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Abstract. We investigate the fluctuations of cumulative density of particles in the asymmetric simple exclusion process with
respect to the stationary distribution (also known as the steady state), as a stochastic process indexed by [0,1]. In three phases of
the model and their boundaries within the fan region, we establish a complete picture of the scaling limits of the fluctuations of the
density as the number of sites goes to infinity. In the maximal current phase, the limit fluctuation is the sum of two independent
processes, a Brownian motion and a Brownian excursion. This extends an earlier result by Derrida et al. (J. Statist. Phys. 115 (2004)
365–382) for totally asymmetric simple exclusion process in the same phase. In the low/high density phases, the limit fluctuations
are Brownian motion. Most interestingly, at the boundary of the maximal current phase, the limit fluctuation is the sum of two
independent processes, a Brownian motion and a Brownian meander (or a time-reversal of the latter, depending on the side of the
boundary). Our proofs rely on a representation of the joint generating function of the asymmetric simple exclusion process with
respect to the stationary distribution in terms of joint moments of a Markov processes, which is constructed from orthogonality
measures of the Askey–Wilson polynomials.

Résumé. Nous étudions les fluctuations de la densité de particules dans un processus d’exclusion simple asymétrique sous la
distribution stationnaire (ou état stable), vues comme un processus stochastique indexé par [0,1]. Pour trois des phases du modèle
et à leurs frontières nous obtenons une description complète des limites d’échelles de ces fluctuations lorsque le nombre de sites
tend vers l’infini. Dans la phase de courant maximal, la limite est la somme de deux processus indépendants : un mouvement
brownien et une excursion brownienne. Ce résultat étend celui obtenu précédemment par Derrida et al. (J. Statist. Phys. 115 (2004)
365–382) pour le processus d’exclusion simple totalement asymétrique et dans la même phase. Dans les phases de fortes et faibles
densités, les limites sont des mouvements browniens. De façon plus intéressante, à la frontière de la phase de courant maximal, la
limite est la somme de deux processus indépendants : un mouvement brownien et un méandre brownien (ou, selon la partie de la
frontière, un méandre brownien renversé en temps). Nos démonstrations reposent sur une représentation des fonctions génératrices
des lois fini-dimensionnelles du processus d’exclusion simple asymétrique en termes de moments joints d’un processus de Markov
construit à partir de mesures rendant orthogonaux les polynômes d’Askey–Wilson.
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1. Introduction and main results

1.1. Background

The asymmetric simple exclusion process (ASEP) with open boundaries in one dimension is one of the most widely
investigated models for open non-equilibrium systems in the physics literature. The process models particles jumping
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Fig. 1. Transition rates of the asymmetric simple exclusion process with open boundaries, with parameters α, β , γ , δ, q . Black disks represent
occupied sites.

independently with hardcore repulsion over a one-dimensional lattice, which also has particles injected to the left end
and removed from the right end, and an external field driving the particles towards the right direction. The ASEP,
despite its simple definition, captures representative features of more complicated models, including in particular
phase transitions. The model actually has its origin in modeling protein synthesis in biology [35]. In mathematics
literature, the model was first investigated by Spitzer [43], see also Liggett [34, Section 3] for early developments. See
more references on background, motivations and applications in the survey papers [4,15,16].

The ASEP with open boundaries is an irreducible finite-state Markov process on the state space {0,1}n with pa-
rameters

α > 0, β > 0, γ ≥ 0, δ ≥ 0, and 0 ≤ q < 1. (1.1)

Informally, the process models the evolution of the particles located at sites 1, . . . , n that can jump to the right with
rate 1 and to the left with rate q , if the target site is unoccupied. Furthermore, particles arrive at site 1 (respectively,
n), if empty, at rate α (respectively, δ), and leave site n (respectively, 1), if occupied, at rate β (respectively, γ ). The
transitions are summarized in Figure 1. For q < 1, particles move in an asymmetric way, with higher rate to the right
than to the left; in the special case q = 0, particles move only to the right and the model is known as the totally
asymmetric simple exclusion process (TASEP).

We let πn denote the stationary distribution of the ASEP as a Markov process on {0,1}n, which is also called the
steady state in the physics literature. We let τ1, . . . , τn denote the occupations of each corresponding location: τj = 1
if the j -th location is occupied by a particle, and τj = 0 otherwise. All statistics of the ASEP are then expressed in
terms of τ1, . . . , τn.

Throughout we assume (1.1) and work with the following parameterization of the ASEP, which dates back at least
to the 90s in the physics literature (e.g. [40]): set

κ±
x,y = 1

2x

(
1 − q − x + y ±

√
(1 − q − x + y)2 + 4xy

)
,

and denote

A = κ+
β,δ, B = κ−

β,δ, C = κ+
α,γ , and D = κ−

α,γ . (1.2)

By definition, A,C ≥ 0 and it is easy to check that −1 < B,D ≤ 0, compare [10,44].
The phase transition of the ASEP is known to be characterized by A and C only. For example, it has been known

since Derrida et al. [17], Sandow [40] that the ASEP has the following three phases:

(1) maximal current phase A < 1, C < 1,
(2) low density phase C > 1, C > A,
(3) high density phase A > 1, A > C.

Derrida et al. [21,22] distinguish also the two regions

(1) fan region AC < 1,
(2) shock region AC > 1.

Figure 2 illustrates the three phases and the two regions. In this paper, we restrict ourselves to the fan region and its
boundary, as our approach does not work for the shock region. See [21,22] for more discussions of the properties of
ASEP in the shock region.
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Fig. 2. A phase diagram for the limit fluctuations of density of the ASEP in the steady state. LD, HD, MC stand for low density, high density and
maximal current (phases), respectively. The fan region consists of the shaded area. B, Bex and B

me stand for Brownian motion, excursion and

meander, respectively, and B̂
me stands for the reversed Brownian meander defined by {B̂me

x }x∈[0,1] d= {Bme
1−x

−B
me
1 }x∈[0,1]. Processes in the sums

are assumed to be independent. The multiplicative constants (possibly depending on A, C) in front of processes are omitted.

Another set of commonly used parameters is the pair (ρa, ρb) with

ρa = 1

1 + C
and ρb = A

1 + A
.

For example, the fan region and the shock region are often characterized equivalently by ρa > ρb and ρa < ρb ,
respectively (e.g. [21] and [22, (1.1)]). From the point of view of modeling a non-equilibrium system with open
boundaries, the two parameters represent the densities of the two reservoirs connected to the left and the right of the
system. For convenience, we shall use A and C exclusively in the sequel.

We are interested in the cumulative density function

[0,1] � x �→ 1

n

�nx	∑
j=1

τj ,

which we consider as a random process under πn. The following limits in probability for the cumulative density
function are well known:

lim
n→∞

1

n

�nx	∑
j=1

τj =

⎧⎪⎨⎪⎩
1
2x, A < 1,C < 1 (maximal current phase),

1
1+C

x, C > 1,C > A (low density phase),
A

1+A
x, A > 1,A > C (high density phase),

(1.3)

see for example [21,42,44]. Phase diagram affects the behavior of many other statistics, including current [20,40],
correlation functions of the density [25,45], and the large deviation functionals of the density [21] or the current [14].
See [16] and more references therein.

The fluctuations of the cumulative density function with appropriate normalization are easy to describe for the
boundary of the fan region (AC = 1). Since it is known that in this case, τ1, . . . , τn are i.i.d. Bernoulli random variables
with mean A/(1 +A) = 1/(1 +C) (see [24] and Remark 2.4), the scaling limit is the Brownian motion, an immediate
consequence of Donsker’s theorem [3].
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Theorem 1.1 (Boundary of fan region). When AC = 1,

1√
n

{�nx	∑
j=1

(
τj − A

1 + A

)}
x∈[0,1]

⇒
√

A

1 + A
{Bx}x∈[0,1]

as n → ∞ in the space D([0,1]).

One might expects naturally that the Brownian-motion behavior at the boundary of the fan region persists if one
looks at the phase that is close to the boundary. However, this intuition is not entirely correct, as the limit is non-
Gaussian for A < 1, C < 1 arbitrarily close to the point (A,C) = (1,1) at the boundary, a remarkable result due to
Derrida et al. [19], who showed this in the special case q = 0, γ = δ = 0.

1.2. Main results

In this paper, we provide a complete picture of the limit fluctuations of the cumulative density function, that is, of the
process {∑�nx	

j=1 τj }x∈[0,1] with appropriate normalization as n → ∞, in the fan region. First, as conjectured in [19,
Section 3], we show that the limit fluctuation for a full range of parameters (1.1) in the maximal current phase is the
same as for the case of q = 0, γ = δ = 0 studied in [19]. Second, and most interestingly, we identify two different limit
fluctuations at the boundary of the maximal current phase. Third, in the low/high density phases in the fan region, we
show that the scaling limit of fluctuations is a Brownian motion.

Our results are stated in terms of Brownian motion, Brownian excursion and Brownian meander, denoted by B, Bex

and B
me respectively throughout this paper. One may think of Brownian excursion as the Brownian bridge conditioned

to stay strictly positive until time t = 1, and Brownian meander as the Brownian motion conditioned to stay strictly
positive over time interval (0,1]. See for example [23,32,37–39,47] for more background and applications.

