2 + |It (W)|2
2

}
≤ 1

)

= P

(
sup
t≤T

{
1

R

∣∣W 1
t

∣∣2 + |It (W)|2
2R2

}
≤ 1

)
= P

(
sup
t≤T

|Xt − xt |2AR(xt )
≤ 1
)

≤ e−C2T/R.

Example 2 (Principal invariant diffusion on the Heisenberg group). Consider on R
3 the vector fields ∂x1 − x2

2 ∂x3

and ∂x2 − x1
2 ∂x3 . The associated Markov process is the triple given by a Brownian motion on R

2 and its Lévy area,
that is

X1
t = x1 + W 1

t , X2
t = x2 + W 2

t , X3
t = x3 + 1

2

∫ t

0
X1

s dW 2
s − 1

2

∫ t

0
X2

s dW 1
s .

We refer e.g. to [1,18,24], where gradient bounds for the heat kernel are obtained, and [9]. Since the diffusion is in
dimension n = 3 and the driving Brownian in dimension d = 2, ellipticity cannot hold. Direct computations give

σ1(x) =
⎛⎝ 1

0
− x2

2

⎞⎠ , σ2(x) =
⎛⎝ 0

1
x1
2

⎞⎠ , [σ1, σ2](x) = ∂σ1σ2 − ∂σ2σ1 =
⎛⎝0

0
1

⎞⎠ .

Therefore σ1(x), σ2(x), [σ1, σ2](x) span R
3 and hypoellipticity holds. In x = 0 we have |ξ |2AR(0) = ξ2

1 +ξ2
2

R
+ ξ2

3
2R2 , so

taking the control φ ≡ 0 and denoting At(W) = 1
2

∫ t

0 X1
s dW 2

s − 1
2

∫ t

0 X2
s dW 1

s (the Lévy area), we obtain

P

(
sup

t≤T/R

{∣∣W 1
t

∣∣2 + ∣∣W 2
t

∣∣2 + |At(W)|2
2

}
≤ 1

)
= P

(
sup
t≤T

{ |W 1
t |2 + |W 2

t |2
R

+ |At(W)|2
2R2

}
≤ 1

)
= P

(
sup
t≤T

|Xt |2AR(xt (φ)) ≤ 1
)
.

Appling our estimate we have

e−C1T/R ≤ P

(
sup

t≤T/R

{∣∣W 1
t

∣∣2 + ∣∣W 2
t

∣∣2 + |At(W)|2
2

}
≤ 1

)
≤ e−C2T/R.

3. Lower bound for the density

We study here the lower bound for the density of Xδ .

3.1. The key-decomposition

We start with the decomposition of the process that will allow us to prove the lower bound in short (but not asymptotic)
time.

We first use a development in stochastic Taylor series of order two of the diffusion process X defined through (2.1).
This gives

Xt = x0 + Zt + b(0, x0)t + Rt , (3.1)
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where

Zt =
d∑

i=1

aiW
i
t +

d∑
i,j=1

ai,j

∫ t

0
Wi

s ◦ dW
j
s

with ai = σi(0, x0), ai,j = ∂σi
σj (0, x0) (3.2)

and

Rt =
d∑

j,i=1

∫ t

0

∫ s

0

(
∂σi

σj (u,Xu) − ∂σi
σj (0, x0)

) ◦ dWi
u ◦ dW

j
s

+
d∑

i=1

∫ t

0

∫ s

0
∂bσi(u,Xu)du ◦ dWi

s +
d∑

i=1

∫ t

0

∫ s

0
∂uσj (u,Xu)du ◦ dWi

s

+
d∑

i=1

∫ t

0

∫ s

0
∂σi

b(u,Xu) ◦ dWi
u ds +

∫ t

0

∫ s

0
∂bb(u,Xu)duds.

Since Rt = O(t3/2), we expect the behavior of Xt and Zt to be somehow close for small values of t . Our first goal is
to give a decomposition for Zt in (3.2). We start introducing some notation. We fix δ > 0 and set

sk(δ) = k

d
δ, k = 1, . . . , d.

We now consider the following random variables: for i, k = 1, . . . , d ,

�i
k(δ,W) = Wi

sk(δ)
− Wi

sk−1(δ)
, �

i,j
k (δ,W) =

∫ sk(δ)

sk−1(δ)

(
Wi

s − Wi
sk−1(δ)

) ◦ dW
j
s . (3.3)

Notice that �
i,j
k (δ,W) is the Stratonovich integral, but for i 	= j it coincides with the Itô integral. When no confusion

is possible we use the short notation sk = sk(δ),�
i
k = �i

k(δ,W),�
i,j
k = �

i,j
k (δ,W). We also denote the random

vector �(δ,W) in R
m

�l(δ,W) = �
i,p
p (δ,W) if l = l(i,p) with i 	= p,

= �
p
p(δ,W) if l = l(i,p) with i = p. (3.4)

(recall l(i,p) in (2.3)). Moreover, with
∑d

l>p =∑d
p=1

∑d
l=p+1, we define

V (δ,W) =
d∑

p=1

[∑
i 	=p

�i
p +

∑
i 	=j,i 	=p,j 	=p

ai,j�
i,j
p +

d∑
l=p+1

∑
i 	=p

∑
j 	=l

ai,j�
j
l �

i
p + 1

2

∑
i 	=p

ai,i

∣∣�i
p

∣∣2];

εp(δ,W) =
d∑

l>p

∑
j 	=l

ap,j�
j
l +

d∑
p>l

∑
j 	=l

aj,p�
j
l +

∑
j 	=p

ap,j�
j
p, p = 1, . . . , d;

ηp(δ,W) = 1

2
ap,p

∣∣�p
p

∣∣2 +
d∑

l>p

ap,l�
l
l�

p
p + �

p
pεp(δ,W), p = 1, . . . , d.

(3.5)

We have the following decomposition:



Tube estimates for diffusions under a local strong Hörmander condition 2329

Lemma 3.1. Let �(δ,W) and A(0, x0) be given in (3.4) and (2.5) respectively. One has

Zδ = V (δ,W) + A(0, x0)�(δ,W) + η(δ,W), (3.6)

where V (δ,W) is given in (3.5) and η(δ,W) =∑d
p=1 ηp(δ,W), ηp(δ,W) being given in (3.5).

The proof of Lemma 3.1 is quite long, so it is postponed to Appendix B.

Remark 3.2. The reason of this decomposition is the following. We split the time interval (0, δ) in d sub intervals of
length δ/d . We also split the Brownian motion in corresponding increments: (W

p
s −W

p
sk−1)sk−1≤s≤sk , p = 1, . . . , d . Let

us fix p. For s ∈ (sp−1, sp) we have the processes (Wi
s −Wi

sp−1
)sp−1≤s≤sp , i = 1, . . . , d . Our idea is to settle a calculus

which is based on Wp and to take conditional expectation with respect to Wi, i 	= p. So (Wi
s −Wi

sp−1
)sp−1≤s≤sp , i 	= p

will appear as parameters (or controls) which we may choose in an appropriate way. The random variables on which
the calculus is based are �

p
p = W

p
sp −W

p
sp−1 and �

i,p
p = ∫ sp

sp−1
(Wi

s −Wi
sp−1

) dW
p
s , i 	= p. These are the r.v. that we have

emphasized in the decomposition of Zδ . Notice that, conditionally to the controls (Wi
s − Wi

sp−1
)sp−1≤s≤sp , i 	= p, this

is a centered Gaussian vector. Under appropriate hypotheses on the controls, its covariance matrix is non degenerate.
This a non trivial matter: notice that Wi

s −Wi
sp−1

are Brownian trajectories, so our goal is to find a subset of the Wiener
space which has strictly positive probability and such that the corresponding paths give a non degenerate covariance
matrix (see Qp in next formula (3.8)). We treat in Appendix C the problem of the choice of the controls. The argument
is based on a result in [17] concerning the variance of the Brownian path.

Remark 3.3. As we mentioned in Remark 3.2, the central idea in this paper is to isolate a Gaussian random variable
which represents the principal term of the short time behavior. Then, we employ it in order to make our analysis. The
same strategy has already been used in [8] and in [27] in the framework of degenerate diffusion processes satisfying a
weak Hörmander condition. The construction of the Gaussian principal term was completely different (and much less
involved) there.

We now emphasize the scaling in δ in the random vector �(δ,W). We define Bt = δ−1/2Wtδ and denote


l = 1

δ
�

i,p
p =

∫ p
d

p−1
d

(
Bi

s − Bi
p−1

d

)
dB

p
s if l = l(i,p) with i 	= p,

= 1√
δ
�

p
p = B

p
p
d

− B
p
p−1

d

if l = l(i,p) with i = p,

l(i,p) being given in (2.3). For p = 1, . . . , d we denote with 
(p) the pth block of 
 with length d , that is


(p) = (
(p−1)d+1, . . . ,
pd),

so that 
 = (
(1), . . . ,
(d)). We will also denote

l(p) = l(p,p) = (p − 1)d + p and 
l(p) = 1√
δ
�

p
p. (3.7)

Consider now the σ field

G := σ
(
W

j
s − W

j

sp−1(δ)
, sp−1(δ) ≤ s ≤ sp(δ),p = 1, . . . , d, j 	= p

)
.
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Then conditionally to G the random variables 
(p),p = 1, . . . , d are independent centered Gaussian d dimensional
vectors and the covariance matrix Qp of 
(p) is given by

Q
p,j
p = Q

j,p
p =

∫ p
d

p−1
d

(
B

j
s − B

j
p−1

d

)
ds, j 	= p,

Q
i,j
p =

∫ p
d

p−1
d

(
B

j
s − B

j
p−1

d

)(
Bi

s − Bi
p−1

d

)
ds, j 	= p, i 	= p,

Q
p,p
p = 1

d
.

(3.8)

It is easy to see that detQp 	= 0 almost surely. It follows that conditionally to G the random variable 
 =
(
(1), . . . ,
(d)) is a centered m = d2 dimensional Gaussian vector. The explicit density of 
 represents the main
instrument in our analysis. Its covariance matrix Q is a block-diagonal matrix built with Qp,p = 1, . . . , d :

Q =
⎛⎜⎝Q1

. . .

Qd

⎞⎟⎠ . (3.9)

In particular detQ = ∏d
p=1 detQp 	= 0 almost surely, and λ∗(Q) = minp=1,...,d λ∗(Qp). We also have λ∗(Q) =

maxp=1,...,d λ∗(Qp). We will need to work on subsets where we have a quantitative control of this quantities, so
we will come back soon on these covariance matrices. But let us show now how one can rewrite decomposition (3.6)
in terms of the random vector 
. As a consequence, the scaled matrix Aδ = Aδ(0, x0) in (2.8) will appear.

We denote by Ai
δ ∈R

m, i = 1, . . . , n the rows of the matrix Aδ . We also denote S = 〈A1
δ , . . . ,A

n
δ 〉 ⊂ R

m and S⊥ its
orthogonal. Under Assumption 2.2 the columns of Aδ span R

n so the rows A1
δ , . . . ,A

n
δ are linearly independent and

S⊥ has dimension m−n. We take �i
δ, i = n+1, . . . ,m to be an orthonormal basis in S⊥ and we denote �i

δ = Ai
δ(0, x0)

for i = 1, . . . , n. We also denote �δ the (m − n) × m matrix with rows �i
δ, i = n + 1, . . . ,m. Finally we denote by �δ

the m × m dimensional matrix with rows �i
δ, i = 1, . . . ,m. Notice that

�δ�
T
δ =

(
AδA

T
δ (0, x0) 0
0 Idm−n

)
, (3.10)

where Idm−n is the identity matrix in R
m−n. It follows that for a point y = (y(1), y(2)) ∈ R

m with y(1) ∈ R
n, y(2) ∈

R
m−n we have

|y|2�δ
= |y(1)|2Aδ(0,x0)

+ |y(2)|2,

where we recall that |y|2�δ
= 〈(�δ�

T
δ )−1y, y〉. For a ∈ R

m we define the immersion

Ja : Rn →R
m,

(
Ja(z)

)
i
= zi, i = 1, . . . , n and

(
Ja(z)

)
i
= 〈�i

δ, a
〉
, i = n + 1, . . . ,m.

In particular J0(z) = (z,0, . . . ,0) and

|J0z|�δ = |z|Aδ(0,x0).

Finally we denote

Vω = V (δ,W),

ηω(
) =
d∑

p=1

(
ap,p

2
δ
2

l(p) + δ1/2
l(p)εp(δ,W) +
d∑

q>p

ap,qδ
l(q)
l(p)

)
,

(3.11)
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where V (δ,W) and εp(δ,W) are defined in (3.5) and 
l(p) is given in (3.7). We notice that ηω(
) =∑d
p=1 ηp(δ,W),

ηp(δ,W) being defined in (3.5). We also remark that both V (δ,W) and εp(δ,W) are G-measurable, so (3.11) stresses
a dependence on ω which is G-measurable and a dependence on the random vector 
 whose conditional law w.r.t. G
is Gaussian.

Now the decomposition (3.6) may be written as

Zδ = Vω + Aδ(0, x0)
 + ηω(
).

We embed this relation in R
m and obtain

J
(Zδ) = J0(Vω) + �δ
 + J0
(
ηω(
)

)
.

We now multiply with �−1
δ : setting

Z̃ = �−1
δ J
(Zδ), Ṽω = �−1

δ J0(Vω), η̃ω(
) = �−1
δ J0

(
ηω(
)

)
(3.12)

and

G = 
 + η̃ω(
),

we get

Z̃ = Ṽω + G. (3.13)

Our aim is to obtain lower bounds for the density of Xδ . As we mentioned at the beginning of this section, Xδ is
close to Zδ , which itself is strongly related to Z̃ (we discuss this in details in Section 3.2). So, we focus now on Z̃. We
will work conditionally on G and we will use some localization procedures. Since Ṽω is G-measurable, it represents
just a translation which turns out to be small (see (3.26)). Let us now consider G = 
+ η̃ω(
). Conditionally to G, 


is a Gaussian random variable, so it is 
 which gives us access to explicit estimates (this is the core of our analysis).
Now, G appears as a perturbation of 
, so we will use the local inverse function theorem in order to transfer estimates
from 
 to G. The fact that η̃ω(
) is an explicit function of 
 allows us to use some explicit localization procedures, in
order to ensure that ∇
η̃ω(
) is small. So, ∇
G = Id+∇
η̃ω(
) is invertible and finally we can obtain quantitative
estimates (this is done in Appendix D).

3.2. Localized density for the principal term

We study here the density of Z̃ in (3.13), “around” (that is, localized on) a suitable set of Brownian trajectories (see
�ρ,ε in next (3.15)), where we have a quantitative control on the “non-degeneracy” (conditionally to G) of the main
Gaussian random variable 
.

We denote

qp(B) =
∑
j 	=p

∣∣Bj
p
d

− B
j
p−1

d

∣∣+ ∑
j 	=p,i 	=p,i 	=j

∣∣∣∣∫ p
d

p−1
d

(
B

j
s − B

j
i−1
d

)
dBi

s

∣∣∣∣. (3.14)

For fixed ε,ρ > 0, we define

�ρ,ε,p =
{

detQp ≥ ερ, sup
p−1

d
≤t≤ p

d

∑
j 	=p

∣∣Bj
t − B

j
p−1

d

∣∣≤ ε−ρ, qp(B) ≤ ε

}
, p = 1, . . . , d,

�ρ,ε =
d⋂

p=1

�ρ,ε,p.

(3.15)

Notice that �ρ,ε,p ∈ G for every p = 1, . . . , d . We have the following.
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Lemma 3.4. Let �ρ,ε be as in (3.15). There exist c and ε∗ such that for every ε ≤ ε∗ one has

P(�ρ,ε) ≥ c × ε
1
2 m(d+1). (3.16)

Proof. We apply here Proposition C.3. Let p ∈ {1, . . . , d} be fixed and consider the Brownian motion B̂t =√
d(Bp−1+t

d

− Bp−1
d

). Let Q(B̂) be the matrix in (C.1). Up to a permutation of the components of B̂ , we easily

get Qp,p(B̂) = d × Q
p,p
p , Qp,j (B̂) = d3/2 × Q

p,j
p for j 	= p, Qi,j (B̂) = d2 × Q

i,j
p for i 	= p and j 	= p. Therefore,

detQp = d2d−1 detQ(B̂) ≥ detQ(B̂).

