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Abstract. Let G be a connected graph of uniformly bounded degree. A k non-backtracking random walk (k-NBRW) (Xn)∞
n=0 on

G evolves according to the following rule: Given (Xn)s
n=0, at time s + 1 the walk picks at random some edge which is incident to

Xs that was not crossed in the last k steps and moves to its other end-point. If no such edge exists then it makes a simple random
walk step. Assume that for some R > 0 every ball of radius R in G contains a cycle. We show that under some “nice” random time
change the 1-NBRW becomes reversible. This is used to prove that it is recurrent iff the simple random walk is recurrent. A similar
result is proved for every k under stronger assumptions in general, and with no assumptions for Cayley graphs of finitely generated
Abelian groups.

Résumé. Soit G un graphe connexe dont les degrés sont uniformément bornés. La marche aléatoire k non-rebroussante (k-NBRW)
sur G évolue de la manière suivante: sachant (Xn)s

n=0, l’état Xs+1 est obtenu en choisissant uniformément au hasard une arête
incidente à Xs qui n’a pas été empruntée durant les k mouvements précédents, et en l’empruntant. Si toutes les arêtes incidentes à
Xs ont été empruntées durant les k mouvements précédents, on choisit une arête incidente à Xs uniformément au hasard. Supposons
que toute boule de rayon R dans G contient un cycle. Alors nous montrons que, sous un changement de temps judicieux, la 1-
NBRW devient réversible. Nous en déduisons que cette marche est récurrente si et seulement si la marche aléatoire simple l’est
aussi. Un résultat similaire est établi pour tout k, sous des hypothèses supplémentaires en général, mais sans aucune hypothèse
dans le cas des graphes de Cayley de groupes abéliens finiment engendrés.
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1. Introduction

In this work we study a generalization of non-backtracking random walk (NBRW) on a graph G, in which the walk is
required (when possible) to avoid either the last k edges it crossed (viewed as undirected edges), or the last k vertices
it visited. If this is not possible, we say the walk got stuck, in which case it moves to a random neighbor. We call such
a walk an edge (respectively, a vertex1) k-NBRW (for more precise definitions see Section 1.1).

The special case of k = 1, which is simply a NBRW, received much attention (e.g. [2–5,11,14,15,17,18,20]).
A recurring theme in the existing literature is that when G is regular the NBRW and the simple random walk (SRW)
on G (see Section 1.1 for the definition of SRW) are intimately related to one another. In particular, when G is regular
one may deduce some properties of one walk by establishing related properties for the other, or estimate certain
parameters for one walk via related parameters of the other (e.g. [2,17,20]). Conversely, when G is non-regular the
two walks can exhibit quite different behaviors (e.g. [4,18]).
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1When a certain statement is true for both the edge and the vertex NBRWs or if the type of walk is clear from context, we often omit the prefix
edge/vertex.
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Indeed, when G is d-regular for d ≥ 3, a well-known argument involving the universal cover of G shows that the
SRW (Sn)

∞
n=0 and the NBRW (SBN

n )∞n=0 on G can be coupled so that SBN
n = Sτn for all n, where (τn+1 − τn)

∞
n=1

are i.i.d. random variables satisfying that P(τ2 − τ1 > s) ≤ e−cs for all s ≥ 0 for some c > 0 (see Proposition 1.1).
However, there does not exist such a coupling when G is non-regular or when the NBRW is replaced by a k-NBRW,
provided that k > girth(G) (where the girth of a graph G, denoted by girth(G), is defined as the length of the shortest
cycle in G).

One of the most fundamental questions that one can ask about any random walk is whether it is recurrent or
transient. A fairly simple consequence of the aforementioned coupling is that when G is regular SRW is recurrent iff
the NBRW is recurrent.

Proposition 1.1. Let G = (V ,E) be a d-regular connected graph for some d ≥ 3. Then the SRW on G is recurrent iff
the NBRW on G is recurrent.

Proposition 1.1 is proved in Section A.1. It is natural to ask whether the same assertion holds even without regularity
or when the NBRW is replaced with a k-NBRW. In this work we show that under some mild conditions the answer
to the last question is positive. To the best of the author’s knowledge, this was unknown even for k = 1. Moreover,
we show (Theorem 2) that for Cayley graphs of finitely generated infinite Abelian groups which are not isomorphic
to Z we have for all k that the SRW is recurrent iff the k-NBRW is recurrent. Finally, we show (Theorem 3) that
for any connected graph of bounded degree the variant of the NBRW which backtracks at each step with probability
p ∈ (0,1) is recurrent iff the SRW is recurrent.

A major difficulty in studying the k-NBRW is that even for k = 1 it is non-reversible (see Section 2 for the definition
of reversibility). It is much harder to apply techniques from potential theory to non-reversible Markov chains. One
reason is that in order to apply techniques from potential theory one first has to know a stationary measure for the chain.
For non-reversible Markov chains it is sometimes hard to find a stationary measure, and if the chain is transient, it is
possible that no stationary measure exists (although for the k-NBRW a stationary measure does exist, see Section 2).
In particular, for k > 1 it seems quite difficult to find a stationary measure for the vertex k-NBRW. In fact, this is also
true for the edge k-NBRW if it may get stuck.

Another reason is the lack of rich variety of comparison techniques available in the reversible setup (see Section 4).
However, one available comparison technique which we shall exploit is that the additive symmetrization of a recurrent
Markov chain is always recurrent (see Theorem 4.12). Unfortunately, there exist only few techniques for establishing
the converse implication, or more generally for arguing that the geometry of a non-reversible chain is in some sense
equivalent to that of a reversible one.

To overcome this difficulty, we show that if G has a positive density of short simple cycles then viewed at “nice”
random times, the edge NBRW becomes a reversible chain which can be compared with SRW on G. So is the case
for the k-NBRW under slightly more complicated conditions.

1.1. Basic definitions – SRW, NBRW and recurrence/transience

Let G = (V ,E) be a locally finite connected (simple)2 graph. A simple random walk (SRW) on G is a reversible
Markov chain with state space V and transition probabilities: P(x, y) = 1{x ∼ y}/deg(x), where x ∼ y indicates that
{x, y} ∈ E, and deg(x) is the degree of x (which is the number of edges which are incident to x). A non-backtracking
random walk (NBRW) (Xt )

∞
t=0 on G started from vertex u makes its first step according to the same rule as SRW

started from u, and then evolves according to the following rule: the conditional distribution of Xt+2 given (Xi)
t+1
i=0 is

chosen from the uniform distribution on {z ∈ V : z ∼ Xt+1, z �= Xt }, unless this set is empty (i.e. deg(Xt+1 = 1)), in
which case Xt+2 = Xt (i.e., the walk is forced to backtrack). While this is not a Markov chain, it can be transformed
into a Markov chain on

−→
E , the set of directed edges of G, whose transition probabilities are given by

B
(
(x, y), (z,w)

) := 1{y = z,w �= x}
deg(y) − 1

+ 1
{
y = z,w = x,deg(y) = 1

}
. (1.1)

2Although all of our results can be extended to the case that G is a multigraph, for the sake of simplicity of notation and clarity of presentation we
shall assume that G contains no multiple edges nor loops.
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Let k ∈ N. Similarly, an edge k-NBRW (respectively, a vertex k-NBRW) (Xt )
∞
t=0 evolves according to the following

rule: the conditional distribution of Xt+1 given (Xi)
t
i=0 is chosen from the uniform distribution on{

z ∈ V : z ∼ Xt, {z,Xt } /∈ {{Xi−1,Xi} : t − k < i ≤ t
}}

(
respectively,

{
z ∈ V : z ∼ Xt, z /∈ {Xi : t − k ≤ i ≤ t}}),

unless this set is empty, in which case we say the walk is stuck. If the walk is stuck then Xt+1 is chosen from the
uniform distribution over the neighbors of Xt (this is done in order to ensure the k-NBRW does not have absorbing
states). These walks can be transformed into Markov chains on a subset of the set of directed paths of length k in an
analogous manner to the case k = 1. We denote the collection of all paths of length k in the graph G = (V ,E) (where
G will be clear from context) by

Pk := {
(xi)

k
i=0 ∈ V k+1 : {xi, xi−1} ∈ E for all i ∈ [k]}.

Let

Pe
k := {γ ∈ Pk : γ crosses k distinct edges} and

Pv
k := {γ ∈Pk : γ contains k + 1 distinct vertices}. (1.2)

We may take the state space of the edge (respectively, vertex) k-NBRW to be the collection of all length k paths which
are accessible from Pe

k (respectively, Pv
k ). If the walk cannot get stuck then the state spaces are simply Pe

k and Pv
k ,

respectively (see Section 3.2 for details).

Remark 1.2. Note that (when G is simple) the NBRW is both a vertex and an edge 1-NBRW. However for k > 1
the restrictions imposed on the vertex k-NBRW are stronger than those imposed on the edge k-NBRW. Moreover, the
former is less symmetric (the latter satisfies a symmetry relation (7.4) similar to the detailed balance equation, which
the former does not) and thus harder to analyze.

Remark 1.3. In what comes we shall often assume that the k-NBRW cannot get stuck. Note that the vertex (respec-
tively, edge) k-NBRW cannot get stuck if the minimal degree of the graph is at least k + 1 (respectively, 	2k/3
 + 1).

Another condition which ensures that the edge k-NBRW cannot get stuck is that all vertices are either of even
degree or of degree at least 	2k/3
 + 1. To be precise (under the last condition) the only vertex at which the edge
k-NBRW might potentially get stuck is the starting point, but this is not the case in the Markov chain representation
of the edge k-NBRW, provided that the starting state is a path that does not get stuck. Consequently, the collection of
graphs for which the edge k-NBRW cannot get stuck is large.

We say that a vertex v is recurrent for a certain type of random walk on a graph G (e.g. SRW and edge/vertex
k-NBRW) if started from v the walk returns to v infinitely often a.s.. Otherwise, vertex v is said to be transient for
that walk type. We say that G is recurrent (respectively, transient) for a certain type of random walk if all of its vertices
are recurrent (respectively, transient) for that walk.

Remark 1.4. When the k-NBRW is viewed as a Markov chain, its state space is not the vertex set, but a certain subset
of the collection of all paths of length k. In all of the cases considered in our main results, Theorems 1–3, the above
notion of recurrence for the k-NBRW is in fact equivalent to the usual notion of recurrence for a Markov chain. Thus
there is no ambiguity in the definition of recurrence/transience.

1.2. Our results

Before stating our results we first list some conditions for later reference.

(1) There exists some L > 0 such that every 2-path is of length at most L, where a 2-path is a path consisting of
degree 2 vertices.

(2) There exists some R > 0 such that every ball of radius R contains a cycle.
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(2e
k) There exists some R > 0 such that for every γ, γ ′ ∈ Pe

k which contain at least one common vertex, the edge
k-NBRW can reach γ ′ from γ in at most R steps.

(2v
k) There exists some R > 0 such that for every γ, γ ′ ∈Pv

k which contain at least one common vertex, the vertex
k-NBRW can reach γ ′ from γ in at most R steps.

(3e
k) The edge k-NBRW on G cannot get stuck.

(3v
k) The vertex k-NBRW on G cannot get stuck.

Observe that conditions (2e
k) and (2v

k) both imply condition (1). Condition (1) will not be assumed in any of our main
results.

Let v0, v1, . . . , v� = v0 ∈ V be such that {vi−1, vi} ∈ E for all i ∈ [�] := {1,2, . . . , �}. We say that (v0, v1, . . . , v� =
v0) is an edge (respectively, vertex) simple cycle (of length �) if {vi−1, vi} �= {vj−1, vj } for all i �= j ∈ [�] (respectively,
if |{vi : i ∈ [�]}| = �).

(4e
k) There exists some R > 0 such that every ball of radius R contains an edge simple cycle of length at least k.

(4v
k) There exists some R > 0 such that every ball of radius R contains a vertex simple cycle of length at least

k + 1.