We first state our results on the maximal current phase and its boundary. Introduce

hn(x) =
�nx	∑
j=1

(
τj − 1

2

)
, x ∈ [0,1],

and view {hn(x)}x∈[0,1] as a stochastic process with law induced by πn. The following theorem extends the already
mentioned result of Derrida et al. [19] to a larger range of parameters (1.1) confirming the conjecture in [19, Section 3].

We let ‘
f.d.d.=⇒’ denote convergence of finite-dimensional distributions. Recall that definition (1.2) gives A ≥ 0, C ≥ 0.

Theorem 1.2 (Maximal current phase). If A < 1, C < 1 then

1√
n

{
hn(x)

}
x∈[0,1]

f.d.d.=⇒ 1

2
√

2

{
Bx +B

ex
x

}
x∈[0,1],

as n → ∞, where the Brownian motion B and the Brownian excursion B
ex are independent stochastic processes.

The boundary of the maximal current phase, see Figure 2, splits into three regions with different limit fluctuations:
the corner point where A = 1,C = 1 with asymptotically Brownian fluctuations described in Theorem 1.1, and two
line-segments corresponding to A < 1, C = 1 and A = 1, C < 1 with the following fluctuations.

Theorem 1.3 (Boundary of maximal current phase). We have,

1√
n

{
hn(x)

}
x∈[0,1]

f.d.d.=⇒
{

1
2
√

2
{Bx +B

me
x }x∈[0,1], A = 1,C < 1,

1
2
√

2
{Bx +B

me
1−x −B

me
1 }x∈[0,1], A < 1,C = 1

as n → ∞, where the Brownian motion B and the Brownian meander Bme are independent stochastic processes.
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For the low/high density phases, we use centering as indicated in (1.3). For x ∈ [0,1], introduce

hL
n(x) =

�nx	∑
j=1

(
τj − 1

1 + C

)
, hH

n (x) =
�nx	∑
j=1

(
τj − A

1 + A

)
, (1.4)

and view both as stochastic processes with laws induced by πn.

Theorem 1.4 (Low/high density phases of fan region). Suppose AC < 1. In the low density phase, C > 1, we have

1√
n

{
hL

n(x)
}
x∈[0,1]

f.d.d.=⇒
√

C

1 + C
{Bx}x∈[0,1] as n → ∞.

In the high density phase, A > 1, we have

1√
n

{
hH

n (x)
}
x∈[0,1]

f.d.d.=⇒
√

A

1 + A
{Bx}x∈[0,1] as n → ∞.

The paper is organized as follows. In Section 1.3 we describe informally the basic ideas behind the proof. Section 2
provides technical background on Askey–Wilson processes and generating functions of ASEP. In Section 3 we prove
Theorem 1.4. Section 4 presents proofs of Theorems 1.2 and 1.3. In the Appendix we discuss the Laplace transform
criterion for weak convergence that we use.

1.3. Overview of the proof

Our starting point is the identity〈
n∏

j=1

t
τj

j

〉
n

= E[∏n
j=1(1 + tj + 2

√
tj Ytj )]

2nE(1 + Y1)n
, for all 0 < t1 ≤ t2 ≤ · · · ≤ tn, (1.5)

which expresses the probability generating function of ASEP on the left-hand side as a functional of an auxiliary
Markov process {Yt }t≥0. The process {Yt }t≥0, introduced in [9], is an inhomogeneous Markov process with transition
probabilities constructed form the Askey–Wilson laws, that is, from the “weight functions” of the Askey–Wilson
polynomials [1], as described in Section 2.1. The parameters A, B , C, D introduced in (1.2) are the parameters of this
process and our notation here is consistent with [9,10]. Identity (1.5) comes from [10] and is a new representation of
the matrix ansatz, which is a powerful and commonly used method developed in the seminal work of Derrida et al.
[20]. Our approach, however, is of an analytical nature that is different from most applications of the matrix ansatz to
the ASEP in the literature (see Remark 2.3).

Theorems 1.2, 1.3 and 1.4 are established by representing the Laplace transforms of the finite-dimensional dis-
tributions of processes hn, and hH

n , normalized by
√

n, in terms of this auxiliary Markov process {Yt }t≥0. In this
representation, which is a straightforward application of (1.5), see (3.2) and (4.18), the arguments of the Laplace
transform become time arguments for the Markov process. This reduces the study of fluctuations of ASEP as the
system size n increases to the analysis of asymptotic behavior of Markov process {Yt }t≥0 near t = 1. In the case of the
low/high density regimes, this then leads to a quick proof for the limit fluctuations (Theorem 1.4). The proof for the
maximal current phase and its boundary is more involved and requires two additional ingredients that we now explain.

The first ingredient is the so-called tangent process [28] at the upper boundary of the support of process {Yt }t≥0.
The tangent process, denoted by {Zt }t≥0, is a positive 2-self-similar Markov process with explicit transition proba-
bility density function (see Section 4.1) and arises as follows. Intuitively, the tangent process captures the asymptotic
fluctuations of the process {Yt }t≥0, as the time parameter t is approaching 1 and Y1 is approaching the upper boundary
end of the support [−1,1]. To utilize this concept, we introduce a sequence of Markov processes {Ŷ (n)

s }s≥0 which up
to a multiplicative constant behave roughly like {(1 − Y1−εs)/ε

2}s≥0 for ε2 ∼ 1/n, (for precise definition, see (4.6)
below). In Proposition 4.1 we show that as ε → 0 we have

L
({

Ŷ (n)
s

}
s≥0 | Ŷ (n)

0 = u
) f.d.d.=⇒ L

({Zs}s≥0 | Z0 = u
)
, for all u > 0. (1.6)
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The left-hand side is interpreted as the law of the Markov process {Ŷ (n)
s }s≥0 starting at Ŷ

(n)
0 = u; similar interpretation

applies for the right-hand side. In the second part of Proposition 4.1 we show that under appropriate normalization,
the density of Ŷ

(n)
0 converges to an infinite measure ν(du) which is proportional to either u1/2 du (in the case A < 1,

C < 1) or u−1/2 du (in the case A = 1, C < 1).
Up to a normalizing constant, the Laplace transform of the finite-dimensional distributions of {hn(x)}x∈[0,1] takes

the form of EGn(Ŷ
(n)
s1 , . . . , Ŷ

(n)
sd , Ŷ0) for some s1 > · · · > sd > 0, where the sequence of functions Gn : Rd+1 → R+

converges to function G defined in (4.22). Convergence in (1.6) is a key step to show that these Laplace transforms
converge to the limit given by the functional∫

R+
E
(
G(Zs1, . . . ,Zsd , u) | Z0 = u

)
ν(du)

of the tangent process Z, see (4.30).
The second ingredient of our proof consists of some recently developed duality formulas [8] that express the

Laplace transforms of Brownian excursion and meander in terms of the tangent process {Zt }t≥0 ((4.2) and (4.3)). We
recognize that the integral above has two factors: the Laplace transform of the Brownian motion, and a functional
of {Zs}s≥0 which we identify as the Laplace transform of Brownian excursion (A < 1, C < 1), see (4.31), or of
Brownian meander (A = 1, C < 1), see (4.32). A delicate issue actually arises here as due to the use of Markov
process we establish convergence of the Laplace transforms only in an open region away from the origin in R

d . We
clarify how this leads to the desired weak convergence in the Appendix.

Technical difficulties arise in the above approach when transitions probabilities of {Yt }t≥0 are of mixed type near
t = 1. We avoid this issue by applying the so-called particle-hole duality, which is a well known symmetry feature of
the ASEP. In particular, the case A < 1, C = 1 and the low density phase will be derived from the case A = 1, C < 1
and the high density phase, respectively, by this duality.

Remark 1.5. In principle, our approach might work for the weakly asymmetric exclusion process, as in [18], where
the authors consider the case q ↑ 1 at a rate that may depend on n → ∞ and show that the fluctuations are Gaussian.
This would require to determine first the relevant tangent process as q ↑ 1.

We also mention that there is a huge literature on the asymptotic behavior of ASEP as a temporal-spatial process,
by letting the ASEP to evolve from a non-stationary distribution, and possibly with q ↑ 1 at the rate that may depend
on n → ∞. See for example [12,26,27,30] and references therein. Such results are beyond the scope of our methods.

2. Askey–Wilson process and ASEP

2.1. Askey–Wilson process

Askey–Wilson processes are a family of Markov processes based on Askey–Wilson measures, which we recall first.
The Askey–Wilson measures are the probability measures that make the Askey–Wilson polynomials orthogonal. We
do not use these polynomials here, and instead we write directly the orthogonality measure as given in [1], see also
[33, Section 3.1] where a typo to weight of higher atoms is corrected. The formulas below incorporate this correction
and probabilistic normalization, and come from [9].

