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Abstract. By using the mirror coupling for solutions of SDEs driven by pure jump Lévy processes, we extend some transportation
and concentration inequalities, which were previously known only in the case where the coefficients in the equation satisfy a global
dissipativity condition. Furthermore, by using the mirror coupling for the jump part and the coupling by reflection for the Brownian
part, we extend analogous results for jump diffusions. To this end, we improve some previous results concerning such couplings
and show how to combine the jump and the Brownian case. As a crucial step in our proof, we develop a novel method of bounding
Malliavin derivatives of solutions of SDEs with both jump and Gaussian noise, which involves the coupling technique and which
might be of independent interest. The bounds we obtain are new even in the case of diffusions without jumps.

Résumé. En utilisant le couplage miroir pour les solutions d’EDS dirigées par un processus de Lévy de saut pur, nous générali-
sons des inégalités de transport et de concentration, qui étaient précédemment connues seulement dans le cas où les coefficients de
l’équation satisfont une condition dissipative globale. De plus, en utilisant un couplage miroir pour la partie de sauts et le couplage
par réflexion pour la partie Brownienne, nous étendons des résultats analogues pour les diffusions à sauts. A cette fin, nous amélio-
rons des résultats précédents concernant le couplage et montrons comment combiner les cas à sauts et le cas brownien. Dans une
étape cruciale de la preuve, nous développons une méthode nouvelle pour borner la dérivée de Malliavin des solutions d’EDS avec
à la fois sauts et bruit Gaussien, ce qui utilise le couplage et peut être d’un intérêt indépendant. Les bornes que nous obtenons sont
nouvelles même dans le cas de diffusions sans saut.
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1. Introduction

We consider stochastic differential equations in R
d of the form

dXt = b(Xt ) dt + σ(Xt ) dWt +
∫

U

g(Xt−, u)Ñ(dt, du), (1.1)

where (Wt )t≥0 is an m-dimensional Brownian motion and Ñ(dt, du) = N(dt, du) − dtν(du) is a compensated Pois-
son random measure on R+ ×U , where (U,U , ν) is a σ -finite measure space. Moreover, the coefficients b : Rd → R

d ,
σ : Rd → R

d×m and g :Rd × U →R
d are such that for any x ∈R

d we have∫
U

∣∣g(x,u)
∣∣2ν(du) < ∞
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and there exists a continuous function κ :R+ →R such that for all x, y ∈R
d we have〈

b(x) − b(y), x − y
〉+ 1

2

∫
U

∣∣g(x,u) − g(y,u)
∣∣2ν(du) + ∥∥σ(x) − σ(y)

∥∥2
HS ≤ −κ

(|x − y|)|x − y|2, (1.2)

where ‖σ‖HS = √
trσσT is the Hilbert–Schmidt norm. Note that κ is allowed to take negative values.

If the condition (1.2) holds with a constant function κ ≡ K for some K ∈ R, we call (1.2) a one-sided Lipschitz
condition. If K > 0, we call it a (global) dissipativity condition. If a one-sided Lipschitz condition is satisfied and we
additionally assume that the drift b is continuous and that σ and g satisfy a linear growth condition, we can prove
that (1.1) has a unique non-explosive strong solution, even if the one-sided Lipschitz condition is satisfied only locally
(see e.g. Theorem 2 in [17]).

For p ≥ 1, the Lp-Wasserstein distance (or the Lp-transportation cost) between two probability measures μ1, μ2
on a metric space (E,ρ) is defined by

Wp,ρ(μ1,μ2) := inf
π∈�(μ1,μ2)

(∫ ∫
ρ(x, y)pπ(dx dy)

)1/p

,

where �(μ1,μ2) is the family of all couplings of μ1 and μ2, i.e., π ∈ �(μ1,μ2) if and only if π is a measure on E×E

with marginals μ1 and μ2. If the metric space (E,ρ) is chosen to be R
d with the Euclidean metric ρ(x, y) = |x − y|,

then we denote Wp,ρ just by Wp .
If the equation (1.1) is globally dissipative with some constant K > 0, then it is well known that the solution (Xt )t≥0

to (1.1) has an invariant measure and that the transition semigroup (pt )t≥0 associated with (Xt )t≥0 is exponentially
contractive with respect to Wp for any p ∈ [1,2], i.e.,

Wp(μ1pt ,μ2pt) ≤ e−KtWp(μ1,μ2)

for any probability measures μ1 and μ2 on R
d and any t > 0 (see e.g. the proof of Theorem 2.2 in [25]). However,

we will show that for p = 1 a related result still holds (under some additional assumptions, see Corollary 2.7) if we
replace the global dissipativity condition with the following one.

Assumption D1 (Dissipativity at infinity).

lim sup
r→∞

κ(r) > 0.

In other words, Assumption D1 states that there exist constants R > 0 and K > 0 such that for all x, y ∈ R
d with

|x − y| > R we have〈
b(x) − b(y), x − y

〉+ 1

2

∫
U

∣∣g(x,u) − g(y,u)
∣∣2ν(du) + ∥∥σ(x) − σ(y)

∥∥2
HS ≤ −K|x − y|2,

which justifies calling it a dissipativity at infinity condition. Moreover, in some cases we will also need another
condition on the function κ , namely

Assumption D2 (Regularity of the drift at zero).

lim
r→0

rκ(r) = 0.

This is obviously satisfied if, e.g., there is a constant L > 0 such that we have κ(r) ≥ −L for all r ≥ 0 (which is
the case whenever the coefficients in (1.1) satisfy a one-sided Lipschitz condition) and if b is continuous. Such an
assumption is quite natural in order to ensure existence of a solution to (1.1).

For probability measures μ1 and μ2 on (E,ρ), we define the relative entropy (Kullback–Leibler information) of
μ1 with respect to μ2 by

H(μ1 | μ2) :=
{∫

log dμ1
dμ2

dμ1 if μ1 
 μ2,

+∞ otherwise.
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We say that a probability measure μ satisfies an Lp-transportation cost-information inequality on (E,ρ) if there
is a constant C > 0 such that for any probability measure η we have

Wp,ρ(η,μ) ≤√2CH(η | μ).

Then we write μ ∈ Tp(C).
The most important cases are p = 1 and p = 2. Since W1,ρ ≤ W2,ρ , we see that the L2-transportation inequality

(the T2 inequality, also known as the Talagrand inequality) implies T1, and it is well known that in fact T2 is much
stronger. The T2 inequality has some interesting connections with other well-known functional inequalities. Due to
Otto and Villani [29], we know that the log-Sobolev inequality implies T2, whereas T2 implies the Poincaré inequality.
On the other hand, the T1 inequality is related to the phenomenon of measure concentration. Indeed, consider a
generalization of T1 known as the α-W1H inequality. Namely, let α be a non-decreasing, left continuous function
on R+ with α(0) = 0. We say that a probability measure μ satisfies a W1H -inequality with deviation function α (or
simply α-W1H inequality) if for any probability measure η we have

α
(
W1,ρ(η,μ)

)≤ H(η | μ). (1.3)

We have the following result which is due to Gozlan and Léonard (see Theorem 2 in [14] for the original result, cf.
also Lemma 2.1 in [39]). It is a generalization of a result by Bobkov and Götze (Theorem 3.1 in [8]), which held only
for the quadratic deviation function.

Fix a probability measure μ on (E,ρ) and a convex deviation function α. Then the following properties are
equivalent:

(1) the α-W1H inequality for the measure μ holds, i.e., for any probability measure η on (E,ρ) we have

α
(
W1,ρ(η,μ)

)≤ H(η | μ),

(2) for every f : E → R bounded and Lipschitz with ‖f ‖Lip ≤ 1 we have∫
eλ(f −μ(f )) dμ ≤ eα∗(λ) for any λ > 0, (1.4)

where α∗(λ) := supr≥0(rλ − α(r)) is the convex conjugate of α,
(3) if (ξk)k≥1 is a sequence of i.i.d random variables with common law μ, then for every f : E → R bounded and

Lipschitz with ‖f ‖Lip ≤ 1 we have

P

(
1

n

n∑
k=1

f (ξk) − μ(f ) > r

)
≤ e−nα(r) for any r > 0, n ≥ 1. (1.5)

This gives an intuitive interpretation of α-W1H in terms of a concentration of measure property (1.5), while the
second characterization (1.4) is very useful for proving such inequalities, as we shall see in the sequel. For a general
survey of transportation inequalities the reader might consult [15] or Chapter 22 of [37].

As an example of a simple equation of the type (1.1) consider

dXt = b(Xt ) dt + √
2dWt

with a d-dimensional Brownian motion (Wt )t≥0. If the global dissipativity assumption is satisfied, then (Xt )t≥0 has
an invariant measure μ and by a result of Bakry and Émery [3], μ satisfies the log-Sobolev inequality and thus (by
Otto and Villani [29]) also the Talagrand inequality. More generally, for equations of the form

dXt = b(Xt ) dt + σ(Xt ) dWt , (1.6)

also under the global dissipativity assumption, Djellout, Guillin and Wu in [11] showed that T2 holds for the invariant
measure, as well as on the path space. As far as we are aware, there are currently no results in the literature concerning
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transportation inequalities for equations like (1.6) without assuming global dissipativity. Hence, even though in the
present paper we focus on SDEs with jumps, our results may be also new in the purely Gaussian case.

For equations of the form

dXt = b(Xt ) dt +
∫

U

g(Xt−, u)Ñ(dt, du), (1.7)

the Poincaré inequality does not always hold (see Example 1.1 in [39]) and thus in general we cannot have T2.
However, under the global dissipativity assumption, Wu in [39] showed some α-W1H inequalities.

Suppose there is a real measurable function g∞ on U such that |g(x,u)| ≤ g∞(u) for every x ∈R
d and u ∈ U . We

make the following assumption.

Assumption E (Exponential integrability of the intensity measure). There exists a constant λ > 0 such that

β(λ) :=
∫

U

(
eλg∞(u) − λg∞(u) − 1

)
ν(du) < ∞,

where ν is the intensity measure associated with N .

Remark 1.1. Assumption E is quite restrictive. In particular, let us consider the case where U ⊂ R
d and g(x,u) =

g̃(x)u for some R
d×d -valued function g̃ and hence the equation (1.7) is driven by a d-dimensional Lévy process

(Lt )t≥0 (i.e., we have dXt = b(Xt ) dt + g̃(Xt−) dLt ). Then Assumption E implies finiteness of an exponential mo-
ment of (Lt )t≥0 (cf. Theorem 25.3 and Corollary 25.8 in [34]). However, there are examples of equations of such type
for which the α-W1H inequality implies Assumption E, and hence in general we cannot prove such inequalities with-
out it (see Remark 2.5 in [39]). Nevertheless, without this assumption it is still possible to obtain some concentration
inequalities (see Remark 5.2 in [39] or Theorem 2.2 below).

Fix T > 0 and define a deviation function

αT (r) := sup
λ≥0

{
rλ −

∫ T

0
β
(
e−Ktλ

)
dt

}
,

where the constants λ > 0 and K > 0 are such that Assumption E is satisfied with λ and that (1.7) is globally dissipa-
tive with the dissipativity constant K . Then for any T > 0 and any x ∈ R

d , by Theorem 2.2 in [39] we have the W1H

transportation inequality with deviation function αT for the measure δxpT , which is the law of the random variable
XT (x), where (Xt (x))t≥0 is a solution to (1.7) starting from x ∈R

d , i.e., we have

αT

(
W1(η, δxpT )

)≤ H(η | δxpT )

for any probability measure η on R
d , where W1 = W1,ρ with ρ being the Euclidean metric on R

d . Analogous results
have been proved by a very similar approach in [25] for equations of the form (1.1), i.e., including also the Gaussian
noise.

In the sequel we will explain how to modify the proofs in [39] and [25] to replace the global dissipativity assump-
tion with our Assumption D1. We will show that we can obtain α-W1H inequalities by using couplings to control
perturbations of solutions to (1.1), see Theorem 2.1. We will also prove that the construction of the required couplings
is possible for a certain class of equations satisfying Assumption D1 (Theorems 2.3 and 2.8). All these results together
will imply our extension of the main theorems from [39] and [25], which is stated as Corollary 2.9.

The method of the proof is based on the Malliavin calculus. On any filtered probability space (�,F, (Ft )t≥0,P)

equipped with an m-dimensional Brownian motion (Wt )t≥0 and a Poisson random measure N on R+ × U , we can
define the Malliavin derivatives for a certain class of measurable functionals F with respect to the process (Wt )t≥0
(the classic Malliavin differential operator ∇), as well as a Malliavin derivative of F with respect to N (the difference
operator D). Namely, if we consider the family S of smooth functionals of (Wt )t≥0 of the form

F = f
(
W(h1), . . . ,W(hn)

)
for n ≥ 1,
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where W(h) = ∫ T

0 h(s) dWs for h ∈ H = L2([0, T ];Rm) and f ∈ C∞(Rn), we can define the Malliavin derivative
with respect to (Wt )t≥0 as the unique element ∇F in L2(�;H) � L2(� × [0, T ];Rm) such that for any h ∈ H we
have

〈∇F,h〉L2([0,T ];Rm) = lim
ε→0

1

ε

(
F

(
W· +

∫ ·

0
hs ds

)
− F(W·)

)
,

where the convergence holds in L2(�) (see e.g. Definition A.10 in [10]). Then the definition can be extended to all
random variables F in the space D

1,2 which is the completion of S in L2(�) with respect to the norm

‖F‖2
D1,2 := ‖F‖2

L2(�)
+ ‖∇F‖2

L2(�;H)
.