We believe that conditions (2e
k) and (2v

k) are in fact equivalent to conditions (4e
k) and (4v

k), respectively. Conditions
(4e

k) and (4v
k) will not be used in the paper.

The next theorem concerns with the case that G is of (uniformly) bounded degree (i.e., supv∈V deg(v) < ∞).

Theorem 1. Let G be a connected graph of bounded degree.

(i) If the SRW on G is transient then the NBRW on G is also transient.
(ii) If condition (2) holds then the SRW on G is transient iff the NBRW on G is transient.

(iii) If conditions (2e
k) and (3e

k) hold, then the SRW on G is transient iff the edge k-NBRW is transient.
(iv) If G is vertex-transitive, conditions (2v

k) and (3v
k) hold and the SRW on G is transient, then the vertex k-NBRW

is also transient.

Let H be a countable group. Let S be a finite symmetric (i.e., S = S−1 := {s−1 : s ∈ S}) set of generators of H

(that is, H = {s1 · · · sn : n ≥ 0, s1, . . . , sn ∈ S}). The (right) Cayley graph of H w.r.t. S is H(S) := (H,E(S)), where
E(S) := {{h,hs} : h ∈ H,s ∈ S}. As the following theorem asserts, when G is a Cayley graph of an Abelian group,
no additional assumptions are necessary for the assertion of Theorem 1 to hold.

Theorem 2. Let H be a finitely generated infinite Abelian group which is not isomorphic to Z. Let G = H(S) be the
Cayley graph of H w.r.t. some finite symmetric set of generators S. Let k ∈N. Then the following are equivalent:

(i) The SRW on G is recurrent.
(ii) The edge k-NBRW on G is recurrent.

(iii) The vertex k-NBRW on G is recurrent.

Remark 1.5. While the assertion of Theorem 2 clearly fails when H = Z and S = {±1}, it is not hard to modify the
proof of Theorem 2 to show that if H = Z and |S| > 2 then for all k ∈ N the edge k-NBRW is recurrent.

Remark 1.6. It is classical that whether SRW on H(S) is recurrent or not does not depend on S (that is, if S1, S2 are
two finite symmetric sets of generators of H then the SRW on H(S1) is recurrent iff the SRW on H(S2) is recurrent).
It follows from Theorem 2 that if H �= Z is Abelian, the same is true for the edge and vertex k-NBRWs for all k ∈N.

We now define a variant of the NBRW for which condition (2) is not required for the assertion of Part (ii) of
Theorem 1 to hold.

Definition 1.7. Let G = (V ,E) be a locally-finite connected graph. Fix some p ∈ (0,1). Consider a walk on the set
of directed edges

−→
E whose transition kernel is given by

Bp

(
(x, y), (z,w)

) := (1 − p)B
(
(x, y), (z,w)

) + p · 1{z = y,w = x},
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where B is the transition kernel of the NBRW on G (i.e., at each step with probability p the walk backtracks and
otherwise it evolves like a NBRW). We call this walk a p-BRW.

While the following theorem is of self-interest, its proof will be used to highlight the key ideas behind the proofs
of Theorems 1 and 2 in a simpler setup.

Theorem 3. Let G = (V ,E) be a connected graph of bounded degree. Then for every p ∈ (0,1) the p-BRW on G is
transient iff the SRW on G is transient.

1.3. Open problems and remarks

Recall that two graphs G1, G2 are roughly-isometric if one can be embedded in the other in an “almost surjective”
manner while distorting distances by at most a constant additive and multiplicative factor (see Definition 4.6 for a
precise formulation). Recall further that the relation of “being roughly-isometric” is an equivalence relation which
preserves recurrence/transience (see Fact 4.9). Moreover, it is not hard to verify that condition (2) is invariant under
rough-isometries. Hence the following corollary is an immediate consequence of Theorems 1 and 3.

Corollary 1.8. Let G and H be two connected roughly-isometric graphs of bounded degree. Then the following hold:

(i) If the SRW on G is transient then the NBRW on G and on H are both transient.
(ii) If condition (2) holds for G then the NBRW on G is transient iff the NBRW on H is transient.

(iii) For every p ∈ (0,1) the p-BRW on G is transient iff the p-BRW on H is transient.
(iv) If G and H both satisfy conditions (2e

k) and (3e
k), then the edge k-NBRW on G is transient iff the edge k-NBRW

on H is transient.

We leave the following as open problems.

Question 1.9. Let G be a connected graph of bounded degree which satisfies conditions (2v
k) and (3v

k). Is it the case
that the SRW on G is transient iff the vertex k-NBRW is transient?

Question 1.10. Does the assertion of Theorem 2 remain valid when G is only assumed to be vertex-transitive?

Question 1.11. Let G be a connected graph of bounded degree satisfying condition (1). Is it the case that the SRW
on G is transient iff the NBRW on G is transient?

The following example demonstrates that if condition (1) fails then it is possible that the SRW is recurrent while
the NBRW is transient.

Example 1.12. Let H = (V ,E) be some transient graph of bounded degree. Fix some o ∈ V . Let �n be the collection
of all edges with one end-point of distance n− 1 from o and the other of distance n. Let G be the graph obtained from
H by replacing for all n ∈N each edge in �n by a path of length |�n|.

Observe that when the NBRW on G enters one of its 2-paths it must reach the other end of that 2-path. Thus if we
observe the NBRW on G only when it visits sites belonging to V we obtain a realization of the NBRW on H . Since
the SRW on H is transient, by Theorem 1 so is the NBRW on H and hence the NBRW on G must be transient as
well.

To see that the SRW on G is recurrent, first apply a standard network reduction, replacing each 2-path added to
G by a single edge of edge-weight which equals the inverse of the length of that path (obtaining a network on H in
which each edge in �n has edge-weight 1/|�n|). Then apply the Nash-Williams criterion (e.g. [19, (2.13)]) to the cut
sets �1,�2, . . . .

To end the introduction, the author would like to thank Itai Benjamini for suggesting most of the problems consid-
ered in this paper (private communication).
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1.4. Organization of the paper

In Section 2 we present some background on Markov chains. In Section 3 we introduce additional notation and de-
scribe a representation of the k-NBRW as a Markov chain. In Section 4 we review a variety of comparison techniques.
In Section 5 we apply some of these techniques in order to compare SRW with the additive symmetrization of the
k-NBRW. In Section 6 we give an overview of the main ideas behind the proofs of our main results and prove The-
orem 3. In Section 7 we find a stationary measure for the edge k-NBRW (under condition (3e

k)). In Section 8–9 we
prove Theorems 1–2, respectively.

2. Some definitions related to Markov chains

We now recall some basic definitions related to Markov chains. For further background on Markov chains see e.g. [1,
16,19]. We call (V ,E, (ce)e∈E) a network if (V ,E) is a graph (we allow it to contain loops, i.e. E ⊆ {{u,v} : u,v ∈ V })
and (ce)e∈E are symmetric edge weights (i.e., cu,v = cv,u > 0 for every {u,v} ∈ E and cu,v = 0 if {u,v} /∈ E) such that
cv := ∑

w cv,w < ∞ for all v ∈ V . We say the network is connected if the graph (V ,E) is connected. The (weighted)
nearest neighbor random walk corresponding to (V ,E, (ce)e∈E) repeatedly does the following: when the current state
is v ∈ V , the walk will move to vertex u with probability cu,v/cv . The choice ce = 1{e ∈ E} corresponds to SRW on
(V ,E). We denote this network by (V ,E, (1)e∈E).

Consider an ergodic Markov chain (Xk)
∞
k=0 on a countable state space V with a stationary measure π and transition

probabilities given by P . We say that P is reversible w.r.t. π if π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ V . Observe
that a weighted nearest-neighbor random walk is reversible w.r.t. the measure π given by π(v) := cv and hence π

is stationary for the walk. Conversely, every reversible chain can be presented as a network with weights cx,y =
π(x)P (x, y). The time-reversal of P (w.r.t. π ), denoted by P ∗, is given by π(x)P ∗(x, y) := π(y)P (y, x) and its
additive symmetrization (w.r.t. π ) is a reversible Markov chain (w.r.t. π ) whose transition probabilities are given by
S := 1

2 (P + P ∗).
Note that when the chain is recurrent, π is unique up to a constant factor, and so P∗ and S are uniquely defined. This

may fail when the chain is transient! A transient Markov chain may fail to have a stationary measure and may have
two different stationary measures which are not constant multiples of one another. Consider a random walk on Z with
P(i, i + 1) = p = 1 − P(i, i − 1) for all i ∈ Z, with p ∈ (1/2,1). Note that P is reversible w.r.t. π(i) = (p/(1 − p))i

and is stationary also w.r.t. the counting measure μ on Z. The additive symmetrization w.r.t. π is again P while w.r.t.
μ is SRW on Z.

Harris [13] gave a general mild sufficient condition for the existence of a stationary measure for an irreducible
transient Markov chain on a countable state space. In particular, it follows from his result that (in this setup) if the
transition matrix P satisfies that {y : P(y, x) > 0} is finite for all x, then P has a stationary measure. Clearly this
implies that the k-NBRW has a stationary measure.

The hitting time of a set A ⊂ V is TA := inf{t ≥ 0 : Xt ∈ A}. Similarly, let T +
A := inf{t ≥ 1 : Xt ∈ A}. When

A = {x} is a singleton, we write Tx and T +
x instead of T{x} and T +

{x}. For a set A ⊂ V such that Pv[T +
A < ∞] = 1 for

all v ∈ V (under irreducibility we may replace ‘for all’ by ‘for some’) the induced chain on A is a Markov chain with
state space A and transition probabilities given by QA(a, b) := Pa[XT +

A
= b], where Pa denotes the law of the entire

chain, started from vertex u. It is not hard to verify that if the original chain is reversible w.r.t. π , then the induced
chain on A is reversible w.r.t. to the restriction of π to A (e.g. [16, p. 186]). In fact, if the original chain is recurrent
then this holds even without reversibility. Indeed in this case the stationary measure π is unique up to a multiplication
by a constant factor and is given by π(y) = Ex[|{t ∈ [0,XT +

x
) : Xt = y}|] (where x is arbitrary). Taking x, y ∈ A

we see that the r.h.s. is the same as the corresponding expectation for the induced chain on A, and so the stationary
measure of the induced chain on A is simply the restriction of π to A as claimed.

We now assume that
∑

v∈V π(v) = ∞. The �2 and �∞ norms of f ∈ R
V are given by ‖f ‖2 := √〈f,f 〉π

and ‖f ‖∞ := supv∈V |f (v)|, where 〈f,g〉π := ∑
v∈V π(v)f (v)g(v). The space of �2 functions is given by H :=

L2(V ,π) = {f : RV : ‖f ‖2 < ∞}. Then P (and similarly, also S and P ∗) defines a linear operator on H via
Pf (x) := ∑

y∈V P (x, y)f (y) = Ex[f (X1)]. Note that P ∗ is the dual of P and that S is self-adjoint. The Dirich-
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let form EP (·, ·) :H2 → R corresponding to P is EP (f, g) := 〈(I − P)f,g〉π . Note that

EP (f,f ) = EP ∗(f,f ) = ES(f,f ) = 1

2

∑
x,y

π(x)S(x, y)
(
f (x) − f (y)

)2
. (2.1)

3. Notation and a construction of the k-NBRW as a Markov chain

3.1. Notation

Fix some graph G = (V ,E). Here we allow G to contain loops (however we do not allow it to have multiple edges
between a pair of vertices). Recall that we write u ∼ v iff {u,v} ∈ E. We denote a directed edge from x to y by (x, y)

and an undirected edge between x and y by {x, y}. We denote the set of directed edges by
−→
E := {(x, y) : {x, y} ∈ E}.

For −→
e = (x, y) ∈ −→

E we denote its reversal, tail and head (respectively) by −→
e r := (y, x), −→

e − := x and −→
e + := y.