Let now q(B̂) be the quantity defined in (C.3). With qp(B) as in (3.14), it easily follows that

qp(B) ≤ q(B̂).

Moreover, supt≤1 |B̂t | = √
d sup p−1

d
≤s≤ p

d

|Bs − Bp−1
d

| ≥ sup p−1
d

≤s≤ p
d

|Bs − Bp−1
d

|. As a consequence, with ϒρ,ε the

set defined in (C.4), we get

ϒρ,ε(B̂) ⊂ �ρ,ε,p

and by using (C.5), we may find some constants c and ε∗ such that P(�ρ,ε,p) ≥ cε
1
2 d(d+1), for ε ≤ ε∗. This holds for

every p. Since �ρ,ε =⋂d
p=1 �ρ,ε,p , by using the independence property we get (3.16). �

Let Q be the matrix in (3.9). On the set �ρ,ε ∈ G we have detQ =∏d
p=1 detQp ≥ εdρ . Remark that

λ∗(Q)√
m

≤ |Q|l :=
(

1

m

∑
1≤i,j≤m

Q2
i,j

)1/2

≤ λ∗(Q). (3.17)

For a > 0 we introduce the following function,

ψa(x) = 1|x|≤a + exp

(
1 − a2

a2 − (x − a)2

)
1a<|x|<2a,

which is a mollified version of 1[−a,a]. We can now define our localization variables.

Ũε = (ψa1(1/detQ)
)
ψa2

(|Q|l
)
ψa3

(
q(B)

)
, with a1 = ε−dρ, a2 = ε−2ρ, a3 = dε (3.18)

in which we have set

q(B) =
d∑

p=1

qp(B).

Remark that Ũε is measurable w.r.t. G. The following inclusions hold: for every ε small enough,

�ρ,ε ⊂ {detQ ≥ εdρ, |Q|l ≤ ε−2ρ, q(B) ≤ dε
}⊂ {Ũε = 1} ⊂ {Ũε 	= 0}.

We can consider Ũε as a smooth version of the indicator function of �ρ,ε . We also define, for fixed r > 0,

Ūr =
n∏

i=1

ψr(
i). (3.19)
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In order to state a lower estimate for the (localized) density of Z̃ in (3.13), we define the following set of constants:

C0 =
{
C > 0 : there are K,q > 0 such that C = exp

(
K

(
κ

λ(0, x0)

)q)}
, (3.20)

κ being the constant Assumption 2.1. We set

1/C0 = {C > 0 : 1/C ∈ C0}.

Lemma 3.5. Suppose Assumption 2.1 and 2.2 both hold. Let Uε,r = ŨεŪr , Ũε and Ūr being defined in (3.18) and
(3.19) respectively, with ρ = 1

8m
. Set dPUε,r = Uε,r dP and let pZ̃,Uε,r

denote the density of Z̃ in (3.13) when we endow
� with the measure PUε,r . Then there exist C ∈ C0, ε, r ∈ 1/C0 such that for |z| ≤ r/2,

pZ̃,Uε,r
(z) ≥ 1

C
. (3.21)

Proof. Step 1. Lower bound for the localized conditional density given G.
Let pZ̃,Ūr |G denote the localized density w.r.t. the localization Ūr of Z̃ conditioned to G, i.e.

E
[
f (Z̃)Ūr |G

]= ∫ f (z)pZ̃,Ūr |G(z) dz, (3.22)

for f positive, measurable, with support included in B(0, r/2). We start proving that there exist C ∈ C0, ε, r ∈ 1/C0

such that, on Ũε 	= 0, for |z| ≤ r/2

pZ̃,Ūr |G(z) ≥ 1

C
.

We recall (3.13): Z̃ = Ṽω + 
 + η̃ω(
), where ω �→ Ṽω and ω �→ η̃ω(·) are both G-measurable and the conditional
law of 
 given G is Gaussian. This allows us to use the results in Appendix D. In particular, we are interested in
working on the set {Ũε 	= 0} ∈ G, so one has to keep in mind that ω ∈ {Ũε 	= 0}.

On Ũε 	= 0, by (3.18) and (3.17) one has λ∗(Q) ≤ 2
√

mε−2ρ , and

εdρ

2
≤ detQ ≤ λ∗(Q)λ∗(Q)m−1 ≤ λ∗(Q)(2

√
m)m−1ε−2ρ(m−1),

and this gives λ∗(Q) ≥ ε3mρ

(2
√

m)m
. So, fixing ρ = 1/(8m), for ε ≤ ε∗,

1

16m2

λ∗(Q)

λ∗(Q)
≥ Cmε3mρ+2ρ ≥ ε. (3.23)

To apply (D.8) to G = 
 + η̃ω(
) we need to check the hypothesis of Lemma D.3. We are going to use the notation
of Appendix D, in particular for c∗(̃ηω, r) in (D.5) and ci (̃ηω), i = 2,3, in (D.1). Recall that η̃ω is defined in (3.12)
through ηω given in (3.11). Since the third order derivatives of ηω are null, we have c3(̃ηω) = 0. Also, for i = l(p)

and j = l(q) we have ∂i,j ηω(
) = δaij , otherwise we get ∂i,j ηω(
) = 0. So |∂i,j ηω(
)| ≤ δ
∑

i,j |ai,j |. Using (2.9)
we obtain

∣∣∂i,j η̃ω(
)
∣∣= ∣∣J0

(
∂i,j ηω(
)

)∣∣
�δ

= ∣∣∂i,j ηω(
)
∣∣
Aδ

≤
∑

i,j |ai,j |
λ(0, x0)

≤ C ∈ C0.

So, with hηω as in (D.2), we get

hηω = 1

16m2(c2(̃ηω) + √
c3(̃ηω))

≥ 1

C1
, ∃C1 ∈ C0 (3.24)
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We compute now the first order derivatives. For j /∈ {l(p) : p = 1, . . . , d} we have ∂jηω = 0 and for j = l(p) we have

∂jηω(
) = δ

d∑
q=p

ap∧q,p∨q
l(q) + √
δεj (δ,W).

So, as above, we obtain |∂j η̃ω(
)| ≤ C(|
| + |εj (δ,W)|/√δ). Remark now that on {Ūr 	= 0} we have |
| ≤ Cr , and
on {Ũε 	= 0} we have q(B) ≤ 2dε, so

d∑
j=1

∣∣εj (δ,W)
∣∣≤ C

√
δq(B) ≤ C

√
δε.

Therefore

c∗(̃ηω,16r) ≤ C2(r + ε), ∃C2 ∈ C0. (3.25)

We also consider the following estimate of |Ṽω| = |Vω|Aδ . First, we rewrite Vω as follows:

Vω =
∑
p

apμp(δ,W) +
∑
p

ψp(δ,W), with

μp(δ,W) =
∑
i 	=p

�
p
i and ψp(δ,W) =

∑
i 	=j,i 	=p,j 	=p

ai,j�
i,j
p +

d∑
l=p+1

∑
i 	=p

∑
j 	=l

ai,j�
j
l �

i
p + 1

2

∑
i 	=p

ai,i

∣∣�i
p

∣∣2.
Using again (2.9) we have∣∣∣∣∣

d∑
p=1

apμp(δ,W)

∣∣∣∣∣
Aδ

= 1√
δ

∣∣∣∣∣AδJ0

(
d∑

p=1

μp(δ,W)

)∣∣∣∣∣
Aδ

≤
d∑

p=1

1√
δ

∣∣μp(δ,W))
∣∣≤ Cq(B)

and ∣∣ψ(δ,W)
∣∣
Aδ

≤ |ψ(δ,W)|
δ
√

λ(0, x0)
≤ Cq(B).

Since ω ∈ {Ũε 	= 0} we get

|Ṽω| ≤ Cq(B) ≤ C3ε, ∃C3 ∈ C0. (3.26)

We consider (3.26), and fix r
ε

= 2C3 ∈ C0, so |Ṽω| ≤ r/2. Then we consider (3.25) and we obtain

c∗(̃ηω,4r) ≤ C2(2C3 + 1)ε ≤ ε1/2, for ε ≤ 1

(4C2C3)2
∈ 1

C0
.

Moreover, looking at (3.24)

r = 2C3ε ≤ 1

C1
for ε ≤ 1

2C1C3
∈ 1

C0
.

So, with

ε = ε∗ ∧ 1

(4C2C3)2
∧ 1

2C1C3
∈ 1

C0
,
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and r = 2C3ε we have

|Ṽω| ≤ r

2
, c∗(̃ηω,4r) ≤ ε1/2, r ≤ 1

C1
.

Now, by using also (3.23) and (3.24), it follows that (D.6) holds, and we can apply Lemma D.3. We obtain

1

K detQ1/2
exp

(
− K

λ∗(Q)
|z|2
)

≤ pG,Ūr |G(z)

for |z| ≤ r , where K does not depend on σ,b. Remark that, using λ∗(Q) ≥ ε3mρ

(2
√

m)m
, ρ = 1

8m
, r/ε = 2C1 and ε ≤

1/(4C2C1)
2,

|z|2
λ∗(Q)

≤ (2
√

m)mr2

ε3mρ
≤ (2

√
m)m

r2

ε
≤ (2

√
m)m

r2

ε2
ε

≤ (2
√

m)m(2C1)
2ε ≤ K̄,

where K̄ does not depend on σ , b. Therefore pG,Ūr |G(z) ≥ 1
C

, for |z| ≤ r , for some C ∈ C0, on Ũε 	= 0. Now, by

recalling that |Ṽω| ≤ r/2 and (3.13), we have

pZ̃,Ūr |G(z) ≥ 1

C
, for |z| ≤ r/2 on the set {Ũε 	= 0}. (3.27)

Step 2. We get rid of the conditioning on G, to have non-conditional bound for pZ̃,Uε,r
.

Since Ũε is G measurable, for every non-negative and measurable function f with support included in B(0, r/2)

we have

E
(
f (Z̃)Uε,r

)= E
(
ŨεE

(
f (Z̃)Ūr |G

))
.

By (3.22) and (3.27), we obtain

E
(
f (Z̃)Uε,r

)≥ 1

C
E(Ũε)

∫
f (z) dz.

Since �ρ,ε ⊂ {Ũε = 1}, E(Ũε) ≥ P(�ρ,ε), so by using (3.16) and ε ∈ 1/C0 we finally get that E(Ũε) ≥ 1
C

, so (3.21)
is proved. �

3.3. Lower bound for the transition density

We study here a lower bound for the density of Xδ , X being the solution to (2.1). Recall decomposition (3.1):

Xδ − x0 − b(0, x0)δ = Zδ + Rδ.

Our aim is to “transfer” the lower bound for Z̃ = �−1
δ J
(Zδ) already studied in Lemma 3.5 to a lower bound for Xδ . In

order to set up this program, we use results on the distance between probability densities which have been developed
in [2]. In particular, we are going to use now Malliavin calculus. Appendix E is devoted to a summary of all the results
and notation the present section is based on. In particular, we denote with D the Malliavin derivative with respect to
W , the Brownian motion driving the original equation (2.1).

But first of all, we need some properties of the matrix �δ , which can be resumed as follows. We set SO(d) the set
of the d × d orthogonal matrices and we denote with Idd the d × d identity matrix.

Lemma 3.6. Set Aδ = Aδ(0, x0) and �̄ = �̄ = Diag(λ1(Aδ), . . . , λn(Aδ)), λi(Aδ), i = 1, . . . , n, being the singular
values of Aδ (which are strictly positive because Aδ has full rank). Let �δ be as in (3.10). There exist U ∈ SO(n),
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U ∈ SO(m − n) and V ∈ SO(m) such that

�δ =
(
U 0
0T U

)(
�̄ 0
0T Idm−n

)
VT ,

where 0 denotes a null n × (m − n) matrix.

Proof. We recall that

�δ =
(

Aδ

�δ

)
,

where �δ is a (m − n) × n matrix whose rows are vectors of Rm which are orthonormal and orthogonal with the rows
of Aδ . We take a singular value decomposition for Aδ and for �δ . So, there exist U ∈ SO(n) and V̄ ∈ SO(m) such that

Aδ = U(�̄ 0)V̄T ,

0 denoting the n × (m − n) null matrix. Similarly, there exist U ∈ SO(m − n) and V ∈ SO(m) such that

�δ = U
(
0T Idm−n

)
VT ,

the diagonal matrix being Idm−n because the rows of �δ are orthonormal. Therefore, we get

�δ =
(
U 0
0T U

)(
�̄ 0
0T Idm−n

)
VT ,

where V is a m × m matrix whose first n columns are given by the first n columns of V and the remaining m − n

columns are given by the last m − n columns of V . Moreover, since each row of Aδ is orthogonal to any row of
�δ , it immediately follows that all columns of V are orthogonal. This proves that V ∈ SO(m), and the statement
follows. �

Then we have

Lemma 3.7. Suppose Assumption 2.1 and 2.2 both hold. Let Uε,r denote the localization in Lemma 3.5 and let U and
�̄ be the matrices in Lemma 3.6. Set

α = U�̄ and X̂δ = α−1(Xδ − x0 − b(0, x0)δ
)
.

Then there exist C ∈ C0, δ∗, r ∈ 1/C0 such that for δ ≤ δ∗, |z| ≤ r/2,

pX̂δ,Uε,r
(z) ≥ 1

C
,

pX̂δ,Uε,r
denoting the density of X̂δ with respect to the measure PUε,r .

Proof. We set Ẑδ = α−1Zδ and we use Proposition E.1, with the localization U = Uε,r , applied to F = X̂δ and
G = Ẑδ . Recall that the requests in (1) of Proposition E.1 involve several quantities: the lowest singular value (that
in this case coincides with the lowest eigenvalue) λ∗(γX̂δ

) and λ∗(γẐδ
) of the Malliavin covariance matrix of X̂δ and

Ẑδ respectively, as well as mUε,r (p) in (E.1), the Sobolev-Malliavin norms ‖X̂δ‖2,p,Uε,r , ‖Ẑδ‖2,p,Uε,r , and ‖X̂δ −
Ẑδ‖2,p,Uε,r = ‖α−1Rδ‖2,p,Uε,r . First of all, by using Assumption 2.1, one easily gets that there exists C ∈ C0 such that∥∥α−1Rδ

∥∥
2,p

≤ Cδ−1δ3/2 = C
√

δ and ‖X̂δ‖2,p + ‖Ẑδ‖2,p ≤ C.

We now check that mUε,r (p) < ∞ for every p. Standard computations and (C.2) give, for every p,

‖1/detQ‖2,p + ‖|Q|l‖2,p + ∥∥q(B)
∥∥

2,p
+ ‖
‖2,p ≤ C,
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so we can apply (E.3) and conclude

mUε,r (p) ≤ C ∈ C0.

We now study the lower eigenvalue of the Malliavin covariance matrix of Ẑδ . From the definition of Ẑδ , we have

Z̃ = V
(

α−1Zδ

UT �δ


)
= V

(
Ẑδ

UT �δ


)
, (3.28)

(see the proof of Lemma 3.6 for the definition of �δ). As an immediate consequence, one has λ∗(γẐδ
) ≥ λ∗(γZ̃), and

it suffices to study the lower eigenvalue of the Malliavin covariance matrix of Z̃. By using (3.13), we have

〈γZ̃ξ, ξ 〉 =
d∑

i=1

∫ δ

0

〈
Di

sZ̃, ξ
〉2 =

d∑
i=1

∫ si (δ)

si−1(δ)

〈
Di

sZ̃, ξ
〉2 =

d∑
i=1

∫ si (δ)

si−1(δ)

〈
Di

s

(

 + η̃(
)

)
, ξ
〉2

≥
d∑

i=1

∫ si (δ)

si−1(δ)

(
1

2

〈
Di

s
, ξ
〉2 − 〈Di

sη(
), ξ
〉2)

ds

= S1 + S2.