For a brief introduction to the Malliavin calculus with respect to Brownian motion see Appendix A in [10] or Chapter
VIII in [5] and for a comprehensive treatment the monograph [28]. On the other hand, the definition of the Malliavin
derivative with respect to N that we need is much less technical, since it is just a difference operator. Namely, if our
Poisson random measure N on R+ × U has the form

N =
∞∑

j=1

δ(τj ,ξj )

with R+-valued random variables τj and U -valued ξj , then for any measurable functional f of N and for any (t, u) ∈
R+ × U we put

Dt,uf (N) := f (N + δ(t,u)) − f (N). (1.8)

There is also an alternative approach to the Malliavin calculus for jump processes, where the Malliavin derivative is
defined as an actual differential operator, which was in fact the original approach and which traces back to Bismut [7],
see also [4] and [6]. However, for our purposes we prefer the definition (1.8), which was introduced by Picard in [30]
and [31], and which is suitable for proving the Clark–Ocone formula. Namely, we will need to use the result stating
that for any F being a functional of (Wt)t≥0 and N such that

E

∫ T

0
|∇tF |2 dt +E

∫ T

0

∫
U

|Dt,uF |2ν(du)dt < ∞, (1.9)

we have

F = EF +
∫ T

0
E[∇tF | Ft ]dWt +

∫ T

0

∫
U

E[Dt,uF | Ft ]Ñ(dt, du).

It is proved in [24] that the definition (1.8) is actually equivalent to the definition of the Malliavin derivative for
jump processes via the chaos expansion and this approach is used to obtain the Clark–Ocone formula for the pure
jump case. For the jump diffusion case, see Theorem 12.20 in [10]. For more general recent extensions of this result,
see [21]. Once we apply the Clark–Ocone formula to the solution of (1.1), we can obtain some information on its
behaviour by controlling its Malliavin derivatives. Therefore one of the crucial components of the proof of our results
in this paper is Theorem 2.14, presenting a novel method of bounding such derivatives, which, contrary to the method
used in Lemma 3.4 in [25], works also without the global dissipativity assumption and without any explicit regularity
conditions on the coefficients of (1.1), except some sufficient ones to guarantee Malliavin differentiability of the
solution (it is enough if the coefficients are Lipschitz, see e.g. Theorem 17.4 in [10]).

The last notion that we need to introduce before we will be able to formulate our main results is that of a coupling.
For an R

d -valued Markov process (Xt )t≥0 with transition kernels (pt (x, ·))t≥0,x∈Rd we say that an R
2d -valued process

(X′
t ,X

′′
t )t≥0 is a coupling of two copies of the Markov process (Xt )t≥0 if both (X′

t )t≥0 and (X′′
t )t≥0 are Markov

processes with transition kernels pt but possibly with different initial distributions. The construction of appropriate
couplings of solutions to equations like (1.1) plays the key role in the proofs of Theorems 2.3 and 2.8. For more
information about couplings, see e.g. [12,22,27] and the references therein.
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The only papers that we are aware of which deal with transportation inequalities directly in the context of SDEs
with jumps are [26,39] and [25,36]. The latter two actually extend the method developed by Wu in [39], but in both
these papers a kind of global dissipativity assumption is required (see Remark 2.12 for a discussion about [36]). In the
present paper we explain how to drop this assumption (by imposing some additional conditions) and further extend
the method of Wu. Since our extension lies at the very core of the method, it allows us to improve on essentially all
the main results and corollaries obtained in [39] and [25] (and it might be also applicable to the results in [36], cf.
once again Remark 2.12), replacing the global dissipativity assumption with a weaker condition.

On the other hand, in [26] some convex concentration inequalities of the type (2.7) have been shown for a certain
class of additive functionals ST = ∫ T

0 g(Xt ) dt of solutions (Xt )t≥0 to equations like (1.1). These are later used to
obtain some α-W1I inequalities, which are analogous to α-W1H inequalities (1.3) but with the Kullback–Leibler
information H replaced with the Fisher–Donsker–Varadhan information, see e.g. [16] for more details. The proof in
[26], similarly to [39], is based on the forward–backward martingale method from [19], but unlike [39] it does not
use the Malliavin calculus. In the framework of Wu from [39] that we use here, it is possible to obtain related α-W1J

inequalities with J being the modified Donsker–Varadhan information. Once we have transportation inequalities like
the ones in our Theorem 2.1, we can use the methods from Corollary 2.15 in [39] and Corollary 2.7 in [25]. This is,
however, beyond the scope of the present paper and in the sequel we focus on extending the main results from [39]
and [25].

2. Main results

We start with a general theorem, which shows that a key tool to obtain transportation inequalities for a solution (Xt )t≥0

to

dXt = b(Xt ) dt + σ(Xt ) dWt +
∫

U

g(Xt−, u)Ñ(dt, du) (2.1)

is to be able to control perturbations of (Xt )t≥0 via a coupling, with respect to changes in initial conditions (see (2.3)
below) as well as changes of the drift (see (2.4)). In the next two theorems we assume that the coefficients in (2.1)
satisfy some sufficient conditions for existence of a solution and its Malliavin differentiability (e.g. they are Lipschitz,
cf. Theorem 17.4 in [10]). From now on, (Ft )t≥0 will always denote the filtration generated by all the sources of noise
in the equations that we consider, while (pt )t≥0 will be the transition semigroup associated with the solution to the
equation. Moreover, for a process (ht )t≥0 adapted to (Ft )t≥0, we will denote by (X̃t )t≥0 a solution to

dX̃t = b(X̃t ) dt + σ(X̃t )ht dt + σ(X̃t ) dWt +
∫

U

g(X̃t−, u)Ñ(dt, du). (2.2)

Then we have the following result.

Theorem 2.1. Assume there exists a constant σ∞ such that for any x ∈ R
d we have ‖σ(x)‖ ≤ σ∞, where ‖ · ‖ is the

operator norm, and there exists a measurable function g∞ : U → R such that |g(x,u)| ≤ g∞(u) for any x ∈ R
d and

u ∈ U . Assume further that there exists some λ > 0 such that Assumption E is satisfied. Moreover, suppose that there
exists a coupling (Xt , Yt )t≥0 of solutions to (2.1) and a function c1 : R+ →R+ such that for any 0 ≤ s ≤ t we have

E
[|Xt − Yt |/Fs

]≤ c1(t − s)|Xs − Ys |. (2.3)

Furthermore, assume that there exists a coupling (Xt , Y
′
t )t≥0 of solutions to (2.1) and functions c2, c3 : R+ → R+

such that for any 0 ≤ s ≤ t we have

E
[∣∣X̃t − Y ′

t

∣∣/Fs

]≤ c2(t − s)E

∫ t

s

c3(r)
∣∣σ(X̃r)hr

∣∣dr. (2.4)

Then the following assertions hold.



Transportation inequalities for non-globally dissipative SDEs with jumps 2025

(1) For any T > 0 and for any x ∈R
d the measure δxpT satisfies

αT

(
W1(η, δxpT )

)≤ H(η | δxpT ) (2.5)

for any probability measure η on R
d . Here W1 = W1,ρ with ρ being the Euclidean metric on R

d and

αT (r) := sup
λ≥0

{
rλ −

∫ T

0
β
(
c1(T − t)λ

)
dt − σ 2∞c2

2(T )λ2

2

∫ T

0
c2

3(t) dt

}
.

(2) For any T > 0 and for any x ∈ R
d the law Px,[0,T ] of (Xt (x))t∈[0,T ] as a measure on the space D([0, T ];Rd) of

cádlág R
d -valued functions on [0, T ] satisfies

αP
T

(
W1,d

L1 (Q,Px,[0,T ])
)≤ H(Q | Px,[0,T ]) (2.6)

for any probability measure Q on D([0, T ];Rd). Here we take dL1(γ1, γ2) := ∫ T

0 |γ1(t) − γ2(t)|dt as the L1

metric on the path space and

αP
T (r) := sup

λ≥0

{
rλ −

∫ T

0
β

(
λ

∫ T

t

c1(s − t) ds

)
dt − σ 2∞λ2

2

∫ T

0
c2

3(t)

(∫ T

t

c2(r) dr

)2

dt

}
.

Note that in (2.4) the process (Y ′
t )t≥0 is coupled with (Xt )t≥0, but the estimated distance is between (Y ′

t )t≥0 and
(X̃t )t≥0 given by (2.2). In other words, we need to consider a process (Y ′

t )t≥0 whose law is determined by the dynamics
(2.1), but it behaves in such a way that we can control its distance to a process following the modified dynamics given
by (2.2). An example of such a construction can be found in the proof of Theorem 2.8.

Even without Assumption E, it is still possible to recover some concentration inequalities.

Theorem 2.2. Assume that all the assumptions of Theorem 2.1 are satisfied except for Assumption E. Instead, suppose
that g∞(u) is just square integrable with respect to ν. Fix any T > 0 and any x ∈R

d . Then for any C2 convex function
φ such that φ′ is also convex and for any Lipschitz function f :Rd →R, we have

Eφ
(
f
(
XT (x)

)− pT f (x)
)

≤ Eφ

(
‖f ‖Lip

(∫ T

0

∫
U

c1(T − t)g∞(u)Ñ(dt, du) + c2(T )

∫ T

0
c3(t)j (t) dWt

))
,

(2.7)

where j is any deterministic R
m-valued function such that for all t > 0 we have |j (t)| = σ∞. Moreover, for any

Lipschitz function F : D([0, T ];Rd) → R we have

Eφ
(
F
(
X[0,T ](x)

)−EF
(
X[0,T ](x)

))
≤ Eφ

(
‖F‖Lip

(∫ T

0

∫
U

(∫ T

t

c1(r − t) dr

)
g∞(u)Ñ(dt, du)

+
∫ T

0
c3(t)

(∫ T

t

c2(r) dr

)
j (t) dWt

))
. (2.8)

The crucial step in proving the above theorems is to find appropriate bounds on Malliavin derivatives of the solution
to (2.1). We will show that we can obtain such bounds on D and ∇ using conditions (2.3) and (2.4), respectively (see
Section 5 for details).

Now we present another result, which will consequently lead us to some examples of equations for which the
inequalities (2.3) and (2.4) actually hold. First, however, we need to formulate some additional assumptions. We will
need a pure jump Lévy process (Lt )t≥0 with a Lévy measure νL satisfying the following set of conditions.
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Assumption L1 (Rotational invariance of the Lévy measure). νL is rotationally invariant, i.e.,

νL(AB) = νL(B)

for every Borel set B ∈ B(Rd) and every d × d orthogonal matrix A.

Assumption L2 (Absolute continuity of the Lévy measure). νL is absolutely continuous with respect to the
Lebesgue measure on R

d with a density q that is continuous almost everywhere on R
d .

Under Assumptions L1–L2 it has been proved in [27] (see Theorem 1.1 therein) that there exists a coupling
(Xt , Yt )t≥0 of solutions to

dXt = b(Xt ) dt + dLt ,

defined as a unique strong solution to the 2d-dimensional SDE given in the sequel by (3.2) and (3.3). Moreover,
consider two additional conditions on the jump density q .

Assumption L3 (Positive mass of the overlap of the jump density and its translation). There exist constants m,
δ > 0 such that δ < 2m and

inf
x∈Rd :0<|x|≤δ

∫
{|v|≤m}∩{|v+x|≤m}

q(v) ∧ q(v + x)dv > 0. (2.9)

Assumption L4 (Positive mass in a neighbourhood of zero). There exists a constant ε > 0 such that ε ≤ δ (with δ

defined via (2.9) above) and∫
{|v|≤ε/2}

q(v) dv > 0.

Suppose now that all the Assumptions L1–L4 are satisfied. Let us define a continuous function κ :R+ → R so that
for any x, y ∈ R

d the condition 〈b(x)−b(y), x−y〉 ≤ −κ(|x−y|)|x−y|2 is satisfied and suppose that Assumption D1
holds. Then we get that, by the inequality (1.8) in Theorem 1.1 in [27], there exist explicitly given L, θ > 0 and
a function f :R+ → R+ such that

E
∣∣Xt(x) − Yt (y)

∣∣≤ Le−θtf
(|x − y|). (2.10)

However, the function f used in [27] is discontinuous. It is actually of the form

f = a1(0,∞) + f1 (2.11)

with a > 0 and f1 being a continuous, concave function, extended in an affine way from some point R1 > 0 (and thus
we have a1x ≤ f1(x) ≤ a2x for some a1, a2 > 0). Hence we obtain

E
∣∣Xt(x) − Yt (y)

∣∣≤ L̃e−θt
(|x − y| + 1

)
, (2.12)

for some L̃ > 0, which is, however, undesirable since in order to be able to apply Theorem 2.1 we would like to have
|x − y| and not |x − y| + 1 on the right hand side (cf. Remark 2.6). Thus we need to improve on the result from [27]
and get an inequality like (2.10) but with a continuous function f (i.e., with a = 0 in (2.11)). To this end, we define

Cε := 2
∫ ε/4

0
|y|2νL

1 (dy), (2.13)

where νL
1 is the first marginal of the rotationally invariant measure νL. The choice of ε/4 as the upper integration limit

is motivated by the calculations in the proof of Theorem 1.1 in [27], see also the proof of Theorem 3.1 below. Now
consider a new condition.
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Assumption L5 (Sufficient concentration of νL around zero). For any λ > 0 there exists a K(λ) > 0 such that for
all ε < λ we have ε ≤ K(λ)Cε . In other words, ε/Cε is bounded near zero or, using the big O notation, ε = O(Cε) as
ε → 0.

Intuitively, it is an assumption about sufficient concentration of the Lévy measure νL around zero (sufficient small
jump activity). It is satisfied e.g. for α-stable processes with α ∈ [1,2) since in this case Cε = Aε2−α for some constant
A = A(α) and we have ε/Cε = Aεα−1.

It turns out that once we replace Assumptions L3 and L4 in Theorem 1.1 in [27] with Assumption L5, we are
able to obtain (2.10) with a continuous function f , which is exactly what we need for Theorem 2.1. This is done in
Section 3 in Theorem 3.1. However, we are able to generalize this result even further.