Let k ∈ N. We denote the set {1,2, . . . , k} by [k]. Recall that we denote the collection of all paths of length k in a
graph G by

Pk := {
(xi)

k
i=0 ∈ V k+1 : {xi, xi−1} ∈ E for all i ∈ [k]}.

Let γ = (γ0, . . . , γk) ∈ Pk . We denote the ith coordinate of γ by γi . The reversal of γ is given by γ r := (γk, . . . , γ0)

(that is, γ r
i := γk−i for all i). Its length is denoted by |γ | (where |γ | + 1 is the number of coordinates in γ ). For

e ∈ E (respectively, v ∈ V ) we write e ∈ γ (respectively, v ∈ γ ) if e ∈ γ e := {{γi−1, γi} : i ∈ [k]} (respectively,

v ∈ γ v := {γi : 0 ≤ i ≤ k}). For γ = (γ0, . . . , γk) ∈ Pk and v ∼ γk we write v
e∼ γ (respectively, v

v∼ γ ) if {γk, v} /∈ γ

(respectively, v /∈ γ ). We also write γ (v) := (γ1, . . . , γk, v) (note that γ (v) ∈Pk and γ (v)i := γi+1 for 0 ≤ i < k). As
in (1.2) let

Pe
k := {

γ ∈ Pk : ∣∣γ e
∣∣ = k

}
and Pv

k := {
γ ∈Pk : ∣∣γ v

∣∣ = k + 1
}
.

Observe that γ ∈ Pe
k (respectively, γ ∈ Pv

k ) iff γ r ∈ Pe
k (respectively, γ r ∈ Pv

k ). For γ ∈ Pk let A(γ ) := {γ (v) : v ∼
γk},

Ne(γ ) := {
γ (v) : v e∼ γ

}
and Nv(γ ) := {

γ (v) : v v∼ γ
}
.

We denote the transition kernel of the edge (respectively, vertex) k-NBRW by Pk,e (respectively, Pk,v). For every set
A we denote the counting measure on A (i.e., the measure which assigns to every a ∈ A mass 1) by πA.

3.2. A representation of the k-NBRW as a Markov chain

Let k ≥ 1. In this section we construct the edge and vertex k-NBRWs as Markov chains. We first construct the edge
and vertex k-NBRWs as Markov chains on Pk and then later we restrict the state space to include only the “relevant”
paths. Given that the current location of the walk is γ the edge (respectively, vertex) k-NBRW evolves according
to the following rule: If Ne(γ ) �= ∅ (respectively, Nv(γ ) �= ∅), the walk moves to some γ ′ ∈ Ne(γ ) (respectively,
γ ′ ∈ Nv(γ )) chosen from the uniform distribution. Otherwise, it moves to some γ ′ ∈ A(γ ) chosen from the uniform
distribution.

We take the state space of the edge (respectively, vertex) k-NBRW to be

�e
k := {

γ ′ ∈Pk : ∃γ ∈Pe
k and n ≥ 0 such that P n

k,e

(
γ, γ ′) > 0

}
(respectively, �v

k := {γ ′ ∈ Pk : ∃γ ∈ Pv
k and n ≥ 0 such that P n

k,v(γ, γ ′) > 0}), the collection of all states which are
accessible starting from some state in Pe

k (respectively, Pv
k ).
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4. Comparison techniques

In this section we present various techniques which allow one to deduce that a certain Markov chain is recurrent (or
transient) if some other chain is recurrent (or transient).

The capacity of a finite set A (w.r.t. a certain Markov chain and some stationary measure π ) is defined as

Cap(A) :=
∑
a∈A

π(a)Pa

[
T +

A = ∞]
.

4.1. Comparison of two reversible Markov chains

Under reversibility, by the Dirichlet principle we have that for a finite set A

Cap(A) = inf
f ∈RV :f �A≡1,0≤f ≤1,supp(f ) is finite

EP (f,f ), (4.1)

where f � A is the restriction of f to A, supp(f ) := {v ∈ V : f (v) �= 0} is the support of f and EP (f,f ) is as in (2.1).
The following standard lemma is an immediate consequence of (4.1).

Lemma 4.1. Let P , Q be two transition kernels on the same (countable) state space �. Assume that P and Q are
reversible w.r.t. πP and πQ, respectively. Assume further that for all f : � →R we have that EP (f,f ) ≤ MEQ(f,f ).
Then for all finite A ⊂ � we have that

CapP (A) ≤ M CapQ(A),

where CapP (A) and CapQ(A) are the capacities of A w.r.t. P and Q, respectively. In particular, if Q is recurrent then
so is P .

Definition 4.2. Let G := (V ,E, (ce)e∈E) and G′ := (V ,E′, (c′
e)e∈E′) be two connected networks. For every (x, y) ∈−→

E ′ let Px,y(G) be the collection of all non-empty (oriented) paths from x to y in G. Denote the number of times the
(directed) edge (u, v) appears in a path γ by

r
(
(u, v), γ

) := ∣∣{i : γi = u,γi+1 = v}∣∣.
We say that � := (�x,y)(x,y)∈−→

E ′ is a G-G′ flow (or P -P ′ flow, where P and P ′ are the transition kernels of G and

G′, respectively) if for every {x, y} ∈ E′ the following hold:

(i) �x,y is a map from Px,y(G) to [0, c′
x,y],

(ii)
∑

γ �x,y(γ ) = c′
x,y and

(iii) �x,y(γ ) = �y,x(γ
r) for every γ .

The congestion of (u, v) ∈ −→
E w.r.t. � is defined as

Au,v(�) := 1

cu,v

∑
(x,y)∈−→

E ′

∑
γ∈Px,y (G)

r
(
(u, v), γ

)|γ |�x,y(γ ).

The congestion of � is defined as A(�) := sup{Au,v(�) : (u, v) ∈ −→
E }.

The following lemma provides a standard technique for utilizing Lemma 4.1. The lemma is essentially Theorem 2.3
from [7]. While the formulation in [7] is slightly different, the difference is non-essential (cf. Theorem 1 in [10] and
the remark thereafter).

Lemma 4.3. In the setup of Definition 4.2 Let P and P ′ be two reversible transition kernels on the same state space.
Let � be a P –P ′ flow. Then EP ′(f ) ≤ A(�)EP (f ) for all f ∈R

V .
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We now present a variant of Lemma 4.3, useful for comparing two networks with different state spaces.

Definition 4.4. Let G := (V ,E, (ce)e∈E) and G′ := (V ′,E′, (c′
e)e∈E′) be two connected networks. Using notation

from Definition 4.2, we say that φ : V ′ → V is a rough-embedding from G′ to G if there exist a map � : −→
E ′ →⋃

x,y:(x,y)∈−→
E ′ Pφ(x),φ(y)(G) and some constants α,β > 0 such that the following hold:

(i) �((x, y)) ∈Pφ(x),φ(y)(G) and �((y, x)) is its reversal for every (x, y) ∈ −→
E ′,

(ii) for every (x, y) ∈ −→
E ′ we have that 1

cx,y
≤ α

∑
e∈�((x,y))

1
ce

, and

(iii) every (u, v) ∈ −→
E belongs to the image (under �) of at most β edges (x, y) ∈ −→

E ′.

Fact 4.5 (e.g. [19] Theorem 2.17). If there is a rough-embedding from G′ to G and G′ is transient, then G is also
transient.

We now recall the notion of a rough-isometry.

Definition 4.6. Let Gi := (Vi,Ei) (where i = 1,2) be two bounded degree graphs. For u,v ∈ Vi , let di(u, v) be graph
distance (w.r.t. Gi ) between u and v (i.e., the number of edges along the shortest path in Gi between u and v). We
say that f : V1 → V2 is a K-rough-embedding from G1 to G2 if the map f can stretch or shrink distances only by a
multiplicative and additive factor of at most K in the following sense:

∀u,v ∈ V1,
1

K
d1(u, v) − 1 ≤ d2

(
f (u), f (v)

) ≤ K
(
d1(u, v) + 1

)
. (4.2)

We say that it is a K-rough-isometry from G1 to G2 if (4.2) holds and in addition f is also “almost surjective”
in the following sense: For every w ∈ V2, there exists some v ∈ V1 such that d2(f (v),w) ≤ K . We say that f is
a rough-embedding (respectively, rough-isometry) if for some K ∈ N it is a K-rough-embedding (respectively, K-
rough-isometry). We say that G1 and G2 are roughly-isometric if there exists a rough-isometry between them.

Remark 4.7. Let Gi := (Vi,Ei) (where i = 1,2) be two bounded degree graphs. It is easy to see that if f : V1 →
V2 is a rough-embedding from G1 to G2 (in the sense of Definition 4.6), then f is also a rough-embedding from
(V1,E1, (1)e∈E1) to (V2,E2, (1)e∈E2) (i.e., from SRW on G1 to SRW on G2) in the sense of Definition 4.4.

Remark 4.8. Let Gi := (Vi,Ei) (i = 1,2) be two bounded degree graphs. It is easy to verify that if f is a rough-
isometry from G1 to G2, then any g : V2 → V1 such that g(u) ∈ {v ∈ V1 : d2(f (v),u) = minv′∈V1 d2(f (v′), u)} for all
u ∈ V2, is also a rough-isometry.

In the bounded degree setup the relation of being roughly-isometric is an equivalence relation on graphs which
preserves recurrence/transience (this can be derived from Fact 4.5 and Remarks 4.7–4.8).

Fact 4.9 (e.g. [19] Theorem 2.17 and Proposition 2.18). Let Gi := (Vi,Ei) (where i = 1,2) be two connected
graphs of uniformly bounded degree. Let c(i) := (c

(i)
e )e∈E (i = 1,2) be some edge weights which are uniformly

bounded from above and below by some positive constants.

(a) The random walk corresponding to (V1,E1, c
(1)) is transient iff SRW on G1 is.

(b) If there exists a rough-embedding from G1 to G2 and SRW on G1 is transient, then also SRW on G2 is
transient.

(c) If there exists a rough-isometry from G1 to G2 then SRW on G1 is transient iff SRW on G2 is transient.

We now recall the notion of ‘lumping’ (or ‘short-circuiting’) a network and the fact that this operation preserves
transience.
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Definition 4.10. Let G = (V ,E, (ce)e∈E) be an infinite connected network on (V ,E) with edge weights (ce)e∈E .
Recall that for v ∈ V we write cv := ∑

u:u∼v cu,v . Let A1,A2, . . . be a partition of V into non-empty disjoint sets
such that

∑
v∈Ai

cv < ∞ for all i. Consider the network G(Ai)i∈N := (N, Ẽ, (c̃e)e∈Ẽ
) obtained from G by collapsing

each Ai into a single state i and setting c̃i,j := ∑
ai∈Ai,aj ∈Aj

cai ,aj
for all (i, j) ∈ N

2 (this operation is also called

lumping Ai together, or short-circuiting Ai , for all i) and setting Ẽ := {{i, j} : c̃i,j > 0}. We say that G(Ai)i∈N is a
factor of G.

The following is a consequence of Rayleigh”s monotonicity principle.

Fact 4.11. In the setup of Definition 4.10, if G is transient then so is any factor of G.

4.2. Comparison of a Markov chain to its additive symmetrization

The connection between reversible networks, electrical networks and potential theory is classical (see e.g., [8] and
[19, Ch. 2]). It was only in recent years that this connection was extended to the non-reversible setup in several
extremely elegant works. The first progress on the non-reversible front was made by Doyle and Steiner [9] who
derived an extremal characterization of the commute-time between two states, which shows that commute-times in
the additive symmetrization of an irreducible chain cannot be smaller than the corresponding commute-times in the
original chain.

Gaudillière and Landim [12] extended much of the classic potential theory to the non-reversible setup and de-
rived several extremal characterizations for the capacity between two disjoint sets. In particular, they showed [12,
Lemma 2.5] that the capacity between two disjoint sets of an irreducible Markov chain with a stationary measure π is
at least as large as that of the additive symmetrization of the chain.