We write

S1 =
d∑

i=1

∫ si (δ)

si−1(δ)

1

2

〈
Di

s
, ξ
〉2 ≥ λ∗(Q)

2
,

S2 =
d∑

i=1

∫ si (δ)

si−1(δ)

〈∇η(
)Di
s
, ξ

〉2
ds =

d∑
i=1

∫ si (δ)

si−1(δ)

〈
Di

s
,∇η(
)T ξ
〉2

ds ≤ λ∗(Q)
∣∣∇η(
)

∣∣2|ξ |2,

so that

λ∗(γẐδ
) ≥ λ∗(γZ̃) ≥ λ∗(Q)

(
1

2
− λ∗(Q)

λ∗(Q)

∣∣∇η(
)
∣∣2).

On {Ũε 	= 0}, we have already proved in Lemma 3.5 that c∗(η,
) ≤
√

λ∗(Q)/λ∗(Q)
2m

. Since |∇η(
)| ≤ mc∗(η,
), we
obtain

∣∣∇η(
)
∣∣≤ 1

2

√
λ∗(Q)

λ∗(Q)
,

and therefore λ∗(γẐδ
) ≥ 4λ∗(γZ̃) ≥ λ∗(Q) ≥ ε3mρ . Writing now EUε,r for the integral wrt dPUε,r = Uε,r dP, we have

that EUε,r (λ∗(Ẑδ)
−p) < ∞ for every p.

Let us study the lowest eigenvalue of γX̂δ
. We use here some results from next Section 4, namely Lemma 4.2. There,

we actually prove the desired bound for the Malliavin covariance matrix of α−1(Xδ − x0). Here we are considering
X̂δ = α−1(Xδ − x0 − b(0, x0)δ), but their Malliavin covariance matrix is the clearly the same. Then, Lemma 4.2 gives
that E(λ∗(γX̂δ

)−p) < ∞ for every p.
So, we have proved that all the requests in Proposition E.1 hold. Then, we can apply (E.4) and we get

pX̂δ,Uε,r
(z) ≥ pẐδ,Uε,r

(z) − C′√δ

with C′ ∈ C0. Now, from (3.28) and (3.21), with a simple change of variables, we get

pẐδ,Uε,r
(z) ≥ 1

C
, for |z| ≤ r

2
.
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We can assert the existence of δ∗ ∈ 1/C0 and C ∈ C0 such that for all δ ≤ δ∗

pX̂δ,Uε,r
(z) ≥ 1

2C
,

and the statement follows. �

We are now ready for the proof of the lower bound:

Theorem 3.8. Let Assumption 2.1 and 2.2 hold. Let pXt denote the density of Xt , t > 0. Then there exist positive
constants r, δ∗,C such that for every δ ≤ δ∗ and for every y such that |y − x0 − b(0, x0)δ|Aδ(0,x0) ≤ r ,

pXδ (y) ≥ 1

C

√
detAδA

T
δ (0, x0)

,

Here, C ∈ C0 and r, δ∗ ∈ 1/C0.

Proof. We take the same δ∗, r as in Lemma 3.7 and let X̂δ denotes the r.v. handled in Lemma 3.7. By construction,
we have Xδ = x0 + b(0, x0) + αX̂δ , so by applying Lemma 3.7 we get

E
(
f (Xδ)

)≥ EUε,r

(
f (Xδ)

)= EUε,r

(
f
(
x0 + b(0, x0)δ + αX̂δ

))
=
∫

f
(
x0 + b(0, x0)δ + αz

)
pX̂δ,Uε,r

(z) dz

≥ 1

C

∫
{|z|≤r/2}

f
(
x0 + b(0, x0)δ + αz

)
dz

≥ 1

C|detα|
∫

|y|α≤r/2
f
(
x0 + b(0, x0)δ + y

)
dy.

From (2.8) we obtain√
detAδA

T
δ (0, x0) = ∣∣det(α)

∣∣ (3.29)

and the statement follows. �

Remark 3.9. We observe that if the diffusion coefficients are bounded, that is Assumption 2.3 holds, then the class
C0 in (3.20) of the constants can be replaced by

L0 =
{
C > 0 : there are K,q > 0 such that C = K

(
κ

λ(0, x0)

)q}
and, as before, 1/L0 = {C > 0 : 1/C ∈ L0}. This follows from the fact that in the estimates for ‖X̂δ − Ẑδ‖2,p and
‖X̂δ‖2,p one does not need anymore to use the Gronwall’s Lemma but it suffices to use the boundedness of the
coefficients and the Burkholder inequality. A time dependent version of this class is defined in (5.3), to be used in the
concatenation along the tube.

4. Upper bound for the density

We study here the upper bound for the density of Xδ . As for the lower bound, we scale Xδ . We recall the results and
the notation in Lemma 3.6 and we define the change of variable

Tα : Rn →R
n, Tα(y) = α−1y, where α = U�̄ (4.1)
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and its adjoint T ∗
α (v) = α−1,T v. Note that α is a n×n matrix. We write Aδ,j , for j = 1, . . . ,m, for the columns of Aδ

(which can be
√

δσi or δ[σi, σp]). The following properties hold:

Lemma 4.1. Let Tα be defined in (4.1). Then one has:

|y|Aδ = |Tαy| = |y|α, ∀y ∈ R
n, and detα =

√
detAδA

T
δ (4.2)

∀v ∈ R
n with |v| = 1,∃j = 1, . . . ,m : ∣∣T ∗

α v · Aδ,j

∣∣≥ 1

m
(4.3)

∀j = 1, . . . , d,
√

δ|Tασj | ≤ 1 (4.4)

Proof. (4.2) follows easily from α = U�̄ and the definition (2.2) of | · |M . Now, (T ∗
α v)T Aδ = vT α−1Aδ = [vT 0]VT .

So |(T ∗
α v)T Aδ| = |[vT 0]VT | = 1. Recall that Aδ,j are the columns of Aδ , therefore ∃j = 1, . . . ,m : |(T ∗

α v)T Aδ,j | ≥
1
m

, which is equivalent to (4.3). Moreover, TαAδ = [Idn0]VT . This easily implies that ∀i = 1, . . . ,m, |TαAδ,i | ≤ 1.

For Aδ,i = σj (0, x0)
√

δ we have (4.4). �

We define now

F = α−1(Xδ − x0) = Tα(Xδ − x0). (4.5)

As for the lower bound, we first estimate the density of F , using the results in Appendix E (specifically, (E.5) in
Proposition E.1), and then recover the estimates for the density of Xδ via a change of variable. Estimate (E.5) involves
the inverse moments of the smallest singular value of the Malliavin covariance matrix of F . The boundedness of the
inverse moments of the Malliavin covariance matrix of the hypoelliptic diffusion Xδ is a classic result in Malliavin
calculus (see for example [26] [Section 2.3.3]). In this paper, to obtain the desired bound for the density wrt the
matrix norm defined via (2.2) and (2.8), we need an analogous bound which keeps track of the different time scales
of propagation in the direction of the diffusion vector fields and of their first order Lie brackets. For this reason, we
have defined in (4.5) the rescaled diffusion F , whose Malliavin covariance matrix is non-degenerate uniformly in time.
More precisely, in the following lemma, which is a refinement of the classic non-degeneracy result mentioned above,
we upper bound the Lp norm of the inverse of the Malliavin covariance matrix of F by a constant in C0, C0 being
defined in (3.20). A key fact here is that such constant does not depend on δ.

Lemma 4.2. Let α, Tα and F = Tα(Xδ − x0) be defined as in (4.1) and (4.5). γF denotes the Malliavin covariance
matrix of F . Then for any p > 1 there exists C ∈ C0 such that, for δ ≤ 1, E|λ∗(γF )|−p ≤ C.

Proof. The proof is a modification of [26] [Theorem 2.3.3], where at each stage it has to be checked that considering
the rescaled diffusion F in (4.5) instead of Xδ allows for bounds not depending on δ. All the details of the proof can
be found in the preprint [4], which was replaced by the present article. �

The above lemma allow us to prove the following upper bound for the density.

Theorem 4.3. Let Assumption 2.1 and 2.2 hold. Let pXt denote the density of Xt , t > 0. Then, for any p > 1, there
exists a positive constant C ∈ C0 such that for every δ ≤ 1 and for every y ∈R

n

pXδ (y) ≤ 1√
detAδA

T
δ (0, x0)

C

1 + |y − x0|pAδ(0,x0)

.

Proof. Set F = Tα(Xδ −x0). We apply estimate (E.5): there exist constants p and a depending only on the dimension
n, such that

pF (z) ≤ C max
{
1,E

∣∣λ∗(γF )
∣∣−p‖F‖2,p

}
P
(|F − z| < 2

)a
.
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We first show that ‖F‖2,p ≤ C ∈ C0, as a consequence of Assumption 2.1. We prove just that ‖F‖p ≤ C for every p,
for the Malliavin derivatives the proof is heavier but analogous. We write

F = Tα

(
d∑

j=1

∫ δ

0
σj (t,Xt ) ◦ dW

j
t +

∫ δ

0
b(t,Xt ) dt

)
= Tα

(
d∑

j=1

σj (0, x0)W
j
δ + Bδ

)
,

where

Bδ =
d∑

j=1

∫ δ

0

(
σj (t,Xt ) − σj (0, x0)

) ◦ dW
j
t +

∫ δ

0
b(t,Xt ) dt.

Therefore

|F | ≤
d∑

j=1

∣∣Tασj (0, x0)W
j
δ

∣∣+ |TαBδ|. (4.6)

(4.4) implies |Tασj (0, x0)W
j
δ | ≤ CW

j
δ /

√
δ, for j = 1, . . . , d . Moreover |TαBδ| ≤ |Bδ|Aδ ≤ C|Bδ|/δ. If assumption

2.1 holds we conclude that E|F |p ≤ C ∈ C0.
As in [3], Remark 2.4, it is easy to reduce the estimate of P(|F − z| < 2) to the tail estimate of F , and then to use

Markov inequality to relate the estimate of the tails to the moments of F :

P
(|F − z| < 2

)≤ P
(|F | > |z|/2

)≤ C
1 ∨E|F |p
1 + |z|p , ∀z ∈ R

n. (4.7)

Since, from Assumption 2.1, all the moments of F are bounded by constants in C0, we have that for any exponent
p > 1 this term decays faster than |z|−p for |z| → ∞.

In Lemma 4.2 we have already proved that E|λ∗(γF )|−q ≤ C ∈ C0, for δ ≤ 1. We conclude that pF (z) ≤ C
1+|z|p .

The upper bound for the density of Xδ comes from the simple change of variable y = x0 + αz. For a positive and
bounded measurable function f : Rn →R, we write

Ef (Xδ) = Ef (x0 + αF) =
∫

f (x0 + αz)pF (z) dz

and we apply our density estimate, so that

Ef (Xδ) ≤
∫

Cf (x0 + αz)

1 + |z|p dz ≤ C

|detα|
∫

f (y)

1 + |x0 − y|pAδ(0,x0)

dy,

in which we have used (4.2). We use again (3.29) and the statement follows. �

Remark 4.4. If Assumption 2.3 holds then the upper estimate in Theorem 4.3 is of exponential type: there exists a
constant C ∈ C0 such that for every δ ≤ 1 and for every y ∈ R

n

pXδ (y) ≤ C√
detAδA

T
δ (0, x0)

exp

(
− 1

C
|y − x0|Aδ(0,x0)

)
.

The proof is identical to the previous one except for the last part. In fact, looking at (4.6), in this case the bounded-
ness of the coefficients allows one to apply the exponential martingale inequality, so instead of (4.7) we obtain the
exponential bound P(|F | > |y|/2) ≤ C exp(−|y|/C). This gives the proof of (3) in Theorem 2.4.
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Remark 4.5. In Theorem 3.8 the lower bound is centered at x0 + δb(x0) but for the upper estimate in Theorem 4.3,
one can choose to center at x0 or at x0 + δb(x0). In fact, in this case we notice that

∣∣δb(x0)
∣∣
Aδ(0,x0)

≤ C′

δ

∣∣δb(x0)
∣∣≤ C′′,

so

C1

1 + |x0 − y|Aδ(0,x0)

≤ C2

1 + |x0 + δb(x0) − y|Aδ(0,x0)

≤ C3

1 + |x0 − y|Aδ(0,x0)

,

and the estimate of Theorem 4.3 can be equivalently written as

pXδ (y) ≤ 1√
detAδA

T
δ (0, x0)

C

1 + |y − x0 − δb(x0)|pAδ(0,x0)

.

5. Tube estimates

The proof of Theorem 2.9 is inspired by the approach in [7]. A similar procedure is also used in [27] in a weak
Hörmander framework. Such a proof strongly uses the estimates for the density developed in Sections 3 and 4 and it
is crucial that these estimates hold in a time interval of a fixed small length. The proof consists in a “concatenation” of
such estimates in order to recover the whole time interval [0, T ]. Since the “concatenation” works around the skeleton
path x(φ), it suffices that the properties of all objects hold only locally around x(φ), as required in (2.12). In order to
set-up this program, we need the precise behavior of the norm | · |AR

. So, we first present the desired properties for
| · |AR

(Section 5.1) and then we proceed with the proof of Theorem 2.9 (Section 5.2).

5.1. Matrix norms

Recall the definitions (2.5) and (2.8) for A(t, x) and AR(t, x) respectively. We work with the norm |y|2AR(t,x) =
〈(ARAT

R(t, x))−1y, y〉, y ∈ R
n.

Lemma 5.1. Let x ∈ R
n, t ≥ 0, R > 0 and recall that λ∗(A(t, x)) and λ∗(A(t, x)) denote the largest and lowest

singular value of A(t, x).

(i) For every y ∈ R
n and 0 < R ≤ R′ ≤ 1√

R

R′ |y|AR(t,x) ≥ |y|AR′ (t,x) ≥ R

R′ |y|AR(t,x) (5.1)

(ii) For every z ∈R
m and R > 0∣∣AR(t, x)z

∣∣
AR(t,x)

≤ |z|. (5.2)

(iii) For every ϕ ∈ L2([0, T ];Rm),∣∣∣∣∫ r

0
ϕs ds

∣∣∣∣2
AR(t,x)

≤ r

∫ r

0
|ϕs |2AR(t,x) ds, r ∈ [0, T ].

Proof. For fixed x ∈R
n and t ≥ 0, during the proof we omit in A(t, x) and AR(t, x) the dependence on (t, x), so we

simply write A and AR
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(i) For 0 < R ≤ R′ ≤ 1, it is easy to check that

R′

R
ARAT

R ≤ AR′AT
R′ ≤

(
R′

R

)2

ARAT
R

which is equivalent to (5.1).
(ii) For z ∈R

m, we write z = AT
Ry + w with y ∈ R

n and w ∈ (ImAT
R)⊥ = KerAR . Then ARz = ARAT

Ry so that

|ARz|2AR
= ∣∣ARAT

Ry
∣∣2
AR

= 〈(ARAT
R

)−1
ARAT

Ry,ARAT
Ry
〉

= 〈y,ARAT
Ry
〉= 〈AT

Ry,AT
Ry
〉= ∣∣AT

Ry
∣∣2 ≤ |z|2

and (5.2) holds.
(iii) For ϕ ∈ L2([0, T ];Rm) and r ∈ [0, T ],∣∣∣∣∫ r

0
ϕs ds

∣∣∣∣2
AR

=
〈(

ARAT
R

)−1
∫ r

0
ϕs ds,

∫ r

0
ϕs ds

〉
=
∫ r

0

∫ r

0

〈(
ARAT

R

)−1
ϕs,ϕu

〉
ds du

= 1

2

∫ r

0

∫ r

0

〈(
ARAT

R

)−1
(ϕs − ϕu),ϕs − ϕu

〉
ds du

−
∫ r

0

∫ r

0

(〈(
ARAT

R

)−1
ϕs,ϕs

〉− 〈(ARAT
R

)−1
ϕu,ϕu

〉)
ds du

= 1

2

∫ r

0

∫ r

0

(|ϕs − ϕu|2AR
− 2|ϕs |2AR

)
ds du

≤
∫ r

0

∫ r

0
|ϕu|2AR

ds du = r

∫ r

0
|ϕu|2AR

du. �

Next Lemma 5.2 is strictly connected to Remark 2.10, where we stressed that our result allows for a regime switch
along the tube. In fact, here we fix R > 0, two points (t, x) and (s, y) and we get an equivalence between the norms
| · |AR(t,x) and | · |AR(s,y) without supposing that in these two points the Hörmander condition holds “under the same
regime”. To compensate this lack of uniformity, we suppose that the distance between (t, x) and (s, y) is bounded by√

R, and we will need to take this fact into account. In the concatenation procedure of next Section 5.2, the size of the
intervals, to which we apply our density estimates, will have to depend on the radius of the tube.