Theorem 2.3. Consider an SDE of the form

dXt = b(Xt ) dt + σ1 dB1
t + σ(Xt ) dB2

t + dLt +
∫

U

g(Xt−, u)Ñ(dt, du), (2.14)

where (B1
t )t≥0 and (B2

t )t≥0 are d-dimensional Brownian motions, (Lt )t≥0 is a pure jump Lévy process with Lévy
measure νL satisfying Assumptions L1–L2 and L5, whereas Ñ is a compensated Poisson random measure on R+ ×U

with intensity measure dt ν(du). Assume that all the sources of noise are independent, σ1 ∈ R
d×d is a constant matrix

and the coefficients b : Rd → R
d , σ : Rd → R

d×d and g : Rd × U →R
d satisfy Assumption D1. If at least one of the

following two conditions is satisfied

(1) detσ1 > 0,
(2) Lt �= 0 and Assumption D2,

then there exists a coupling (Xt , Yt )t≥0 of solutions to (2.14) and constants C̃, c̃ > 0 such that for any x, y ∈ R
d and

any t > 0 we have

E
∣∣Xt(x) − Yt (y)

∣∣≤ C̃e−c̃t |x − y|. (2.15)

Remark 2.4. The reason for the particular form of the equation (2.14) is that in order to construct a coupling leading
to the inequality (2.15) we need a suitable additive component of the noise. We can either use (B1

t )t≥0 if the condition
(1) holds, or (Lt )t≥0 if the condition (2) holds. The constants C̃ and c̃ depend on which noise we use. In particular,
the constant c̃ is either equal to c defined by (4.5) if we use (B1

t )t≥0 or to c1 defined by (3.16) if we use (Lt )t≥0. On
the other hand, if we have only a multiplicative Gaussian noise but the coefficient σ is such that σσT is uniformly
positive definite, we can use Lemma 4.1 below to decompose this noise and extract an additive component satisfying
(1). Without such an assumption on σ , Remark 2 in [12] indicates that it might still be possible to perform a suitable
construction, using the so-called Kendall-Cranston coupling, although this might significantly increase the level of
sophistication of the proof. In the case of the jump noise, as far as we know there are currently no methods for
obtaining couplings leading to inequalities like (2.15) in the case of purely multiplicative noise, and the recent papers
treating this kind of problems (see e.g. [27,38] and [23]) use methods that rely on the noise having at least some
additive component.

Remark 2.5. The coupling process (Xt , Yt )t≥0 is constructed as a unique strong solution to some 2d-dimensional
SDE. This allows us to infer that (Xt , Yt )t≥0 is in fact a Markov process (see e.g. Theorem 6.4.5 in [2] or Proposi-
tion 4.2 in [1], where it is shown how the Markov property follows from the uniqueness in law of solutions to SDEs
with jumps). As a consequence, we see that the inequality (2.15) actually implies that for any 0 ≤ s ≤ t we have

E
[|Xt − Yt |/Fs

]≤ C̃e−c̃(t−s)|Xs − Ys |.

Remark 2.6. Theorem 2.3 is obtained based on Theorem 3.1 which is presented later in this paper. It is however
possible to obtain analogous (but perhaps less useful) result based on the already mentioned Theorem 1.1 in [27],
where we have Assumptions L3 and L4 instead of Assumption L5. Then we get an inequality of the form (2.12).
It is still possible to obtain some transportation inequalities if in Theorem 2.1 we replace the condition (2.3) with a
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condition like (2.12), but because of its form it forces us to additionally assume that the underlying intensity measure
is finite (see Remark 6.1).

The above result is proved using the coupling methods developed in [27] and [12], and is of independent interest, as
it extends some of the results obtained there. In particular, it immediately allows us to obtain exponential (weak) con-
tractivity of the transition semigroup (pt )t≥0 associated with the solution to (2.14), with respect to the L1-Wasserstein
distance W1, as shown by the following corollary.

Corollary 2.7. Under the assumptions of Theorem 2.3,

W1(ηpt ,μpt ) ≤ C̃e−c̃tW1(η,μ)

for any probability measures η and μ on R
d and for any t > 0. Moreover, (pt )t≥0 has an invariant measure μ0 and

we have

W1(ηpt ,μ0) ≤ C̃e−c̃tW1(η,μ0)

for any probability measure η on R
d and any t > 0.

This result follows immediately from (2.15) like in the proof of Corollary 3 in [12] or the beginning of Section 3
in [20]. Using couplings allows us also to prove a related result involving a perturbation of the solution to (2.14)
by a change in the drift. This gives us a tool to determine some concrete cases in which the assumption (2.4) from
Theorem 2.1 holds.

Theorem 2.8. Let (Xt )t≥0 be like in Theorem 2.3 and suppose additionally that Assumption D2 holds, detσ1 > 0
and that the coefficients σ and g are Lipschitz. Consider a process (X̃t )t≥0 which is a solution to (2.14) with the drift
perturbed by ut , i.e.,

dX̃t = b(X̃t ) dt + ut dt + σ1 dB1
t + σ(X̃t ) dB2

t + dLt +
∫

U

g(X̃t−, u)Ñ(dt, du),

where ut is either σ1ht or σ(X̃t )ht for some adapted d-dimensional process ht . Then there exists a process (Yt )t≥0

such that (Xt , Yt )t≥0 is a coupling of solutions to (2.14) and for any 0 ≤ s ≤ t we have

E
[|X̃t − Yt |/Fs

]≤ C

∫ t

s

ec(r−(t−s))|ur |dr, (2.16)

where the constants C, c > 0 are given by (4.9) and (4.5), respectively.

Observe that the constants above depend on the function κ and hence to calculate their explicit values we need to
apply the right version of κ in the formulas (4.9) and (4.5), i.e., the version that is used in the proof of Theorem 2.8.
Now, combining Theorems 2.3 and 2.8 to check validity of assumptions of Theorem 2.1, we get the following result.

Corollary 2.9. Consider the setup of Theorem 2.3. Suppose all its assumptions and Assumption D2 are satisfied and
additionally that detσ1 > 0 and the coefficients σ and g are Lipschitz. Moreover, assume that (Xt )t≥0 is Malliavin
differentiable (Xt ∈D

1,2 for all t ≥ 0) and, similarly to Theorem 2.1, that there exists a constant σ∞ such that for any
x ∈ R

d we have ‖σ(x)‖ ≤ σ∞ and there exists a measurable function g∞ : U → R such that |g(x,u)| ≤ g∞(u) for
any x ∈ R

d and u ∈ U . Assume further that there exists some λ > 0 such that Assumption E is satisfied and that there
exists λ̃ > 0 such that

βL(̃λ) :=
∫

U

(
ẽλu − λ̃u − 1

)
νL(du) < ∞.
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Then the transportation inequality (2.5) from the statement of Theorem 2.1 holds with

αT (r) := sup
λ≥0

{
rλ −

∫ T

0
β
(
C̃e−c̃(T −t)λ

)
dt −

∫ T

0
βL
(
C̃e−c̃(T −t)λ

)
dt

− (σ 2∞ + ‖σ1‖2)λ2

2
C2 1 − e−2cT

2c

}
.

Moreover, for the invariant measure μ0 we have

α∞
(
W1(η,μ0)

)≤ H(η | μ0) (2.17)

for any probability measure η on R
d , with α∞ defined as the pointwise limit of αT as T → ∞. Finally, the inequality

(2.6) holds with

αP
T (r) := sup

λ≥0

{
rλ −

∫ T

0
β

(
λC̃

1 − e−c̃(T −t)

c̃

)
dt −

∫ T

0
βL

(
λC̃

1 − e−c̃(T −t)

c̃

)
dt

− (σ 2∞ + ‖σ1‖2)λ2

2
C2
∫ T

0

(
1 − e−c(T −t)

c

)2

dt

}
.

The constants c̃, C̃, c and C appearing in the definitions of αT and αP
T are the same as in (2.15) and (2.16).

This corollary extends the results from Theorem 2.2 in [39] to the case where we drop the global dissipativity
assumption required therein, as long as we have an additive component of the noise, which we can use in order to
construct a coupling required in our method. It is easy to notice that the corollaries in Section 2 in [39] (various
results regarding concentration of measure for solutions of (2.14) in the pure jump case) hold as well under our
assumptions. We also extend Theorem 2.2 from [25], where similar results are proved in the jump diffusion case
under assumptions analogous to the ones in [39]. However, in [25] there are additionally stronger assumptions on
regularity of the coefficients, which are needed to get bounds on Malliavin derivatives of solutions to (2.14). Here we
use a different method of getting such bounds (cf. Remark 2.16) which does not require coefficients to be differentiable
and works whenever we have Xt ∈D

1,2 for all t ≥ 0.

Example 2.10. To have a jump noise satisfying all the assumptions of Corollary 2.9, we can take a Lévy process
whose Lévy measure behaves near the origin like that of an α-stable process with α ∈ (1,2) (so that Assumptions
L1–L2 and L5 are satisfied), but has exponential moments as well (so that Assumption E is also satisfied). A natural
example of such a process is the so-called relativistic α-stable process, which is a Lévy process (Lt )t≥0 with the
characteristic function given by

E exp
(
i〈z,Lt 〉

)= exp
(−t
[(

m1/β + |z|2)β − m
])

for z ∈ R
d , with β = α/2 and some parameter m > 0. For more information on this process, see e.g. [9] where

Corollary II.2 and Proposition II.5 show that it indeed satisfies Assumption E, or [35] where in Lemma 2 the formula
for the density of its Lévy measure is calculated, from which we can easily see that Assumption L5 holds. SDEs
driven by relativistic stable processes (and in fact also by a significantly more general type of noise) have been
recently studied in [18].

Remark 2.11. Both in [39] and [25], apart from the transportation inequalities for measures δxpT on R
d and for

measures Px,[0,T ] on the path space with the L1 metric, there are also inequalities on the path space with the L∞ metric
defined by d∞(γ1, γ2) = supt∈[0,T ] |γ1(t) − γ2(t)| (see Theorem 2.11 in [39] and Theorem 2.8 in [25]). However, the
method of proof for these (see the second part of the proof of Lemma 3.3 in [25]) involves proving an inequality of
the type

E sup
0≤s≤t

∣∣Xs(x) − Xs(y)
∣∣2 ≤ eĈt |x − y|2,
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with some constant Ĉ, which requires the integral form of the Gronwall inequality, which can only work if the constant
Ĉ is positive (cf. Remark 2.3 in [36]). Since this is the case even under the global dissipativity assumption, we have
not been able to use couplings to improve on these results in any way and hence we skip them in our presentation,
referring the interested reader to [39] and [25].

Remark 2.12. Another possible application of our approach would be to extend the results from [36], where trans-
portation inequalities were studied in the context of regime switching processes, modelled by stochastic differential
equations with both Gaussian and Poissonian noise (see (2.1) and (2.2) therein). There a kind of one-sided Lipschitz
condition is imposed on the coefficients (see the condition (A3) in [36]) and, as pointed out in Remark 2.2 therein,
transportation inequalities on the path space can be obtained without dissipativity. However, in such a case the con-
stants with which those inequalities hold for Px,[0,T ], explode when T → ∞ (see Theorem 2.1 in [36]). Since the
method of proof used in [36] is a direct extension of the one developed by Liming Wu in [39], it should be possible
to apply our reasoning to obtain non-exploding constants at least in (2.13) in [36] under a dissipativity at infinity
condition. This is, however, beyond the scope of our present paper.

Remark 2.13. In the present paper, we only explain in detail how to check assumptions of Theorem 2.1 using the
approach of Theorems 2.3 and 2.8. However, it may be possible to obtain inequalities like (2.3) and (2.4) by other
methods. For example, in a recent paper [23], D. Luo and J. Wang obtained an inequality like (2.3) for equations
of the type dXt = b(Xt ) dt + dLt under different than ours assumptions on the Lévy measure and using a different
coupling (see Theorem 1.1 therein; (1.6) in [23] follows from an inequality like (2.3) which is needed in the proof
of Theorem 3.1 therein). This is sufficient to get the transportation inequalities like in our Theorem 2.1 for an SDE
with pure jump noise under their set of assumptions (plus, additionally, Assumption E). On the other hand, Eberle,
Guillin and Zimmer in [13] showed an inequality like (2.3) for equations of the type dXt = b(Xt ) dt + dBt without
assuming dissipativity even at infinity, at the cost of multiplying the right hand side of (2.3) by a factor which,
however, can possibly be controlled under some suitable integrability assumptions for (Xt )t≥0, cf. Theorem 2 and
formula (28) in [13]. This could lead to obtaining at least some concentration inequalities like (2.7) for solutions of
equations of the type dXt = b(Xt ) dt + dBt + ∫

U
g(Xt−, u)Ñ(dt, du), under some weaker than ours assumptions on

the coefficients b and g. These examples show robustness of our formulation of Theorem 2.1, as it allows us to easily
obtain transportation or concentration inequalities in many cases where inequalities like (2.3) arise naturally.

The crucial step in the proof of Theorem 2.1 is to find upper bounds for the Malliavin derivatives of Xt . Thus, in
the process of proving our main results, we also obtain some bounds that might be interesting on their own in the
context of the Malliavin calculus.

Theorem 2.14. Let (Xt )t≥0 be a Malliavin differentiable solution to (2.1) such that there exists a coupling (Xt , Y
′
t )t≥0

for which (2.4) holds. Assume that there exists a constant σ∞ such that for any x ∈R
d we have ‖σ(x)‖ ≤ σ∞. Then for

any Lipschitz functional f : Rd → R with ‖f ‖Lip ≤ 1, for any adapted, R+-valued process g and for any 0 ≤ s ≤ r ≤ t

we have

E

∫ r

s

gu

∣∣E[∇uf (Xt ) | Fu

]∣∣2 du ≤ c2
2(t)σ∞E

∫ r

s

guc
2
3(u) du. (2.18)

Moreover, we have∥∥E[∇uf (Xt ) |Fu

]∥∥
L∞(�×[0,t]) ≤ c2(t)σ∞ sup

u≤t
c3(u), (2.19)

where the L∞ norm is the essential supremum on � × [0, t].