Theorem 4.12 ([12] Lemma 5.1). Consider an irreducible Markov chain X = (Xk)
∞
k=0 on a countable state space

V with a stationary measure π and transition probabilities given by P . Let Xs = (Xs
k)

∞
k=0 be the Markov chain

corresponding to S := 1
2 (P + P ∗), where P ∗(x, y) := π(y)

π(x)
P (y, x). Then, if Xs is transient then X is also transient.

We shall make use of Theorem 4.12 only in the proof of Parts (i) and (iv) of Theorem 1. For the rest of our results,
our method of proof allows for a direct comparison of the considered non-reversible chain with some reversible
Markov chain which can be compared with the SRW on the considered graph.

5. Equivalence between SRW on G and the additive symmetrization of the k-NBRW

Let G = (V ,E) be a connected graph of bounded degree. In order to take advantage of Theorem 4.12 we first need
to compare the additive symmetrization of the k-NBRW with SRW on G. In this section we do so by utilizing the
machinery from Section 4.1–4.2. We will later show that in all of the cases considered in Theorems 1 and 2 the
k-NBRW has a stationary measure which is pointwise uniformly bounded from above and from below. Hence by
Fact 4.9, instead of the additive symmetrization of the k-NBRW, we may consider SRW on the graph supporting its
transitions. We start with the case k = 1.

Recall that the line graph of G is defined as GE := (E,E′), where {e, e′} ∈ E′ iff e∩ e′ �=∅ and e �= e′. Recall that−→
E := {(x, y) : {x, y} ∈ E} is the collection of directed edges of G. Following [21] we define the symmetric oriented

line graph of G to be G−→
E

:= (
−→
E ,F) the graph supporting the transitions of the NBRW on G. That is, {−→e ,

−→
f } ∈ F

iff either

(a) −→
e + = −→

f − and 1{deg(
−→
e +) = 1 or −→

e − �= −→
f +} = 1, or

(b) −→
e − = −→

f + and 1{deg(
−→
f +) = 1 or

−→
f − �= −→

e +} = 1.

We shall make crucial use of the following simple observation:

Lemma 5.1. Let G be a finite connected graph of bounded degree. The graph supporting the transitions of the additive
symmetrization of the NBRW on G is G−→

E
. Moreover, both SRW on G−→

E
and the additive symmetrization of the NBRW
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on G are reversible w.r.t. the counting measure on
−→
E , and their minimal transition probability between neighboring

directed edges is at least half the inverse of the maximal degree of G. In particular, either both are transient or both
are recurrent.

Proof. The statement of the last sentence follows from the rest of the lemma via Fact 4.9 (by noting that when the
reversible measure is the counting measure, the edge-weights are simply the transition probabilities). The rest can be
verified by inspection. �

Before describing some relations between G, GE and G−→
E

we need a simple lemma. Its proof is deferred to
Section A.2.

Lemma 5.2. Let G = (V ,E) be an infinite locally finite connected graph of minimal degree at least 2. There exists a

sink-free and source-free orientation of E, i.e., a map f : E → −→
E such that:

(i) f ({u,v}) is either (u, v) or (v,u) for every {u,v} ∈ E, and

(ii) every v ∈ V is the tail of at least one −→
e ∈ −→

E in the image of f and also the head of at least one −→
e in the

image of f (i.e. V = {f (e)+ : e ∈ E} = {f (e)− : e ∈ E}).
Recall that for γ = (a, b) ∈ −→

E its reversal (b, a) is denoted by γ r. For a graph H = (VH ,EH ) and x, y ∈ VH we
denote by distH (x, y) the graph distance of x from y in H , defined as number of edges along of the shortest path from
x to y in H .

Lemma 5.3. Let G be an infinite connected graph of bounded degree and minimal degree at least 2. Then

(1) The graphs G and GE are roughly-isometric.
(2) SRW on GE is a factor of SRW on G−→

E
(in the sense of Definition 4.10).

(3) There exists a rough-embedding from GE to G−→
E

.

(4) If there exists some K ∈ N such that distG−→
E
(γ, γ r) ≤ K for every γ ∈ −→

E then there exists a rough-isometry
from GE to G−→

E
.

(5) If condition (1) holds then there exists some K ∈N such that distG−→
E
(γ, γ r) ≤ K for every γ ∈ −→

E .

Proof. For Part (2) observe that GE is obtained from G−→
E

by identifying (lumping) every −→
e ∈ −→

E with its reversal.
Fix a sink-free and source-free orientation f (as in Lemma 5.2). For Part (1) observe that the map e → f (e)+

from E to V is clearly a 2-rough-isometry from GE to G (for this we do not need to use the fact that f is sink-free
and source-free). For Part (3) we now argue that f is a 2-rough-embedding from GE to G−→

E
. In fact, we argue that

distGE
(e, e′) ≤ distG−→

E
(f (e), f (e′)) ≤ 2 distGE

(e, e′) for all e, e′ ∈ E. The first inequality is obvious. For the second
inequality it suffices to consider the case that distGE

(e, e′) = 1. If e ∩ e′ = {v} and f (e) and f (e′) are not adjacent in
G−→

E
, then either v = f (e)+ = f (e′)+ or v = f (e)− = f (e′)−. In the first case (by condition (ii) in the definition of a

sink-free and source-free orientation) there must be some {v, v′} ∈ E \ {e, e′} such that f ({v, v′})− = v (in the second
case f ({v, v′})+ = v) and so f (e) and f (e′) are both adjacent to f ({v, v′}) in G−→

E
.

For Part (4) observe that under the assumption that distG−→
E
(γ, γ r) ≤ K for every γ ∈ −→

E , we have that the map f

(defined above) is a rough-isometry.
For Part (5) note that if v ∈ V is of degree at least 3, then similar reasoning as in the proof of Part (iii) yields that

for every pair of adjacent vertices u ∼ v we have that (u, v) and (v,u) are of distance at most 3 in G−→
E

(namely, if w,
z are other neighbors of v then ((u, v), (v,w), (z, v), (v,u)) is a path from (u, v) to (v,u) in G−→

E
). �

Corollary 5.4. Let G be a connected infinite graph of bounded degree. Then SRW on G is transient iff the additive
symmetrization of the NBRW on G is transient.

Proof. We shall show that w.l.o.g. we may assume that the minimal degree of G is at least 2, and so the assertion of
the corollary follows from Lemmas 5.1 and 5.3 in conjunction with Fact 4.9. We argue that by repeatedly deleting
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all degree one vertices, while adding a self-loop at each remaining v ∈ V such that at least one of its neighbors was
deleted, we obtain a graph G′ = (V (G′),E(G′)) of minimal degree at least 2 such that:

(i) SRW on G is transient iff SRW on G′ is transient, and also
(ii) the additive symmetrization of the NBRW on G is transient iff the additive symmetrization of the NBRW on

G′ is transient.

While (i) is clear, (ii) requires some justification. Recall the notion of the induced chain on a set from Section 2. We
denote the induced chain on the directed edges of G′ w.r.t. the additive symmetrization of the NBRW on G by Y.
Clearly, Y is transient iff the additive symmetrization of the NBRW on G is transient, and so it suffices to show that
Y is transient iff Z is transient, where Z is the additive symmetrization of the NBRW on G′. Observe that the graph
Ĝ = (V (Ĝ),E(Ĝ)) supporting the transitions of Y is roughly-isometric to Ĝ′ = (V (Ĝ′),E(Ĝ′)) the graph supporting
the transitions of Z and that Y and Z are both reversible w.r.t. the counting measures on their state spaces, πV (Ĝ) and

πV (Ĝ′), respectively.3 (For the existence of the claimed rough-isometry, it is crucial that loops were added to G′ at
each remaining v ∈ V such that at least one of its neighbors was deleted. The rough-isometry can be taken to be the
inclusion map from V (Ĝ) to V (Ĝ′), which is a 2-rough-isometry.)

The edge-weights corresponding to Z are simply its transition probabilities and hence are clearly uniformly
bounded from above and from below (as the maximal degree of G is finite; Recall that in general, for a Markov
chain whose transition kernel P is reversible w.r.t. a measure π the edge-weight of edge {x, y} can be taken to be
π(x)P (x, y))). We claim that the same holds for Y, which in conjunction with the fact that Ĝ and Ĝ′ are roughly-
isometric concludes the proof, using Parts (a) and (c) of Fact 4.9.

Taking πV (Ĝ) for the stationary measure of Y, the corresponding edges weights for Y are simply with the transition
probabilities. Thus its enough to show that these are uniformly bounded from below (as they are bounded from above
by 1). Note that any transition which is also allowed for the NBRW on G has transition probability which is at least
half of the inverse of the maximal degree of G. Hence it suffices to verify this for transition probabilities from (b, a)

to (v, a) and from (a, b) to (a, v) with a ∈ A and b, v ∈ V (G′) such that {a,u}, {a, b} ∈ E(G′), where A is the set
of vertices of V (G′) to which a self-loop was added in G′. In other words, A is the set of vertices of G which are
connected in G to a degree one vertex via a path whose internal vertices all have degree two.

To see that such transitions (from (b, a) to (v, a) and from (a, b) to (a, v) with a ∈ A and b, v ∈ V (G′) such that
{a,u}, {a, b} ∈ E(G′)) have probability bounded from below, consider the scenario that the additive symmetrization of
the NBRW on G goes from (b, a) to (a, a′) for some deleted vertex a′ and then goes from (a, a′) to (v, a). Similarly,
it may move from (a, b) to (a′, a) for some deleted vertex a′ and then move from (a′, a) to (a, v). Here by “deleted
vertex” we mean a vertex belonging to V \ V (G′).

These scenarios show that the transition probabilities w.r.t. Y from (b, a) to (v, a) and from (a, b) to (a, v), with
a ∈ A and b, v ∈ V (G′), are indeed uniformly bounded from below, as desired. �

We now treat the case k > 1. Recall the definitions of Pe
k , Pv

k , �e
k , �v

k , Pk,e and Pk,v from Section 3.1–3.2.

Definition 5.5. Let Ge
k := (�e

k,E
e
k) and Gv

k := (�v
k,E

v
k ), where {a, b} ∈ Ee

k (respectively, ∈ Ev
k ) if and only if

Pk,e(a, b) + Pk,e(b, a) > 0 (respectively, Pk,v(a, b) + Pk,v(b, a) > 0).

Observe that Ge
1 = Gv

1 = G−→
E

. More generally, under condition (3e
k) (respectively, (3v

k)) we have that Pe
k = �e

k

(respectively, Pv
k = �v

k) and we may consider the graph H e
k := (U e

k ,F e
k ) (respectively, H v

k := (Uv
k ,F v

k )) obtained
from Ge

k (respectively, Gv
k) by identifying each a ∈ Pe

k (respectively, a ∈ Pv
k ) with its reversal. More precisely, U e

k :=
{{a, ar} : a ∈ Pe

k } and {{a, ar}, {b, br}} ∈ F e
k iff

∑
w∈{a,ar},w′∈{b,br} Pe,k(w,w′) > 0. The relations between Ge

k and H e
k

and between Gv
k and H v

k are analogous to the one between G−→
E

and GE . Similarly, when G is of bounded degree
and condition (3e

k) (respectively, (3v
k)) holds, the relation between SRW on Ge

k (respectively, Gv
k) and the additive

symmetrization of the edge (respectively, vertex) k-NBRW on G is analogous to the relation between SRW on G−→
E

3Here we have used the fact that πV (Ĝ) is the restriction to V (Ĝ) of π−→
E

the counting measure on the directed edges of G, and that the additive

symmetrization of the NBRW on G, whose restriction to V (Ĝ) is Y, is reversible w.r.t. π−→
E

. (Recall from Section 2 that for an irreducible Markov
chain which is reversible w.r.t. a measure π , for any recurrent subset B (i.e., one which is a.s. visited by the chain) the restriction of π to B is
reversible for the induced chain on B .)
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and the additive symmetrization of the NBRW described in Lemma 5.1, provided the stationary measure π̂ w.r.t. we
are taking the symmetrization satisfies supx,y

π̂(x)
π̂(y)

< ∞. For the edge k-NBRW this will be proved in Lemma 7.1. For
the vertex k-NBRW we are only able to prove this under the additional assumption that the graph is vertex-transitive
(see the proof of Part (iv) of Theorem 1).