We set

O = {(t, x) ∈ [0, T ] ×R : λ(t, x) > 0
}

which is open, and under (2.11), we set (recall that λ is defined in (2.6) and n in (2.11))

L =
{
C : O →R+ : there are K,q > 0 such that C(t, x) = K

(
n(t, x)

λ(t, x)

)q}
. (5.3)

We also define

1/L = {c : O → R+ such that 1/c ∈ L}.
Notice that this is the time dependent version of the class of constants in Remark 3.9.

Lemma 5.2. Assume (2.11) and let L as in (5.3). There exists C∗ ∈ L such that for every (t, x), (s, y) ∈ O and
R ∈ (0,1] satisfying

|x − y| + |t − s| ≤ √
R/C∗(t, x), (5.4)
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then for every z ∈R
n one has

1

4
|z|2AR(t,x) ≤ |z|2AR(s,y) ≤ 4|z|2AR(t,x). (5.5)

Proof. (5.5) is equivalent to

4
(
ARAT

R

)
(t, x) ≥ (ARAT

R

)
(s, y) ≥ 1

4

(
ARAT

R

)
(t, x),

so we prove the above inequalities. Let AR,k , k = 1, . . . ,m, denote the columns of AR . We use (a + b)2 ≥ 1
2a2 − b2:

〈
ARAT

R(s, y)z, z
〉 = m∑

k=1

〈
AR,k(s, y), z

〉2
=

m∑
k=1

(〈
AR,k(t, x), z

〉+ 〈AR,k(s, y) − AR,k(t, x), z
〉)2

≥ 1

2

m∑
k=1

〈
AR,k(t, x), z

〉2 −
m∑

k=1

〈
AR,k(s, y) − AR,k(t, x), z

〉2
.

We use (2.11): for every (s, y) such that |t − s| ≤ 1 and |x − y| ≤ 1, we have

〈
ARAT

R(s, y)z, z
〉 ≥ 1

2

m∑
k=1

〈
AR,k(t, x), z

〉2 − C1n(t, x)αR
(|x − y|2 + |t − s|2)|z|2,

in which C1 > 0 and α ≥ 1 denote universal constants. Notice that

m∑
k=1

〈
AR,k(t, x), z

〉2 = 〈ARAT
R(t, x)z, z

〉≥ λ2∗
(
AR(t, x)

)|z|2 ≥ R2λ2∗
(
A(t, x)

)|z|2.
We choose the constants (K,q) characterizing C∗(t, x) such that K ≥ 2

√
C1 ∨1 and q ≥ α. So, under (5.4) we obtain

C1n(t, x)αR
(|x − y|2 + |t − s|2)|z|2 ≤ 1

4

m∑
k=1

〈
AR,k(t, x), z

〉2
and

〈(
ARAT

R

)
(s, y)z, z

〉≥ 1

4

m∑
k=1

〈
AR,k(t, x), z

〉2 = 1

4

〈(
ARAT

R

)
(t, x)z, z

〉
.

The converse inequality follows from analogous computations and inequality (a + b)2 ≤ 2a2 + 2b2. �

We prove that moving along the skeleton associated to a control φ ∈ L2([0, T ],Rd) for a small time δ, the trajectory
remains close to the initial point in the Aδ-norm. To this purpose, we assume the conditions (H1) and (H2) in (2.12).
Notice that these give (t, xt (φ)) ∈ O for every t . Moreover, in such a case the set L can be replaced by the following
class of functions:

A=
{
C : [0, T ] →R+ : there are K,q > 0 such that Ct = K

(
nt

λt

)q}
, (5.6)

nt and λt being defined in (2.12). We also set

1/A = {c : [0, T ] → (0,1] : 1/ct ∈A
}
.
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Lemma 5.3. Let x(φ) be the skeleton path (2.10) associated to φ ∈ L2([0, T ],Rd). Assume (H1) and (H2) in (2.12).
Then there exists δ∗, ε∗ ∈ 1/A such that for every t ∈ [0, T ], δt ≤ δ∗

t , εt (δt ) ≤ ε∗
t , s ∈ [0, δt ] with t + s ≤ T and for

every z ∈R
n one has

1

4
|z|2Aδt (t,xt (φ)) ≤ |z|2Aδt (t+s,xt+s (φ)) ≤ 4|z|2Aδt (t,xt (φ)). (5.7)

Moreover, there exists C̄ ∈A such that

sup
0≤s≤δt

∣∣xt+s(φ) − (xt (φ) + b
(
t, xt (φ)

)
s
)∣∣

Aδt (t,xt (φ))
≤ C̄t

(
εt (δt ) ∨√δt

)
, (5.8)

where

εt (δ) =
(∫ t+δ

t

|φs |2 ds

)1/2

.

Proof.
Set st = inf{s > 0 : |xt+s(φ) − xt (φ)| ≥ 1}. From (2.11) and (H1) in (2.12), we have

1 = ∣∣xt+st (φ) − xt (φ)
∣∣≤ nt

(
st + √

st εt (st )
)
.

We take C ∈A such that nt (
√

st + εt (st )) ≤ C
1/2
t , so that st ≥ 1/Ct . Take now δ∗ ∈ 1/A such that δ∗ ≤ 1/C. Then if

s ≤ δt ≤ δ∗
t , one has s ≤ st and again from (2.11) and (H1) in (2.12) we have∣∣xt+s(φ) − xt (φ)

∣∣+ |s| ≤√δt

(
nt

(√
δ∗
t + εt (δt )

)+√δ∗
t

)
.

By continuity, for every ε∗ ∈ 1/A and for every t there exists δ̂t such that εt (δ̂t ) ≤ ε∗
t . So, there actually exists δt ≤ δ∗

t

for which εt (δt ) ≤ ε∗
t . For such a δt , we have∣∣xt+s(φ) − xt (φ)
∣∣+ |s| ≤√δt

(
nt

(√
δ∗
t + ε∗

t

)+√δ∗
t

)
.

We now choose δ∗, ε∗ ∈ 1/A in order that the last factor in the above right hand side is smaller than 1/C∗(t, xt (φ)),
where C∗(t, x) is the function in L for which Lemma 5.2 holds. Then (5.4) is satisfied with R = δt , x = xt (φ),
y = xt+s(φ) and s replaced by t + s. Hence (5.7) follows by applying (5.5).

We prove now (5.8). For the sake of simplicity, we let xt denote the skeleton path xt (φ). We write

Jt,s := xt+s − xt − b(t, xt )s

=
∫ t+s

t

(
ẋu − b(u, xu)

)
du +

∫ t+s

t

(
b(u, xu) − b(t, xt )

)
du

=
∫ t+s

t

σ (u, xu)φu du +
∫ t+s

t

(
b(u, xu) − b(t, xt )

)
ds,

so that

|Jt,s |2Aδt (t,xt )
≤ 2s

∫ t+s

t

∣∣σ(u, xu)φu

∣∣2
Aδt (t,xt )

dt + 2s

∫ t+s

t

∣∣b(u, xu) − b(t, xt )
∣∣2
Aδt (t,xt )

du.

In the above right hand side, we apply (5.7) to the norm in the first term and we use (2.9) in the second one. We obtain:

|Jt,s |2Aδt (t,xt )
≤ 2s

∫ t+s

t

4
∣∣σ(u, xu)φu

∣∣2
Aδt (u,xu)

du + 2s

∫ t+s

t

1

δ2
t λ

2
t

∣∣b(u, xu) − b(t, xt )
∣∣2 du

≤ 8s

∫ t+s

t

∣∣σ(u, xu)φu

∣∣2
Aδt (u,xu)

du + 2δt

∫ t+δt

t

1

δ2
t λ

2
t

× n2
t

(|u − t | + |xu − xt |
)2

du.
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We have already proved that, for u ∈ [t, t + s], |u − t | + |xu − xt | ≤ √
δt/C∗

t , with C∗ ∈ A, so

|Jt,s |2Aδt (t,xt )
≤ 8s

∫ t+s

t

∣∣σ(u, xu)φu

∣∣2
Aδ(u,xu)

du + C̄t δt ,

with C̄ ∈ A. It remains to study the first term in the above right hand side. For i = 1, . . . ,m, we set ψ(j−1)d+j = 1√
δt

φj

for j = 1, . . . , d , ψi = 0 otherwise. Then, recalling (2.8), we can write σ(u, xu)φu = Aδt (u, xu(φ))ψu, so that, by
(5.2), ∣∣σ(u, xu)φu

∣∣2
Aδt (u,xu)

= ∣∣Aδt (u, xu)ψu

∣∣2
Aδt (u,xu)

≤ |ψu|2 = 1

δt

|φu|2.

Hence, for s ≤ δt , we finally have |Jt,s |2Aδt (t,xt )
≤ 8εt (δt )

2 + C̄t δt , and the statement follows. �

Remark 5.4. Let us finally discuss an inequality which will be used in next Appendix A. Fix x ∈ R
n and let x(φ)

be the skeleton path (2.10) associated to φ ∈ L2([0, T ],Rd) with starting condition x0(φ) = x. Assume simply (2.11)
and recall L defined in (5.3). Then looking at the proof of Lemma (5.3), we have the following result: if (0, x) ∈ O ,
there exists δ, ε ∈ 1/L and C ∈ L such that if δ ≤ δ(0, x), ε0(δ) ≤ ε(0, x) and s ∈ [0, δ] then

sup
0≤s≤δ

∣∣xs(φ) − (x + b(0, x)s
)∣∣

Aδ(0,x)
≤ C(0, x)

(
ε0(δ) ∨ √

δ
)
. (5.9)

5.2. Proof of main theorem on tube estimates

This section is organized as follows: the lower bound in Theorem 2.9 is proved in next Theorem 5.8, whereas the
upper bound in Theorem 2.9 is studied in next Theorem 5.9. Since the proofs are long and technical we begin by
giving the principal elements.

Remark 5.5 (Localization). Our aim is to estimate the probability of the set

�T =
{

sup
0≤t≤T

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
}

and our hypotheses (Hi), i = 1,2,3 are “local hypotheses”, along a tube around the curve xt (φ). Our first goal is to
stress that, in order to deal with our problem, there is no loss of generality in taking “global” bounds on the coefficients.
This, thanks to a localization procedure, that we explain here for the lower bound, which is the most complicated case.
For the upper bound case, a similar localization hinges on the fact that Rt ≤ R∗

t (φ). Let us now focus on the lower
bound case: since nt ≥ 1

�T ⊃ �∗
T =

{
sup

0≤t≤T

n2
t

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
}

and we will estimate the probability of �∗
T . On this set we have, by (2.9),

∣∣Xt − xt (φ)
∣∣≤ ∣∣Xt − xt (φ)

∣∣
ARt (t,xt (φ))

√
Rtλ

∗(t, xt (φ)
)≤ λ∗(t, xt (φ))

n2
t

≤ 1,

so that �∗
T ⊂ {sup0≤t≤T |Xt − xt (φ)| ≤ 1}. Let τ = inf{t > 0 : |Xt − xt (φ)| ≥ 1}. We have that Xt∧τ coincides with

Xt∧τ , where Xt is the solution of the same SDE but with globally bounded coefficients σ and b. More precisely we
may assume the following hypothesis. Let t ∈ (0, T ). For every y ∈ R

n and s ∈ (t, t + h) (recall that h is given in
(H3)) ∑

0≤|α|≤4

∣∣∂α
x σ (s, y)

∣∣+ ∣∣∂s∂
α
x σ (s, y)

∣∣+ ∣∣∂α
x b(s, y)

∣∣+ ∣∣∂s∂
α
x b(s, y)

∣∣≤ nt . (5.10)
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The construction of the coefficients σ and b is done in a standard way: one takes σ(s, y) = σ(s, y) for y ∈ B(xs(φ),1).
So for such (s, y) one has the inequality |σ(s, y)| = |σ(s, y)| ≤ n(s, xs(φ)) ≤ nt . Then one takes the extension for
every y ∈R

n which keeps this restriction. Similar restrictions are obtained for the derivatives. So, in the following we
will assume that (5.10) holds true for our coefficients.

Remark 5.6 (Short time estimates). We assume the localization as in Remark 5.5. In particular, the coefficients
b,σi , i = 1, . . . , d , verify (5.10). So, Assumption 2.3 holds with κ = nt . Let us fix t ≥ 0 and δ > 0. We want to
estimate the density p(t, t + δ, x, y) of the solution X at time t + δ with the starting condition Xt = x. We define the
(open) set

O = {(t, x) : λ(t, x) > 0
}
.

We set

L =
{
C : O →R+ : there are K,q > 0 such that C(t, x) = K

(
nt

λ(t, x)

)q}
.

We are slightly abusing the notation here (compare with (5.3)) but this is not a problem because of (5.10). Up-
per and lower bounds proved in Theorem 3.8 and 4.3 can now be written for a general starting condition (t, x) in
place of (0, x0): there exist C ∈ L, r∗, δ∗ ∈ 1/L such that for (t, x) ∈ O , δ ≤ δ∗(t, x) and for every y such that
|y − x − b(t, x)δ|Aδ(t,x) ≤ r∗(t, x) one has

1

C(t, x)

√
detAδA

T
δ (t, x)

≤ p(t, t + δ, x, y) ≤ eC(t,x)√
detAδA

T
δ (t, x)

, (5.11)

where p(t, s, x, ·) denotes the density of the solution X at time s of the equation in (2.1) but with the starting condition
Xt = x.

Remark 5.7 (Concatenation). The plan for the proof is the following. Consider first the lower bound for the tube
(see next Theorem 5.8). For φ ∈ L2[0, T ], let x(φ) be the skeleton associated to (2.1) given in (2.10). We set a
discretization 0 = t0 < t1 < · · · < tN = T of the time interval [0, T ]. Then, as k varies, we consider the events

Dk =
{

sup
tk≤t≤tk+1

n2
t

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
}

and �k = {y : ∣∣y − xtk (φ)
∣∣
ARtk

(tk,xtk
(φ))

≤ rk
}
,

where rk < 1 is a radius that will be suitably defined in the sequel. We denote Pk the conditional probability

Pk(·) = P(·|Wt, t ≤ tk;Xtk ∈ �k).

We will bound from below P(supt≤T |Xt − xt (φ)|ARt (t,xt (φ)) ≤ 1) by computing the product of the probabilities
Pk(Dk ∩ {Xtk+1 ∈ �k+1}), and this computation uses the lower estimate of the densities given in (5.11). This esti-
mate is applicable because at each step we condition to Xtk ∈ �k , and on this small set we control the eigenvalue
λ(tk,Xk), and as a consequence we control the constant in the density estimate (5.11).

We recall the set A in (5.6) and 1/A defined as usual.