On the other hand, using the condition (2.3), we can obtain related bounds for the Malliavin derivative D of
Lipschitz functionals of Xt with respect to the Poisson random measure N (see Section 5.2 for details).

In the same way in which Corollary 2.9 follows from Theorem 2.1 via Theorems 2.3 and 2.8, the following corollary
follows from Theorem 2.14 via Theorem 2.8.



Transportation inequalities for non-globally dissipative SDEs with jumps 2031

Corollary 2.15. Let (Xt )t≥0 be a Malliavin differentiable solution to (2.14), satisfying the assumptions of Theorem 2.3
with detσ1 > 0 and limr→0 rκ(r) = 0 (i.e., Assumption D2). Moreover, assume that the coefficients σ and g are
Lipschitz and that there exists a constant σ∞ such that for any x ∈ R

d we have ‖σ(x)‖ ≤ σ∞. Denote by ∇ i the
Malliavin derivative with respect to (Bi

t )t≥0 for i ∈ {1,2}. Then for any functional f and any process g like above and
for any 0 ≤ s ≤ r ≤ t we have

E

∫ r

s

gu

∣∣E[∇1
uf (Xt ) |Fu

]∣∣2 du ≤ C2‖σ1‖2
E

∫ r

s

gue
2c(u−t) du (2.20)

and

E

∫ r

s

gu

∣∣E[∇2
uf (Xt ) |Fu

]∣∣2 du ≤ C2σ 2∞E

∫ r

s

gue
2c(u−t) du, (2.21)

where C and c are the same as in (2.16). We also have L∞ bounds analogous to (2.19) for ∇1
uf (Xt ) and ∇2

uf (Xt ),
with the upper bound being, respectively, ‖σ1‖ and σ∞.

In analogy to our comment below the statement of Theorem 2.14, we observe here that a related corollary for the
Malliavin derivatives with respect to (Lt )t≥0 and N is also true (see the end of Section 5.2, in particular (5.25) and
(5.26)).

Remark 2.16. If the global dissipativity assumption is satisfied and the coefficients in the equation are continuously
differentiable, it is possible to obtain much stronger bounds than (2.20) and (2.21). Namely, for the multiplicative
noise we get

E
[‖∇sXt‖2

HS | Fs

]≤ ∥∥σ(Xs)
∥∥2

HSe2K(s−t)

for any 0 ≤ s ≤ t , where K > 0 is the constant with which the global dissipativity condition holds (see Lemma 3.4 in
[25]). We were not able to obtain such bounds in our case. However, our assumptions are much weaker than the ones
in [25] and the bounds (2.20) and (2.21) are sufficient to prove the transportation inequalities in Corollary 2.9. On the
other hand, our bounds for the Malliavin derivative D with respect to the Poisson random measure N have the same
form as the ones in [39] and [25] (cf. Section 5.2 in the present paper and Section 4.2 in [39]).

The remainder of the paper is organized as follows. In Section 3 we present an extension of the results from [27]
regarding couplings of solutions to SDEs driven by pure jump Lévy noise. In Section 4 we explain how to further
extend these results to the case of more general jump diffusions and hence we prove Theorem 2.3. In Section 5.1
we introduce our technique of obtaining estimates like (2.4) in Lemma 5.1, which then leads directly to the proofs
of Theorem 2.8 and Theorem 2.14, followed by the proof of Corollary 2.15. In Section 5.2 we explain how to show
related results in the case of Malliavin derivatives with respect to Poisson random measures. In Section 6 we finally
prove the transportation and concentration inequalities, i.e., Theorem 2.1, Theorem 2.2 and Corollary 2.9.

3. Coupling of SDEs with pure jump noise

Here we consider an SDE of the form

dXt = b(Xt ) dt + dLt , (3.1)

where (Lt )t≥0 is a pure jump Lévy process and the drift function b is continuous and satisfies a one-sided Lipschitz
condition. In this section, let N be the Poisson random measure on R+ ×R

d associated with (Lt )t≥0 via

Lt =
∫ t

0

∫
{|v|>1}

vN(ds, dv) +
∫ t

0

∫
{|v|≤1}

vÑ(ds, dv)
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and let dt ν(dv) be its intensity measure. Following Section 2.2 in [27], we can replace N with a Poisson random
measure on R+ ×R

d ×[0,1] with intensity dt ν(dv) du, where du is the Lebesgue measure on [0,1], thus introducing
an additional control variable u ∈ [0,1]. By a slight abuse of notation, we keep denoting this new Poisson random
measure by N . We can thus write (3.1) as

dXt = b(Xt ) dt +
∫

{|v|>1}×[0,1]
vN(dt, dv, du) +

∫
{|v|≤1}×[0,1]

vÑ(dt, dv, du).

Without loss of generality, we can choose a constant m > 1 and rewrite the equation above as

dXt = b(Xt ) dt +
∫

{|v|>m}×[0,1]
vN(dt, dv, du) +

∫
{|v|≤m}×[0,1]

vÑ(dt, dv, du). (3.2)

Formally we should then change the drift function by an appropriate constant, but since such an operation does not
change any relevant properties of the drift, we choose to keep denoting the drift by b. Now we can define a coupling
(Xt , Yt )t≥0 by putting

dYt = b(Yt ) dt +
∫

{|v|>m}×[0,1]
vN(dt, dv, du)

+
∫

{|v|≤m}×[0,1]
(Xt− − Yt− + v)1{u<ρ(v,Zt−)}Ñ(dt, dv, du)

+
∫

{|v|≤m}×[0,1]
R(Xt−, Yt−)v1{u≥ρ(v,Zt−)}Ñ(dt, dv, du),

(3.3)

for t < T := inf{t > 0 : Xt = Yt } and Yt = Xt for t ≥ T , where Zt := Xt − Yt ,

ρ(v,Zt−) := q(v) ∧ q(v + Zt−)1{|v+Zt−|≤m}
q(v)

if q(v) �= 0 and ρ(v,Zt−) := 1 if q(v) = 0, where ν(dv) = q(v) dv and

R(Xt−, Yt−) := I − 2
(Xt− − Yt−)(Xt− − Yt−)T

|Xt− − Yt−|2 = I − 2et−eT
t−, (3.4)

with et := (Xt − Yt )/|Xt − Yt |. Intuitively, it is a combination of a modification of the reflection coupling with a
positive probability of bringing the marginal processes together instead of performing the reflection (for jumps of size
smaller than m) and the synchronous coupling (for jumps larger than m). We can call it the mirror coupling. For the
coupling construction itself, m can be chosen arbitrarily. For obtaining convergence rates in Wasserstein distances,
we choose m based on Assumption L3 satisfied by the Lévy measure ν of (Lt )t≥0. For the discussion explaining this
construction in detail see Section 2 in [27].

Under Assumptions L1 and L2 it has been proved in [27] (see Theorem 1.1 therein) that the 2d-dimensional SDE
given by (3.2) and (3.3) has a unique strong solution which is a coupling of solutions to (3.1). Then this coupling was
used to prove that, under additional Assumptions L3 and L4 and a dissipativity at infinity condition on the drift, the
inequality (2.10) holds with a discontinuous function f , i.e., we have

E
∣∣Xt(x) − Yt (y)

∣∣≤ Le−θtf
(|x − y|)

for some constants L > 1 and θ > 0.
Now we turn to the proof of a modification of the main result in [27], which will give us an inequality like (2.10),

but with a continuous function f . Recall that in the case of an equation of the form (3.1), the function κ is such that
for all x, y ∈ R

d we have〈
b(x) − b(y), x − y

〉≤ −κ
(|x − y|)|x − y|2. (3.5)
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Theorem 3.1. Let (Xt )t≥0 be a Markov process in R
d given as a solution to the stochastic differential equation (3.1),

where (Lt )t≥0 is a pure jump Lévy process satisfying Assumptions L1–L2 and Assumption L5 and b : Rd → R
d is

a continuous, one-sided Lipschitz vector field satisfying Assumptions D1 and D2. Then there exists a coupling of
solutions to (3.1) defined as a strong solution to the 2d-dimensional SDE given by (3.2) and (3.3) and a continuous
concave function f1 :R+ → R+ such that

Ef1
(∣∣Xt(x) − Yt (y)

∣∣)≤ e−c1t f1
(|x − y|)

holds with some constant c1 > 0 for any t > 0 and any x, y ∈ R
d . By the construction of f1, we also have

E
∣∣Xt(x) − Yt (y)

∣∣≤ Le−c1t |x − y|
with some constant L > 0.

Proof. The existence of the coupling as a strong solution to the system (3.2)–(3.3) has been proved in Section 2 in
[27]. Now we will explain how to modify the proof of the inequality (1.8) in Theorem 1.1 in [27] in order to prove the
new result presented here. Denote

Zt := Xt − Yt .

Using the expression (3.3) for dYt , we can write

dZt = (b(Xt ) − b(Yt )
)
dt +

∫
{|v|≤m}×[0,1]

(
I − R(Xt−, Yt−)

)
vÑ(dt, dv, du)

+
∫

{|v|≤m}×[0,1]
A(Xt−, Yt−, v, u)Ñ(dt, dv, du),

where A(Xt−, Yt−, v, u) := −(Zt− + v − R(Xt−, Yt−)v)1{u<ρ(v,Zt−)}. Applying the Itô formula (see e.g. Theo-
rem 4.4.10 in [2]) with a function f1 we get

f1
(|Zt |

)− f1
(|Z0|

)= ∫ t

0
f ′

1

(|Zs−|) 1

|Zs−|
〈
Zs−, b(Xs−) − b(Ys−)

〉
ds

+
∫ t

0

∫
{|v|≤m}×[0,1]

f ′
1

(|Zs−|) 1

|Zs−|
〈
Zs−,

(
I − R(Xs−, Ys−)

)
v
〉
Ñ(ds, dv, du)

+
∫ t

0

∫
{|v|≤m}×[0,1]

f ′
1

(|Zs−|) 1

|Zs−|
〈
Zs−,A(Xs−, Ys−, v, u)

〉
Ñ(ds, dv, du)

+
∑

s∈(0,t]

(
|�Zs |2

∫ 1

0
(1 − u)f ′′

1

(|Zs− + u�Zs |
)
du

)
, (3.6)

where the last term is obtained from the usual sum over jumps appearing in the Itô formula by applying the Taylor
formula and using the fact that in our coupling the vectors Zs− and �Zs are always parallel (see Section 3 in [27] for
details). Now we introduce a sequence of stopping times (τn)

∞
n=1 defined by

τn := inf
{
t ≥ 0 : |Zt | /∈ (1/n,n)

}
. (3.7)

Note that we have τn → T as n → ∞, which follows from non-explosiveness of (Zt )t≥0. By some tedious but
otherwise easy computations (see the proof of Theorem 1.1 in [27] for details, specifically Lemma 3.1 and Lemma 3.2
therein) we can show that

E

∫ t∧τn

0

∫
{|v|≤m}×[0,1]

f ′
1

(|Zs−|) 1

|Zs−|
〈
Zs−,

(
I − R(Xs−, Ys−)

)
v
〉
Ñ(ds, dv, du) = 0. (3.8)
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and

E

∫ t∧τn

0

∫
{|v|≤m}×[0,1]

f ′
1

(|Zs−|) 1

|Zs−|
〈
Zs−,A(Xs−, Ys−, v, u)

〉
Ñ(ds, dv, du) = 0. (3.9)

In [27] it is also shown (see Lemma 3.3 therein) that for any t > 0, we have

E

∑
s∈(0,t]

(
|�Zs |2

∫ 1

0
(1 − u)f ′′

1

(|Zs− + u�Zs |
)
du

)
≤ CεE

∫ t

0
f̄ε

(|Zs−|)1{|Zs−|>δ} ds, (3.10)

where 0 < δ < 2m, ε ≤ δ, the constant Cε is defined as in (2.13) with the first marginal ν1 of the measure ν and the
function f̄ε is defined by

f̄ε(y) := sup
x∈(y−ε,y)

f ′′
1 (x).

It is important to note that in order for (3.10) to hold, m has to be chosen in such a way that∫ 0

−ε/2
|y|2νm

1 (dy) ≥
∫ 0

−ε/4
|y|2ν1(dy) = Cε

2
,

where νm
1 is the first marginal of the truncated measure νm(dv) := 1{|v|≤m}ν(dv). This is, however, not a problem,

since m can always be chosen large enough, cf. the discussion in Section 2.2 in [27]. The crucial element of the proof
in [27], after getting the bounds (3.8), (3.9) and (3.10), is the construction of a function f1 and a constant c1 > 0 such
that

−f ′
1(r)κ(r)r + Cεf̄ε(r) ≤ −c1f1(r) (3.11)

holds for all r > δ, where κ is the function satisfying (3.5). Combining this with (3.6) and using Assumption L3 and
the discontinuity of the distance function to deal with the case of r ≤ δ (see Lemma 3.7 in [27]), it is shown how to
get a bound of the form

Ef1
(|Zt∧τn |

)−Ef1
(|Z0|

)≤ E

∫ t∧τn

0
−c1f1

(|Zs |
)
ds,

which then leads to (2.10). Now we will show a different way of dealing with the case of r ≤ δ, using Assumption L5
instead of Assumption L3, which allows us to keep the continuity of f1.

It is quite easy to see (using once again the fact that Zs− and �Zs are parallel, cf. the proof of Lemma 3.3 in [27])
that for any u ∈ (0,1) we have

f ′′
1

(|Zs− + u�Zs |
)≤ sup

x∈(|Zs−|,|Zs−|+ε)

f ′′
1 (x)1{|Zs |∈(|Zs−|,|Zs−|+ε)}.