The Askey–Wilson probability measure ν(dy;a, b, c, d, q) depends on five parameters a, b, c, d , q . It is assumed
that q ∈ (−1,1). For the parameters a, b, c, d , it is assumed that they are all real, or two of the parameters are real and
the other two form a complex conjugate pair, or the parameters form two complex conjugate pairs, and in addition

ac, ad, bc, bd, qac, qad, qbc, qbd, abcd, qabcd /∈ [1,∞). (2.1)

The Askey–Wilson measure is invariant with respect to permutations of a, b, c, d . More precisely, the measure is of
mixed type

ν(dy;a, b, c, d, q) = f (y;a, b, c, d, q) dy +
∑

z∈F(a,b,c,d,q)

p(z)δz(dy),
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with the absolutely continuous part supported on [−1,1] and with the discrete part supported on a finite or empty set F .
For certain choices of parameters, the measure can be only discrete or only absolutely continuous. The absolutely
continuous part is

f (y;a, b, c, d, q) = (q, ab, ac, ad, bc, bd, cd;q)∞
2π(abcd;q)∞

√
1 − y2

∣∣∣∣ (e2iθy ;q)∞
(aeiθy , beiθy , ceiθy , deiθy ;q)∞

∣∣∣∣2, (2.2)

where y = cos θy (with the convention that f (y;a, b, c, d, q) = 0 when |y| > 1). Here and below, for complex α,
n ∈ N∪ {∞} and |q| < 1 we use the q-Pochhammer symbol

(α;q)n =
n−1∏
j=0

(
1 − αqj

)
, (a1, . . . , ak;q)n =

k∏
j=1

(aj ;q)n. (2.3)

The set F = F(a, b, c, d, q) of atoms of ν(dy;a, b, c, d, q) is non-empty if there is a parameter α ∈ {a, b, c, d} with
|α| > 1. In this case, necessarily α is real and generates atoms: for example, if |a| > 1 then it generates the atoms

yj = 1

2

(
aqj + 1

aqj

)
for j = 0,1, . . . such that

∣∣aqj
∣∣≥ 1, (2.4)

and the corresponding masses are

p(y0;a, b, c, d, q) = (a−2, bc, bd, cd;q)∞
(b/a, c/a, d/a, abcd;q)∞

, (2.5)

p(yj ;a, b, c, d, q) = p(y0;a, b, c, d, q)
(a2, ab, ac, ad;q)j (1 − a2q2j )

(q, qa/b, qa/c, qa/d;q)j (1 − a2)

(
q

abcd

)j

, j ≥ 1.

The formula of p(yj ;a, b, c, d, q) given here only applies for a, b, c, d �= 0, and takes a different form otherwise. We
shall however only need p(y0;a, b, c, d, q) in this paper.

The Askey–Wilson process is a time-inhomogeneous Markov process introduced in Bryc and Wesołowski [9],
based on Askey–Wilson measures. It is then explained in Bryc and Wesołowski [10] how each ASEP with parameters
α,β > 0, γ, δ ≥ 0, q ∈ [0,1) is associated to an Askey–Wilson process Y , the parameters of which are denoted by A,
B , C, D, q , with A, B , C, D given in (1.2).

As we already noted, (1.2) implies A,C ≥ 0 and −1 < B,D ≤ 0. So for the Askey–Wilson process to exist, the
restriction (2.1) becomes AC < 1, which we assume throughout in the sequel. Then, the Askey–Wilson process with
parameters (A,B,C,D,q) is introduced as the Markov process with marginal distribution

P(Yt ∈ dy) = ν(dy;A√
t,B

√
t,C/

√
t,D/

√
t, q), 0 < t < ∞,

and the transition probabilities

P(Yt ∈ dz | Ys = y) = ν
(
dz;A√

t,B
√

t,
√

s/t
(
y +

√
y2 − 1

)
,
√

s/t
(
y −

√
y2 − 1

))
, (2.6)

for 0 < s < t , y, z > 0. When |y| < 1, y ±√y2 − 1 is understood as e±iθy with θy determined by cos θy = y. It was
shown in [9] that the above marginal and transition laws are consistent and determine a Markov process indexed by
t ∈ [0,∞). The Askey–Wilson process turned out to be closely related to a large family of Markov processes, the
so-called quadratic harnesses [6] in the literature; see [10, Section 1.3] for more on this connection. More explicit
expressions for the law of Y will appear below when they are needed in the proofs.

2.2. Generating function of ASEP via Askey–Wilson process

Let 〈·〉n denote the expectation with respect to the invariant measure πn of ASEP. Derrida et al. [20] derives the well
known matrix ansatz method that provides an explicit expression of the joint generating function, which made many
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calculations of the model possible. Formally, for any t1, . . . , tn > 0, from [20] one can write〈
n∏

j=1

t
τj

j

〉
n

= 〈W |(E + t1D) × · · · × (E + tnD)|V 〉
〈W |(E + D)n|V 〉 , (2.7)

for a pair of infinite matrices D, E, a row vector W and a column vector V , satisfying

DE − qED = D + E,

〈W |(αE − γ D) = 〈W |,
(βD − δE)|V 〉 = |V 〉.

See [15,16] for reviews of literature. However, for our purpose, we shall apply an alternative expression developed
recently in [10, Theorem 1], summarized in the following theorem.

Theorem 2.1. Consider the parameterization A, B , C, D in (1.2) for an ASEP with parameters α,β > 0, γ, δ ≥ 0.
Suppose that AC < 1 and q ∈ [0,1). Then for 0 < t1 ≤ t2 ≤ · · · ≤ tn, the joint generating function of the stationary
distribution of the ASEP with parameters is〈

n∏
j=1

t
τj

j

〉
n

= E[∏n
j=1(1 + tj + 2

√
tj Ytj )]

2nE(1 + Y1)n
, (2.8)

where {Yt }t≥0 is the Askey–Wilson process with parameters (A,B,C,D,q).

Now, to establish our limit theorems, it suffices to analyze the asymptotics of the two expectations that appear in the
numerator and in the denominator on the right-hand side of (2.8). For this purpose, we shall see that asymptotically,
only the law of {Yt }t∈[1−ε,1] matters for arbitrarily small ε > 0. We first proceed in Section 3 with the proof of the
low/high density phases, in which case the law of Yt near upper boundary of its support is easy to analyze.

Remark 2.2. The connection between Askey–Wilson polynomials and the ASEP has been known for a long time, see
for example [41,44,45]. In [44,45], using Askey–Wilson polynomials and complex integrals, the asymptotics of most
commonly investigated statistics are computed, including current, density, partition function and the multiple-point
correlation function, for results in both fan and shock regions (except the case A = C > 1 where the steady state does
not have constant density). The identification of the Askey–Wilson Markov process in Theorem 2.1 turned out to be
convenient for our proofs, at the expense of restriction of parameters of ASEP to the fan region AC < 1. Notice that
in general, Askey–Wilson polynomials do not necessarily admit a positive orthogonality measure, and conditions on
the coefficients for its existence are subtle (see [9]).

Remark 2.3. The version of the matrix ansatz method that we use is more analytic so our method differs from the
usual applications of the matrix ansatz that seem to have more combinatorial flavor. For example, a formula for the
joint distribution of the increments of hn is given in [24, Eq. (3.7)] and used to derive the large deviation principle
via a combinatorial argument [24, Eq. (3.16), (3.17)], essentially by expressing the probability of interest as a sum
of probabilities indexed by different paths and then counting the number of paths that asymptotically have the same
order of probabilities. This argument is of a completely different nature of ours.

The combinatorial nature of the matrix ansatz method has also been exploited in applications to problems on
combinatorial enumeration [11].

Remark 2.4. At the boundary of the fan region, AC = 1, one can read from [9, Eq. (2.14) and (2.15)] that

Yt = [A + B − AB(C + D)]t + C + D − CD(A + B)

2
√

t(1 − ABCD)
= 1

2

(
A

√
t + 1

A
√

t

)
,
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is deterministic. Now, from (2.8) we can read out that {τj }j=1,...,n are independent, and 〈tτj

j 〉n = tjA/(1+A)+1/(1+
A). So these are Bernoulli random variables with

〈τj 〉n = A

1 + A
.

Theorem 1.1 now is a consequence of the well known Donsker’s theorem [3].

3. Proofs for low/high density phases

In this section, we investigate the case A > 1,AC < 1 and C > 1,AC < 1. In the representation (2.8), the law of the
associated Askey–Wilson process with parameters (A,B,C,D;q) may have atoms. It turns out that we will only need
the point mass on the largest atom. We shall only use this representation for the high density phase (A > 1,AC < 1).
For the low density phase, the result shall follow by the particle-hole duality.

Fix A > 1 and C < 1/A. Recall that B,D ∈ (−1,0] and atoms are only generated by parameters that have absolute
value larger than 1, so possibly by A

√
t , C/

√
t and D/

√
t . When t ∈ (max{1/A2,D2},1], all the atoms are generated

by A
√

t by (2.4) with a = A
√

t , and in this case we let yj (t) denote the (j + 1)th largest atom of the law of Yt . In
particular, we have

y0(t) = 1

2

(
A

√
t + 1

A
√

t

)
> 1 for t ∈

(
max

{
1

A2
,D2

}
,1

]
.

We shall need the mass of Y1 on y0(1), which is denoted by, recalling (2.5),

p0 = p
(
y0(1);A,B,C,D,q

)= (1/A2,BC,BD,CD;q)∞
(B/A,C/A,D/A,ABCD;q)∞

.

In the sequel, we write an ∼ bn if limn→∞ an/bn = 1.