Theorem 5.8. Let μ ≥ 1, h ∈ (0,1], n : [0, T ] → [1,+∞), λ : [0, T ] → (0,1], φ ∈ L2([0, T ],Rn) and R : [0, T ] →
(0,1] be such that (H1)–(H3) in (2.12) hold. Then there exist K̄, q̄ > 0 such that

exp

(
−
∫ T

0
K̄

(
μnt

λt

)q̄(1

h
+ 1

Rt

+ |φt |2 dt

))
≤ P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
)
. (5.12)
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Proof. Step 1. We first set-up some quantities which will be used in the rest of the proof.
We recall (H3): R., |φ.|2, n., λ. ∈ L(μ,h), where f ∈ L(μ,h) if and only if f (t) ≤ μf (s) for |t − s| ≤ h. We set,

for q1,K1 > 1 to be fixed in the sequel,

fR(t) = K1

(
μnt

λt

)q1
(

1

h
+ 1

Rt

+ |φt |2
)

.

Then straightforward computations give that fR ∈ L(μ2q1+1, h). We define

δ(t) = inf

{
δ > 0 :

∫ t+δ

t

fR(s) ds ≥ 1

μ2q1+1

}
. (5.13)

We have

δ(t)

h
=
∫ t+δ(t)

t

1

h
ds ≤

∫ t+δ(t)

t

fR(s) ds = 1

μ2q1+1
,

so δ(t) ≤ h. We now prove that δ(·) ∈ L(μ4q1+1, h). In fact, if 0 < t − t ′ ≤ h,

μ2q1+1fR(t)δ(t) ≥
∫ t+δ(t)

t

fR(s) ds = 1

μ2q1+1
=
∫ t ′+δ(t ′)

t ′
fR(s) ds ≥ μ−(2q1+1)fR(t)δ

(
t ′
)
,

so δ(t ′) ≤ μ4q1+2δ(t). Since the converse holds as well, we get δ(·) ∈ L(μ4q1+2, h). We now prove a further property
for δ(·): we have

1

μ2q1+1
=
∫ t+δ(t)

t

fR(s) ds ≥
∫ t+δ(t)

t

fR(t)

μ2q1+1
ds ≥ δ(t)

fR(t)

μ2q1+1
,

so

δ(t) ≤ 1

fR(t)
≤ Rt

K1

(
λt

μnt

)q1

≤ 1

K1

(
λt

μnt

)q1

∈ 1/A (5.14)

(recall that Rt ,λt ≤ 1 and nt ≥ 1 for every t). We also set the energy over the time interval [t, t + δ(t)]:

εt

(
δ(t)
)= (∫ t+δ(t)

t

|φs |2 ds

)1/2

.

Since n,λ ∈ L(μ,h) and δ(t) ≤ h, for s ∈ (t, t + δ(t)) we have

fR(s) ≥ K1

(
μns

λs

)q1

|φs |2 ≥ K1

μ2q1

(
μnt

λt

)q1

|φs |2.

Hence

1

μ2q1+1
=
∫ t+δ(t)

t

fR(s) ds ≥ K1

μ2q1

(
μnt

λt

)q1 ∫ t+δ(t)

t

|φs |2 ds,

which gives that

εt

(
δ(t)
)2 ≤ 1

K1

(
λt

μnt

)q1

∈ 1/A. (5.15)

Step 2. We set now some notation and properties that will be used in the “concatenation”, which is developed in
the following steps.
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We define the time grid as

t0 = 0, tk = tk−1 + δ(tk−1),

and introduce the following notation on the grid:

δk = δ(tk), εk = εtk (δk), nk = ntk , λk = λtk , Xk = Xtk , xk = xtk (φ), Rk = Rtk .

Recall that δ(t) < h for every t , so we have

Rk/μ ≤ Rt ≤ μRk, for tk ≤ t ≤ tk+1.

We also define

X̂k = Xk + b(tk,Xk)δk, x̂k = xk + b(tk, xk)δk,

and for tk ≤ t ≤ tk+1,

X̂k(t) = Xk + b(tk,Xk)(t − tk), x̂k(t) = xk + b(tk, xk)(t − tk).

Let r∗ ∈ 1/A be the radius-function in Remark 5.6, associated to the points (t, xt (φ)) as t ∈ [0, T ]. We set r∗
k = r∗

tk
.

Let us see some properties.
For all tk ≤ t ≤ tk+1, we have Rt ≥ Rk/μ ≥ δk/μ and, by using (5.1), we obtain

|ξ |ARt (t,xt ) ≤
√

δk

Rk

|ξ |Aδk/μ(t,xt ) ≤ |ξ |Aδk/μ(t,xt ),

last inequality holding because δk ≤ Rk . Since δk/μ ≤ δk , we apply again (5.1) to the norm in the right hand side
above and we get

|ξ |ARt (t,xt ) ≤ μ|ξ |Aδk
(t,xt ). (5.16)

Taking ξ = xt − x̂k(t), we have∣∣xt − x̂k(t)
∣∣
ARt (t,xt )

≤ μ
∣∣xt − x̂k(t)

∣∣
Aδk

(t,xt )
.

By (5.14) and (5.15), we can choose q1,K1 large enough such that δ(t) ≤ δ∗(t), εt (δ(t)) ≤ ε∗(t) where δ∗ ∈ 1/A and
ε∗ ∈ 1/A are the functions in Lemma 5.3. So, we apply (5.7) to the norm in the above right hand side and we obtain∣∣xt − x̂k(t)

∣∣
ARt (t,xt )

≤ μ × 4
∣∣xt − x̂k(t)

∣∣
Aδk

(tk,xk)
.

We use now (5.8): for some C̄ ∈ A, we get∣∣xt − x̂k(t)
∣∣
Aδk

(tk,xk)
≤ C̄k(εk ∨√δk),

where C̄k = C̄tk , and, as a consequence of the estimate above, we have also∣∣xt − x̂k(t)
∣∣
ARt (t,xt )

≤ 4μC̄k(εk ∨√δk),

for all t ∈ [tk, tk+1] and for all k. By recalling that xtk+1 − x̂k(tk+1) = xk+1 − x̂k , and possibly choosing K1, q1 larger,
we can resume by asserting that δk ≤ δ∗

tk
in Remark 5.6 with initial condition (tk, xk), and

|xk+1 − x̂k|Aδk
(tk,xk) ≤ r∗

k /4 for all k, (5.17)∣∣x̂k(t) − xt

∣∣
ARt (t,xt )

≤ 1

4n2
t

for all t ∈ [tk, tk+1] and for all k. (5.18)
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We have already noticed that, under our settings, (5.7) holds, so that

1

2
|ξ |Aδk

(tk,xk) ≤ |ξ |Aδk
(tk+1,xk+1) ≤ 2|ξ |Aδk

(tk,xk).

Since δ(·) ∈ L(μ4q1+2, h), one has δk/δk+1 ≤ μ4q1+2 and δk+1/δk ≤ μ4q1+2. So, using (5.1) to the right hand side of
the above inequality we easily get

1

2μ2q1+1
|ξ |Aδk

(tk,xk) ≤ |ξ |Aδk+1 (tk+1,xk+1) ≤ 2μ2q1+1|ξ |Aδk
(tk,xk) for all k. (5.19)

Step 3. We are ready to set-up the concatenation for the lower bound.
We set, for K2 and q2 to be fixed in the sequel,

rk = 1

K2μ2q1+2q2+1

(
λk

nk

)q2

. (5.20)

Moreover, since λ,n ∈ L(μ,h) and δk ≤ h, one easily gets rk+1/rk ≤ μ2q2 for every k.
We define

�k = {y : |y − xk|Aδk
(tk,xk) ≤ rk

}
and Pk(·) = P(·|Wt, t ≤ tk;Xk ∈ �k),

that is, Pk is the conditional probability with respect to the knowledge of the Brownian motion up to time tk and the
fact that Xk ∈ �k . The aim of this step is to prove that

Pk(Xk+1 ∈ �k+1) ≥ 2μ−4nq1 exp
(−K3(logμ + lognk − logλk)

)
for all k (5.21)

for some constant K3 depending on K1, K2, q1 and q2.
We denote ρk(Xk, y) the density of Xk+1 with respect to this probability. We prove that

�k+1 ⊂ {y : |y − X̂k|Aδk
(tk,Xk) ≤ r∗

k

}
. (5.22)

If (5.22) holds, as we will see, then we can apply the lower bound in Remark 5.6 to ρk(Xk, y). We use here the
estimate given in (5.11): there exists C ∈ A such that

ρk(Xk, y) ≥ 1

Ck

√
detAδk

AT
δk

(tk,Xk)
for all y ∈ �k+1, (5.23)

where Ck = Ctk
. Here, a direct application of (5.11) would give a constant which depends on λ(tk,Xk), but using the

fact that Xk ∈ �k and so it is close to xk , we can show that the same is true with λ(tk, xk), and so the constant can be
taken in A. Let us show that (5.22) holds. We estimate

|y − X̂k|Aδk
(tk,xk) ≤ |y − xk+1|Aδk

(tk,xk) + |xk+1 − x̂k|Aδk
(tk,xk) + |x̂k − X̂k|Aδk

(tk,xk)

and by using (5.17) we obtain

|y − X̂k|Aδk
(tk,xk) ≤ |y − xk+1|Aδk

(tk,xk) + r∗
k

4
+ |x̂k − X̂k|Aδk

(tk,xk). (5.24)

Using (5.19), the fact that rk+1/rk ≤ μ2q2 and recalling that |y − xk+1|Aδk+1 (tk+1,xk+1) ≤ rk+1, we obtain

|y − xk+1|Aδk
(tk,xk) ≤ 2μ2q1+1|y − xk+1|Aδk+1 (tk+1,xk+1) ≤ 2μ2q1+1rk+1

≤ 2μ2q1+2q2+1rk ≤ 2

K2

(
λk

nk

)q2

.
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(2.11) also gives |x̂k − X̂k|Aδk
(tk,xk) ≤ Ck|xk − Xk|Aδk

(tk,xk), where Ck = Ctk and C is a suitable function in A, and

the conditioning with respect to �k gives |x̂k − X̂k|Aδk
(tk,xk) ≤ Ckrk . Similarly, |x̂k(t) − X̂k(t)|ARt (t,xt ) ≤ Ck|xk −

Xk|ARt (t,xt ) and by using firstly (5.16) and secondly (5.7), we get∣∣x̂k(t) − X̂k(t)
∣∣
ARt (t,xt )

≤ Ck × μ|xk − Xk|Aδk
(t,xt ) ≤ Ckμ × 2|xk − Xk|Aδk

(tk,xk) ≤ 2μCkrk,

for every t ∈ [tk, tk+1]. Recalling (5.20), K2 and q2 (possibly large) such that |y − xk+1|Aδk
(tk,xk) ≤ r∗

k /8, |x̂k −
X̂k|Aδk

(tk,xk) ≤ r∗
k /8, and

∣∣X̂k(t) − x̂k(t)
∣∣
ARt (t,xt )

≤ 1

4n2
t

, for all t ∈ [tk, tk+1] and for all k. (5.25)

From (5.24), this implies |y − X̂k|Aδk
(tk,xk) ≤ r∗

k /2. On the event �k , we also have, from (2.9), |xk − Xk| ≤ |xk −
Xk|Aδk

(tk,xk)λ
∗(A(tk, xk))

√
δk ≤ nα

tk

√
δkrk , for some universal constant α > 0. So, we can fix K2 and q2 in order that

Lemma 5.2 holds with R = δk , x = xk , y = Xk , t = tk and s = 0. Then, we get

1

2
|ξ |Aδk

(tk,xk) ≤ |ξ |Aδk
(tk,Xk) ≤ 2|ξ |Aδk

(tk,xk).

These inequalities give two consequences. First, we have

|y − X̂k|Aδk
(tk,Xk) ≤ 2|y − X̂k|Aδk

(tk,xk) ≤ r∗
k ,

so that (5.22) actually holds and then (5.23) holds as well. As a second consequence, we have that{
y : |y − xk+1|Aδk

(tk,Xk) ≤ rk+1

4μ2q1+1

}
⊂
{
y : |y − xk+1|Aδk

(tk,xk) ≤ rk+1

2μ2q1+1

}
⊂ {y : |y − xk+1|Aδk+1 (tk+1,xk+1) ≤ rk+1

}= �k+1,

in which we have used (5.19). Since rk+1/(4μ2q1+1) ≥ rk/(4μ2q1+2q2+1), we obtain

�k+1 ⊃
{
y : |y − xk+1|Aδk

(tk,Xk) ≤ rk

4μ2q1+2q2+1

}
.

By recalling that rk/(4μ2q1+2q2+1) = 1
4K2μ

4q1+4q2+2 (
λk

nk
)q2 , we can write, with Lebn denoting the Lebesgue measure in

R
n,

Lebn(�k+1) ≥
√

det
(
Aδk

AT
δk

(tk,Xk)
)( 1

4K2μ4q1+4q2+2

(
λk

nk

)q2
)n

.

So, from (5.23),

Pk(Xk+1 ∈ �k+1) ≥ 1

Ck

(
1

4K2μ4q1+4q2+2

(
λk

nk

)q2
)n

,

where Ck is the constant in (5.23). This implies (5.21), for some constant K3 depending on K2 and q2.
Step 4. We give here the proof of the lower bound (5.12).
We set

Dk =
{

sup
tk≤t≤tk+1

n2
t |Xt − xt |ARt (t,xt ) ≤ 1

}
and Ek =

{
sup

tk≤t≤tk+1

n2
t

∣∣Xt − X̂k(t)
∣∣
ARt (t,xt )

≤ 1

2

}
.
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For t ∈ [tk, tk+1], by using (5.18) and (5.25) we have

|Xt − xt |ARt (t,xt ) ≤ ∣∣Xt − X̂k(t)
∣∣
ARt (t,xt )

+ ∣∣X̂k(t) − x̂k(t)
∣∣
ARt (t,xt )

+ ∣∣x̂k(t) − xt

∣∣
ARt (t,xt )

≤ ∣∣Xt − X̂k(t)
∣∣
ARt (t,xt )

+ 1

2n2
t

,

so that Ek ⊂ Dk . Moreover, by passing from Stratonovich to Itô integrals and by using (2.9), we have∣∣Xt − X̂k(t)
∣∣
ARt (t,xt )

≤ ∣∣σ(tk,Xtk )(Wt − Wtk )
∣∣
ARt (t,xt )

+
∣∣∣∣∫ t

tk

(
σ(s,Xs) − σ(tk,Xk)

)
dWs

∣∣∣∣
ARt (t,xt )

+
∣∣∣∣∫ t

tk

(
b(s,Xs) − b(tk,Xk)

)
ds

∣∣∣∣
ARt (t,xt )

+
d∑

l=1

∣∣∣∣∫ t

tk

∇σl(s,Xs)
(
σl(s,Xs) − σl(tk,Xk)

)
ds

∣∣∣∣
ARt (t,xt )

≤
∣∣∣∣ √

μ√
Rk

σ(tk,Xtk )(Wt − Wtk )

∣∣∣∣
A(t,xt )

+
∣∣∣∣ μ

Rk

∫ t

tk

(
σ(s,Xs) − σ(tk,Xk)

)
dWs

∣∣∣∣
+
∣∣∣∣ μ

Rk

∫ t

tk

(
b(s,Xs) − b(tk,Xk)

)
ds

∣∣∣∣
+

d∑
l=1

∣∣∣∣ μ

Rk

∫ t

tk

∇σl(s,Xs)

2

(
σl(s,Xs) − σl(tk,Xk)

)
ds

∣∣∣∣.
We use now the exponential martingale inequality (see also Remark 5.5) and we find that

Pk

(
Ec

k

)≤ exp

(
− 1

K4

(
λk

μnk

)q4 Rk

δk

)
for some constants K4, q4. From (5.14), Rk/δk ≥ K1(μnk/λk)

q1 , so by choosing K1 and q1 possibly larger and by
recalling (5.21), we can conclude that

Pk

(
Ec

k

)≤ μ−4nq1 exp
(−K3(logμ + lognk − logλk)

)≤ 1

2
Pk(Xk+1 ∈ �k+1).

Hence,

Pk

({Xk+1 ∈ �k+1} ∩ Dk

)≥ Pk

({Xk+1 ∈ �k+1} ∩ Ek

)≥ Pk(Xk+1 ∈ �k+1) − Pk

(
Ec

k

)
≥ 1

2
Pk(Xk+1 ∈ �k+1) ≥ exp

(−K5(logμ + lognk − logλk)
)
, (5.26)

for some constant K5. Let now N(T ) = max{k : tk ≤ T }. From definition (5.13),

∫ T

0
fR(t) dt ≥

N(T )∑
k=1

∫ tk

tk−1

fR(t) dt = N(T )

μ2q1+1
.