The following lemma is the k > 1 analog of Lemma 5.3.

Lemma 5.6. Let G be a bounded degree graph satisfying condition (3e
k) (resp. (3v

k)). Then

(1) The graphs G and H e
k (respectively, H v

k ) are roughly-isometric.
(2) SRW on H e

k (respectively, H v
k ) is a factor of SRW on Ge

k (respectively, Gv
k).

(3) If condition (2e
k) (respectively, (2v

k)) holds there exists some K ∈ N such that distGe
k
(γ, γ r) ≤ K for every

γ ∈Pe
k (respectively, distGv

k
(γ, γ r) ≤ K for every γ ∈Pv

k ) and so Ge
k and H e

k (respectively, Gv
k and H v

k ) are roughly-
isometric.

Proof. The proofs of Parts (1) and (2) are completely analogous to those of Parts (1) and (2) of Lemma 5.3 and are
thus omitted. The proof of Part (3) is analogous to that of Parts (3)–(5) of Lemma 5.3 and is thus omitted. (Note that
in the proof of Part (3) of Lemma 5.3 we did not assume condition (2) holds, whereas here we assume condition (2e

k)

(respectively, (2v
k)) holds. This makes the proof of Part (3) of Lemma 5.6 easier, by eliminating the need to prove a

generalization of Lemma 5.2 for k > 1.) �

6. An overview of our approach

In this section as a warm up and as motivation for what comes we prove Theorem 3. Recall that π−→
E

is the counting

measure on
−→
E . Let −→π := π−→

E
. Let B be the transition kernel of the NBRW (SNB

n )∞n=0. While B is non-reversible, it
satisfies a symmetry similar to the detailed balance equation:

∀a, b ∈ −→
E , −→π (a)B(a, b) = −→π (

br)B(
br, ar) = −→π (b)B

(
br, ar).

It follows by induction that for every n ∈ N and a0, a1, . . . , an ∈ −→
E

−→π (a0)Pa0

(
SNB

1 = a1, . . . S
NB
n = an

) = −→π (an)Par
n

(
SNB

1 = ar
n−1, . . . S

NB
n = ar

0

)
. (6.1)

While −→π is redundant above, we include it in order to demonstrate a general principle. By summing over all a0, . . . , an

with a0 = a and an = b, we get for all a, b ∈ −→
E and n ∈ N that

−→π (a)Bn(a, b) = −→π (
br)Bn

(
br, ar) = −→π (b)Bn

(
br, ar). (6.2)

Observe that (6.2) implies that −→π is stationary for B and so also for Bp (where Bp is as in Theorem 3). Indeed, by
(6.2)

∑
b
−→π (b)B(b, a) = −→π (a)

∑
b B(ar, br) = −→π (a).

In order to exploit (6.2) in the proof of Theorem 3 we consider an auxiliary chain in which every a ∈ −→
E is identified

with ar. The auxiliary chain is defined by looking at the p-BRW at random times at which for every a ∈ −→
E the chain

is equally likely to be at a or at ar. The mechanism which allows us to construct such random times is the fact that the
p-BRW backtracks at each step with probability p.

From the construction of the auxiliary chain it will be clear that it is recurrent iff the original chain is recurrent.
The main idea is that the auxiliary chain is reversible and thus can be compared with SRW on G via the standard
comparison techniques from Section 4. That is, it is recurrent iff the SRW on G is recurrent.

In Section 7 we show that in the setups of Theorems 1 and 2 either the k-NBRW or some related auxiliary chain
enjoys similar symmetry relations as (6.1)–(6.2). Using similar reasoning as above this will allow us to find a stationary
measure for the k-NBRW (or in the proof of Theorem 2, for a related auxiliary chain). We will then look at another
auxiliary chain, obtained by looking at the k-NBRW (or the aforementioned related chain) at random times at which for
every a it is equally likely to be at a or at ar. The mechanism which allows us to construct this auxiliary chain is related
to condition (2e

k). Again, crucially, the auxiliary chain is reversible and thus amenable to comparison techniques.
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Remark 6.1. In the setup of Theorem 1, analogs of (6.1)–(6.2) hold for the edge k-NBRW (see (7.4)) but not for the
vertex k-NBRW (when k > 1). In general, such symmetry may fail if the walk may get stuck, because it is possible
that a certain trajectory is possible in one direction but not in the opposite direction. In the setup of Theorem 2 we
do not assume that the k-NBRW cannot get stuck. To overcome the aforementioned difficulty we work with a more
symmetric auxiliary chain and exploit the fact that the group is Abelian.

Proof of Theorem 3. Let G = (V ,E) and p ∈ (0,1). Consider the lazy version of Bp whose transition kernel is
1
2 (I + Bp) (where I is the identity operator). Denote this chain by Y := (Yt )

∞
t=0. We may think of this chain as first

picking a candidate for its next position according to Bp and then flipping a fair coin to decide whether to accept the
candidate or to stay put. Denote the candidate that was picked at time t (for time t + 1) by Zt+1.

Let (x, y) ∈ −→
E . Consider the case that the initial distribution is uniform on {(x, y), (y, x)}. Let τ0 = −1 and

e0 := {x, y}. Define inductively τn := inf{t > τn−1 : Zt+1 = Y r
t } and en := {xn, yn}, where xn and yn are the end-

points of Zτn+1. In words, τn is the first time after time τn−1 at which the chain Y “attempts” to backtrack (i.e., the
candidate directed edge it picked is the reversal of the current directed edge). Observe that given (Yi)

τn

i=0 and (τi)
n
i=0

the conditional distribution of Yτn+1 is the uniform distribution on {(xn, yn), (yn, xn)} (because either Yτn+1 = Zτn+1

or Yτn+1 = Zr
τn+1, depending on the result of the coin toss).

Consider the process Q := (en)
∞
n=0 on E. To conclude the proof we show that

(i) The process Q is a Markov chain. Its transition kernel W is symmetric (i.e., W(a,b) = W(b,a) for all a, b ∈
E) and so Q is reversible w.r.t. the counting measure πE on E.

(ii) The p-BRW is recurrent iff Q is recurrent.
(iii) The SRW on G is recurrent iff Q is recurrent.

We first prove (i). Let BL := 1
2 (I + B) be the transition kernel of the lazy version of the NBRW. By (6.2) for every

α,β ∈ −→
E and n ∈ N we have that

Bn
L(α,β) =

n∑
i=0

2−n

(
n

i

)
Bi(α,β) =

n∑
i=0

2−n

(
n

i

)
Bi

(
βr, αr) = Bn

L

(
βr, αr). (6.3)

For every {x, y} ∈ E let D{x,y} := {(x, y), (y, x)}. Using the fact the Yτn+1 is uniformly distributed on Den we get that
for every a, b ∈ E we have that

W(a,b) = 1

2

∞∑
i=0

∑
w∈Da,w′∈Db

Bi
L

(
w,w′)(1 − p)ip. (6.4)

By (6.3) W is indeed symmetric.
We now prove Claim (ii). Since Y is a lazy version of the p-BRW, it is recurrent iff the p-BRW is recurrent.

Observe that above we constructed a coupling of Y and Q (in other words, while Q can be defined via (6.4) we
constructed it using the process Y). It is easy to see that in this coupling the expected number of (all) returns to the
starting point of one chain is within a constant factor from that of the other (since every return of one chain has
a constant probability of becoming a return for the other). Hence either both expectations are infinite or both are
finite.

We now prove (iii). We first prove that w.l.o.g. we may assume that G has minimal degree at least 2. By repeat-
edly deleting degree one vertices we obtain a graph H ′ = (V ′,E′) with minimal degree two. For every v ∈ V ′ let
n(v) be the number of degree one vertices of G which are connected to it in G via a path whose internal vertices
are all of degree 2. We then consider the graph Ĥ = (V ′, Ê) obtained from H ′ by adding n(v) self-loops at each
v ∈ V ′.

Clearly SRW on G is transient iff SRW on Ĥ is transient. We argue that the same is true for the p-BRW. We
now argue that for every directed edge (u, v) of H ′ we have that the expected number of visits to this edge by the
p-BRW on G is the same as this expectation for the p-BRW on Ĥ (when both p-BRWs start at the same directed
edge). This is because the two p-BRWs can be coupled so that the former enters some path (v0, . . . , v�) such that
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deg(v0) ≥ 3, deg(v�) = 1 and deg(vi) = 2 for i ∈ [� − 1] and ultimately leaves it from (v1, v0) to some (v0, u) with
u ∈ V ′ (respectively, to some (v0, v

′
1), where (v0, v

′
1 . . . , v′

�′) is such that deg(v′
�′) = 1 and deg(v′

i ) = 2 for i ∈ [� − 1])
iff the latter crosses the self-loop at v0 corresponding to the path (v0, . . . , v�) and then (possibly after “backtracking”
by crossing the same loop for some number of times) crosses to (v0, u) (respectively, crosses to the self-loop which
corresponds to the path (v0, v

′
1 . . . , v′

�′)). We can further couple their trajectories together until the next time the former
enters such a path, while the latter crosses a corresponding self-loop. Continuing in this fashion we obtain a coupling
in which the two p-BRWs visit every directed edge (u, v) of H ′ the same number of times. In particular, one is
recurrent iff the other is recurrent.

Recall that the line graph of G is defined as GE := (E,E′), where {e, e′} ∈ E′ iff e ∩ e′ �= ∅ and e �= e′. By
Lemma 5.3 SRW on G is recurrent iff SRW on GE is recurrent. To conclude the proof of Claim (iii) we now show
that Q is recurrent iff SRW on the line graph of G is recurrent. In order to do so we utilize the comparison technique
from Lemmas 4.1 and 4.3. Namely, using the notation and terminology from Definition 4.2, by Lemmas 4.1 and 4.3
it suffices to show that there exists a flow of finite congestion from the network corresponding to Q to the network
corresponding to SRW on GE and vice-versa.

Let Ẽ := E′ ∪ {{e, e} : e ∈ E}. Denote by G̃ := (E, Ẽ) the graph obtained from GE by adding a self-loop at each
site of GE . Below we consider G̃ instead of GE . Denote the transition kernel of SRW on G̃ by U . The networks
corresponding to U and W can be represented, respectively, as (E, Ẽ, (1)

w∈Ẽ
) and (E,F, (cw)w∈F ), where

F := {{
e, e′} : e, e′ ∈ E

} = {{
e, e′} : e, e′ ∈ E such that W

(
e, e′) > 0

}
and ce,e′ := W(e, e′) for every e, e′ ∈ E. We start with the easier direction. Observe that there exists a constant M > 0
such that U(e, e′) ≤ MW(e, e′) for all e, e′ ∈ E. Thus we may define a W -U flow of finite congestion by mapping
every (e, e′) such that {e, e′} ∈ Ẽ to itself (with weight 1).

We now construct a U -W flow � of finite congestion. Loosely speaking, the flow � assigns to every path the
probability that the chain Y follows that path between two consecutive steps of Q. This is not a precise description
because Y is defined on directed edges, but we need to consider paths in G̃ (which involve undirected edges). Before
defining � we first introduce some notation. Let

G′ := (−→
E ,

{{a, b} : a, b ∈ −→
E ,BL(a, b) > 0

})
be the graph supporting the transitions of BL. Denote the collection of all directed paths of length � in G′ by
P�(G

′). For every path γ := (e0, . . . , e�) in G̃ which is not of the form e0 = · · · = e� there is at most one
h(γ ) := (

−→
e0 , . . . ,

−→
e� ) ∈ P�(G

′) (here and below each fi is a directed edge, i.e., an element of
−→
E , not a vertex of

G) such that

(1) {(−→ei )−, (
−→
ei )+} = ei for all 0 ≤ i ≤ �,

(2) for all 0 ≤ i < � if ei = ei+1 then −→
ei = −−→

ei+1, and
(3) for all 0 ≤ i < � if ei �= ei+1 then (

−−→
ei+1)− = (

−→
ei )+.