We also have{|Zs | ∈
(|Zs−|, |Zs−| + ε

)}= {|Zs | > |Zs−|}∩ {|�Zs | < ε
}
,

and the condition |Zs | > |Zs−| is equivalent to 〈�Zs,2Zs− + �Zs〉 > 0. Therefore, mimicking the argument in the
proof of Lemma 3.3 in [27] we get that

E

∑
s∈(0,t]

(
|�Zs |2

∫ 1

0
(1 − u)f ′′

1

(|Zs− + u�Zs |
)
du

)
≤ CεE

∫ t

0
f̂ε

(|Zs−|)ds, (3.12)

where

f̂ε(y) := sup
x∈(y−ε,y)

f ′′
1 (x)1{y>δ} + sup

x∈(y,y+ε)

f ′′
1 (x)1{y≤δ}.
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Now we will show that under Assumption L5, after a small modification in the formulas from [27], the inequality

−f ′
1(r)κ(r)r + Cεf̂ε(r) ≤ −c1f1(r) (3.13)

holds for all r > 0 (note that here we have f̂ε(r) in place of f̄ε(r) in (3.11)). The function f1, constructed in Lemma 3.6
in [27] in order to satisfy (3.11), is such that f ′

1 ≥ 0, f ′′
1 ≤ 0 and is defined in the following way

f1(r) =
∫ r

0
φ(s)g(s) ds, (3.14)

where

φ(r) := exp

(
−
∫ r

0

h̄(t)

Cε

dt

)
, g(r) :=

{
1 − c1

Cε

∫ r

0
�(t+ε)

φ(t)
dt, r ≤ R1,

1
2 , r ≥ R1.

Here R1 > 0 is given by formulas

R0 = inf

{
R ≥ 0 : ∀r ≥ R : κ(r) ≥ 2M

R

}
,

R1 = inf

{
R ≥ R0 + ε : ∀r ≥ R : κ(r) ≥ 2Cε

(R − R0)R
+ 2M

R

}
,

(3.15)

but can be chosen arbitrarily large if necessary and c1 is a positive constant given by

c1 := Cε

2

(∫ R1

0

�(t + ε)

φ(t)
dt

)−1

(3.16)

(cf. (3.29) in [27]). Moreover, we have

h̄(r) := sup
t∈(r,r+ε)

h−(t), �(r) :=
∫ r

0
φ(s) ds

and h− = −min{h,0} is the negative part of the function

h(r) := rκ(r) − 2M, (3.17)

with some M > 0 to be chosen later. Actually, in Lemma 3.6 in [27] the function h is given by h(r) := rκ(r), whereas
R0 and R1 are chosen with M = 0 and this already gives (3.11). However, it is easy to check that by taking M > 0 we
get

−f ′
1(r)κ(r)r + 2f ′

1(r)M + Cεf̄ε(r) ≤ −c1f1(r). (3.18)

Indeed, all the calculations in the proof of Lemma 3.6 in [27] are expressed in terms of a function h, which can be
modified if necessary. It is enough to ensure that we choose R0 such that h−(r) = 0 for r ≥ R0 and then R1 such that
(−rκ(r)+ 2M)/2 ≤ −Cεr/(R1 −R0)R1 for r ≥ R1, which obviously holds for the choice of h, R0 and R1 presented
above. Moreover, we obviously have

−f ′
1(r)κ(r)r + Cεf̄ε(r) ≤ −f ′

1(r)κ(r)r + 2f ′
1(r)M + Cεf̄ε(r),

and thus if we have (3.18) with some M > 0 for r > δ, then (3.11) is still valid for r > δ. The reason we introduce the
constant M is that it is needed to show that

sup
x∈(r,r+ε)

f ′′
1 (x) ≤ − c1

Cε

f1(r) + f ′
1(r)

rκ(r)

Cε
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holds for all r ≤ δ, which, combined with (3.11) for r > δ, will give us (3.13). Hence we need to show that for any
s ∈ (r, r + ε) we have

f ′′
1 (s) ≤ − c1

Cε

f1(r) + f ′
1(r)

rκ(r)

Cε

.

First let us calculate (recall that we can choose R1 large enough so that s < δ + ε < R1)

f ′′
1 (s) = φ(s)

(
− c1

Cε

�(s + ε)

φ(s)

)
+
(

− h̄(r)

Cε

φ(s)g(s)

)
= − c1

Cε

�(s + ε) − h̄(r)

Cε

f ′
1(s).

Observe now that for r ≤ s we have f1(r) ≤ f1(s) ≤ �(s) ≤ �(s + ε) and thus

f ′′
1 (s) ≤ − c1

Cε

f1(r) − h̄(r)

Cε

f ′
1(s).

Therefore it remains to be shown that

− h̄(r)

Cε

f ′
1(s) ≤ f ′

1(r)
rκ(r)

Cε

.

Actually, we will just show that

1

Cε

f ′
1(s)h(s) ≤ f ′

1(r)
rκ(r)

Cε

. (3.19)

Then, since −h− ≤ h and s ∈ (r, r + ε), we will get

− 1

Cε

f ′
1(s) sup

t∈(r,r+ε)

h−(t) = 1

Cε

f ′
1(s) inf

t∈(r,r+ε)

(−h−(t)
)

≤ 1

Cε

f ′
1(s) inf

t∈(r,r+ε)
h(t)

≤ f ′
1(r)

rκ(r)

Cε

.

In order to show (3.19) we observe that straight from the definition of h we have

1

Cε

f ′
1(s)h(s) = 1

Cε

f ′
1(s)

(
sκ(s) − 2M

)
and then we calculate

f ′
1(s)

(
sκ(s) − 2M

)= f ′
1(r)rκ(r) − f ′

1(r)rκ(r)

+ f ′
1(s)rκ(r) − f ′

1(s)rκ(r)

+ f ′
1(s)sκ(s) − 2Mf ′

1(s)

≤ f ′
1(r)rκ(r) + rκ(r)

(
f ′

1(s) − f ′
1(r)

)
+ f ′

1(s)
(
sκ(s) − rκ(r)

)− 2Mf ′
1(s).

Now it is enough to show that it is possible to choose ε, δ and M in such a way that the sum of the last three terms
is bounded by some non-positive quantity. Since we have Assumption D2, for any λ > 0 there exists some K(λ) > 0
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such that for all |r| < λ we have |rκ(r)| ≤ K(λ). Since s < r + ε ≤ δ + ε, we obtain

sκ(s) − rκ(r) ≤ 2K(δ + ε).

We also know that f ′
1 is non-increasing and thus f ′

1(s) ≤ f ′
1(r), but the sign of rκ(r) is unknown so we cannot just

bound rκ(r)(f ′
1(s) − f ′

1(r)) by zero. We will deal with this term in a more complicated way. We have

f ′
1(s) − f ′

1(r) = φ(s)g(s) − φ(s)g(r) + φ(s)g(r) − φ(r)g(r)

= φ(s)
(
g(s) − g(r)

)+ (φ(s) − φ(r)
)
g(r).

We also have∣∣φ(s)
(
g(s) − g(r)

)∣∣≤ 2φ(s) ≤ 4f ′
1(s),

since 1/2 ≤ g ≤ 1. Furthermore∣∣(φ(s) − φ(r)
)
g(r)

∣∣= ∣∣φ(s)
(
1 − φ(s)−1φ(r)

)
g(r)

∣∣
=
∣∣∣∣φ(s)

(
1 − exp

(∫ s

r

h̄(t)

Cε

dt

))
g(r)

∣∣∣∣
≤ 2f ′

1(s)

∫ s

r

h̄(t)

Cε

dt exp

(∫ s

r

h̄(t)

Cε

dt

)
≤ 2f ′

1(s)ε

Cε

(
2M + K(δ + 2ε)

)
exp

(
ε

Cε

(
2M + K(δ + 2ε)

))
,

where in the first inequality we have used the fact that |1 − ex | ≤ |xex | for all x ≥ 0 and that g ≤ 1 and φ(s) ≤ 2f ′
1(s).

In the second inequality we used∫ s

r

h̄(t)

Cε

dt ≤ ε

Cε

(
2M + K(δ + 2ε)

)
,

which holds since |s − r| < ε. Thus if we find δ, ε and M such that

K(δ)

(
4 + 2

ε

Cε

(
2M + K(δ + 2ε)

)
exp

(
ε

Cε

(
2M + K(δ + 2ε)

)))+ 2K(δ + ε) ≤ 2M,

then (3.19) holds and we prove our statement. This is indeed possible since we assume that ε/Cε is bounded in a
neighbourhood of zero. �

4. Coupling of jump diffusions

Here we study jump diffusions of more general form (2.14) and we prove Theorem 2.3. In order to do this, we first
recall results obtained by Eberle in [12] for diffusions of the form

dXt = b(Xt ) dt + σ1 dBt ,

where σ1 is a constant non-degenerate d × d matrix and (Bt )t≥0 is a d-dimensional Brownian motion. Eberle used
the coupling by reflection (Xt , Yt )t≥0, defined by

dYt =
{

b(Yt ) dt + σ1Rσ1(Xt , Yt ) dBt for t < T ,

dXt for t ≥ T ,
(4.1)
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where T := inf{t ≥ 0 : Xt = Yt } is the coupling time and

Rσ1(Xt , Yt ) := I − 2et e
T
t (4.2)

with

et := σ−1
1 (Xt − Yt )/

∣∣σ−1
1 (Xt − Yt )

∣∣. (4.3)

Using this coupling, Eberle constructed a concave continuous function f given by

f (r) :=
∫ r

0
ϕ(s)g(s) ds, (4.4)

where

ϕ(r) := exp

(
−1

2

∫ r

0
sκ−(s) ds

)
, g(r) :=

{
1 − αc

2

∫ r

0
�(t)
ϕ(t)

dt, r ≤ R1,
1
2 , r ≥ R1,

with �(r) := ∫ r

0 ϕ(s) ds and some constant R1 > 0 defined by (9) in [12]. Here c > 0 is a constant given by

c = 1

α

(∫ R1

0

�(s)

ϕ(s)
ds

)−1

(4.5)

where α := sup{|σ−1
1 z|2 : z ∈ R

d with ‖z‖ = 1} (cf. the formula (12) in [12]) and κ is defined by

κ(r) = inf

{
−|σ−1

1 (x − y)|2
|x − y|4

〈
b(x) − b(y), x − y

〉 : x, y ∈R
d s.t. |x − y| = r

}
. (4.6)

In other words, κ is the largest quantity satisfying〈
b(x) − b(y), x − y

〉≤ −κ
(|x − y|)|x − y|4/∣∣σ−1

1 (x − y)
∣∣2 (4.7)

for all x, y ∈ R
d , although for our purposes we can consider any continuous function κ such that (4.7) holds. Then it

is possible to prove that

2f ′′(r) − rκ(r)f ′(r) ≤ −cαf (r) for all r > 0. (4.8)

Note that our definition of κ differs from the one in [12] by a factor 2 to make the notation more consistent with our
results for the pure jump noise case presented in the previous Section (cf. formulas in Section 2.1 in [12]). By the
methods explained in the proof of Theorem 1 in [12] (see also Corollary 2 therein) we get

Ef
(∣∣Xt(x) − Yt (y)

∣∣)≤ e−ctf
(|x − y|)

and, by the choice of f (which is comparable with the identity function, since it is extended in an affine way from
R1 > 0), we also get

E
∣∣Xt(x) − Yt (y)

∣∣≤ Ce−ct |x − y|
with a constant C > 0 defined by (cf. (14) and (8) in [12])

C := 2ϕ(R0)
−1, where R0 := inf

{
R ≥ 0 : ∀r ≥ Rκ(r) ≥ 0

}
. (4.9)

Now we will explain how to combine the results from [12] and [27] to get analogous results for equations involving
both the Gaussian and the Poissonian noise. The general idea is, similarly to [12] and [27], to use an appropriate
coupling (Xt , Yt )t≥0, to write an SDE for the difference process Zt = Xt − Yt , to use the Itô formula to evaluate
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df (|Zt |) and then to choose f in such a way that df (|Zt |) ≤ dMt − c̃f (|Zt |) dt for some constant c̃ > 0, where
(Mt)t≥0 is a local martingale.

Proof of Theorem 2.3. We consider an equation of the form

dXt = b(Xt ) dt + σ1 dB1
t + σ(Xt ) dB2

t + dLt +
∫

U

g(Xt−, u)Ñ(dt, du),

where σ1 > 0 is a constant and all the other coefficients and the sources of noise are like in the formulation of The-
orem 2.3 (in particular, here we denote the underlying Poisson random measure of (Lt )t≥0 by NL and its associated
Lévy measure by νL). Restricting ourselves to a real constant in front of (B1

t )t≥0 instead of a matrix helps us to slightly
reduce the notational complexity and seems in fact quite natural at least for the equations for which Lemma 4.1 applies.
Recall that κ is such that for all x, y ∈ R

d we have

〈
b(x) − b(y), x − y

〉+ 1

2

∫
U

∣∣g(x,u) − g(y,u)
∣∣2ν(du) + ∥∥σ(x) − σ(y)

∥∥2
HS ≤ −κ

(|x − y|)|x − y|2 (4.10)

and that it satisfies Assumption D1. Now we will apply the mirror coupling from [27] to (Lt )t≥0, by using the “mirror
operator” M(·, ·), i.e., recalling the notation used in the equations (3.2) and (3.3), we define

M(Xt−, Yt−)Lt :=
∫

{|v|>m}×[0,1]
vNL(dt, dv, du)

+
∫

{|v|≤m}×[0,1]
(Xt− − Yt− + v)1{u<ρ(v,Zt−)}ÑL(dt, dv, du)

+
∫

{|v|≤m}×[0,1]
R(Xt−, Yt−)v1{u≥ρ(v,Zt−)}ÑL(dt, dv, du),

with the reflection operator R defined by (3.4). We will also use the reflection coupling (4.1) from [12], with the
reflection operator Rσ1 defined by (4.2) and apply it to (B1

t )t≥0. Note that if the coefficient near the Brownian motion
is just a positive constant and not a matrix, the formulas from [12] become a bit simpler, in particular the unit vector
et defined by (4.3) becomes just (Xt − Yt )/|Xt − Yt |. Thus the two reflection operators we defined coincide and we
can keep denoting them both by R. Moreover, we apply the synchronous coupling to the other two noises and hence
we have

dYt = b(Yt ) dt + σ1R(Xt ,Yt ) dB1
t + σ(Yt ) dB2

t + M(Xt−, Yt−) dLt +
∫

U

g(Yt−, u)Ñ(dt, du).