3.1. Proof of Theorem 1.4 for the high density phase A > 1,AC < 1

We prove the convergence of corresponding Laplace transform. We first recall the Laplace transform of the finite-
dimensional distribution of the Brownian motion. For x0 = 0 < x1 < · · · < xd ≤ xd+1 = 1, c1, . . . , cd > 0, sk =
ck + · · · + cd , k = 1, . . . , d , and sd+1 = 0, we have

E exp

(
−

d∑
k=1

ckBxk

)
= E exp

(
−

d∑
k=1

(sk − sk+1)Bxk

)

= E exp

(
−

d∑
k=1

sk(Bxk
−Bxk−1)

)

= exp

(
1

2

d+1∑
k=1

s2
k (xk − xk−1)

)
. (3.1)

For the ASEP in the high density phase, consider the centered cumulative density function (1.4) and its Laplace
transform with argument c = (c1, . . . , cd) ∈ R

d+ defined by

ϕH
x,n(c) =

〈
exp

(
−

d∑
k=1

ckh
H
n (xk)

)〉
n

.
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Note that in Theorem 1.4, the limit Brownian motion is scaled by
√

A/(1 + A). Therefore, by Theorem A.1 to prove
the high density phase of Theorem 1.4 it suffices to prove

lim
n→∞ϕH

x,n

(
c√
n

)
= exp

(
d+1∑
k=1

A

2(1 + A)2
s2
k (xk − xk−1)

)
.

To do so, we first write

ϕH
x,n(c) =

〈
exp

(
−

d∑
k=1

�nxk	∑
j=�nxk−1	+1

(
τj − A

1 + A

)
(ck + · · · + cd)

)〉
n

= exp

(
d∑

k=1

A

1 + A
sk(nk − nk−1)

)〈
d+1∏
k=1

nk∏
j=nk−1+1

(
e−sk

)τj

〉
n

,

where nk = �nxk	, k = 1, . . . , d + 1. By (2.8),

ϕH
x,n(c) = 1

2nZn

E

[
d+1∏
k=1

(
1 + e−sk + 2e−sk/2Ye−sk

e−skA/(1+A)

)nk−nk−1
]

(3.2)

with Zn = E(1 + Y1)
n.

Lemma 3.1. If A > 1 and AC < 1, then

Zn ∼ (1 + A)2n

2nAn
p0.

This result has been known in the literature. See Remark 4.6. We provide a proof here for completeness.

Proof of Lemma 3.1. Let y∗
1 (1) = max(y1(1),1) denote the upper bound of the support of the law of Y1 on R \

{y0(1)}. Note that y∗
1 (1) < y0(1) (recall that y0(1) and y1(1) are the locations of the point masses of the first and

second atom of Y1, see (2.4), and that the first atom lies above 1 and above the second atom). It then follows that

Zn =
∫

{y0(1)}
(1 + y)nν(dy;A,B,C,D,q) +

∫
[−1,y∗

1 (1)]
(1 + y)nν(dy;A,B,C,D,q).

The first term equals

p0
(
1 + y0(1)

)n = p0
(1 + A)2n

2nAn
,

and the second term is bounded from above by (1 + y∗
1 (1))n, which converges to 0 when divided by (1 + y0(1))n. �

In view of the asymptotics of Zn, we introduce

ψ(s, y) = 1 + e−s + 2e−s/2y

e−sA/(1+A)

A

(1 + A)2
,

and have

ϕH
x,n

(
c√
n

)
∼ Mn

p0
with Mn = E

[
d+1∏
k=1

ψ

(
sk√
n
,Y

e−sk/
√

n

)nk−nk−1
]
.

The desired result now follows from the following.
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Lemma 3.2. With the notation above,

lim
n→∞Mn = p0 exp

(
d∑

k=1

A

2(1 + A)2
s2
k (xk − xk−1)

)
.

Proof. We have that

ψ
(
s, y0

(
e−s
))=

(
1

1 + A
esA/(1+A) + A

1 + A
e−s/(1+A)

)
= 1 + As2

2(1 + A)2
+ o

(
s2) (3.3)

as s ↓ 0. Introduce sk,n = sk/
√

n and tk,n = e−sk/
√

n. Note that due to our choice of sk , we have t1,n < t2,n < · · · <

td,n < 1 = td+1,n.
We write Mn = Mn,1 + Mn,2 with

Mn,1 = E

[
d+1∏
k=1

ψ(sk,n, Ytk,n
)nk−nk−1 1{Yt1,n

=y0(t1,n)}

]
.

We shall show that Mn ∼ Mn,1 as n → ∞. Indeed, we have that Ytk,n
≤ y0(tk,n) and hence ψ(sk,n, Ytk,n

) ≤
ψ(sk,n, y0(tk,n)) almost surely. First, observe that

P
(
Yt1,n

= y0(t1,n)
)= P

(
Ytk,n

= y0(tk,n), k = 1, . . . , d + 1
)
.

That is, once the process Ys reaches the highest point y0(s) at some time s, necessarily s > 1/A2, Ys stays on the
deterministic trajectory (y0(t))t≥s . This follows by computing P(Yt = y0(t) | Ys = y0(s)) for 1/A2 < s < t . In this
case, one has y0(s) > 1,

y0(s) +
√

y0(s)2 − 1 = A
√

s, and y0(s) −
√

y0(s)2 − 1 = 1

A
√

s
.

So by (2.6) and (2.5),

P
(
Yt = y0(t) | Ys = y0(s)

)= ν
({

y0(t)
};A√

t,B
√

t,
√

s/tA
√

s,
√

s/t/(A
√

s)
)

= p
(
y0(t);A

√
t,B

√
t,As/

√
t,1/(A

√
t), q

)
= (1/(A2t),ABs,B/A, s/t;q)∞

(B/A, s/t,1/(A2t),ABs;q)∞
= 1.

Introduce also p0,n = P(Yt1,n
= y0(t1,n)). Recalling (2.5), we have

p0,n = p
(
y0(t1,n);A

√
t1,n,B

√
t1,n,C/

√
t1,n,D/

√
t1,n, q

)
= (1/(A2t1,n),BC,BD,CD/t1,n;q)∞

(B/A,C/(At1,n),D/(At1,n),ABCD;q)∞
→ (1/A2,BC,BD,CD;q)∞

(B/A,C/A,D/A,ABCD;q)∞
= p0

as n → ∞. Therefore, by (3.3),

Mn,1 = p0,n

d+1∏
k=1

ψ
(
sk,n, y0(tk,n)

)nk−nk−1 → p0 exp

(
d∑

k=1

A

2(1 + A)2
s2
k (xk − xk−1)

)

as n → ∞. On the other hand, introducing y∗
1 (s) = max{y1(s),1}, on the event {Ys �= y0(s)}, we have Ys ≤ y∗

1 (s)

almost surely. Then,

Mn,2 ≤ (1 − p0,n)ψ
(
s1,n, y

∗
1 (t1,n)

)n1
d+1∏
k=2

ψ
(
sk,n, y0(tk,n)

)nk−nk−1 .
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Now, one sees immediately that, since by continuity limn→∞ y∗
1 (t1,n)/y0(t1,n) = y∗

1 (1)/y0(1) ∈ (0,1),

Mn,2

Mn

≤ 1 − p0,n

p0,n

(
ψ(s1,n, y

∗
1 (t1,n))

ψ(s1,n, y0(t1,n))

)n1

= 1 − p0,n

p0,n

(
1 + e−2s1,n + 2e−s1,ny∗

1 (t1,n)

1 + e−2s1,n + 2e−s1,ny0(t1,n)

)n1

→ 0

as n → ∞. Therefore Mn ∼ Mn,1, and the desired result follows. �

3.2. Proof of Theorem 1.4 for the low density phase C > 1,AC < 1

The result for the low density phase is an immediate consequence of the result for the high density phase, by the
particle-hole duality which we now explain. We have seen the definition of an ASEP with parameters (α,β, γ, δ, q).
Instead of thinking of particles jumping around, we view the particles as background and allow the holes to jump
around (viewing Figure 1 as white particles jumping around among black unoccupied sites). In this way, equivalently
a hole jumps to the unoccupied left and right sites with rates 1 and q , respectively, and disappears at site 1 with rate α

and at site n with rate δ, and enters site n if unoccupied with rate β and site 1 if unoccupied with rate γ . This is the
ASEP with parameters (β,α, δ, γ, q), if we relabel the sites {1, . . . , n} by {n, . . . ,1}.

Fix q ∈ [0,1). Let π
A,B,C,D
n denote the stationary distribution of the ASEP with parameters (α,β, γ, δ, q). Let

τ1, . . . , τn be as before, and set εj = 1 − τn−j+1. Introduce

ĥL
n(x) =

�nx	∑
j=1

(
εj − C

1 + C

)
.

The above argument shows that {̂hL
n(x)}x∈[0,1] with respect to π

A,B,C,D
n has the same law as {hH

n (x)}x∈[0,1] (defined
in (1.4)) with respect to π

C,D,A,B
n . Therefore, the high density phase of Theorem 1.4 tells that

1√
n

{
ĥL

n(x)
}
x∈[0,1]

f.d.d.=⇒
√

C

1 + C
{Bx}x∈[0,1].

We are interested in hL
n(x) =∑�nx	

j=1 (τj − 1/(1 + C)) with respect to π
A,B,C,D
n . Observe that(

εj − C

1 + C

)
+
(

τn−j+1 − 1

1 + C

)
= 0,

so

hL
n(x) + (̂hL

n(1) − ĥL
n(1 − x)

)=
{

0, nx = �nx	,
C

1+C
− ε�n(1−x)	+1, nx �= �nx	. (3.4)

Since the error term is uniformly bounded, the finite-dimensional distributions of n−1/2{hL
n(x)}x∈[0,1] have the same

limit as the finite-dimensional distributions of n−1/2{̂hL
n(1 − x) − ĥL

n(1)}x∈[0,1], and we arrive at

1√
n

{
hL

n(x)
}
x∈[0,1]

f.d.d.=⇒
√

C

1 + C
{B1−x −B1}x∈[0,1]

d=
√

C

1 + C
{Bx}x∈[0,1].