Denote the collection of all paths γ = (e0, . . . , e�) in G̃ not of the form e0 = · · · = e�, which have such h(γ ) =
(
−→
e0 , . . . ,

−→
e� ) as above by E(�). For every path γ = (e0, . . . , e�) ∈ E(�) let

ρ(e0, . . . , e�) := (1 − p)�p

2

∏
i∈[�]

BL(
−−→
ei−1,

−→
ei ), where h(γ ) = (

−→
e0 , . . . ,

−→
e� ).

Let e, e′ ∈ E. For every e0 = e, e1, . . . , e� = e′ ∈ E with (e0, . . . , e�) ∈ E(�) let �e,e′((e0, . . . , e�)) := ρ(e0, . . . , e�).
It is not hard to verify that by construction we have that � := (�e,e′){e,e′}∈F is a U -W flow. It remains only to bound
its congestion.

Observe that for all (e0, . . . , e�) ∈ E(�) and all 1 ≤ i < � we have that

ρ(e0, . . . , e�) = 2

p
ρ(e0, . . . , ei)ρ(ei, . . . , e�) = 2

p
ρ(ei, . . . , e1, e0)ρ(ei, . . . , e�), (6.5)
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if e0, e1, . . . , ei are not all equal and also ei, e1, . . . , e� are not all equal. To make this true without this restriction, if

e = e0 = · · · = ei we define ρ(e0, . . . , ei) := (1−p)ip
2 2−i . If (e0, . . . , ei) /∈ E(i) and is not of the form e = e0 = · · · = ei ,

we set ρ(e0, . . . , ei) := 0.
Let {e, e′} ∈ Ẽ. As in Definition 4.2 let Ae,e′(�) be the congestion of (e, e′) w.r.t. �. Finally, there exists a constant

Cp > 0 such that for every {e, e′} ∈ Ẽ we have that

Ae,e′(�) ≤
∑

(e0,...,e�)∈E(�),�∈N:(e,e′)=(ei−1,ei ) for some i∈[�]
�2ρ(e0, . . . , e�)

(
using (6.5) �2ρ(e0, . . . , e�) ≤ 8

p
i2ρ(ei, . . . , e1, e0)(� − i)2ρ(ei, . . . , e�)

)
for i > 0 such that (ei−1, ei) = (

e, e′))
≤ 8

p

( ∑
e0,...,e�∈E,�∈N:(e0,e1)=(e,e′)

�2ρ(e0, . . . , e�)

)2

(
writing q� :=

∑
e0,...,e�∈E,:(e0,e1)=(e,e′)

ρ(e0, . . . , e�) we have that
∑

�

q� = 1/2

and so

(∑
�

q��
2
)2

≤
∑

�

q��
4 = sup

(u,v)∈−→
E

E(u,v)

[
τ 4

1

])

≤ 8

p
sup

(u,v)∈−→
E

E(u,v)

[
τ 4

1

] ≤ C′
p.

This concludes the proof of (iii). �

7. Finding a stationary measure for the edge k-NBRW

Let G = (V ,E) be a graph. Let s ≥ k. Recall that Ps is the collection of paths of length s in G. For γ ∈ Ps let

m
(k)
i (γ ) := ∣∣{j : i − k < j ≤ i such that γj = γi}

∣∣.
For γ ∈ Ps we denote the multi-set {m(k)

i (γ ) : i ∈ [s − 1] such that γi = v} by A(v, k, γ ) (it will be crucial in what
comes that in this definition we do not consider i ∈ {0, s}).

For γ ∈ Pe
k let

πe
k (γ ) :=

k−1∏
i=1

1

deg(γi) − m
(k)
i (γ )

. (7.1)

For s ≥ k we define

Pe
k (s) := {

γ ∈ Ps : (γi, γi+1, . . . , γi+k) ∈ Pe
k for all 0 ≤ i ≤ s − k

}
. (7.2)

We say that two multi-sets are equal if each element appears in both with the same multiplicity.

Lemma 7.1. Let k ≤ s. Let γ ∈ Pe
k (s). Then also γ r ∈ Pe

k (s). Moreover, A(v, k, γ ) = A(v, k, γ r) (as multi-sets) for
all v. Consequently, for all γ ∈ Pe

k we have that

πe
k (γ ) = πe

k

(
γ r). (7.3)
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Proof. The claim that γ ∈ Pe
k (s) iff γ r ∈ Pe

k (s) is obvious. It is also easy to see from (7.1) that (7.3) is immediate
from the claim that A(v, k, γ ) = A(v, k, γ r) for all v and all γ ∈Pe

k (s) (by taking s = k). We now sketch the proof of
the claim that A(v, k, γ ) = A(v, k, γ r) for all v. First prove the case k = s by induction on k. Then, for each fixed k

prove the case s > k by induction on s (with the base case being s = k).
In the first induction, in the induction step from s = k = i to s = k = i + 1, compare

A(v, i + 1, γ ) and A(v, i + 1, γ r) with A(v, i, α) and A(v, i, αr), respectively, where α is obtained from γ by omit-
ting from γ its last co-ordinate. In the second induction, in the induction step from (k, s) to (k, s + 1) compare
A(v, k, γ ) and A(v, k, γ r) with A(v, k,α) and A(v, k,αr), respectively, where α is obtained from γ by omitting its
last co-ordinate. �

Corollary 7.2. Assume that the edge k-NBRW on G cannot get stuck. Then for all n ∈ N and α,β,α0, α1, . . . , αn ∈Pe
k

we have that

πe
k (α0)

n−1∏
i=0

Pk,e(αi, αi+1) = πe
k (αn)

n−1∏
i=0

Pk,e
(
αr

n−i , α
r
n−(i+1)

)
.

πe
k (α)P n

k,e(α,β) = πe
k (β)P n

k,e

(
βr, αr).

(7.4)

In particular, πe
k is stationary for Pk,e.

Proof. The first line of (7.4) is a consequence of Lemma 7.1. Indeed, consider s = n + k and γ := (γ0, . . . , γn+k),
where (γi, . . . , γi+k) = αi for all i ∈ {0,1, . . . , n}. Then

πe
k (α0)

n−1∏
i=0

Pk,e(αi, αi+1) =
k+n−1∏

i=1

1

deg(γi) − m
(k)
i (γ )

=
∏
v∈γ

∏
m∈A(v,k,γ )

1

deg(v) − m

by Lemma 7.1=
∏
v∈γ r

∏
m∈A(v,k,γ r)

1

deg(v) − m

=
k+n−1∏

i=1

1

deg(γ r
i ) − m

(k)
i (γ r)

= πe
k (αn)

n−1∏
i=0

Pk,e
(
αr

n−i , α
r
n−(i+1)

)
,

where each m in the third (respectively, fourth) term is taken with its multiplicity in the multi-set A(v, k, γ ) (respec-
tively, A(v, k, γ r)).

The second line of (7.4) follows from the first by summing over all α0, α1, . . . , αn ∈ Pe
k such that α0 = α and

αn = β . Note that here we are using the assumption that the walk cannot get stuck. Finally,
∑

α∈Pe
k
πe

k (α)Pk,e(α,β) =
πe

k (β)
∑

α∈Pe
k
Pk,e(β

r, αr) = πe
k (β) and so πe

k is indeed stationary for Pk,e. �

8. Proof of Theorem 1

We shall need the following simple lemma whose proof is deferred to Section A.3.

Lemma 8.1. Let P be the transition kernel of an irreducible Markov chain. Let P̂ := ∑m
i=0 piP

i where
∑m

i=0 pi = 1
and m ∈N. If the greatest common denominator (gcd) of {i ∈ [m] : pi > 0} is 1 then P is recurrent iff P̂ is recurrent.

8.1. Proof of Parts (i) and (ii) of Theorem 1

Proof. The assertion of Part (i) follows from Corollary 5.4 in conjunction with Theorem 4.12. We now prove Part (ii).
Let G = (V ,E) be a connected graph of bounded degree. Assume that condition (2) holds. Let R be as in condition
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(2). Let d be the maximal degree in G. We first argue that by condition (2) for4 M := 4R + 1 and p := (d −
1)−M/[2(M + 1)] for every a ∈ −→

E we have that

M∑
i=1

Bi
(
a, ar) ≥ 2p(M + 1). (8.1)

Indeed, by condition (2) for all a ∈ −→
E there is some i = i(a) ≤ M such that for some a0 = a, a1, . . . , ai = ar we have

that B(aj−1, aj ) > 0 for all j ∈ [i]. Then
∏

j∈[i] B(aj−1, aj ) ≥ (d − 1)−M = 2p(M + 1).

Let D := 1
M+1

∑M
i=0 Bi and DL := 1

2 (I + D). Let X := (Xn)
∞
n=0 be the Markov chain corresponding to DL. By

Lemma 8.1 we have that the NBRW is transient iff X is transient.
By (8.1) we may generate X as follows: given Xn = a the chain first picks a candidate Zn+1 for Xn+1 according

to D (i.e., Zn+1 = b with probability D(a,b)) and then flips a fair coin in order to decide if the candidate is accepted
(i.e., with probability 1/2 we set Xn+1 = Zn+1 and otherwise we set Xn+1 = Xn). Furthermore, we may generate X
and the Zn’s such that for some ξ0, ξ1, . . . i.i.d. Bernoulli(p) random variables for all n ≥ 0 we have that Zn+1 = Xr

n

whenever ξn = 1 (and possibly also if ξn = 0). Indeed, the probability that Zn+1 = Xr
n, given Xn is at least p. Given

Xn we may generate Zn+1 and ξn simultaneously using Un ∼ U [0,1] (where U [0,1] denotes the uniform distribution
on [0,1] and U1,U2, . . . are i.i.d. U [0,1]) as follows: Zn+1 may taken different values a1 := Xr

n, a2, . . . , ai with
probabilities q1, . . . , qi (where the aj ’s and the qj ’s depend on Xn). Set ξn = 1{Un ≤ p}. Set Zn+1 = ai if Un ∈
[∑i−1

j=1 qj ,
∑i

j=1 qj ) (where
∑0

j=1 qj is defined to be 0). Then since regardless of the value of Xn we have that
q1 ≥ p we get that Zn+1 = a1 whenever ξn = 1.

Fix some a = (x0, y0) ∈ −→
E . Consider the case that the initial distribution of X is the uniform distribution on {a, ar}.

Let e0 = {x0, y0} and τ0 = −1. We define inductively τn+1 := inf{t > τn : ξt−1 = 1} and en := {xn, yn}, where xn and
yn are the end-points of Zτn+1. Consider the process Q := (en)

∞
n=0 on E given by Qn = en for all n ≥ 0. To conclude

the proof it suffices to show that

(i) The process Q is a Markov chain. Its transition kernel W is symmetric. Hence Q is reversible w.r.t. the
counting measure πE on E.

(ii) The NBRW is recurrent iff Q is recurrent.
(iii) SRW on G is recurrent iff Q is recurrent.

We first prove part (i). Consider the transition kernel K on
−→
E given by

K(a,b) =
{

(1 − p)−1D(a,b) if b �= ar,

(1 − p)−1(D(a, ar) − p) if b = ar.