Since all the sources of noise are independent, it is easy to see that (Xt , Yt )t≥0 is indeed a coupling (this follows from
the fact that R applied to (B1

t )t≥0 gives a Brownian motion and M applied to (Lt )t≥0 gives the same Lévy process,
whereas the solution to the equation above is unique in law). We can now write the equation for Zt := Xt − Yt as

dZt = (b(Xt ) − b(Yt )
)
dt + 2σ1et e

T
t dB1

t + (σ(Xt ) − σ(Yt )
)
dB2

t

+ (I − M(Xt−, Yt−)
)
dLt +

∫
U

(
g(Xt−, u) − g(Yt−, u)

)
Ñ(dt, du),

where we evaluated σ1(I − R(Xt−, Yt−)) as 2σ1et e
T
t and we will later use the fact that dW̃t := eT

t dB1
t is a one-

dimensional Brownian motion in order to simplify our calculations. We apply the Itô formula to get

df
(|Zt |

)= 9∑
j=1

Ij , (4.11)
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where

I1 := f ′(|Zt |
) 1

|Zt |
〈
b(Xt ) − b(Yt ),Zt

〉
dt, I3 := f ′(|Zt |

) 1

|Zt |
〈
Zt ,
(
σ(Xt ) − σ(Yt )

)
dB2

t

〉
,

I2 := 2f ′(|Zt |
) 1

|Zt |
〈
Zt ,σ1et e

T
t dB1

t

〉
, I4 := f ′(|Zt−|) 1

|Zt−|
〈
Zt−,

(
I − M(Xt−, Yt−)

)〉
dLt

and

I5 := f ′(|Zt−|) 1

|Zt−|
∫

U

〈
g(Xt−, u) − g(Yt−, u),Zt−

〉
Ñ(dt, du)

constitute the drift and the local martingale terms, while

I6 := 1

2
σ 2

1

d∑
i,j=1

[
f ′′(|Zt−|)Zi

t−Z
j
t−

|Zt−|2 + f ′(|Zt−|)(δij

1

|Zt−| − Zi
t−Z

j
t−

|Zt−|3
)]

4
Zi

t−Z
j
t−

|Zt−|2 dt

and

I7 :=
d∑

i,j=1

[
f ′′(|Zt−|)Zi

t−Z
j
t−

|Zt−|2 + f ′(|Zt−|)(δij

1

|Zt−| − Zi
t−Z

j
t−

|Zt−|3
)]

·
[

m∑
k=1

(
σik(Xt−) − σik(Yt−)

)(
σjk(Xt−) − σjk(Yt−)

)]
dt

come from the quadratic variation of the Brownian noises, whereas

I8 :=
∫

U

[
f
(∣∣Zt− + (I − M(Xt−, Yt−)

)
v
∣∣)− f

(|Zt−|)
− 〈(I − M(Xt−, Yt−)

)
v,∇f

(|Zt−|)〉]NL(dt, dv)

and

I9 :=
∫

U

[
f
(∣∣Zt− + g(Xt−, u) − g(Yt−, u)

∣∣)− f
(|Zt−|)

− 〈g(Xt−, u) − g(Yt−, u),∇f
(|Zt−|)〉]N(dt, du) (4.12)

are the jump components.
Now we proceed similarly to [12] and [27]. Since we want to obtain an estimate of the form df (|Zt |) ≤ dMt −

c̃f (|Zt |) dt and we assume that the function f is concave, we should use its second derivative to obtain a negative
term on the right hand side of (4.11). In order to do this, we can use the additive Brownian noise (B1

t )t≥0 to get a
negative term from I6 (it is easy to see that it reduces to 2σ 2

1 f ′′(|Zt |)) and then use the function f from [12] given
by (4.4), aiming to obtain an inequality like (4.8) (then we can just use the synchronous coupling for (Lt )t≥0 and the
terms I4 and I8 disappear). Alternatively, we can use the additive jump noise (Lt )t≥0 to get a negative term from I8.
As we already mentioned in Section 3 under the formula (3.6), the integral I8 reduces to the left hand side of (3.12),
see Section 3 in [27] for details. Then we can use the function f1 from [27], aiming to obtain an inequality like (3.13)
(then we use the synchronous coupling for (B1

t )t≥0 and the terms I2 and I6 disappear). In either case, I3 and I5 can
be controlled via κ , since the coefficients σ and g are included in its definition. If we are only interested in finding
any constant c̃ > 0 such that (2.15) holds, then it is sufficient to use one of the two additive noises and to apply the
synchronous coupling to the other (if both noises are present it is recommendable to use (B1

t )t≥0 since the formulas
in [12] are simpler than the ones in [27]). If we are interested in finding the best (largest) possible constant c̃, then
we can use both noises, but then we would also need to redefine the function f and this would be technically quite
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sophisticated (whereas by using only one noise we can essentially just use the formulas that are already available in
either [12] or [27]).

We should still explain how to control I7 and I9. We can control I9 following the ideas from [23] and controlling
I7 is also quite straightforward.

First observe that ∇f (|Zt−|) = f ′(|Zt−|) 1
|Zt−|Zt− and, following Section 5.2 in [23], note that since f is concave

and differentiable, we have

f (a) − f (b) ≤ f ′(b)(a − b)

for any a, b > 0. Thus

f
(∣∣Zt− + g(Xt−, u) − g(Yt−, u)

∣∣)− f
(|Zt−|)− f ′(|Zt−|) 1

|Zt−|
〈
g(Xt−, u) − g(Yt−, u),Zt−

〉
≤ f ′(|Zt−|)(∣∣Zt− + g(Xt−, u) − g(Yt−, u)

∣∣− |Zt−| − 1

|Zt−|
〈
g(Xt−, u) − g(Yt−, u),Zt−

〉)
.

Next we will need the inequality

|x + y| − |x| − 1

|x| 〈y, x〉 ≤ 1

2|x| |y|2,

which holds for any x, y ∈R
d since

|x||x + y| ≤ 1

2

(|x|2 + |x + y|2)= 1

2

(|x|2 + |x|2 + 2〈x, y〉 + |y|2).
Hence we obtain

I9 ≤ f ′(|Zt−|) 1

2|Zt−|
∫

U

∣∣g(Xt−, u) − g(Yt−, u)
∣∣2N(dt, du).

On the other hand, if we denote by σk the kth column of the matrix σ , then

I7 =
m∑

k=1

f ′′(|Zt−|) |〈Zt ,σ
k(Xt ) − σk(Yt )〉|2

|Zt−|2 +
m∑

k=1

d∑
i=1

f ′(|Zt−|) 1

|Zt−|
(
σik(Xt−) − σik(Yt−)

)2
−

m∑
k=1

f ′(|Zt−|) |〈Zt ,σ
k(Xt ) − σk(Yt )〉|2

|Zt−|3 ≤ f ′(|Zt−|) 1

|Zt−|
∥∥σ(Xt−) − σ(Yt−)

∥∥2
HS.

Hence we get a bound on df (|Zt |), which allows us to bound Ef (|Zt |) − Ef (|Zs |) for any 0 ≤ s < t . Using a
localization argument with a sequence of stopping times (τn)

∞
n=1 like in (3.7), we can get rid of the expectations of

the local martingale terms. Then we can use the inequality (4.10) multiplied by f ′(|x − y|) 1
|x−y| to see that, if we are

using the additive Lévy noise (Lt )t≥0 to get our bounds, then after handling I8 like in (3.12) and using the estimates
(3.8) and (3.9), we need to choose a function f1 such that

−f ′
1(r)κ(r)r + Cεf̂ε(r) ≤ −c1f1(r)

and this is exactly (3.13), so we can handle further calculations like in the proof of Theorem 3.1. Alternatively, if we
are using the additive Gaussian noise (B1

t )t≥0, we can modify the definition of κ to include the σ1 factor (cf. (4.6))
and then we need to choose a function f such that

2f ′′(r) − rκ(r)f ′(r) ≤ − c

σ 2
1

f (r),
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hence 1/σ 2
1 plays the role of α in the calculations in [12] (cf. (4.8) earlier in this Section and for the details see the

proof of Theorem 1 in [12], specifically the formula (63), while remembering about the change of the factor 2 in our
definition of κ compared to the one in [12]).

Either way we obtain some constant c̃ > 0 and a function f̃ such that

Ef̃
(|Zt∧τn |

)−Ef̃
(|Zs∧τn |

)≤ −c̃

∫ t

s

Ef̃
(|Zr∧τn |

)
dr (4.13)

holds for any 0 ≤ s < t . Here c̃ and f̃ are equal either to c and f defined by (4.5) and (4.4) or c1 and f1 defined by
(3.16) and (3.14), respectively, depending on whether we used (B1

t )t≥0 or (Lt )t≥0 in the step above. Thus we can use
the differential version of the Gronwall inequality to get

Ef̃
(|Zt∧τn |

)≤ Ef̃
(|Z0|

)
e−c̃t for any t > 0,

and after using the Fatou lemma, the fact that τn → T and that Zt = 0 for t ≥ T , we get

Ef̃
(|Zt |

)≤ Ef̃
(|Z0|

)
e−c̃t for any t > 0.

Since we can compare our function f̃ with the identity function from both sides, this finishes the proof. Note that in
the last step one has to be careful and use the differential version of the Gronwall formula, since the integral version
does not work when the term on the right hand side is negative (cf. Remark 2.3 in [36]).

Note also that if we are only dealing with the Gaussian noise, then we can reason like in [12], i.e., having proved
that

df
(|Zt |

)≤ dMt − cf
(|Zt |

)
dt

(by choosing an appropriate function f ) for some local martingale (Mt)t≥0, we can see that this implies
d(ectf (|Zt |)) ≤ dMt , so by using a localization argument we can directly get E[ectf (|Zt |)] ≤ Ef (|Z0|) without
using the Gronwall inequality. However, in the jump case this is not possible, since we have to first take the ex-
pectation in order to deal with I8 and I9 by transforming the stochastic integrals with respect to NL and N into
deterministic integrals with respect to νL and ν, respectively. Only then can we use the definition of κ via (4.10) to
find an appropriate function f̃ such that (4.13) holds. �

We will now show how, starting from an equation of the form (2.1) with one multiplicative Gaussian noise, we
can obtain an SDE of the form (2.14) with two independent Gaussian noises, one of which is still multiplicative,
but the other additive (and the additive one has just a real constant as a coefficient, cf. the comments in the proof of
Theorem 2.3 earlier in this section).

Lemma 4.1. If (Xt )t≥0 is the unique strong solution to the SDE

dXt = b(Xt ) dt + σ(Xt ) dBt , (4.14)

where (Bt )t≥0 is a Brownian motion and σσT is uniformly positive definite, then (Xt )t≥0 can also be obtained as a
solution to

dXt = b(Xt ) dt + CdB1
t + σ̃ (Xt ) dB2

t (4.15)

with two independent Brownian motions (B1
t )t≥0 and (B2

t )t≥0, some constant C > 0 and a diffusion coefficient σ̃ such
that if ‖σ(x)‖HS ≤ M for all x ∈ R

d with some constant M > 0, then∥∥σ̃ (x) − σ̃ (y)
∥∥

HS ≤ M√
λ2 − C2

∥∥σ(x) − σ(y)
∥∥

HS, (4.16)

where the constants λ > C > 0 are as indicated in the proof.
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Proof. Observe that if the diffusion coefficient σ is such that σσT is uniformly positive definite, i.e., there exists
λ > 0 such that for any x, h ∈ R

d we have〈
σ(x)σ (x)T h,h

〉≥ λ2|h|2,

then σ(x)σ (x)T − λ2I is nonnegative definite for any x ∈ R
d and thus we can consider

a(x) :=
√

σ(x)σ (x)T − λ2I ,

which is the unique (symmetric) nonnegative definite matrix such that a(x)a(x)T = σ(x)σ (x)T − λ2I . Note that if
we now define σ̃ as

σ̃ (x) :=
√

σ(x)σ (x)T − C2I

for some constant 0 < C2 < λ2, we can get〈̃
σ(x)2h,h

〉= 〈σ(x)σ (x)T h,h
〉− C2〈h,h〉 ≥ (λ2 − C2)|h|2,

and thus we can assume that σ̃ (x) is also uniformly positive definite. Therefore Lemma 3.3 in [32] applies (our σ̃

corresponds to σ in [32] and our σσT corresponds to q therein). Thus we get∥∥σ̃ (x) − σ̃ (y)
∥∥

HS ≤ 1

2
√

λ2 − C2

∥∥σ(x)σ (x)T − σ(y)σ (y)T
∥∥

HS

(all eigenvalues of σ(x)σ (x)T − C2I are not less than λ2 − C2, which is the condition that needs to be checked in
the proof of Lemma 3.3 in [32]). This shows that whenever σσT is Lipschitz with a constant L, the function σ̃ is
Lipschitz with L/2

√
λ2 − C2. In particular, if σ is Lipschitz with a constant L and bounded with a constant M , then

σσT is Lipschitz with the constant 2LM and thus σ̃ is Lipschitz with LM/
√

λ2 − C2. Hence we prove (4.16).
Now assume that (Xt )t≥0 is a solution to (4.15) and consider the process

At := CB1
t +

∫ t

0

√
σ(Xs)σ (Xs)T − C2I dB2

s = Xt − X0 −
∫ t

0
b(Xs) ds.