This proves the low density phase of Theorem 1.4.

4. Proofs for maximal current phase and its boundary

The proofs for the two cases are very similar and are hence unified. We need some preparation for the proof. In
Section 4.1 we review an important auxiliary Markov process Z, and in particular how this Markov process shows up
in the Laplace representations of Brownian excursion and meander. Another important role of this Markov process is
that it is the tangent process of the Askey–Wilson process at the boundary. This result, playing a central role in the
proof, will be established first in Proposition 4.1 in Section 4.2. The case A ≤ 1,C < 1 is then proved in Theorem 4.4
in Section 4.3. The case A < 1, C = 1 is proved by the particle-hole duality in Section 4.4.
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4.1. An auxiliary Markov process

An auxiliary Markov process, denoted by Z in the rest of the paper, will play a crucial role in the proof for the
maximal current phase and its boundary. This is a positive self-similar Markov process with values in [0,∞) and
transition probability density function

gs,t (x, y) = 2(t − s)
√

y

π[(t − s)4 + 2(t − s)2(x + y) + (x − y)2]1{x≥0,y≥0}, s < t. (4.1)

This process is self-similar in the sense that, letting Px denote the law of Z starting at Z0 = x,({Zλt }t≥0,Px

) d= (λ2{Zt }t≥0,Px/λ2

)
for all λ,x > 0.

This process has not been much investigated in the literature, except for a series of recent papers [7,8,46]. In [7], when
investigating the path properties of so-called q-Gaussian processes, we proved that the process Z arises as their tangent
process at the boundary. (We also proved in Section 3 therein that the transformed process Z̃ via Z̃t = Zt/2 + t2/4
has already shown up in the literature: in a general framework connecting non-commutative stochastic process and
classical Markov process developed by Biane [2]. In this framework, Z̃ as a classical Markov process corresponds to
the free 1/2-stable process, the knowledge of which we do not need here.)

Recently, we also found out in [8] that the process Z plays an intriguing role in representations of the Laplace
transforms of finite-dimensional distributions of Brownian excursion and Brownian meander. Write Eu(·) = E(· |
Z0 = u). For all d ∈ N, s1 > s2 > · · · > sd > sd+1 = 0, and 0 = x0 < x1 < · · · < xd ≤ xd+1 = 1, we have shown in [8]
that

E exp

(
−

d∑
k=1

(sk − sk+1)B
ex
xk

)
= 1√

2π

∫
R+

u1/2 duEu exp

(
−1

2

d+1∑
k=1

Zsk (xk − xk−1)

)
, (4.2)

and

E exp

(
−

d∑
k=1

(sk − sk+1)B
me
xk

)
= 1√

2π

∫
R+

1

u1/2
duEu exp

(
−1

2

d+1∑
k=1

Zsk (xk − xk−1)

)
. (4.3)

Note that the formulae here are obtained via the changes of variables

sk = ŝd+1−k and xk = 1 − td+1−k, k = 1, . . . , d + 1,

and x0 = 0, where ŝk and tk correspond to variables sk , tk used in [8].
The above identities can be obtained by direct computation using the joint density functions of Brownian excursion

and meander. These explicit densities of the two processes will not be used in this paper. Standard references about
Brownian excursions and meanders include [37–39].

4.2. Tangent process of Askey–Wilson process with A ≤ 1 and C < 1

The proof is essentially based on the laws of the Askey–Wilson process {Yt }t∈[1−ε,1] for some ε > 0 small enough.
With A ≤ 1 and C < 1, for this range of t the marginal and transition probability laws are absolutely continuous with
respect to the Lebesgue measure, with compact support on [−1,1]. For the purpose of computing asymptotics, we
express the formula by regrouping q-Pochhammer factors into those that tend to a non-zero constant as t ↑ 1 and
x ↑ 1, and those that tend to zero. (Some factors go to zero only when A = 1, and we include them in the second
group.) In particular, the Askey–Wilson process Y has the marginal probability density function

πt (x) = f (x;A√
t,B

√
t,C/

√
t,D/

√
t, q)

= (q;q)∞(ABt,AC,AD,BC,BD,CD/t;q)∞
2π(ABCD;q)∞|(B√

teiθx ,Ceiθx /
√

t,Deiθx /
√

t;q)∞|2 × |(e2iθx ;q)∞|2√
1 − x2|(A√

teiθx ;q)∞|2 , (4.4)
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with x = cos θx , for x ∈ [−1,1], and transition probability density function

ps,t (x, y) = f
(
y;A√

t,B
√

t,
√

s/teiθx ,
√

s/te−iθx
)

= (q;q)∞(ABt;q)∞|(B√
seiθx ;q)∞|2

2π(ABs;q)∞|(B√
teiθy ;q)∞|2

× |(A√
seiθx , e2iθy ;q)∞|2(s/t;q)∞√

1 − y2|(A√
teiθy ,

√
s/tei(θx+θy),

√
s/tei(−θx+θy);q)∞|2 , (4.5)

where y = cos θy , for x, y ∈ [−1,1]. (Recall (2.2) and q-Pochhammer notation in (2.3).)
It turns out to be helpful to consider {Yt }t∈[1−ε,1] in the reversed time direction when Y1 is close to 1. For this

purpose, we introduce Markov process

Ŷ (n)
s = 2n(1 − Y

e−2s/
√

n), s ≥ 0. (4.6)

(The parameterization for Ŷ
(n)
s is chosen so that we have the corresponding convergence to the tangent process (4.7)

below.) The following limit theorem of Ŷ (n) is at the core of the proof of Theorems 1.2 and 1.3. Let π̂
(n)
s denote the

probability density function of Ŷ
(n)
s and p̂

(n)
s,t the transition probability density of Ŷ (n) from time s to t .

Proposition 4.1. Under the notation above, for A ≤ 1 and C < 1, 0 ≤ s < t and u,v ≥ 0 we have

lim
n→∞ p̂

(n)
s,t (u, v) = gs,t (u, v).

In particular, we have

L
({

Ŷ (n)
s

}
s≥0 | Ŷ (n)

0 = u
) f.d.d.=⇒ L

({Zs}s≥0 | Z0 = u
)
, for all u > 0, (4.7)

where the left-hand side is understood as the law of Ŷ given Ŷ
(n)
0 = u, and similarly for the right-hand side above.

Moreover, as n → ∞

π̂
(n)
0 (u) ∼

{
c1

n3/2 · u1/2, A < 1,C < 1,
c2

n1/2 · 1
u1/2 , A = 1,C < 1,

for all u > 0, (4.8)

with

c1 = (q;q)3∞
π

(AB,AC,AD,BC,BD,CD;q)∞
(ABCD;q)∞(A,B,C,D;q)2∞

c2 = (q;q)∞
π

(BC,BD,CD;q)∞
(BCD,B,C,D;q)∞

,

and there exists a constant c such that for all n large enough,

π̂
(n)
0 (u) ≤

{
c

n3/2 · u1/2, A < 1,C < 1,
c

n1/2 · 1
u1/2 , A = 1,C < 1,

for all u > 0. (4.9)

Remark 4.2. Recall that notation an ∼ bn means that (4.8) reads as

lim
n→∞n3/2π̂

(n)
0 (u) = c1 · u1/2

if A < 1, C < 1, and

lim
n→∞n1/2π̂

(n)
0 (u) = c2 · u−1/2

if A = 1,C < 1.
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The first part of the proposition implies that the (time-reversed) tangent process of Y at the upper boundary of
the support of Y1 is process Z. The role of the second part will become clear soon. It is remarkable that for different
choices of A and C, the tangent processes are the same, but the initial laws (π̂ (n)

0 ) in the limit are different and of
different normalization orders. Similar results on tangent processes have been known for closely related processes
[7,46]. We expect that the finite-dimensional convergence can be strengthened to weak convergence in D([0,1]) by
a similar treatment as in [46], but this is not needed in this paper. We first compute some asymptotics of the Askey–
Wilson process Y .

Lemma 4.3. For u,v, s, t > 0, s < t and

xn = 1 − u

2n
, yn = 1 − v

2n
, sn = e−2s/

√
n, tn = e−2t/

√
n,

πsn(xn) ∼
{ 2c1√

n
· √u, A < 1,C < 1,

2c2
√

n ·
√

u

s2+u
, A = 1,C < 1,

(4.10)

and there exists some constant c such that

πsn(xn) ≤
⎧⎨⎩c
√

u
n
, A < 1,C < 1,

c
√

n
u
, A = 1,C < 1,

(4.11)

for all n large enough. Moreover,

ptn,sn(yn, xn) ∼
{

2n · gs,t (v, u), A < 1,C < 1,

2n · gs,t (v, u) t2+v

s2+u
, A = 1,C < 1.