2352 V. Bally, L. Caramellino and P. Pigato

From (5.26),

P

(
sup
t≤T

|Xt − xt |ARt (t,xt ) ≤ 1
)

≥ P

(
N(T )⋂
k=1

{Xk+1 ∈ �k+1} ∩ Dk

)

≥
N(T )∏
k=1

exp
(−K5(logμ + lognk − logλk)

)

= exp

(
−K5

N(T )∑
k=1

(logμ + lognk − logλk)

)
.

Since

N(T )∑
k=1

(logμ + lognk − logλk) = μ2q1+1
N(T )∑
k=1

∫ tk+1

tk

fR(t)(logμ + lognk − logλk) dt

≤ μ2q1+1
∫ T

0
fR(t) log

(
μ3nt

λt

)
dt,

the lower bound (5.12) follows. �

We can now address the problem of the upper bound. In this case we need to consider a sufficiently small radius
Rt ≤ R∗

t (φ), such that the density estimates hold on the whole tube (cf. also with Remark 2.11). This allows us to use
the same ideas that we explained in Remarks 5.5, 5.6, 5.7. In particular, Remark 5.5 holds in similar fashion, with a
simpler justification, consequence of assumption Rt ≤ R∗

t (φ). Also, it is not necessary in this case to introduce the
analogues of the sets Dk’s, but only the analogues of the sets �k’s, that we call �k’s.

Similarly to (2.13), for μ ≥ 1, h ∈ (0,1] and K∗, q∗ > 0, we denote

R̄∗
t (φ) = exp

(
−K∗

(
μnt

λt

)q∗)(1

h
+ |φ|2t

)−1

(5.27)

Theorem 5.9. Let μ ≥ 1, h ∈ (0,1], n : [0, T ] → [1,+∞), λ : [0, T ] → (0,1], φ ∈ L2([0, T ],Rn) and R : [0, T ] →
(0,1] be such that (H1)–(H3) in (2.12) hold. Then there exist K∗, q∗, K̄, q̄ > 0 such that for R̄∗(φ) as in (5.27), if
Rt ≤ R̄∗

t (φ) one has

P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
)

≤ exp

(
−
∫ T

0
K̄

(
μnt

λt

)q̄[exp(−K∗(μnt

λt
)3q∗)

Rt

+ 1

h
+ |φt |2

]
dt

)
. (5.28)

Proof. We refer here to notation and arguments already introduced and developed in the proof of Theorem 5.8. So,
when we recall here Step 1, 2 and 3, we intend to refer to the same steps developed in the proof of Theorem 5.8.

We define, with the same K1, q1 as in Step 1,

gR(t) = K1

(
μnt

λt

)q1
(exp(−K∗(μnt

λt
)q∗μ2q∗)

Rt

+ 1

h
+ |φt |2

)
.

We work here with δ(t) as in the proof od Theorem 5.8 but defined from gR :

δ(t) = inf

{
δ > 0 :

∫ t+δ

t

gR(s) ds ≥ 1

μ2q1+1

}
.
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We set, as before,

εt

(
δ(t)
)= (∫ t+δ(t)

t

|φs |2 ds

)1/2

.

As in Step 1, we can check estimates similar to (5.14) and (5.15): we have indeed,

δ(t) ≤ h

K1

(
λt

μnt

)q1

≤ 1

K1

(
λt

μnt

)q1

and εt

(
δ(t)
)2 ≤ 1

K1

(
λt

μnt

)q1

.

In particular, δ(t) ≤ h. With these definitions we set a time grid {tk : k = 0, . . . ,N(T )} and all the associated quantities
as in Step 2. As we did for the lower bound, since we estimate the probability of remaining in the tube for any
t ∈ [tk, tk+1], we can suppose that the bound in Assumption 2.3 holds on R

+ ×R
n (recall Remark 5.5). The short time

density estimate (5.11) holds again. Recall now that R. ∈ L(μ,h), and this gives the analogous to (5.19):

1

2
√

μ
|ξ |ARk

(tk,xk) ≤ |ξ |ARk+1 (tk+1,xk+1) ≤ 2
√

μ|ξ |ARk
(tk,xk). (5.29)

We define

�k = {y : |y − xk|ARk
(tk,xk) ≤ 1

}
and P̃k(·) = P(·|Wt, t ≤ tk;Xk ∈ �k),

so P̃k is the conditional probability given the Brownian path up to time tk and the fact that Xk ∈ �k .
Now, since δ(t) ≤ h and R,λ,n, |φ|2 ∈ L(μ,h), recalling Rt ≤ R̄∗

t (φ) in (5.27), we have∫ t+δ(t)

t

K1

(
μns

λs

)q1
(

1

h
+ |φ|2s

)
ds ≤ μ2q1+1K1

(
μnt

λt

)q1
(

1

h
+ |φ|2t

)
δ(t)

≤ μ2q1+1K1

(
μnt

λt

)q1

exp

(
−K∗

(
μnt

λt

)q∗)δ(t)

Rt

and ∫ t+δ(t)

t

K1

(
μns

λs

)q1 exp(−K∗(μns

λs
)q∗μ2q∗)

Rs

ds

≤ μ2q1+1K1

(
μnt

λt

)q1

exp

(
−K∗

(
μnt

λt

)q∗)δ(t)

Rt

.

We obtain

1 = μ2q1+1
∫ t+δ(t)

t

gR(s) ds ≤ 2μ4q1+2K1

(
μnt

λt

)q1

exp

(
−K∗

(
μnt

λt

)q∗)δ(t)

Rt

so

Rt

δ(t)
≤ 2μ4q1+2K1

(
μnt

λt

)q1

exp

(
−K∗

(
μnt

λt

)q∗)
. (5.30)

As we did in Step 3, if q∗,K∗ are large enough, Rk is small enough and the upper bound for the density holds on
�k+1. By using inequality√

δk

Rk

1

2
√

μ
|ξ |Aδk

(tk,xk) ≤ 1

2
√

μ
|ξ |ARk

(tk,xk) ≤ |ξ |ARk+1 (tk+1,xk+1),



2354 V. Bally, L. Caramellino and P. Pigato

which can be proved using (5.29) and (5.1), one gets

Lebn

(
y : |y − xk+1|ARk+1 (tk+1,xk+1) ≤ 1

)≤ (Rk

δk

)n/2

2nμn/2 Lebn

(
y : |y − xk+1|Aδk

(tk,xk) ≤ 1
)

=
(

Rk

δk

)n/2

2nμn/2
√

det
(
Aδk

AT
δk

(tk, xk)
)
.

Now, using the upper estimate for the density (5.11), we obtain

P̃k(Xk+1 ∈ �k+1) ≤ eCk

(
Rk

δk

)n/2

,

where Ck = Ctk , C ∈ A (see the constant in the upper bound in (5.11); also here, a direct application of (5.11) would
give a constant which depends on λ(tk,Xk), but using the fact that Xk ∈ �k and so it is close to xk , we can show that
the constant can be taken in A).

Recall (5.30), for t = tk

Rk

δk

≤ 2μ4q1+2K1

(
μnk

λk

)q1

exp

(
−K∗

(
μnk

λk

)q∗)
so we chose now K∗, q∗ large enough to have

P̃k(Xk+1 ∈ �k+1) ≤ exp(−K2)

for a constant K2 > 0. From the definition of N(T )∫ T

0
gR(t) dt =

N(T )∑
k=1

∫ tk

tk−1

gR(t) dt = N(T )

μ2q1+1
≤ N(T ).

So, we have

P

(
sup
t≤T

∣∣Xt − xt (φ)
∣∣
ARt (t,xt (φ))

≤ 1
)

≤ E

(
N(T )∏
k=1

P̃k(�k+1)

)

≤
N(T )∏
k=1

exp(−K2) = exp
(−K2N(T )

)≤ exp

(
−K2

∫ T

0
gR(t)

)
and (5.28) holds as a consequence. �

Appendix A: On the equivalence between matrix norm and control distance

We establish here the local equivalence between the norm | · |AR(t,x) and the control (Carathéodory) distance dc. We
use in a crucial way the alternative characterization of dc given in [25]. These results hold in the homogeneous case,
so we consider now the vector fields σj (t, x) = σj (x), and the associated norm | · |AR(t,x) = | · |AR(x) (see (2.2) and
(2.8)). We assume in this section the following bound on σ : there exists κ :Rn → [1,+∞) such that

sup
|y−x|≤1

∑
0≤|α|≤4

d∑
j=1

∣∣∂α
x σj (y)

∣∣≤ κ(x), ∀x ∈R
n. (A.1)

So, (A.1) agrees with (2.11) in the homogeneous case and when b = 0.
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We now introduce a quasi-distance d which is naturally associated to the family of norms |y|AR(x). We define the
open set

O = {x ∈R
n : λ∗

(
A(x)

)
> 0
}= {x : det

(
AAT (x)

) 	= 0
}
.

For x, y ∈ O , we define d(x, y) by

d(x, y) <
√

R ⇔ |y − x|AR(x) < 1.

In the elliptic case |y − x|AR(x) ∼ R−1/2|y − x|, so |y − x|AR(x) ≤ 1 amounts to |y − x| ≤ √
R. In the hypoelliptic

case considered here, R appears as a radius, but we have ellipsoids instead of balls. It is straightforward to see that d

is a quasi-distance on O , meaning that d verifies the following three properties (see [25]):

(i) for every x ∈ O and r > 0, the set {y ∈ O : d(x, y) < r} is open;
(ii) d(x, y) = 0 if and only if x = y;

(iii) for every compact set K � O there exists C > 0 such that for every x, y, z ∈ K one has d(x, y) ≤ C(d(x, z)+
d(z, y)).

We recall the definition of equivalence of quasi-distances. Two quasi-distances d1 : D × D → R
+ and d2 : D × D →

R
+ are equivalent if for every compact set K ⊂ D there exists a constant C such that for every x, y ∈ K

1

C
d1(x, y) ≤ d2(x, y) ≤ Cd1(x, y).

d1 and d2 are locally equivalent if for every ξ ∈ D there exists an open neighborhood V of ξ such that d1 and d2 are
equivalent on V .

We introduce now the control metric. Without loss of generality, we assume T = 1,
For a control ψ ∈ Lp([0,1],Rd), p ∈ [1,∞], let u(ψ) satisfy the following controlled equation:

dut (ψ) =
d∑

j=1

σj

(
ut (ψ)

)
ψ

j
t dt. (A.2)

Notice that the equation for u(ψ) is actually the skeleton equation (2.10) when the drift b is null.
For x, y ∈ O and δ ∈ (0,1], p ∈ [1,∞] we denote C

p
σ,δ(x, y) the set of controls ψ ∈ Lp([0, δ];Rd) such that the

corresponding solution u(ψ) to (A.2) satisfies u0(ψ) = x and uδ(ψ) = y. For ψ ∈ C2
σ,δ(x, y), we set the associated

energy

εψ(δ) =
(∫ δ

0
|ψs |2 ds

)1/2

.

We also write ‖ψ‖2 = εψ(1) and define the control (Carathéodory) distance between x, y ∈R
n as

dc(x, y) = inf
ψ∈C2

σ,1(x,y)

‖ψ‖2.

Notice that for any fixed δ ∈ (0,1],
dc(x, y) = √

δ inf
ψ∈C2

σ,δ(x,y)

εψ(δ). (A.3)

Indeed, for each x, y ∈ R
n and ψ ∈ C2

σ,1(x, y), take φt = δ−1ψ(tδ−1) and ξt = ut/δ(ψ). Then, dξt =∑d
j=1 σj (ξt )φ

j
t dt

and of course ξ0 = x, ξδ = y. Moreover, ‖ψ‖2 = √
δεφ(δ).

Lastly, we consider the analogous distance defined via the sup-norm ‖ · ‖∞:

d∞(x, y) = inf
ψ∈C∞

σ,1(x,y)
‖ψ‖∞.
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Under (A.1), we define

L =
{
C : O →R+ : C = K

(
κ(x)

λ(x)

)q

,∃K,q > 0

}
.

Notice that L is actually the set in (5.3) in the homogeneous case.

Theorem A.1. Suppose that (A.1) hold. Then, the semi-distance d is locally equivalent to dc on O . As a consequence,
for every compact set K ⊂ O there exist rK and CK such that for every x, y ≤ rK one has dc(x, y) ≤ CKd(x, y).

Proof. Step 1. We first prove that there exists C̄ ∈ L such that if dc(x, y) ≤ 1/C̄2(x) then d(x, y) ≤ 2C̄(x)dc(x, y).
Assume that dc(x, y) ≤ 1/C̄2(x), with C̄ ∈ L to be chosen later. We set δ(x) = C̄2(x)dc(x, y)2. Notice that δ(x) ≤

1/C̄2(x). (A.3) with δ = δ(x) gives

dc(x, y) =√δ(x) inf
φ∈C2

σ,δ(x)
(x,y)

εφ

(
δ(x)

)= C̄(x)dc(x, y) inf
φ∈C2

σ,δ(x)
(x,y)

εφ

(
δ(x)

)
and thus,

inf
φ∈C2

σ,δ(x)
(x,y)

εφ

(
δ(x)

)= 1

C̄(x)
<

2

C̄(x)
.

Hence, there exists φ∗ ∈ C2
σ,δ(x)(x, y) such that

εφ∗
(
δ(x)

)
<

2

C̄(x)
.

For every fixed x, we apply Remark 5.4 to φ∗ (recall that here b ≡ 0): there exists δ̄, ε̄ ∈ 1/L and C̄ ∈ L such that
(with the slightly different notation of the present section)∣∣uδ(φ∗) − x

∣∣
Aδ(x)

≤ C(x)
(
εφ∗(δ) ∨ √

δ
)
,

for every δ such that δ ≤ δ̄(x) and εφ∗(δ) ≤ ε̄(x). We have just proved that δ(x) ≤ 1/C̄2(x) and εφ∗(δ(x)) ≤ 2/C̄(x).
So, possibly taking C̄ larger, we can actually use δ = δ(x). Since uδ(x)(φ∗) = y, the above inequality gives

|y − x|Aδ(x) ≤ C(x)
(
εφ∗
(
δ(x)

)∨√δ(x)
)≤ 2.

By (2.9), we obtain |y − x|A4δ(x) ≤ 1, that is d(x, y) ≤ √
4δ(x) = 2C̄(x)dc(x, y), and the statement follows.

Step 2. We prove now the converse inequality. We use a result from [25], for which we need to recall the definition
of the quasi-distance d∗ (denoted by ρ2 in [25]). The definition we give here is slightly different but clearly equivalent.
For θ ∈R

m, consider the equation

dvt (θ) = A
(
vt (θ)

)
θ dt. (A.4)

We denote

C̄A(x, y) = {θ ∈R
m : the solution v(θ) to (A.4) satisfies v0(θ) = x and v1(θ) = y

}
.

Notice that θ ∈ C̄A(x, y) is a constant vector, and not a time depending control as in (A.2). Moreover, recalling the
definitions (2.4)–(2.5) for A, (A.4) involves also the vector fields [σi, σj ], differently from (A.2). In both equations
the drift term b does not appear.

Let DR be the diagonal matrix in (2.7) and recall that AR(x) = A(x)DR . We define

d∗(x, y) = inf
{
R > 0 : there exists θ ∈ C̄A(x, y) such that

∣∣D−1
R θ
∣∣< 1

}
.
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As a consequence of Theorem 2 and Theorem 4 from [25], d∗ is locally equivalent with d∞. Since dc(x, y) ≤ d∞(x, y)

for every x and y, one gets that dc is locally dominated from above by d∗. To conclude we need to prove that d∗ is
locally dominated from above by d .