We can easily calculate

[
Ai,Aj

]
t
=
∫ t

0

(
σσT

)
ij
(Xs) ds. (4.17)

Hence, if we write

dXt = dAt + b(Xt ) dt = σ(Xt ) dB̃t + b(Xt ) dt,

where dB̃t = σ−1(Xt ) dAt , then using (4.17) and the Lévy characterization theorem, we infer that (B̃t )t≥0 is a Brow-
nian motion. Thus (Xt )t≥0 is a solution to (4.14). �

The proof of (4.16) is based on the reasoning in [32], Section 3 (the matrix q(x) used there is our σ(x)σ (x)T ; the
difference in notation follows from the fact that the starting point for studying diffusions in [32] is the generator and
not the SDE). Due to (4.16) we see that if the coefficients in (4.14) satisfy Assumption D1, then the coefficients in the
modified equation (4.15) also do (after a suitable change in the definition of κ). More generally, Lemma 4.1 allows us
to replace an equation of the form (2.1) with

dXt = b(Xt ) dt + CdB1
t +

√
σ(Xt )σ (Xt )T − C2I dB2

t +
∫

U

g(Xt−, u)Ñ(dt, du),

as long as σσT is uniformly positive definite.
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5. Bounds on Malliavin derivatives

5.1. Brownian case

In this section we first prove Theorem 2.8 and then we show how to obtain bounds on Malliavin derivatives using the
inequality (2.4). As a consequence we prove Theorem 2.14 and Corollary 2.15. We begin with proving the following
crucial result.

Lemma 5.1. Let (Xt )t≥0 be a d-dimensional jump diffusion process given by

dXt = b(Xt ) dt + σdBt +
∫

U

g(Xt−, u)Ñ(dt, du), (5.1)

where σ is a d × d matrix with detσ > 0 and (Bt )t≥0 is a d-dimensional Brownian motion, whereas b and g satisfy
Assumption D1 and Assumption D2 and g is Lipschitz. Let ht be an adapted d-dimensional process and consider a
jump diffusion (X̃t )t≥0 with the drift perturbed by ht , i.e.,

dX̃t = b(X̃t ) dt + ht dt + σdBt +
∫

U

g(X̃t−, u)Ñ(dt, du). (5.2)

Then there exists a d-dimensional process (Yt )t≥0 such that (Xt , Yt )t≥0 is a coupling and we have

E|X̃t − Yt | ≤ CE

∫ t

0
ec(s−t)|hs |ds (5.3)

for some constant C > 0.

Proof. The arguments we use here are based on ideas from Sections 6 and 7 in [12], where interacting diffusions
(without the jump noise) were studied. Here the most important part of the argument also concerns the Gaussian
noise, however, we include the jump noise too in order to show how to handle the additional terms, which is important
for the proof of Theorem 2.8. On the other hand, in order to slightly simplify the notation, we assume from now on
that σ = I . Denote

Zt := X̃t − Yt ,

where (Yt )t≥0 will be defined below by (5.6), and consider Lipschitz continuous functions λ, π : Rd → [0,1] such
that for some fixed δ > 0 we have

λ2(z) + π2(z) = 1 for any z ∈R
d,

λ(z) = 0 if |z| ≤ δ/2

λ(z) = 1 if |z| ≥ δ.

(5.4)

Now fix a unit vector u ∈ R
d and define R(X̃t , Yt ) := I − 2et e

T
t , where

et :=
{

Zt|Zt | , if X̃t �= Yt ,

u, if X̃t = Yt .

We will see from the proof that the exact value of u is irrelevant. Let us notice that the equation (5.2) for the process
(X̃t )t≥0 can be rewritten as

dX̃t = b(X̃t ) dt + ht dt + λ(Zt ) dB1
t + π(Zt ) dB2

t +
∫

U

g(X̃t−, u)Ñ(dt, du), (5.5)
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where (B1
t )t≥0 and (B2

t )t≥0 are independent Brownian motions, and define

dYt = b(Yt ) dt + λ(Zt )R(X̃t , Yt ) dB1
t + π(Zt ) dB2

t +
∫

U

g(Yt−, u)Ñ(dt, du). (5.6)

Using the Lévy characterization theorem and the fact that λ2 + π2 = 1, we can show that the processes defined by

dB̃t := λ(Zt ) dB1
t + π(Zt ) dB2

t ,

dB̄t := λ(Zt )R(X̃t , Yt ) dB1
t + π(Zt ) dB2

t

are both d-dimensional Brownian motions and hence the process (Yt )t≥0 defined by (5.6) has the same finite dimen-
sional distributions as (Xt )t≥0 defined by (5.1) with σ = I , while both (5.2) with σ = I and (5.5) also define the
same (in law) process, which follows from the uniqueness in law of solutions to equations of the form (5.1). Thus
(Xt , Yt )t≥0 is a coupling. Note that obviously in this case (X̃t , Yt )t≥0 is not a coupling, but we do not need this to
prove (5.3). Consider the equation for Zt = X̃t − Yt , which is given by

dZt = (b(X̃t ) − b(Yt )
)
dt + ht dt + 2λ(Zt )et e

T
t dB1

t +
∫

U

(
g(X̃t−, u) − g(Yt−, u)

)
Ñ(dt, du),

and observe that the process

dW̃t := eT
t dB1

t

is a one-dimensional Brownian motion. Now we would like to apply the Itô formula to calculate df (|Zt |) for the
function f given by (4.4), just like we did in the proof of Theorem 2.3. However, the function x �→ f (|x|) is not
differentiable at zero. In the proof of Theorem 2.3 this was not a problem, since we started the marginal processes of
our coupling at two different initial points and were only interested in the behaviour of f (|Zt |) until Zt reaches zero
for the first time. Here on the other hand we will actually want to start both the marginal processes at the same point.
Moreover, because of the modified construction of the coupling, which now behaves like a synchronous coupling for
small values of |Zt |, it can keep visiting zero infinitely often. A way to rigorously deal with this is to apply the version
of the Meyer–Itô formula that can be found e.g. as Theorem 71 in Chapter IV in [33]. We begin with computing the
formula for d|Zt |, by calculating d|Zt |2 first and then applying the Itô formula once again to a smooth approximation
of the square root function, given e.g. by

S(r) :=
{

−(1/8)ε−3/2r2 + (3/4)ε−1/2r + (3/8)ε1/2, r < ε,√
r, r ≥ ε.

A related argument was given by Zimmer in [40] in the context of infinite-dimensional diffusions, see Lemmas 2-5
therein. In our case, after two applications of the Itô formula, we get

dS
(|Zt |2

)= 4S′(|Zt |2
)
λ(Zt )|Zt |dW̃t + 2S′(|Zt |2

)〈
Zt ,ht + b(X̃t ) − b(Yt )

〉
dt

+ 4S′(|Zt |2
)
λ2(Zt ) dt + 8S′′(|Zt |2

)
λ2(Zt )|Zt |2 dt

+
∫

U

(
S
(∣∣Zt− + g(X̃t−, u) − g(Yt−, u)

∣∣2)− S
(|Zt−|2))N(dt, du)

− 2
∫

U

S′(|Zt−|2)〈Zt−, g(X̃t−, u) − g(Yt−, u)
〉
ν(du)dt.

Since for any r ∈ [0,∞) we have S(r) → √
r when ε → 0, we can also show almost sure convergence of the integrals

appearing in the formula above. For example, using the fact that S is concave, for any a, b ≥ 0 we have S(a)−S(b) ≤
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S′(b)(b − a) and hence

E

∫ T

0

∫
U

(
S
(∣∣Zt− + g(X̃t−, u) − g(Yt−, u)

∣∣2)− S
(|Zt−|2))N(dt, du)

≤ E

∫ T

0

∫
U

S′(|Zt−|2)(∣∣g(X̃t−, u) − g(Yt−, u)
∣∣2 + 2

〈
Zt−, g(X̃t−, u) − g(Yt−, u)

〉)
ν(du)dt.

Using the fact that g is Lipschitz and that supr≤ε S′(r) � ε−1/2, we see that the integral∫ T

0

∫
U

(
S
(∣∣Zt− + g(X̃t−, u) − g(Yt−, u)

∣∣2)− S
(|Zt−|2))N(dt, du)

converges to∫ T

0

∫
U

1{Zt−�=0}
(∣∣Zt− + g(X̃t−, u) − g(Yt−, u)

∣∣− |Zt−|)N(dt, du)

in L1 and hence, via a subsequence, almost surely when ε → 0. Dealing with the other integrals is even easier, cf.
Lemmas 2 and 3 in [40] for analogous arguments. Thus we are able to get

d|Zt | = 2λ(Zt ) dW̃t + 1{Zt �=0}
1

|Zt |
〈
Zt ,ht + b(X̃t ) − b(Yt )

〉
dt

+
∫

U

1{Zt−�=0}
(∣∣Zt− + g(X̃t−, u) − g(Yt−, u)

∣∣− |Zt−|)N(dt, du)

−
∫

U

1{Zt−�=0}
1

|Zt−|
〈
Zt−, g(X̃t−, u) − g(Yt−, u)

〉
ν(du)dt.

Now observe that the function f defined by (4.4) is twice continuously differentiable at all points except for R1,
whereas f ′ exists and is continuous even at R1. Therefore we can apply the Meyer–Itô formula in its version given as
Theorem 71 in Chapter IV in [33] to the process (|Zt |)t≥0 and the function f . For any 0 ≤ s ≤ r we get

f
(|Zr |

)− f
(|Zs |

)= 2
∫ r

s

f ′(|Zt |
)
λ(Zt ) dW̃t

+
∫ r

s

1{Zt �=0}f ′(|Zt |
) 1

|Zt |
〈
Zt ,ht + b(X̃t ) − b(Yt )

〉
dt

+
∫ r

s

∫
U

1{Zt−�=0}f ′(|Zt−|) 1

|Zt−|
〈
Zt−, g(X̃t−, u) − g(Yt−, u)

〉
Ñ(dt, du)

+
∫ r

s

∫
U

1{Zt−�=0}
[
f
(∣∣Zt− + g(Xt−, u) − g(Yt−, u)

∣∣)− f
(|Zt−|)

− f ′(|Zt−|) 1

|Zt−|
〈
Zt−, g(Xt−, u) − g(Yt−, u)

〉]
N(dt, du)

+ 2
∫ r

s

f ′′(|Zt |
)
λ2(Zt ) dt. (5.7)

We can see that the integrand in the integral with respect to (W̃t )t≥0 in (5.7) is bounded (since f ′ and λ are bounded)
and the integrand in the integral with respect to Ñ is square integrable with respect to ν(du)dt . Thus the expectations
of both these integrals are zero. Moreover, the expectation of the integral with respect to N in (5.7) can be dealt with
in the same way as the expectation of the term I9 in the proof of Theorem 2.3, see (4.12). Thus, after taking the
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expectation everywhere in (5.7) and using the definition of κ , we get

Ef
(|Zr |

)−Ef
(|Zs |

)≤ E

∫ r

s

1{Zt �=0}|ht |dt −E

∫ r

s

1{Zt �=0}f ′(|Zt |
)|Zt |κ

(|Zt |
)
dt

+E

∫ r

s

2f ′′(|Zt |
)
λ2(Zt ) dt. (5.8)

We will now want to use the fact that the function f defined by (4.4) satisfies

2f ′′(r) − rκ(r)f ′(r) ≤ −cf (r). (5.9)

In particular, denoting rt := |Zt |, we get

2f ′′(rt )λ2(Zt ) − rt κ(rt )f
′(rt )λ2(Zt ) + rtκ(rt )f

′(rt ) − rt κ(rt )f
′(rt ) ≤ −cf (rt )λ

2(Zt )

and thus

−rtκ(rt )f
′(rt ) + 2f ′′(rt )λ2(Zt ) ≤ −cf (rt )λ

2(Zt ) + rt κ(rt )f
′(rt )

(
λ2(Zt ) − 1

)
. (5.10)

Now observe that

−cf (rt )λ
2(Zt ) = cf (rt )

(
1 − λ2(Zt )

)− cf (rt ) ≤ cδ − cf (rt ),

which holds since if |Zt | ≥ δ, then 1 − λ2(Zt ) = 0 and if |Zt | ≤ δ, then 1 − λ2(Zt ) ≤ 1 and cf (rt ) ≤ cδ, which follow
from the properties (5.4) of the function λ and the fact that f (x) ≤ x for any x ∈ [0,∞). Since obviously −κ ≤ κ−,
we can further bound the right hand side of (5.10) by

cδ − cf (rt ) + κ−(rt )
(
1 − λ2(Zt )

)
rtf

′(rt ) ≤ cδ − cf (rt ) + sup
r≤δ

rκ−(r), (5.11)

where the last inequality follows from the fact that 1 − λ2(Zt ) = 0 when |Zt | ≥ δ and that f ′ ≤ 1. If we denote

m(δ) := cδ + sup
r≤δ

rκ−(r),

then, from (5.10) and (5.11) we obtain

−rtκ(rt )f
′(rt ) + 2f ′′(rt )λ2(Zt ) ≤ −cf (rt ) + m(δ). (5.12)

Hence, combining (5.8) with (5.12) multiplied by 1{rt �=0}, we get

Ef
(|Zr |

)−Ef
(|Zs |

)≤ −c

∫ r

s

E1{Zt �=0}f
(|Zt |

)
dt +E

∫ r

s

1{Zt �=0}
(|ht | + m(δ)

)
dt

≤ −c

∫ r

s

Ef
(|Zt |

)
dt +E

∫ r

s

|ht |dt +
∫ r

s

m(δ) dt.