(4.12)

Proof. We first establish∣∣(√tn/sne
±iθxn eiθyn ;q)∞∣∣2 ∼ 1

n

[
(t − s)2 + (

√
u ± √

v)2](q;q)2∞. (4.13)

For this, write∣∣(√tn/sne
±iθxn eiθyn ;q)∞∣∣2 = ∣∣1 −√tn/sne

i(±θxn+θyn )
∣∣2∣∣(√tn/sne

i(±θxn+θyn )q;q)∞∣∣2. (4.14)

Since tn → 1, sn → 1, θxn → 0, θyn → 0, the second factor above is asymptotically equivalent to (q;q)2∞. For the first
factor,∣∣1 −√tn/sne

i(±θxn+θyn )
∣∣2 = 1 + tn/sn − 2

√
tn/sn

(
xnyn ∓

√
1 − x2

n

√
1 − y2

n

)
∼ 1

n

[
(t − s)2 + (

√
u ± √

v)2]. (4.15)

This proves (4.13). As special cases, we have∣∣(√sne
iθxn ;q)∞∣∣2 ∼ 1

n

(
s2 + u

)
(q;q)2∞, (4.16)

(tn/sn;q)∞ ∼ 2(t − s)√
n

(q;q)∞,

∣∣(eiθxn ;q)∞∣∣2 ∼ u

n
(q;q)2∞,

∣∣(e2iθxn ;q)∞∣∣2 ∼ 4u

n
(q;q)2∞,

as n → ∞.
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We now examine πsn(xn) using (4.4). The pointwise asymptotics (4.10) are straightforward to obtain. We prove the
upper bounds. Recall that πsn has support on [−1,1]. Therefore from now on we assume xn ∈ [−1,1], or equivalently
u ∈ [0,4n]. We first focus on the second fraction of πsn(xn) in the expression (4.4),

π̃sn(xn) = |(e2iθxn ;q)∞|2√
1 − x2

n|(A√
sne

iθxn ;q)∞|2 .

Let c denote a constant independent of n, but may change from line to line. Suppose A < 1 first. Observe that
|(A√

sne
iθxn ;q)∞|2 ≥ (A;q)2∞. Furthermore, we have |(e2iθxn ;q)∞|2 = 4(1 − x2

n)|(e2iθxn q;q)∞|2 (see e.g. (4.14)
and (4.15)). Therefore,

π̃sn(xn) ≤ c
|(e2iθxn ;q)∞|2√

1 − x2
n

≤ c

√
1 − x2

n ≤ c

√
u

n
.

Now suppose A = 1. Then

π̃sn(xn) ≤ c
|(e2iθxn ;q)∞|2√

1 − x2
n|(√sne

iθxn ;q)∞|2 ≤ c

√
1 − x2

n

|1 − √
sne

iθxn |2 .

By (4.15), |1 −√
sne

iθxn |2 = 1 + sn − 2
√

snxn = (1 −√
sn)

2 + 2
√

sn(1 −xn) > 2
√

s1(1 −xn). So, we see that π̃sn(xn)

is bounded from above by,

c

√
1 − x2

n

1 − xn

≤ c

√
n

u
.

So we see that π̃sn(xn) can be controlled by the bounds in (4.11). For the first fraction of πsn(xn) in (4.4), it suffices
to control

(CD/sn;q)∞
(Ceiθxn /

√
sn,Deiθxn /

√
sn;q)∞

.

For the numerator, since CD ∈ (−1,0], we have (CD/sn;q)∞ ≤ (CD/s1;q)∞. For the denominator, for n

large enough so that C/
√

sn < (1 + C)/2 < 1, we have |(Ceiθxn /
√

sn;q)∞|2 ≥ ((1 + C)/2;q)2∞. Similarly,
|(Deiθxn /

√
sn;q)∞|2 > ((1 − D)/2;q)∞ for n large enough so that −D/

√
sn < (1 − D)/2 < 1. So the first frac-

tion can be bounded by some constant c. This completes the proof of (4.11).
Now to show (4.12), observe first that by (4.13) applied to each factor,

∣∣(√tn/sne
i(θxn+θyn );q)∞(√tn/sne

i(−θxn+θyn );q)∞∣∣2
∼ 1

n2
(q;q)4∞

[
(t − s)2 + (

√
u + √

v)2][(t − s)2 + (
√

u − √
v)2]

= 1

n2
(q;q)4∞

[
(t − s)4 + 2(t − s)2(u + v) + (u − v)2].

Recalling that

(ABtn;q)∞
(ABsn;q)∞

∼ 1 and
|(B√

tne
iθyn ;q)∞|2

|(B√
sne

iθxn ;q)∞|2 ∼ 1,
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expression (4.5) now yields

ptn,sn(yn, xn) ∼ (q;q)∞
2π

|(A√
tne

iθyn ;q)∞|2
|(A√

sne
iθxn ;q)∞|2

|(e2iθxn ;q)∞|2(tn/sn;q)∞√
1 − x2

n|(√tn/sne
i(θyn+θxn );q)∞(

√
tn/sne

i(−θyn+θxn );q)∞|2

∼ (q;q)∞
2π

|(A√
tne

iθyn ;q)∞|2
|(A√

sne
iθxn ;q)∞|2

4u
n

(q;q)2∞
2(t−s)√

n
(q;q)∞√

u
n

1
n2 (q;q)4∞[(t − s)4 + 2(t − s)2(u + v) + (u − v)2]

= |(A√
tne

iθyn ;q)∞|2
|(A√

sne
iθxn ;q)∞|2 · 2n · gs,t (v, u).

We have

lim
n→∞

|(A√
tne

iθyn ;q)∞|2
|(A√

sne
iθxn ;q)∞|2 =

{
1, A < 1,
t2+v

s2+u
, A = 1,

where we used (4.16) when A = 1. This completes the proof. �

Proof of Proposition 4.1. Recall the relation between Ŷ and Y in (4.6). We have that π̂
(n)
s (u) = πsn(xn)/(2n), and

so the second part of the proposition follows from (4.10) and (4.11). Fix 0 < s < t now, so that 0 < tn < sn < 1. For
the transition probability density of Ŷ , we have

p̂
(n)
s,t (u, v) = psn,tn (xn, yn)

1

2n
= ptn,sn(yn, xn)

πtn(yn)

πsn(xn)

1

2n
,

where psn,tn denotes the transition probability of Y in the reversed time direction. In the case A < 1, C < 1, from (4.10)
and (4.12) we get

p̂
(n)
s,t (u, v) ∼ gs,t (v, u)

√
v

u
= gs,t (u, v)

directly. In the case A = 1,C < 1, from (4.10) and (4.12) we get

p̂
(n)
s,t (u, v) ∼ gs,t (v, u)

t2 + v

s2 + u
·
√

v/(t2 + v)√
u/(s2 + u)

= gs,t (u, v).

Since the transition densities determine conditional finite-dimensional densities, the finite-dimensional (conditional)
densities converge. Therefore, by Scheffé’s Theorem the finite-dimensional (conditional) distributions converge
weakly for every u > 0, which completes the proof for the first part of the proposition. �

4.3. Proof of Theorems 1.2 and 1.3 for the case A ≤ 1,C < 1

For d ∈ N, c1, . . . , cd > 0, x0 = 0 < x1 < · · · < xd ≤ xd+1 = 1, introduce the Laplace transform

ϕx,n(c) =
〈

exp

(
−

d∑
k=1

ckhn(xk)

)〉
n

=
〈

exp

(
−

d∑
k=1

nk∑
j=nk−1+1

(
τj − 1

2

)
(ck + · · · + cd)

)〉
n

,

where nk = �nxk	, k = 1, . . . , d + 1. This time it will be more convenient to write

sk = 1

2
(ck + · · · + cd), k = 1, . . . , d (4.17)
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(notice the extra 1/2 compared to sk in previous sections), and sd+1 = 0. We have, by Theorem 2.1 again,

ϕx,n(c) = exp

(
d∑

k=1

sk(nk − nk−1)

)〈
d+1∏
k=1

nk∏
j=nk−1+1

(
e−2sk

)τj

〉
n

= exp

(
d∑

k=1

sk(nk − nk−1)

)
E[∏d+1

k=1(1 + e−2sk + 2e−skYe−2sk )
nk−nk−1 ]

2nE(1 + Y1)n

= E[∏d+1
k=1(cosh(sk) + Ye−2sk )

nk−nk−1 ]
Zn

,

where we write Zn = E(1 + Y1)
n. In order to establish the convergence of finite-dimensional distributions of hn, we

compute the limit of

ϕx,n

(
c√
n

)
= E[∏d+1

k=1(cosh(sk/
√

n) + Y
e−2sk/

√
n)

nk−nk−1 ]
Zn

, (4.18)

as n → ∞, and identify the limit with the Laplace transform of the corresponding process. Now in view of Theo-
rem A.1, Theorems 1.2 and 1.3 are a consequence of the following.

Theorem 4.4. For all d ∈N,0 < x1 < · · · < xd ≤ 1 and c = (c1, . . . , cd) ∈ (0,∞)d ,

lim
n→∞ϕx,n

(
c√
n

)
=
{
E exp(−∑d

k=1
ck

2
√

2
Bxk

)E exp(−∑d
k=1

ck

2
√

2
B

ex
xk

), A < 1,C < 1,

E exp(−∑d
k=1

ck

2
√

2
Bxk

)E exp(−∑d
k=1

ck

2
√

2
B

me
xk

), A = 1,C < 1.
(4.19)

We first determine the asymptotics of E(1 + Y1)
n in (4.18).

Lemma 4.5. We have

Zn = E(1 + Y1)
n ∼

{
2n

n3/2 · 4
√

π · c1, A < 1,C < 1,
2n

n1/2 · 2
√

π · c2, A = 1,C < 1.

where c1, c2 are defined in Proposition 4.1.