Let us be more precise: for x ∈ O , we look for C ∈ L and R ∈ 1/L such that the following holds: if 0 < R ≤
R(x) and d(x, y) ≤ √

R, then there exists a control θ ∈ C̄A(x, y) such that |D−1
R θ | < C(x). This implies d∗(x, y) ≤

C(x)
√

R, and the statement holds. Notice that we discuss local equivalence, and that is why we can take C(x) and
R(x) depending on x.

Recall that d(x, y) ≤ √
R means |x − y|AR(x) ≤ 1, and this also implies |x − y| ≤ λ∗(A(x))

√
R, by (2.9). Let v(θ)

denote the solution to (A.4) with v0(θ) = x. We look for θ such that v1(θ) = y. We define

�(θ) =
∫ 1

0
A
(
vs(θ)

)
θ ds = A(x)θ + r(θ)

with r(θ) = ∫ 1
0 (A(vs(θ)) − A(x))θ ds. With this notation, we look for θ such that �(θ) = y − x. We introduce now

the Moore–Penrose pseudoinverse of A(x): A(x)+ = A(x)T (AAT (x))−1. The idea here is to use it as in the least
squares problem, but we need some computations to overcome the fact that we are in a non-linear setting. We use
the following properties: AA(x)+ = Id; |x − y|A(x) = |A(x)+(x − y)|. Write θ = A(x)+γ , γ ∈ R

n. This implies
A(x)θ = γ , and so we are looking for γ ∈R

n such that

γ + r
(
A(x)+γ

)= y − x.

One has r(0) = 0, ∇r(0) = 0 and, as a consequence, |r(θ)| ≤ C(x)|θ |2, for some C ∈ L – from now on, C ∈ L will
denote a function that may vary from line to line.

From the local inversion theorem (in a quantitative form), there exists l ∈ L such that γ �→ γ + r(A(x)+γ )

is a diffeomorrphism from B(0, lx) to B(0, lx/2). Remark that |x − y| ≤ λ∗(A(x))
√

R. So, taking Rx such that
λ∗(A(x))

√
R = lx/2, then for every R < Rx and |y − x| < λ∗(A(x))

√
R then there exists a unique γ such that

γ + r(A(x)+γ ) = y − x and moreover, |γ | ≤ 2|x − y|. Now, using (2.9)

∣∣r(A(x)+γ
)∣∣

AR(x)
≤ λ∗(A(x))|r(A(x)+γ )|

R
≤ Cx

|A(x)+γ |2
R

≤ Cx

|x − y|2
R

≤ Cx |x − y|2AR(x).

Since γ = x − y − r(A(x)+γ ),

|γ |AR(x) ≤ |x − y|AR(x) + Cx |x − y|2AR(x) ≤ Cx,

(using |x − y|AR(x) ≤ 1). We have |D−1
R θ | = |D−1

R A(x)+γ |. Since A+
RAR(x) = A+

R(x)A(x)DR is an orthogonal
projection and AA+(x) is the identity,∣∣D−1

R θ
∣∣≤ ∣∣D−1

R A(x)+γ
∣∣≤ A

∣∣A+
R(x)A(x)DRL−1

R A(x)+γ
∣∣= ∣∣A+

R(x)γ
∣∣= |γ |AR(x).

So |L−1
R θ | ≤ Cx , and this implies d∗(x, y) ≤ Cx

√
R. �

The proof of Theorem 2.14 is now an immediate consequence of Theorem 2.9 and Theorem A.1. The only apparent
problem is that in Theorem A.1 the global estimate (A.1) is required, whereas in Theorem 2.14 the local estimate
(H1) in (2.12) holds. But this is not really a problem, since it can be handled as already done for Theorem 2.14 (see
Remark 5.5).

Appendix B: Proof of decomposition Lemma

We prove the decomposition (3.6) in Lemma 3.1. We recall Zt in (3.2):

Zt =
d∑

i=1

aiW
i
t +

d∑
i,j=1

ai,j

∫ t

0
Wi

s ◦ dW
j
s
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with ai = σi(0, x0), ai,j = ∂σi
σj (0, x0). Setting sl = l dδ, l = 1, . . . , d , we have

Zδ =
d∑

l=1

Z(sl) − Z(sl−1) =
d∑

l=1

(
d∑

i=1

ai�
i
l +

d∑
i,j=1

ai,j

∫ sl

sl−1

Wi
s ◦ dW

j
s

)
.

Recalling the quantities �
j
l and �

i,j
l in (3.3), we write

∫ sl

sl−1

Wi
s ◦ dW

j
s = Wi

sl−1
�

j
l + �

i,j
l =

(
l−1∑
p=1

�i
p

)
�

j
l + �

i,j
l .

Then

Zδ =
d∑

l=1

d∑
i=1

ai�
i
l +

d∑
l=1

d∑
i,j=1

ai,j

(
l−1∑
p=1

�i
p

)
�

j
l +

d∑
l=1

d∑
i,j=1

ai,j�
i,j
l =: S1 + S2 + S3.

Notice first that

S1 =
d∑

l=1

al�
l
l +

d∑
l=1

∑
i 	=l

ai�
i
l .

We treat now S3. We will use the identities∣∣�i
l

∣∣2 = 2�
i,i
l and �i

l�
j
l = �

i,j
l + �

j,i
l .

Then

S3 =
d∑

l=1

d∑
i=1

ai,i�
i,i
l +

d∑
l=1

∑
i 	=j

ai,j�
i,j
l

=
d∑

l=1

d∑
i=1

ai,i�
i,i
l +

d∑
l=1

∑
i 	=l

ai,l�
i,l
l +

d∑
l=1

∑
j 	=l

al,j�
l,j
l +

d∑
l=1

∑
i 	=j,i 	=lj 	=l

ai,j�
i,j
l

= 1

2

d∑
l=1

d∑
i=1

ai,i

∣∣�i
l

∣∣2 +
d∑

l=1

∑
i 	=l

ai,l�
i,l
l

+
d∑

l=1

∑
j 	=l

al,j

(
�

j
l �

l
l − �

j,l
l

)+ d∑
l=1

∑
i 	=j,i 	=l,j 	=l

ai,j�
i,j
l

= 1

2

d∑
i=1

ai,i

∣∣�i
i

∣∣2 + 1

2

d∑
l=1

d∑
i 	=l

ai,i

∣∣�i
l

∣∣2 +
d∑

l=1

∑
i 	=l

(ai,l − al,i)�
i,l
l

+
d∑

l=1

(∑
j 	=l

al,j�
j
l

)
�l

l +
d∑

l=1

∑
i 	=j,i 	=l,	=j 	=

ai,j�
i,j
l .

We treat now S2. We want to emphasize the terms containing �i
i . We have

S2 =
d∑

l>p

d∑
i,j=1

ai,j�
i
p�

j
l = S′

2 + S′′
2 + S′′′

2 + Siv
2
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with

S′
2 =

d∑
l>p

ap,l�
p
p�l

l, S′′
2 =

d∑
l>p

∑
j 	=l

ap,j�
p
p�

j
l ,

S′′′
2 =

d∑
l>p

d∑
i 	=p

ai,l�
i
p�l

l, Siv
2 =

d∑
l>p

∑
i 	=p,j 	=l

ai,j�
i
p�

j
l .

We have

S′′
2 =

d∑
p=1

�
p
p

(
d∑

l=p+1

∑
j 	=l

ap,j�
j
l

)

and

S′′′
2 =

d∑
l=1

�l
l

(
l−1∑
p=1

∑
i 	=p

ai,l�
i
p

)
=

d∑
p=1

�
p
p

(
p−1∑
l=1

∑
j 	=l

aj,p�
j
l

)

so that

S′′
2 + S′′′

2 =
d∑

p=1

�
p
p

(
d∑

l=p+1

∑
j 	=l

ap,j�
j
l +

p−1∑
l=1

∑
j 	=l

aj,p�
j
l

)
.

Finally

Zδ =
d∑

l=1

al�
l
l +

d∑
l=1

∑
i 	=l

ai�
i
l

+
d∑

l>p

ap,l�
p
p�l

l +
d∑

p=1

�
p
p

(
d∑

l>p

∑
j 	=l

ap,j�
j
l +

d∑
p>l

∑
j 	=l

aj,p�
j
l

)

+
d∑

l>p

∑
i 	=p,j 	=l

ai,j�
i
p�

j
l + 1

2

d∑
i=1

ai,i

∣∣�i
i

∣∣2 + 1

2

d∑
l=1

∑
i 	=l

ai,i

∣∣�i
l

∣∣2
+

d∑
l=1

∑
i 	=l

(ai,l − al,i )�
i,l
l +

d∑
l=1

(∑
j 	=l

al,j�
j
l

)
�l

l +
d∑

l=1

∑
i 	=j,i 	=l,j 	=l

ai,j�
i,j
l .

We want to compute the coefficient of �
p
p: this term appears in

∑d
p=1 �

p
p(ap + εp), with

εp =
d∑

l>p

∑
j 	=l

ap,j�
j
l +

d∑
p>l

∑
j 	=l

aj,p�
j
l +

∑
j 	=p

ap,j�
j
p.

We consider now �
i,p
p . It appears in

d∑
p=1

∑
i 	=p

(ai,p − ap,i)�
i,p
p .



2360 V. Bally, L. Caramellino and P. Pigato

The vector ai,p − ap,i corresponds to the bracket [σi, σp](0, x). Notice that for l = l(i,p) when i 	= p, then
[σi, σp](0, x) = Al(0, x), Al(0, x) being the lth column of A(0, x). The other terms are

d∑
l=1

∑
i 	=l

ai�
i
l +

d∑
l>p

∑
i 	=p,j 	=l

ai,j�
i
p�

j
l + 1

2

d∑
i=1

ai,i

∣∣�i
i

∣∣2 + 1

2

d∑
l=1

∑
i 	=l

ai,i

∣∣�i
l

∣∣2
+

d∑
l=1

∑
i 	=j,i 	=l,j 	=l

ai,j�
i,j
l +

d∑
l=p+1

ap,l�
p
p�l

l.

We put everything together and (3.6) is proved.

Appendix C: Support property

The aim of this section is the proof of the inequality in (C.5), which has been strongly used in Lemma 3.4.
Let B = (B1, . . . ,Bd−1) be a standard Brownian motion. We consider the analogous of the covariance matrix

Qi(B) considered in Section 3.1: we define a symmetric square matrix of dimension d × d by

Qd,d = 1, Qd,j = Qj,d =
∫ 1

0
B

j
s ds, j = 1, . . . , d − 1,

Qj,p = Qp,j =
∫ 1

0
B

j
s B

p
s ds, j,p = 1, . . . , d − 1

(C.1)

and we denote by λ∗(Q) (respectively by λ∗(Q)) the lowest (respectively largest) eigenvalue of Q.
For a measurable function g : [0,1] → Rd−1 we denote

αg(ξ) = ξd +
∫ 1

0
〈gs, ξ∗〉ds, βg(ξ) =

∫ 1

0
〈gs, ξ∗〉2 ds −

(∫ 1

0
〈gs, ξ∗〉ds

)2

with

ξ = (ξ1, . . . , ξd) ∈ R
d and ξ∗ = (ξ1, . . . , ξd−1).

We need the following two preliminary lemmas.

Lemma C.1. With g(s) = Bs , s ∈ [0,1] we have

〈Qξ, ξ 〉 = α2
B(ξ) + βB(ξ).

As a consequence, one has

λ∗(Q) = inf|ξ |=1

(
α2

B(ξ) + βB(ξ)
)

and λ∗(Q) ≤ sup
|ξ |=1

(
α2

B(ξ) + βB(ξ)
)≤ (1 + sup

t≤1
|Bt |
)2

.

Taking ξ∗ = 0 and ξd = 1 we obtain 〈Qξ, ξ 〉 = 1 so that λ∗(Q) ≤ 1 ≤ λ∗(Q).

Proof. By direct computation

〈Qξ, ξ 〉 = ξ2
d + 2ξd

∫ 1

0
〈Bs, ξ∗〉ds +

(∫ 1

0
〈Bs, ξ∗〉ds

)
)2

+
∫ 1

0
〈Bs, ξ∗〉2 ds −

(∫ 1

0
〈Bs, ξ∗〉ds

)2

=
(

ξd +
∫ 1

0
〈Bs, ξ∗〉ds

)2

+
∫ 1

0
〈Bs, ξ∗〉2 ds −

(∫ 1

0
〈Bs, ξ∗〉ds

)2

.

The remaining statements follow straightforwardly. �
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Proposition C.2. For each p ≥ 1 one has

E
(|detQ|−p

)≤ Cp,d < ∞, (C.2)

where Cp,d is a constant depending on p,d only.

Proof. By Lemma 7.29, pg 92 in [13], for every p ∈ (0,∞) one has

1

|detQ|p ≤ 1

�(p)

∫
Rd

|ξ |d(2p−1)e−〈Qξ,ξ〉 dξ.

Let θ(ξ∗) := ∫ 1
0 〈Bs, ξ∗〉ds. Using the previous lemma∫

Rd

|ξ |d(2p−1)e−〈Qξ,ξ〉 dξ =
∫

Rd

(
ξ2
d + |ξ∗|2

)d(2p−1)/2
e−(ξd+θ(ξ∗))2−βB(ξ∗) dξ

≤ C

∫
Rd−1

((
1 + θ2(ξ∗)

)d(2p−1)/2 + |ξ∗|d(2p−1)
)
e−βB(ξ∗) dξ∗

≤ C

∫
Rd−1

sup
t≤1

1 ∨ |Bt |d(2p−1)
(
1 + |ξ∗|d(2p−1)+1)e−βB(ξ∗) dξ∗.

We integrate and we use Schwartz inequality in order to obtain

E

(
1

|detQ|p
)

≤ C + C

∫
{|ξ∗|≥1}

(
E
((

1 + |ξ∗|d(2p−1)+1)2e−2βB(ξ∗)))1/2
dξ∗.

For each fixed ξ∗ the process bξ∗(t) := |ξ∗|−1〈Bt , ξ∗〉 is a standard Brownian motion and βB(ξ∗) = |ξ∗|2
∫ 1

0 (bξ∗(t) −∫ 1
0 bξ∗(s) ds)2 dt =: |ξ∗|2Vξ∗ where Vξ∗ is the variance of bξ∗ with respect to the time. Then it is proved in [17] (see

(1.f), p. 183) that

E
(
e−2βB(ξ∗))= E

(
e−2|ξ∗|2Vξ∗

)= 2|ξ∗|2
sinh 2|ξ∗|2 .

We insert this in the previous inequality and we obtain E(|detQ|−p) < ∞. �

We are now able to give the main result in this section. We define

q(B) =
d−1∑
i=1

∣∣Bi
1

∣∣+∑
j 	=p

∣∣∣∣∫ 1

0
B

j
s dB

p
s

∣∣∣∣ (C.3)

and for ε,ρ > 0 we denote

ϒρ,ε(B) =
{

detQ ≥ ερ, sup
t≤1

|Bt | ≤ ε−ρ, q(B) ≤ ε
}
. (C.4)

Proposition C.3. There exist some universal constants cρ,d , ερ,d ∈ (0,1) (depending on ρ and d only) such that for
every ε ∈ (0, ερ,d) one has

P
(
ϒρ,ε(B)

)≥ cρ,d × ε
1
2 d(d+1). (C.5)

Proof. Using the previous proposition and Chebyshev’s inequality we get

P
(
detQ < ερ

)≤ εpρ
E|detQ|−p ≤ Cp,dεpρ and P

(
sup
t≤1

|Bt | > ε−ρ
)

≤ exp

(
− 1

Cε2ρ

)
.
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Let q ′(B) = ∑d−1
i=1 |Bi

1| + ∑
j<p | ∫ 1

0 B
j
s dB

p
s |. Since | ∫ 1

0 B
j
s dB

p
s | ≤ |Bj

1 ||Bp

1 | + | ∫ 1
0 B

p
s dB

j
s | we have q(B) ≤

2q ′(B) + q ′(B)2 so that {q ′(B) ≤ 1
3ε} ⊂ {q(B) ≤ ε}. We will now use the following fact: consider the diffusion

process X = (Xi,Xj,p , i = 1, . . . , d,1 ≤ j < p ≤ d) solution of the equation dXi
t = dBi

t , dX
j,p
t = X

j
t dB

p
t . The

strong Hörmander condition holds for this process and the support of the law of X1 is the whole space. So the law of
X1 is absolutely continuous with respect to the Lebesgue measure and has a continuous and strictly positive density p.
This result is well known (see for example [23] or [2]). We denote cd := inf|x|≤1 p(x) > 0 and this is a constant which
depends on d only. Then, by observing that q ′(B) ≤ √

m|X1|, where m = 1
2d(d + 1) is the dimension of the diffusion

X, we get

P
(
q(B) ≤ ε

)≥ P

(
q ′(B) ≤ ε

3

)
≥ P

(
|X1| ≤ ε

3
√

m

)
≥ εm

(3
√

m)m
× c̄d ,

with c̄d > 0. So finally we obtain

P
(
ϒρ,ε(B)

)≥ c̄dε
1
2 d(d+1) − Cp,dεpρ − exp

(
− 1

Cε2ρ

)
.