It follows from (6.2) that K(a,b) = K(br, ar) for all a, b ∈ −→
E . Hence KL := 1

2 (I + K) also satisfies this identity.
Finally, the symmetry of W follows from the last identity since for every a, b ∈ E we have

W(a,b) := 1

2

∞∑
i=0

∑
w∈Da,w′∈Db

Ki
L

(
w,w′)(1 − p)ip,

where D{x,y} := {(x, y), (y, x)}. The proofs of (ii)–(iii) above are almost identical to those of (ii)–(iii) from the proof
of Theorem 3 (and also to that of (iii) in the proof of Part (iii) of Theorem 1 below) and are thus omitted. �

4We have not attempted to pick the smallest possible M .
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8.2. Proof of Part (iii) of Theorem 1

Proof. Assume that conditions (2e
k) and (3e

k) hold. Then there exist some M ∈ N and p ∈ (0,1) such that for every
a ∈ Pe

k we have that

M∑
i=1

P i
k,e

(
a, ar) ≥ 2p(M + 1). (8.2)

Let D := 1
M+1

∑M
i=0 P i

k,e and DL := 1
2 (I + D). Let X := (Xn)

∞
n=0 be the Markov chain corresponding to DL. By

Lemma 8.1 the edge k-NBRW is transient iff X is transient. By (8.2) we may generate X as follows: given Xn = a

the chain first picks a candidate Zn+1 for Xn+1 according to D and then flips a fair coin in order to decide if the
candidate is accepted. Furthermore, one may generate Z1,Z2, . . . such that for some ξ0, ξ1, . . . i.i.d. Bernoulli(p)
random variables for all n ≥ 0 we have that Zn+1 = Xr

n whenever ξn = 1 (and possibly also if ξn = 0). The proof of
this claim is identical to the corresponding claim in the proof of Part (ii) of Theorem 1.

Fix some a = Pe
k . Consider the case that the initial distribution of X is the uniform distribution on {a, ar}. Let

e0 = {a, ar} and τ0 = −1. We define inductively τn+1 := inf{t > τn : ξt−1 = 1} and en := {Zτn+1,Z
r
τn+1}. Consider

the process Q := (Qn)
∞
n=0 on U e

k := {{a, ar} : a ∈ Pe
k } given by Qn := en for all n ≥ 0. To conclude the proof it

suffices to show that

(i) The process Q is a Markov chain. Its transition kernel W satisfies that for all a, b ∈Pe
k

πe
k (a)W

({
a, ar},{b, br}) = πe

k (b)W
({

b, br},{a, ar}),
where πe

k is as in (7.1). Hence Q is reversible w.r.t. the measure π({a, ar}) := πe
k (a).

(ii) The edge k-NBRW is recurrent iff Q is recurrent.
(iii) SRW on G is recurrent iff Q is recurrent.

We first prove part (i). Consider the transition kernel K on Pe
k given by

K(a,b) =
{

(1 − p)−1D(a,b) if b �= ar,

(1 − p)−1(D(a, ar) − p) if b = ar.

It follows from (7.4) that K is satisfies πe
k (a)K(a, b) = πe

k (b)K(br, ar) for all a, b ∈Pe
k . Hence also KL := 1

2 (I + K)

satisfies πe
k (a)KL(a, b) = πe

k (b)KL(br, ar) for all a, b ∈ Pe
k . The assertion of (i) now follows from the fact that for

every a, b ∈ Pe
k we have that

W
({

a, ar},{b, br}) := 1

2

∞∑
i=0

∑
w∈{a,ar},w′∈{b,br}

Ki
L

(
w,w′)(1 − p)ip.

The proof of (ii) is analogous of that of claim (ii) from the proof of Theorem 3, and thus omitted.
We now prove (iii). Recall that H e

k := (U e
k ,F e

k ) is the graph obtained from Ge
k (from Definition 5.5) by identify-

ing each a ∈ Pe
k with its reversal. More precisely (as above) U e

k := {{a, ar} : a ∈ Pe
k } and {{a, ar}, {b, br}} ∈ F e

k iff∑
w∈{a,ar},w′∈{b,br} Pe,k(w,w′) > 0. Let U be the transition kernel of SRW on H̃ := (U e

k , F̃ ), where

F̃ :=
{{{

a, ar},{b, br}} : a, b ∈Pe
k such that

∑
w∈{a,ar},w′∈{b,br}

DL
(
w,w′) > 0

}
.

By Lemma 5.6 the SRW on G is recurrent iff the SRW on H e
k is recurrent. Since H e

k and H̃ are roughly-isometric,
to conclude the proof of Claim (iii) we now show that Q is recurrent iff the SRW on H̃ is recurrent. By Lemmas 4.1
and 4.3 it suffices to show that there exist a U -W flow and a W -U flow of finite congestion. Similarly to the proof of
Claim (iii) in the proof of Theorem 3, the W -U flow obtained by mapping every (e, e′) such that {e, e′} ∈ F̃ to itself
(with weight 1) is of finite congestion.
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We now construct a U -W flow � of finite congestion. Loosely speaking, the flow � assigns to every path the
probability that the chain X follows that path between two consecutive steps of Q. This is not a precise description
because X is defined on Pe

k rather than on U e
k . Before defining � we first introduce some notation. Let G̃ = (Pe

k , Ẽ)

be the graph supporting the transitions of DL (i.e. {a, b} ∈ Ẽ iff DL(a, b) > 0). Denote the collection of all directed
paths of length � in G̃ by P�(G̃). For every path (a0, . . . , a�) ∈ P�(G̃) let

σ(a0, . . . , a�) :=
∏
i∈[�]

Ki
L(ai−1, ai).

For every e0, . . . , e� ∈ U e
k let

J (e0, . . . , e�) := {
(a0, . . . , a�) ∈ P�(G̃) : {ai, a

r
i

} = ei for all 0 ≤ i ≤ �
}
,

ρ(e0, . . . , e�) = π(e0)

2

∑
(a0,...,a�)∈J (e0,...,e�)

σ (a0, . . . , a�)(1 − p)�p.

As oppose to the situation in the proof of Theorem 3, if J (e0, . . . , e�) is not empty, then it may contain more than one
path even if it is not the case that e0 = · · · = e�. If J (e0, . . . , e�) =∅ then we set ρ(e0, . . . , e�) = 0.

Let e, e′ ∈ U e
k be such that W(e, e′) > 0. For every e0 = e, e1, . . . , e� = e′ ∈ U e

k let �e,e′((e0, . . . , e�)) :=
ρ(e0, . . . , e�). It is not hard to verify that by construction we have that � := (�e,e′)e,e′:W(e,e′)>0 is a W -U flow. It
remains only to bound its congestion.

Observe that for all every e0, . . . , e� ∈ U e
k and 0 ≤ i ≤ � we have that5

ρ(e0, . . . , e�) ≤ 2

pπ(ei)
ρ(e0, . . . , ei)ρ(ei, . . . , e�) ≤ C0ρ(ei, . . . , e1, e0)ρ(ei, . . . , e�).

The remainder of the proof is analogous to the remainder of the proof of Theorem 3 after (6.5). �

8.3. Proof of Part (iv) of Theorem 1

Proof. Let G = (V ,E) be a vertex-transitive graph satisfying conditions (2v
k) and (3v

k). Assume that the SRW on G

is transient. Assume towards a contradiction that the vertex k-NBRW is recurrent. Since G is transient, by Part (3)
of Lemma 5.6 the SRW on Gv

k is also transient. We shall show that supα,β∈Pv
k

π(α)
π(β)

< ∞. Using Theorem 4.12 and
Fact 4.9 we get that the vertex k-NBRW is transient, in contradiction to our assumption.

By conditions (2v
k) and (3v

k) the vertex k-NBRW is irreducible. By recurrence, its stationary measure π is unique
up to a multiplication by a constant factor. Moreover, by irreducibility and recurrence, for all α,β ∈ Pv

k we have that
[6]

π(α)

π(β)
= lim

t→∞

∑t
i=0 P i

k,v(α,α)∑t
i=0 P i

k,v(β,β)
.

Every automorphism φ of G can be extended into a probability preserving bijection of Pv
k , by defining

φ(α) := (φ(α0), . . . , φ(αk)) for α = (α0, . . . , αk) ∈ Pv
k . It is ‘probability preserving’ in the sense that P i

k,v(α,β) =
P i

k,v(φ(α),φ(β)) for all α,β ∈ Pv
k and i ∈N. In particular,

π(α)

π(φ(α))
= lim

t→∞

∑t
i=0 P i

k,v(α,α)∑t
i=0 P i

k,v(β,β)
= 1. (8.3)

5As opposed to the situation in the proof of Theorem 3, the first inequality is no longer an equality. E.g., the left most term can be 0 while the
middle term is positive. Also, it is possible that middle term may contain contributions coming from opposite orientations ei .
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By conditions (2v
k) and (3v

k) there exist some M ∈ N and p > 0 such that if α,β ∈ Pv
k and α0 = β0 then∑M

i=1 P i
k,v(α,β) > p and consequently for c = p/M we have that

π(β) = 1

M

M∑
i=1

∑
γ∈Pv

k

π(γ )P i
k,v(γ,β) ≥ 1

M

M∑
i=1

π(α)P i
k,v(α,β) ≥ cπ(α). (8.4)

Finally, by (8.3) and the fact that G is vertex-transitive, supα,β∈Pv
k

π(α)
π(β)

= supα,β∈Pv
k ,α0=β0

π(α)
π(β)

, and so by (8.4)

supα,β∈Pv
k

π(α)
π(β)

≤ 1/c, as desired. �

9. Proof of Theorem 2

Let G = H(S) be as in Theorem 2. As H is Abelian, we denote the group’s operation by ‘+’ and denote the inverse
of h ∈ H by −h. For h ∈ H and k ∈ N we define kh inductively to be h + (k − 1)h. We denote the identity element
by 0. Recall the notion of an induced chain from Section 2. To exploit the symmetry of G we consider the following
auxiliary chain.

Definition 9.1. Let G = H(S) be the Cayley graph of an infinite finitely generated Abelian group H �= Z w.r.t. a
finite symmetric set of generators S. Fix some s ∈ S of infinite order (there must be such s ∈ S). Let k ∈ N. For every
h ∈ H let

αh := (h,h + s, . . . , h + ks).

Let A := {αh,α
r
h : h ∈ H }. Let πA ≡ 1 be the counting measure on A. Let Ye := (Y e

t )∞t=0 (respectively, Yv :=
(Y v

t )∞t=0) be the induced chain on A w.r.t. the edge (respectively, vertex) k-NBRW. Denote its transition matrix by
PA,e (respectively, PA,v).

Lemma 9.2. In the setup of Definition 9.1 we have that πA is stationary for both Ye and Yv. Moreover, for all
a, b ∈ A we have that

PA,e(a, b) = PA,e
(
br, ar) and PA,v(a, b) = PA,v

(
br, ar). (9.1)

We defer the proof to Section A.4. The main reason for which the assertion of the lemma holds is that Cayley
graphs of finitely generated Abelian groups satisfy that for every pair of vertices x, y there is an automorphism that
maps x to y and y to x. Namely, first translate by −x, then map every a to −a and finally translate by +y. A more
precise explanation is that Lemma 9.2 is a consequence of symmetry under negation, along with translation invariance
and the fact that A is closed under negation, i.e., −A := {−γ : γ ∈ A} = A, where for γ = (γ0, . . . , γk) we define
−γ := (−γ0, . . . ,−γk). By ‘symmetry under negation’ (respectively, ‘translation invariance’) we mean that for the
k-NBRW the transition probability from γ to γ̃ equals its transition probability from −γ to −γ̃ (respectively, from
γ + h := (γ0 + h, . . . , γk + h) to γ̃ + h, for all h ∈ H ).

Proof of Theorem 2. We only prove the equivalence between the SRW and the vertex k-NBRW as the analysis of the
edge k-NBRW is analogous. Using the notation from Definition 9.1 there exists some p ∈ (0,1) such that for every
a ∈ A we have that

PA,v
(
a, ar) = p (9.2)

(the constant p is independent of a by the aforementioned translation invariance and symmetry under negation) Let
X := (Xn)

∞
n=0 be the Markov chain corresponding to the transition kernel P ′ := 1

2 (I + PA,v). Since A is a.s. visited
by the vertex k-NBRW we have that the vertex k-NBRW is transient iff PA,v is transient, which occurs iff X is
transient.
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By (9.2) we may generate X as follows: given Xn = a the chain first picks a candidate Zn+1 for Xn+1 according to
P ′ and then flips a fair coin in order to decide if the candidate is accepted. Furthermore, one may generate Z1,Z2, . . .

such that for some ξ0, ξ1, . . . i.i.d. Bernoulli(p) random variables, for all n ≥ 0 we have that Zn+1 = Xr
n iff ξn = 1.