Remark 4.6. The quantity Zn = E(1 + Y1)
n is closely related to the partition function in the literature, denoted by

Zn for the discussion here, via (see explanation in [10, Remark 5]),

Zn = Zn

2n〈W | V 〉
(1 − q)n

,

where the factor 〈W | V 〉 depends on the choice of the vectors in (2.7) and needs to be taken into account
when comparing Lemma 4.5 with the literature. Partial results on asymptotics of partition function, including also
low/high density phases, have been known. See for example [20, (52),(53) and (55)] for the case q = 0, γ = δ = 0
(with 〈W | V 〉 = 1) and [5, (56)] for A < 1, C < 1, B = D = 0 with 〈W | V 〉 = 1/(AC;q)∞. In more gen-
erality, Uchiyama et al. [44, (6.6) and (6.9)] compute Zn for A > 1,A > C and A,C < 1 (with 〈W | V 〉 =
(ABCD;q)∞/(q,AB,AC,AD,BC,BD,CD;q)∞). We do not find general results on asymptotic of Zn for A =
1,C < 1 in the literature.

Proof of Lemma 4.5. It follows from (4.10) that, taking s = 0 therein, as n → ∞, for u > 0,

π1

(
1 − u

2n

)
∼
⎧⎨⎩2c1

√
u
n
, A < 1,C < 1,

2c2

√
n
u
, A = 1,C < 1.

(4.20)
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Consider first the case A = 1. Then

2−nn1/2
E(1 + Y1)

n = 2−nn1/2
∫ 1

−1
(1 + y)nπ1(y) dy =

∫
R+

1{u≤4n}
(

1 − u

4n

)n

π1

(
1 − u

2n

)
du

2n1/2
. (4.21)

In view of (4.20), the integrand on the right-hand side of (4.21) converges to c2e
−u/4/

√
u. Since

∫∞
0 e−u/4/

√
udu =

2
√

π , to conclude the proof by the dominated convergence theorem, we now give an integrable bound for the inte-
grands. Recalling (4.11), and noting that π1(1 − u/(2n)) = 0 for u > 2n, we have, for n large enough,(

1 − u

4n

)n

π1

(
1 − u

2n

)
≤ ce−u/4

√
n

u
, for all u > 0

for some constant c that depends on C and q < 1.
The proof for A < 1, C < 1 is similar, starting from (4.21) and eventually by the dominated convergence theorem.

In this process, the above bound is replaced by, for n large enough,(
1 − u

4n

)n

π1

(
1 − u

2n

)
≤ ce−u/4

√
u

n
, for all u > 0.

Details are omitted. �

Next, we look at the numerator in (4.18). We write, recalling Ŷ in (4.6),

2−n
E

[
d+1∏
k=1

(
cosh

(
sk√
n

)
+ Y

e−2sk/
√

n

)nk−nk−1
]

= EGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd+1

)
with

Gn(u) = 2−n

d+1∏
k=1

(
cosh

(
sk√
n

)
+ 1 − uk

2n

)nk−nk−1

1{u≤4n}

=
d+1∏
k=1

(
1 + sinh2

(
sk

2
√

n

)
− uk

4n

)nk−nk−1

1{u≤4n}.

Recall that Ŷ takes values from [0,4n]. We introduce the indicator function above for the convenience in later analysis
(u ≤ 4n stands for maxk=1,...,d+1 uk ≤ 4n here). Since (nk − nk−1)/n → xk − xk−1, we have

lim
n→∞Gn(u) = exp

(
1

4

d+1∑
k=1

(
s2
k − uk

)
(xk − xk−1)

)
=: G(u). (4.22)

The key step is to show the following. Recall that s1 > · · · > sd > sd+1 = 0.

Proposition 4.7. With the notations above and Eu(·) = E(· | Z0 = u),

EGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd
, Ŷ

(n)
0

)∼
{

c1
n3/2

∫
R+ EuG(Zs1, . . . ,Zsd , u)u1/2 du, A < 1,C < 1

c2
n1/2

∫
R+ EuG(Zs1, . . . ,Zsd , u) 1

u1/2 du, A = 1,C < 1.

Proof. We start with some properties of Gn as preparations. First, since (1 + x)m ≤ exp(mx) for m ∈ N, x ≥ −1, we
get an exponential bound on Gn:

Gn(u) ≤
d+1∏
k=1

exp

(
nk − nk−1

4n

[
4n sinh2

(
sk

2
√

n

)
− uk

])
1{u≤4n} ≤ c

d+1∏
k=1

exp

(
−nk − nk−1

4n
uk

)
. (4.23)
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Here and below, c denotes a constant that does not depend on u and n, but may vary from line to line. This inequality
also shows that Gn(u) is uniformly bounded for all u ∈R

d+1+ and n ∈N.
Next, by the inequality |∏n

k=1 ak −∏n
k=1 bk| ≤ Mn

∑n
k=1 |ak − bk| provided that |ak|, |bk| ≤ M , we have, for all

u,u′ ∈ [0,4n],
∣∣Gn(u) − Gn

(
u′)∣∣≤ (1 + sinh2

(
s1

2
√

n

))n d+1∑
k=1

(nk − nk+1)
|uk − u′

k|
4n

≤ c

d+1∑
k=1

∣∣uk − u′
k

∣∣.
It follows that for all un,u ∈ R

d+1+ ,

lim
n→∞Gn(un) = G(u), if un → u ∈ R

d+1+ as n → ∞. (4.24)

In the remaining part of the proof with a little abuse of notation we write Eu(·) which is to be understood as
E(· | Ŷ

(n)
0 = u) when dealing with Ŷ (n) and as E(· | Z0 = u) when dealing with Z. Conditioning on the value of

Ŷ
(n)
sd+1 = Ŷ

(n)
0 , we write

EGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd+1

)=
∫ ∞

0
EuGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd
, u
)
π̂

(n)
0 (u) du. (4.25)

Because of the uniform boundedness, (4.24) and the weak convergence of the tangent process established in Proposi-
tion 4.1, we have

lim
n→∞EuGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd
, u
)= EuG(Zs1, . . . ,Zsd , u) for all u > 0 (4.26)

(see e.g., [3, Exercise 6.6]).
By (4.8) the integrands on the right hand side of (4.25) converge pointwise under appropriate normalization. That

is, when A < 1, C < 1 we have

lim
n→∞

n3/2

c1
EuGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd
, u
)
π̂

(n)
0 (u) = EuG(Zs1, . . . ,Zsd , u)u1/2 (4.27)

and when A = 1,C < 1 we have

lim
n→∞

n1/2

c2
EuGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd
, u
)
π̂

(n)
0 (u) = EuG(Zs1, . . . ,Zsd , u)

1

u1/2
. (4.28)

To conclude the proof we now apply the dominated convergence theorem. We see that, if xd < 1, (4.23) yields Gn(u) ≤
c exp(−(1 − xd)ud+1/4). Recall upper bounds on π̂

(n)
0 in (4.9). Therefore, the functions of u that appear on the left-

hand side of (4.27) and (4.28) are bounded by the integrable functions cu1/2 exp(−(1−xd)u/4) and cu−1/2 exp(−(1−
xd)u/4), respectively, for n large enough. This proves the case xd < 1.

To prove the case xd = 1, we need to work a little harder, although the approach is very similar. Notice that when
xd = 1, both Gn(u) and its limit G(u) do not depend on the last coordinate ud+1. Therefore we introduce

G∗
n(u1, . . . , ud) = Gn(u1, . . . , ud,0) and G∗(u1, . . . , ud) = G(u1, . . . , ud,0)

(the choice of 0 in the last variable of Gn and G is irrelevant for the definitions), and write E
∗
u(·) as either E(· | Ŷ (n)

sd =
u) or E(· | Zsd = u), depending on whether the conditional expectation is for Ŷ (n) or Z. By conditioning on the value

of Ŷ
(n)
sd , we write

EGn

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd+1

)≡ EG∗
n

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd

)
=
∫ ∞

0
E

∗
uG

∗
n

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd−1
, u
)
π̂ (n)

sd
(u) du.
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The same argument in the proof of Proposition 4.1 for the convergence in law of tangent process leads to

L
((

Ŷ (n)
s1

, . . . , Ŷ (n)
sd−1

) | Ŷ (n)
sd

= u
)⇒ L

(
(Zs1 , . . . ,Zsd−1) | Zsd = u

)
.

Therefore, by the same argument for (4.26), we have

lim
n→∞E

∗
uG

∗
n

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd−1
, u
)= E

∗
uG

∗(Zs1, . . . ,Zsd−1 , u),

and instead of (4.27) and (4.28), we have, for A < 1, C < 1,

lim
n→∞

n3/2

c1
E

∗
uG

∗
n

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd−1
, u
)
π̂ (n)

sd
(u) = E

∗
uG

∗(Zs1 , . . . ,Zsd−1 , u)u1/2

and for A = 1,C < 1,

lim
n→∞

n1/2

c2
E

∗
uG

∗
n

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd−1
, u
)
π̂ (n)

sd
(u) = E

∗
uG

∗(Zs1 , . . . ,Zsd−1 , u)
u1/2

u + s2
d

.