Choosing p > 1
2ρ

d(d + 1) and ε small we obtain our inequality. �

Appendix D: Density estimates via local inversion

In this section we see how to use the inverse function theorem to transfer a known estimate for a Gaussian random
variable to its image via a certain function η. For a standard version of the inverse function theorem see [28].

We consider �(θ) = θ + η(θ), for a three times differentiable function η : Rm → R
m. Define

c2(η) = max
i,j=1,...,m

sup
|x|≤1

∣∣∂2
ij η(x)

∣∣, c3(η) = max
i,j,k=1,...,m

sup
|x|≤1

∣∣∂3
ijkη(x)

∣∣, (D.1)

and

hη = 1

16m2(c2(η) + √
c3(η))

. (D.2)

Lemma D.1. Take hη as above. If the function η is such that

η ∈ C3(
R

m,Rm
)
, η(0) = 0, ∇η(0) ≤ 1

2
,

then there exists a neighborhood of 0, that we denote with Vhη ⊂ B(0,2hη), such that � : Vhη → B(0, 1
2hη) is a

diffeomorphism. In particular, if we denote with �−1 the local inverse of �, we have

�−1 : B
(

0,
1

2
hη

)
→ B(0,2hη),

and we have this quantitative estimate:

∀y ∈ B

(
0,

1

2
hη

)
,

1

4

∣∣�−1(y)
∣∣≤ |y| ≤ 4

∣∣�−1(y)
∣∣. (D.3)

Remark D.2. Here we write �−1 for the inverse of the restriction of � to Vhη , what is called a local inverse.
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Proof. We have

∇�(0) = Id + ∇η(0).

So ∣∣∇�(0)x
∣∣2 ≥ 1

2
|x|2 − ∣∣∇η(0)x

∣∣2 ≥ 1

2
|x|2 − 1

4
|x|2 = 1

4
|x|2.

and ∣∣∇�(0)x
∣∣2 ≤ 2|x|2 + 2

∣∣∇η(0)x
∣∣2 ≤ 2|x|2 + 1

2
|x|2 ≤ 5

2
|x|2.

Therefore

1

2
|x| ≤ ∣∣∇�(0)x

∣∣≤ √
3|x|.

This implies �(0) is invertible locally around 0, and the local inverse is differentiable, using the classical inverse
function theorem. We now look at the image of the inverse, and at the estimates (D.3). We develop η around 0, writing
∇2η(x)[u,v] to denote ∇2η(x) computed in u and v.

η(θ) = ∇η(0)θ +
∫ 1

0
(1 − t)∇2η(tθ)[θ, θ ]dt.

Fix y ∈R
m. Suppose �(θ) = y. Then

θ = (∇�(0)
)−1∇�(0)θ

= (∇�(0)
)−1(

θ + ∇η(0)θ
)

= (∇�(0)
)−1
(

θ + η(θ) −
∫ 1

0
(1 − t)∇2η(tθ)[θ, θ ]dt

)
= (∇�(0)

)−1
(

y −
∫ 1

0
(1 − t)∇2η(tθ)[θ, θ ]dt

)
.

We define

Uy(θ) =
(

y −
∫ 1

0
(1 − t)∇2η(tθ)[θ, θ ]dt

)
,

so that θ can be seen as a fixed point for Uy . Recall that | 1
2x| ≤ |∇�(0)x|.

∣∣Uy(θ1) − Uy(θ2)
∣∣= ∣∣∣∣(∇�(0)

)−1
(∫ 1

0
(1 − t)

(∇2η(tθ2)[θ2, θ2] − ∇2η(tθ1)[θ1, θ1]
)
dt

)∣∣∣∣
≤ 2

∣∣∣∣∫ 1

0
(1 − t)

(∇2η(tθ2)[θ2, θ2] − ∇2η(tθ1)[θ1, θ1]
)
dt

∣∣∣∣
≤ 2

∫ 1

0
(1 − t)

(∣∣∇2η(tθ1)[θ1, θ1 − θ2]
∣∣+ ∣∣∇2η(tθ1)[θ1 − θ2, θ2]

∣∣
+ ∣∣∇2η(tθ1)[θ2, θ2] − ∇2η(tθ2)[θ2, θ2]

∣∣)dt.

Now, from (D.2), for θ1, θ2 ∈ B(0, hη)∣∣∇2η(tθ1)[θ1, θ1 − θ2]
∣∣≤ m2c2(η)hη|θ1 − θ2| ≤ 1

16
|θ1 − θ2|,
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and ∣∣∇2η(tθ1)[θ2, θ2] − ∇2η(tθ2)[θ2, θ2]
∣∣≤ m3c3(η)|θ1 − θ2|h2

η ≤ 1

256
|θ1 − θ2|,

and therefore∣∣Uy(θ1) − Uy(θ2)
∣∣≤ 1

4
|θ1 − θ2|. (D.4)

For y ∈ B(0, 1
2hη) and θ ∈ B(0,2hη) this implies

∣∣Uy(θ)
∣∣≤ ∣∣Uy(θ) − Uy(0)

∣∣+ ∣∣Uy(0)
∣∣≤ 1

4
|θ | + 2y ≤ 2hη.

Define now the sequence

θ0 = 0, θk+1 = Uy(θk).

We know that θk ∈ B(0,2hη) for any k ∈N, therefore inequality (D.4) implies

∣∣Uy(θk) − Uy(θk+1)
∣∣≤ 1

4
|θk − θk+1|.

The Banach fixed-point theorem tells us that θk converges to the unique solution of θ = Uy(θ), which is θ = �−1(y),
and θ ∈ B(0,2hη). So it is possible to define the local inverse �−1 on B(0, 1

2hη), and

Vhη := �−1B

(
0,

1

2
hη

)
⊂ B(0,2hη).

Now, for y ∈ B(0, 1
2hη), let θ = �−1(y) and the following inequalities hold

|θ | = ∣∣Uy(θ)
∣∣≤ 1

2
θ + 2|y| ⇒ |θ | ≤ 4|y|,

|θ | = Uy(θ) ≥ ∣∣Uy(0)
∣∣− ∣∣Uy(θ) − Uy(0)

∣∣≥ 1

2
|y| − 1

2
|θ | ⇒ |θ | ≥ 1

4
|y|. �

Let now 
 be a m-dimensional centered Gaussian variable with covariance matrix Q. Denote by λ and λ the lowest
and the largest eigenvalues of Q. Keeping in mind the setting of the last subsection, we also introduce the notation

c∗(η,h) = sup
|x|≤2h

max
i,j

∣∣∂iη
j (x)

∣∣ (D.5)

for h > 0. Recall we are supposing η ∈ C3(Rm,Rm) and η(0) = 0.
Take r > 0 such that

c∗(η,16r) ≤ 1

2m

√
λ

λ
, r ≤ hη = 1

16m2(c2(η) + √
c3(η))

. (D.6)

We take a localizing function as in (E.2):

U =
m∏

i=1

ψr(
i). (D.7)
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Lemma D.3. Let Q be non degenerate. Let r such that (D.6) holds and set U as in (D.7). Then the density pG,U of

G := �(
) = 
 + η(
)

under PU has the following bounds on B(0, r):

1

C detQ1/2
exp

(
−C

λ
|z|2
)

≤ pG,U (z) ≤ C

detQ1/2
exp

(
− 1

Cλ
|z|2
)

. (D.8)

Proof. For a general nonnegative, measurable function f : Rm → R with support included in B(0,4r), we compute
E(f (G)1{
∈�−1B(0,4r)}). Here �−1 is the local diffeomorphism of the inverse function theorem. After the multipli-
cation with the characteristic function, on the support of the random variable that we are averaging, � is a diffeo-
morphism and the first equality holds. The second follows from the change of variable suggested by Lemma D.1 for
G = �(
)

E
(
f (G)1{
∈�−1B(0,4r)}

)
=
∫

�−1(B(0,4r))

f
(
�(θ)

) 1

(2π)m/2 detQ1/2
exp

(
−1

2

〈
Q−1θ, θ

〉)
dθ

=
∫

B(0,4r)

f (z)p̄G(z) dz,

where for z ∈ B(0,4r)

p̄G(z) = 1

(2π)m/2 detQ1/2|det∇�(�−1(z))| exp

(
−1

2

〈
Q−1�−1(z),�−1(z)

〉)
.

Again from Lemma D.1, since 4r ≤ hη

2 , we have z ∈ B(0,4r) ⇒ θ ∈ B(0,16r). Using c∗(η,16r) ≤ 1
2m

√
λ

λ
,

1

2
|x|2 ≤ (1 − mc∗(η,hη)

)|x|2 ≤ ∣∣〈∇�(θ)x, x
〉∣∣≤ (1 + mc∗(η,hη)

)|x|2 ≤ 2|x|2.

Therefore if z ∈ B(0,4r)

2−m ≤ ∣∣det�
(
�−1(z)

)∣∣≤ 2m.

Moreover, using Lemma D.1

〈
Q−1�−1(z),�−1(z)

〉≤ 1

λ

∣∣�−1(z)
∣∣2 ≤ 16

λ
|z|2,

〈
Q−1�−1(z),�−1(z)

〉≥ 1

λ

∣∣�−1(z)
∣∣2 ≥ 1

16λ
|z|2.

Therefore

1

(8π)m/2 detQ1/2
exp

(
−8

λ
|z|2
)

≤ p̄G(z) ≤ 2m/2

πm/2 detQ1/2
exp

(
− 1

32λ
|z|2
)

.

Now we define, as in (E.2) the localization variables

U1 =
m∏

i=1

ψ16r (
i), U2 =
m∏

i=1

ψr(
i).
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Notice that

U2 ≤ 1{
∈�−1B(0,4r)} ≤ U1,

so that we have

E
(
f (G)U2

)≤ E
(
f (G)1{
∈�−1B(0,4r)}

)≤ E
(
f (G)U1

)
.

The following bounds for the local densities follow:

pG,U1(z) ≥ 1

(8π)m/2 detQ1/2
exp

(
−8

λ
|z|2
)

,

pG,U2(z) ≤ 2m/2

πm/2 detQ1/2
exp

(
− 1

32λ
|z|2
)

.

U1 ≥ U = U2, so for the localization via U both bounds hold. �

Appendix E: Localization and density estimates

We first recall some notations and basic notions in Malliavin calculus. Our main reference is [26]. Given a d-
dimensional Brownian motion W = (W 1

t , . . . ,Wd
t )t≥0 we denote its Malliavin derivative as

DF = (DF 1, . . . ,DFd
)T

.

We introduce the Sobolev norm of F :

‖F‖1,p = [E|F |p +E|DF |p] 1
p where |DF | =

(∫ T

0
|DsF |2 ds

) 1
2

.

For any k ∈ N, for a multi-index α = (α1, . . . , αk) ∈ {1, . . . , d}k and (s1, . . . , sk) ∈ [0, T ]k , we denote the higher order
derivative as

Dα
s1,...,sk

F := Dα1
s1

. . .Dαk
sk

F.

We denote by |α| = k the length of the multi-index. We define the Sobolev norm of Dα
s1,...,sk

F as

‖F‖k,p =
[
E|F |p +

k∑
j=1

E
∣∣D(j)F

∣∣p] 1
p

where
∣∣D(j)F

∣∣= (∑
|α|=j

∫
[0,T ]j

∣∣Dα
s1,...,sj

F
∣∣2 ds1 . . . dsj

)1/2

.

Notice that with this notation |DF | = |D(1)F |. Also notice that D(j) means “derivative of order j” and Dj means
“derivative with respect to Wj ”.

We denote by D
k,p the space of the random variables which are k times differentiable in the Malliavin sense in Lp ,

and D
k,∞ =⋂∞

p=1 D
k,p . As usual, we also denote by L the Ornstein–Uhlenbeck operator, i.e. L = −δ ◦ D, where δ

is the adjoint operator of D.
We consider a random vector F = (F1, . . . ,Fn) in the domain of D. We define its Malliavin covariance matrix as

follows:

γ
i,j
F = 〈DFi,DFj 〉 =

d∑
k=1

∫ T

0
Dk

s Fi × Dk
s Fj ds.
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The following notion of localization is introduced in [2]. Consider a random variable U ∈ [0,1] and denote

dPU = U dP.

PU is a non-negative measure (not a probability measure, in general). We also set EU the expectation (integral) w.r.t.
PU , and denote

‖F‖p
p,U = EU

(|F |p)= E
(|F |pU

)
,

‖F‖p
k,p,U = ‖F‖p

p,U +
k∑

j=1

EU

(∣∣D(j)F
∣∣p).

We assume that U ∈D
1,∞ and for every p ≥ 1

mU(p) := 1 +EU |D lnU |p < ∞. (E.1)

The specific localizing function we will use is the following. Consider the function depending on a parameter a > 0:

ψa(x) = 1|x|≤a + exp

(
1 − a2

a2 − (x − a)2

)
1a<|x|<2a.

For 
i ∈ D
2,∞ and ai > 0, i = 1, . . . , n we define the localization variable:

U =
n∏

i=1

ψai
(
i). (E.2)

For this choice of U we have that for any p,k ∈N0

mU(p) ≤ C
‖
‖p

1,p

|a| . (E.3)

The proof of (E.3) follows from standard computations and inequality

sup
x

∣∣(lnψa)(x)
∣∣pψa(x) ≤ C

ap
.

In the following proposition we state the general lower and upper bound that we use in our density estimate. These
results are proved in [2] and [3].

Proposition E.1. Let F ∈ (D2,∞)d .

1. Suppose that for every p ∈ N : EU |λ∗(γF )|−p < ∞, U ∈ D
1,∞ and mU(p) < ∞. Let G ∈ (D2,∞)d such that

for every p ∈N

EU

∣∣λ∗(γG)
∣∣−p

< ∞.

Then for every p > d

pF,U (y)

≥ pG,U (y) − CmU(p)b max
{
1,
(
EU

∣∣λ∗(γG)
∣∣−p)b(‖F‖2,p,U + ‖G‖2,p,U

)}‖F − G‖2,p,U , (E.4)

where C,b are constants depending only on d,p and mU(p) is given by (E.1).
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2. Assume E|λ∗(γF )|−p < ∞,∀p. Then ∃C,p,b constants depending only on the dimension d such that∣∣pF (y)
∣∣≤ C max

{
1,E

∣∣λ∗(γF )
∣∣−p‖F‖2,p

}
P
(|F − y| < 2

)b
. (E.5)

Proof.

1. The lower bound (E.4) for pF,U is a version of Proposition 2.5. in [2] with the lowest eigenvalue instead of the
determinant.

2. The upper bound (E.5) for pF is a version of Theorem 2.14, point A., in [3]. We take therein q = 0, so there is
no derivative, and 
 = 1, that means that we are not localizing.

�
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