Fix some a ∈ A. Consider the case that the initial distribution of X is the uniform distribution on {a, ar}. Let
e0 = {a, ar} and τ0 = −1. We define inductively τn+1 := inf{t > τn : ξt−1 = 1} and en := {Zτn+1,Z

r
τn+1}. Consider

the process Q := (en)
∞
n=0 on B := {{a, ar} : a ∈ A}. To conclude the proof it suffices to show that

(i) The process Q is a Markov chain. Its transition kernel W is symmetric. Hence Q is reversible w.r.t. the
counting measure on B.

(ii) The vertex k-NBRW is recurrent iff Q is recurrent.
(iii) SRW on G is recurrent iff Q is recurrent.

We first prove part (i). Consider the transition kernel K on A given by

K(a,b) :=
{

(1 − p)−1PA,v(a, b) if b �= ar,

(1 − p)−1(PA,v(a, ar) − p) if b = ar.

It follows from (9.1) that K(a,b) = K(br, ar) for all a, b ∈ A. Hence KL := 1
2 (I + K) satisfies this identity as well.

The assertion of (i) now follows from the fact that for every a, b ∈A we have that

W
({

a, ar},{b, br}) := 1

2

∞∑
i=0

∑
w∈{a,ar},w′∈{b,br}

Ki
L

(
w,w′)(1 − p)ip.

The proofs of (ii) is analogous to that of claim (ii) from the proof of Theorem 3 and is thus omitted. We now prove
(iii). Let U be the transition matrix of SRW on G. Observe that we may identify B with H via the map {αh,α

r
h} → h.

Hence it suffices to construct a U -W flow and a W -U flow of finite congestion. The details are similar to those from
the proof of Part (iii) of Theorem 1 and are thus omitted. �

Appendix: Technical proofs

A.1. Proof of Proposition 1.1

Proposition. Let G = (V ,E) be a d-regular connected graph for some d ≥ 3. Then the SRW on G is recurrent iff the
NBRW on G is recurrent.

Proof. Fix some o ∈ V . Let T be the universal cover of G. Namely, T = (V ′,E′) is an infinite d-ary tree rooted
at o, whose �th level is labelled by the collection of all non-backtracking paths in G of length � started from o. The
children of a vertex γ = (o, v1, . . . , v�) in T are precisely the vertices which are labelled by the possible extensions
of γ to a non-backtracking path of length � + 1 (i.e. all paths of the form (o, v1, . . . , v�+1) with v�+1 �= v�−1 and
{v�, v�+1} ∈ E). For every γ = (o, v1, . . . , v�) ∈ V ′ let ψ(γ ) = v�.

Let Y := (Yi)
∞
i=0 (respectively, W := (Wi)

∞
i=0) be a SRW (respectively, NBRW) on T started from o. Observe

that (ψ(Yi))
∞
i=0 (respectively, (ψ(Wi))

∞
i=0) is a SRW (respectively, NBRW) on G started from o. Clearly, the SRW

(respectively, NBRW) on G is recurrent iff a.s. |{i : ψ(Yi) = o}| = ∞ (respectively, |{i : ψ(Wi) = o}| = ∞). We may
generate W from Y simply as the ray along which Y diverges (that is, Wi is the last vertex in the ith level of T to be
visited by Y). As {i : ψ(Wi) = o} ⊆ {i : ψ(Yi) = o}, we get that if the NBRW on G is recurrent then so is the SRW.

Conversely, assume that the SRW on G is recurrent. We will show that every time at which the SRW on T reaches
some v ∈ V ′ with ψ(v) = o, with probability (uniformly) bounded from below v belongs to the ray through which the
walk diverges.

Denote the ith level of T by Li . Let σ0 = 0 = ρ0 and define inductively for all i ≥ 0,

τi := sup{t : Yt ∈ Lρi
}, σi+1 := inf

{
t > τi : ψ(Yt ) = o

}
and ρi+1 := distT (Yσi+1 , o).
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It is not hard to see that a.s. σi is finite for all i (by the condition that the SRW is recurrent, and the fact that every level
of T is a.s. visited only finitely many times) and that for all i, conditioned on ((τj , σj+1, ρj+1))

i−1
j=0, the probability

that τi = σi is at least d−2
d−1 . Thus a.s. there are infinitely many i’s such that τi = σi . Note that for such i’s we have that

ψ(Yσi
) = o and Yσi

∈ {ψ(Wn) : n ∈ Z+}.

A.2. Existence of a sink-free and source-free orientation – proof of Lemma 5.2

Lemma. Let G = (V ,E) be an infinite locally finite connected graph of minimal degree at least 2. There exists a
sink-free and source-free orientation of E.

Proof. Label V by N. We start by picking an infinite bi-infinite path γ (1) = (γ
(1)
i : i ∈ Z) containing the vertex k1

with label 1 and pick the orientation on it so that {γ (1)
i , γ

(1)
i+1} gets the orientation (γ

(1)
i , γ

(1)
i+1) for all i in Z. Let k2

be the vertex with the minimal label which is not part of γ (1). If there exists a finite path γ (2) = (γ
(2)
0 , . . . , γ

(2)
� ) with

k2 ∈ {γ (2)
j : j ∈ [� − 1]} ⊆ V \ {γ (1)

i : i ∈ Z} and γ
(2)
0 , γ

(2)
� in γ (1) then pick one such path and pick the orientation on

it so that {γ (2)
i−1, γ

(2)
i } gets the orientation (γ

(2)
i−1, γ

(2)
i ) for all i ∈ [�]. If no such path exists, then there exists an infinite

path γ (2) = (γ
(2)
0 , γ

(2)
1 , . . .) with k2 ∈ {γ (2)

j : j ∈ N} ⊆ V \ {γ (1)
i : i ∈ Z} and γ

(2)
0 in γ . Pick one such path and pick

the orientation on it so that {γ (2)
i−1, γ

(2)
i } gets the orientation (γ

(2)
i−1, γ

(2)
i ) for all i ∈ N.

Set Am to be the collection of all vertices belonging to the union of the first m paths of the construction. If
Am = V set Ai = Am for all i ≥ m. Otherwise, at stage m + 1 let km+1 be the vertex with the minimal label
which is not part of Am. If there exists a finite path γ (m+1) = (γ

(m+1)
0 , . . . , γ

(m+1)
� ) with km+1 ∈ {γ (m+1)

j : j ∈
[� − 1]} ⊆ V \ Am and γ

(m+1)
0 , γ

(m+1)
� in Am then pick one such path and pick the orientation on it so that

{γ (m+1)
i−1 , γ

(m+1)
i } gets the orientation (γ

(m+1)
i−1 , γ

(m+1)
i ) for all i ∈ [�]. If no such path exists, then there exists an

infinite path γ (m+1) = (γ
(m+1)
0 , γ

(m+1)
1 , . . .) with km+1 ∈ {γ (m+1)

j : j ∈ N} ⊆ V \ Am and γ
(m+1)
0 in Am. Pick one

such path and pick the orientation on it so that {γ (m+1)
i−1 , γ

(m+1)
i } gets the orientation (γ

(m+1)
i−1 , γ

(m+1)
i ) for all i ∈ N.

Note that A∞ := ⋃
i∈N Ai = V and that by construction every vertex has at least one edge oriented towards it and

one away from it, as can be seen by considering the stage m in which the vertex first belonged to Am, noting that
the vertex must have been an internal vertex of the path γ (m). Finally, the construction is concluded by picking an
arbitrary orientation for the remaining edges.

A.3. Proof of Lemma 8.1

Lemma. Let P be the transition kernel of an irreducible Markov chain. Let P̂ := ∑m
i=0 piP

i where
∑m

i=0 pi = 1,
m ∈N. If the greatest common denominator (gcd) of {i ∈ [m] : pi > 0} is 1 then P is recurrent iff P̂ is recurrent.

Proof. Clearly P̂ is also irreducible. Let P̂ i be (P̂ )i . Let x be an arbitrary state. Clearly,
∑

i≥0 P̂ i(x, x) ≤ (1 −
p0)

−1 ∑
i≥0 P i(x, x). Conversely, consider the random walk (St )t∈Z+ on Z+ started from 0 whose transition kernel

is given by K(i, i + j) = pj . Let q� be the probability that St = � for some t . It is standard that the assumption that
the gcd of {i ∈ [m] : pi > 0} is 1 implies that there is some δ > 0 and N0 ∈ N such that for all � ≥ N0 we have that
q� ≥ δ (we shall use the lemma only in the case when pi > 0 for all i ∈ [m], for which the proof of the last claim
is particularly simple). Finally, it is easy to see that

∑
i≥0 P̂ i(x, x) ≥ ∑

i≥0 qiP
i(x, x) ≥ δ

∑
i≥N0

P i(x, x). Thus∑
i≥0 P̂ i(x, x) diverges iff

∑
i≥0 P i(x, x) diverges. �

A.4. Proof of Lemma 9.2

Lemma. In the setup of Definition 9.1 we have that πA is stationary for both Ye and Yv. Moreover, for all a, b ∈ A
we have that

PA,e(a, b) = PA,e
(
br, ar) and PA,v(a, b) = PA,v

(
br, ar).
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Proof. Let −(g1, . . . , gk) := (−g1, . . . ,−gk). Observe that −αh = −αr−h−sk and that −αr
h = α−h−sk . By trans-

lation PA,e(αa,αb) = PA,e(αa+c, αb+c), PA,e(α
r
a,α

r
b) = PA,e(α

r
a+c, α

r
b+c), PA,e(αa,α

r
b) = PA,e(αa+c, α

r
b+c) and

PA,e(α
r
a,αb) = PA,e(α

r
a+c, αb+c), for all a, b, c ∈ H . The same holds w.r.t. PA,v. Also, PA,e(αx,αy) =

PA,e(−αx,−αy) and PA,v(αx,αy) = PA,v(−αx,−αy). To see this, consider an arbitrary path (αx = a0, a1, . . . , ar =
αy) with ai ∈ �e

k (respectively, ∈ �v
k) for all i. Then (−αx = −a0,−a1, . . . ,−ar = −αy) is a path from −αx to −αy .

Moreover, the probability the edge (respectively, vertex) k-NBRW started from αx follows the first path equals the
probability the edge (respectively, vertex) k-NBRW started from −αx follows the second path. Indeed, this follows
from the fact that x → −x is an automorphism of G which extends to a probability preserving bijection of �e

k (re-
spectively, �v

k) in the sense that Pk,e(a, b) = Pk,e(−a,−b) for all a, b ∈ �e
k (respectively, Pk,v(a, b) = Pk,v(−a,−b)

for all a, b ∈ �v
k).

Hence

PA,e(αa,αb) = PA,e(α−ks, αb−a−ks) = PA,e(−α−ks,−αb−a−ks)

= PA,e
(
αr

0, α
r
a−b

) = PA,e
(
αr

b,α
r
a

)
(where 0 is the identity element of H ) and similarly PA,v(αa,αb) = PA,v(α

r
b,α

r
a).

Similarly,

PA,e
(
αa,α

r
b

) = PA,e
(
α−ks, α

r
b−a−ks

) = PA,e
(
αr

0, αa−b

) = PA,e
(
αr

b,αa

)
.

The identities PA,e(α
r
a,αb) = PA,e(α

r
b,αa), PA,v(αa,α

r
b) = PA,v(αb,α

r
a) and PA,v(α

r
a,αb) = PA,v(α

r
b,αa) are

proved in the same manner. �
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