One can show that for n large enough, π̂
(n)
sd has the same upper bounds as π̂

(n)
0 in (4.9) (independent of sd ), by

applying (4.11) to π̂
(n)
sd (u) = πsd (1 − u/(2n))/2n. By (4.23), for n large enough, Gn(u) ≤ c exp(−(xd − xd−1)ud/8)

(we cannot use (xd − xd−1)/4 as before, because of the rounding issue caused by nk = �nxk	). So the dominated
convergence theorem applies, and we arrive at

EG∗
n

(
Ŷ (n)

s1
, . . . , Ŷ (n)

sd

)∼
⎧⎨⎩

c1
n3/2

∫
R+ E

∗
uG

∗(Zs1 , . . . ,Zsd−1 , u)u1/2 du, A < 1,C < 1,

c2
n1/2

∫
R+ E

∗
uG

∗(Zs1 , . . . ,Zsd−1 , u) u1/2

u+s2
d

du, A = 1,C < 1.

These are however not the same expressions as desired yet, and we need to rewrite them. For the case A < 1, C < 1,
since Z is stationary with respect to the distribution u1/2 du, we have (recalling that Eu(·) = E(· | Zsd+1 = u))∫

R+
E

∗
uG

∗(Zs1 , . . . ,Zsd−1 , u)u1/2 du =
∫
R+

EuG
∗(Zs1, . . . ,Zsd−1 ,Zsd )u

1/2 du.

For the case A = 1,C < 1, because of the fact that∫ ∞

0

1

x1/2
g0,t (x, y) dx =

√
y

y + t2
, (4.29)

(recall (4.1)) we have∫
R+

E
∗
uG

∗(Zs1 , . . . ,Zsd−1 , u)
u1/2

u + s2
d

du =
∫
R+

EuG
∗(Zs1, . . . ,Zsd−1 ,Zsd )

1

u1/2
du.

So to complete the proof it remains to show (4.29). For this purpose, introduce change of variables x = u2, y = v2,
and we get elementary integrals∫ ∞

0

1

x1/2
g0,t (x, y) dx = 2

∫ ∞

0
g0,t

(
u2, v2)du

=
∫ ∞

0

1

πu

(
t

t2 + (u − v)2
− t

t2 + (u + v)2

)
du

= t

2π(t2 + v2)
log

t2 + (u + v)2

t2 + (u − v)2

∣∣∣∣u=∞

u=0
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+ v

π(t2 + v2)

(
arctan

(
u − v

t

)
+ arctan

(
u + v

t

)) ∣∣∣∣u=∞

u=0

= v

t2 + v2
=

√
y

y + t2
. �

Proof of Theorem 4.4. By Lemma 4.5 and Proposition 4.7, we have

lim
n→∞ϕx,n

(
c√
n

)
=
{

1
4
√

π

∫
R+ EuG(Zs1, . . . ,Zsd , u)u1/2 du, A < 1,C < 1,

1
2
√

π

∫
R+ EuG(Zs1, . . . ,Zsd , u) du

u1/2 , A = 1,C < 1.
(4.30)

We first prove the case of A < 1, C < 1. Observe that∫
R+

EuG(Zs1, . . . ,Zsd , u)u1/2 du

= exp

(
1

4

d+1∑
k=1

s2
k (xk − xk−1)

)
×
∫
R+

Euexp

(
−1

4

d+1∑
k=1

Zsk (xk − xk−1)

)
u1/2 du. (4.31)

The first exponential function on the right-hand side above corresponds to the Laplace transform of the scaled
Brownian motion 8−1/2

B (see (3.1) and recall that in (3.1) we used sk = ck + · · · + cd , but we have been using
sk = (ck + · · · + cd)/2 since (4.17)). The integral on the right-hand side of (4.31) corresponds to the Laplace trans-
form of a Brownian excursion. Indeed, by self-similarity of the process Z, it equals

∫
R+

u1/2 duEu exp

(
−1

2

d+1∑
k=1

1

2
Zsk (xk − xk−1)

)

=
∫
R+

u1/2 duEu/2 exp

(
−1

2

d+1∑
k=1

Z
sk/

√
2(xk − xk−1)

)

= √
8
∫
R+

u1/2 duEu exp

(
−1

2

d+1∑
k=1

Z
sk/

√
2(xk − xk−1)

)
.

By the duality expression in (4.2), this becomes

4
√

π E exp

(
−

d∑
k=1

sk − sk+1√
2

B
ex
xk

)
= 4

√
π E exp

(
−

d∑
k=1

ck

2
√

2
B

ex
xk

)
.

Combining all the identities together we have proved (4.19) for A < 1, C < 1.
Now we prove the case of A = 1,C < 1. This time we have

∫
R+

EuG(Zs1 , . . . ,Zsd , u)
du

u1/2
= E exp

(
−

d∑
k=1

ck

2
√

2
Bxk

)

×
∫
R+

Euexp

(
−1

4

d+1∑
k=1

Zsk (xk − xk−1)

)
du

u1/2
. (4.32)
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Again by self-similarity and duality (4.3), we rewrite the integral on the right-hand side above as

√
2
∫
R+

Euexp

(
−1

2

d+1∑
k=1

Z
sk/

√
2(xk − xk−1)

)
du

u1/2
= 2

√
π E exp

(
−

d∑
k=1

sk − sk+1√
2

B
me
xk

)

= 2
√

π E exp

(
−

d∑
k=1

ck

2
√

2
B

me
xk

)
.

This completes the proof for the case A = 1 and C < 1. �

4.4. Proof for the case A < 1, C = 1

This case of Theorem 1.2 follows from the case A = 1,C < 1 again by the particle-hole duality, which we have
explained in Section 3.2. Write εj = 1 − τn−j+1, and define

ĥn(x) =
�nx	∑
j=1

(
εj − 1

2

)
.

Similarly as in (3.4), this time we have

hn(x) + (̂hn(1) − ĥn(1 − x)
)=

{
0, nx = �nx	,
−(ε�n(1−x)	+1 − 1

2 ), nx �= �nx	,

and {̂hn(x)}x∈[0,1] with respect to π
A,B,C,D
n has the same law as {hn(x)}x∈[0,1] with respect to π

C,D,A,B
n . There-

fore, finite-dimensional distributions of the process n−1/2{hn(x)}x∈[0,1] have the same limit as the finite-dimensional
distributions of the process n−1/2{̂hn(1 − x) − ĥn(1)}x∈[0,1]. We get

1√
n

{
hn(x)

}
x∈[0,1]

f.d.d.=⇒ 1

2
√

2

{
B1−x +B

me
1−x − (B1 +B

me
1

)}
x∈[0,1]

d= 1

2
√

2

{
Bx +B

me
1−x −B

me
1

}
x∈[0,1].

This completes the proof of Theorem 1.2.

Appendix: Weak convergence from convergence of Laplace transforms

It is well known that convergence of Laplace transforms in a neighborhood of 0 ∈ R
d implies weak convergence, but

it is less known under what conditions convergence on an open set away from the origin suffices. Hoffmann-Jørgensen
[31, Section 5.14, page 378, (5.14.8)] and Mukherjea, Rao, and Suen [36, Theorem 2] independently discovered the
pertinent result in the univariate case, and the argument in [36] generalizes to the multivariate setting, compare also
[29, Theorem 2.1].

Let X(n) = (X
(n)
1 ,X

(n)
2 , . . . ,X

(n)
d ) be a sequence of random vectors with Laplace transform

Ln(z) = Ln(z1, . . . , zd) = E exp

(
d∑

j=1

zjX
(n)
j

)
.

Theorem A.1. Suppose that Ln(z) are finite and converge pointwise to a function L(z) for all z from an open set in
R

d . If on this open set L(z) is the Laplace transform of a random variable Y = (Y1, . . . , Yd), then X(n) converges in
distribution to Y .
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Proof. The proof is a modification of [36, proof of Theorem 2]. Denote by Pn the law of X(n) and by P∞ the law
of Y . Choose ε > 0 and c ∈ R

d such that Ln(z) → L(z) for all z from the open ball ‖z − c‖ < ε. Set Cn = Ln(c),
C∞ = L(c) and consider probability measures

Qn(dx) = 1

Cn

ex·cPn(dx),

with n = ∞ standing for the limiting measure. Due to our choice of c,∫
Rd

et ·xQn(dx) = Ln(t + c)

Cn

→ L(t + c)

C∞
=
∫
Rd

et ·xQ∞(dx)

for all ‖t‖ < ε. By the “usual form” of the Laplace criterion (for example, by the Cramér–Wold device and Curtiss
[13, Theorem 3]), this implies weak convergence of Qn to Q∞, i.e. for every bounded continuous function h,∫

Rd

h(x)Qn(dx) →
∫
Rd

h(x)Q∞(dx).

Mimicking [36] we take 0 ≤ h ≤ 1, ε > 0 and note that f (x) = ex·c is strictly positive, so

hε(x) = h(x)f (x)

f (x) + ε
↗ h(x) for all x as ε ↘ 0.

Therefore,

lim inf
n→∞

∫
h(x)Pn(dx) ≥ lim inf

n→∞

∫
hε(x)Pn(dx)

= lim
n→∞Cn

∫
h(x)

f (x) + ε
Qn(dx)

= C∞
∫

h(x)

f (x) + ε
Q∞(dx) =

∫
hε(x)P∞(dx).

Taking the limit as ε → 0, we get

lim inf
n→∞

∫
h(x)Pn(dx) ≥

∫
h(x)P∞(dx).

Applying the above to 1 − h, we see that

lim
n→∞

∫
h(x)Pn(dx) =

∫
h(x)P∞(dx)

for all continuous functions 0 ≤ h ≤ 1, which ends the proof. �
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