Now observe that due to Assumption D2, we have m(δ) → 0 as δ → 0. We can also choose X̃0 = Y0 so that Z0 = 0.
Eventually, applying the Gronwall inequality, we obtain

E
[
f
(|Zt |

)]≤ E

∫ t

0
ec(s−t)|hs |ds,

which finishes the proof, since there exists a constant C > 0 such that for any x ≥ 0 we have x ≤ Cf (x). �

Proof of Theorem 2.8. Once we have Lemma 5.1, extending its result to the equation (2.14) is quite straightforward.
In comparison to the proof of Lemma 5.1, the key step is to redefine κ in order to include the additional coefficient
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σ of the multiplicative Brownian noise (so that κ satisfies (4.10)) and then perform the same procedure as we did
earlier (mixed reflection-synchronous coupling) only on the additive Brownian noise in order to construct processes
like (5.5) and (5.6), where to the other noises we apply just the synchronous coupling. This way we can still get the
inequality (5.9) with the same function f as in the proof of Lemma 5.1. The details are left to the reader, as they are
just a repetition of what we have already presented. Once we obtain an inequality of the form (5.3) for the equation
(2.14), we can use the Markov property of the process (X̃t , Yt )t≥0 to get (2.16), cf. Remark 2.5. �

Proof of Theorem 2.14. In order to keep notational simplicity, assume that we are dealing here with the equation
dXt = b(Xt ) dt + σ(Xt ) dWt , i.e., the coefficient of the jump noise is zero. It does not influence our argument in any
way, since we will need to perturb only the Gaussian noise. Recall that for a functional f : Rd → R, the Malliavin
derivative ∇sf (Xt ) is an m-dimensional vector (∇s,1f (Xt ), . . . ,∇s,mf (Xt )), where ∇s,kf (Xt ) can be thought of as
a derivative with respect to (Wk

t )t≥0, where Wt = (W 1
t , . . . ,Wm

t ) is the driving m-dimensional Brownian motion.

We know that if F is a random variable of the form F = f (
∫ T

0 g1
s dWs, . . . ,

∫ T

0 gN
s dWs) for some smooth function

f : RN → R and g1, . . . , gN ∈ L2([0, T ];Rm) (i.e., F ∈ S), then for any element h ∈ H = L2([0, T ];Rm) we have

〈∇F,h〉L2([0,T ];Rm) =
∫ t

0
〈∇sF,hs〉ds = lim

ε→0

1

ε

(
F

(
W· + ε

∫ ·

0
hs ds

)
− F(W·)

)
, (5.13)

where convergence is in L2(�). However, it is unclear whether (5.13) holds also for arbitrary F ∈ D
1,2 and in par-

ticular for Xt (see the discussion in Appendix A in [10], specifically Definitions A.10 and A.13). Nevertheless, for
F ∈D

1,2 we can still prove that

E〈∇F,h〉L2([0,T ];Rm) = lim
ε→0

1

ε
E

(
F

(
W· + ε

∫ ·

0
hs ds

)
− F(W·)

)
, (5.14)

even if we replace h ∈ H with an adapted stochastic process (ω, t) �→ ht (ω) such that E
∫ T

0 |hs |2 ds < ∞ and the
Girsanov theorem applies (e.g. the Novikov condition for h is satisfied).

Indeed, we know that for any F ∈D
1,2 and for any adapted square integrable h we have

E〈∇F,h〉L2([0,T ];Rm) = E

[
F

∫ T

0
hs dWs

]
. (5.15)

We recall now the proof of this fact, as we need to slightly modify it in order to get (5.14). As a reference, see e.g.
Lemma A.15. in [10], where (5.15) is proved only for F ∈ S and for deterministic h, but the argument can be easily
generalized, or Theorems 1.1 and 1.2 in Chapter VIII of [5]. For now assume that h is adapted and bounded (and thus
it satisfies the assumptions of the Girsanov theorem). Then, starting from the right hand side of (5.15), we have

E

[
F

∫ T

0
hs dWs

]
= E

[
F

d

dε
exp

(
ε

∫ T

0
hs dWs − 1

2
ε2
∫ T

0
|hs |2 ds

)∣∣∣∣
ε=0

]

= E

[
F lim

ε→0

1

ε

[
exp

(
ε

∫ T

0
hs dWs − 1

2
ε2
∫ T

0
|hs |2 ds

)
− 1

]]
= lim

ε→0

1

ε
E

[
F exp

(
ε

∫ T

0
hs dWs − 1

2
ε2
∫ T

0
|hs |2 ds

)
− F

]
= lim

ε→0

1

ε
E

[
F

(
W· + ε

∫ ·

0
hs ds

)
− F(W·)

]
, (5.16)

where in the last step we use the Girsanov theorem. In order to explain the third step, notice that the process

Zε
t := exp

(
ε

∫ t

0
hs dWs − 1

2
ε2
∫ t

0
|hs |2 ds

)
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is the stochastic exponential of ε
∫ t

0 hs dWs and thus it satisfies dZε
t = εZε

s hs dWs , from which we get

1

ε

[
Zε

T − 1
]= ∫ T

0
Zε

s hs dWs.

Now it is easy to see that since for any ω ∈ � we have Zε
t (ω) → 1 with ε → 0 and Zε

t is uniformly bounded in
L2(� × [0, T ]), there is a subsequence such that

1

ε

[
Zε

T − 1
]= ∫ T

0
Zε

s hs dWs →
∫ T

0
hs dWs as ε → 0, in L2(�).

Thus the third step in (5.16) holds for any F ∈ L2(�) and in particular for any F ∈D
1,2. If F is smooth, then the last

expression in (5.16) is equal to E〈∇F,h〉L2([0,T ];Rm), which proves (5.15) for any smooth F and adapted, bounded h.
Then (5.15) can be extended by approximation to any F ∈ D

1,2 and any adapted, square integrable h.
Now in order to prove (5.14), observe that the calculations in (5.16) still hold when applied directly to an F ∈ D

1,2

and an adapted, bounded h (note that the argument does not work for general adapted, square integrable h as we need
to use the Girsanov theorem in the last step). Thus for any F ∈ D

1,2 and any adapted, bounded h we get

E〈∇F,h〉L2([0,T ];Rm) = E

[
F

∫ T

0
hs dWs

]
= lim

ε→0

1

ε
E

[
F

(
W· + ε

∫ ·

0
hs ds

)
− F(W·)

]
.

Since Xt ∈ D
1,2 and f is Lipschitz, we have f (Xt ) ∈ D

1,2 (cf. [28], Proposition 1.2.4), and hence

E
〈∇f (Xt ), h

〉
L2([0,T ];Rm)

= lim
ε→0

1

ε
E

(
f (Xt )

(
W· + ε

∫ ·

0
hs ds

)
− f (Xt )(W·)

)
holds for any adapted, bounded process h. From now on, we fix t > 0 and take T = t .

Recall that the process (Xt )t≥0 is now given by dXt = b(Xt ) dt + σ(Xt ) dWt and thus

Xt

(
W· + ε

∫ ·

0
hs ds

)
=
∫ t

0
b(Xs) ds + ε

∫ t

0
σ(Xs)hs ds +

∫ t

0
σ(Xs) dWs. (5.17)

Hence, using the assumption (2.4) from Theorem 2.1 (taking εσ (Xs)hs as the adapted change of drift and denoting
the solution to (5.17) by (X̃t )t≥0) we obtain

E

(
f (Xt )

(
W· + ε

∫ ·

0
hs ds

)
− f (Xt )(W·)

)
= E

(
f (Xt )

(
W· + ε

∫ ·

0
hs ds

)
− f

(
Y ′

t

)
(W·)

)
≤ εc2(t)E

∫ t

0
c3(s)

∣∣σ(X̃s)hs

∣∣ds,

where Ef (Xt ) = Ef (Y ′
t ), since (Xt , Y

′
t )t≥0 is a coupling. This in turn implies, together with our above calculations,

that we have

E
〈∇f (Xt ), h

〉
L2([0,t];Rm)

≤ c2(t)E

∫ t

0
c3(s)

∣∣σ(X̃s)hs

∣∣ds ≤ c2(t)σ∞E

∫ t

0
c3(s)|hs |ds. (5.18)

Now by approximation we can show that the above inequality holds for any adapted process h such that E
∫ t

0 |hs |2 ds <

∞. Then, using the Cauchy–Schwarz inequality for L2(� × [0, t]), we get

E
〈∇f (Xt ), h

〉
L2([0,t];Rm)

≤ c2(t)σ∞
(
E

∫ t

0
c2

3(s) ds

)1/2(
E

∫ t

0
|hs |2 ds

)1/2

.

Moreover, observe that since h is adapted, we have

E
〈∇f (Xt ), h

〉
L2([0,t];Rm)

= E

∫ t

0

〈
E
[∇sf (Xt ) | Fs

]
, hs

〉
ds =: E〈E[∇·f (Xt ) | F·

]
, h·
〉
L2([0,t];Rm)

. (5.19)
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If we replace h above with h
√

g for some adapted, integrable, R+-valued process g, we get (by coming back to (5.18)
and splitting h and

√
g via the Cauchy–Schwarz inequality)

E
〈√

g·E
[∇·f (Xt ) |F·

]
, h·
〉
L2([0,t];Rm)

= E
〈
E
[∇·f (Xt ) | F·

]
, h·

√
g·
〉
L2([0,t];Rm)

≤ c2(t)σ∞
(
E

∫ t

0
gsc

2
3(s) ds

)1/2(
E

∫ t

0
|hs |2 ds

)1/2

.

Since this holds for an arbitrary adapted, square integrable process h, we have

E

∫ t

0
gu

∣∣E[∇uf (Xt ) |Fu

]∣∣2 du ≤ c2
2(t)σ

2∞E

∫ t

0
guc

2
3(u) du. (5.20)

Observe that in the inequality above we can integrate on any interval [s, r] ⊂ [0, t]. We can also approximate an
arbitrary adapted, R+-valued process g with processes g ∧ n for n ≥ 1, for which we have (5.20). Then, by the Fatou
lemma on the left hand side and the dominated convergence theorem on the right hand side, we get

E

∫ r

s

gu

∣∣E[∇uf (Xt ) | Fu

]∣∣2 du ≤ lim
n→∞E

∫ r

s

(gu ∧ n)
∣∣E[∇uf (Xt ) | Fu

]∣∣2 du

≤ c2
2(t)σ

2∞E

∫ r

s

guc
2
3(u) du.

Hence we finally obtain (2.18). In order to get (2.19), we just need to go back to (5.18) and notice that it implies

E
〈∇f (Xt ), h

〉
L2([0,t];Rm)

≤ c2(t)σ∞ sup
u≤t

c3(u)E

∫ t

0
|hs |ds.

Since we can show that this holds for an arbitrary adapted h from L1(� × [0, t]), using (5.19) and the fact that the
dual of L1 is L∞, we finish the proof. �

Proof of Corollary 2.15. Note that from Theorem 2.8 we obtain an inequality of the form (2.16), where on the
right hand side we have either the coefficient σ1 or σ , depending on whether we want to consider ∇1 or ∇2. Recall
from the proof of Theorem 2.8 that in order to get (2.16) we need to use the additive Brownian noise (B1

t )t≥0,
regardless of which change of the drift we consider in the equation defining (X̃t )t≥0 that appears therein. Therefore
we need to assume detσ1 > 0 even if we are only interested in bounding the Malliavin derivative with respect to the
multiplicative Brownian noise (B2

t )t≥0. Once we have (2.16), it is sufficient to apply Theorem 2.14 with c2(t) = Ce−ct

and c3(s) = ecs . �

5.2. Poissonian case

Consider the solution (Xt (x))t≥0 to

dXt = b(Xt ) dt + σ(Xt ) dWt +
∫

U

g(Xt−, u)Ñ(dt, du) (5.21)

with initial condition x ∈ R
d as a functional of the underlying Poisson random measure N =∑∞

j=1 δ(τj ,ξj ). Then
define

X(t,u)(x) = X(t,u)(x,N) := X(x,N + δ(t,u)),

which means that we add a jump of size g(Xt−, u) at time t to every path of X. Then

X(t,u)
s (x) = Xs(x) for s < t
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and

X(t,u)
s (x) = Xt(x) + g(Xt−, u) +

∫ s

t

b
(
X(t,u)

r (x)
)
dr

+
∫ s

t

σ
(
X(t,u)

r (x)
)
dWr +

∫ s

t

∫
U

g
(
X

(t,u)
r− (x), u

)
Ñ(dr, du) for s ≥ t.

This means that after time t , the process (X
(t,u)
s (x))s≥t is a solution of the same SDE but with different initial condi-

tion, i.e., X
(t,u)
t (x) = Xt(x) + g(Xt−, u).

If the global dissipativity assumption is satisfied (like in [39] and [25]), it is easy to show that the solution (Xt )t≥0

to (5.21) satisfies for any x and y ∈R
d the inequality

E
∣∣Xt(x) − Xt(y)

∣∣≤ e−Kt |x − y|

with some constant K > 0. Then we easily see that for any Lipschitz function f : Rd → R with ‖f ‖Lip ≤ 1, if t < T

we have

E
[
Dt,uf

(
XT (x)

) |Ft

]≤ E
[∣∣f (X(t,u)

T (x)
)− f

(
XT (x)

)∣∣ |Ft

]
≤ E

[∣∣X(t,u)
T (x) − XT (x)

∣∣ | Ft

]
≤ e−K(T −t)

∣∣g(Xt−, u)
∣∣.

In order to improve this result we will work under the assumption (2.3) from Theorem 2.1 stating that there exists a
coupling (Xt , Yt )t≥0 of solutions to (5.21) such that

E
[|XT − YT |/Ft

]≤ c1(T − t)|Xt − Yt | (5.22)

holds for any T ≥ t ≥ 0 with some function c1 :R+ →R+. We fix t > 0 and we express the process (X
(t,u)
s (x))s≥0 as

X(t,u)
s (x) :=

{
Xs(x) for s < t,

X̄s for s ≥ t,

where (X̄s)s≥t is a solution to (5.21) started at t with initial point Xt(x) + g(Xt−, u). Obviously both (Xs)s≥0 and
(X̄s)s≥t have the same transition probabilities (since they are solutions to the same SDE satisfying sufficient conditions
for uniqueness of its solutions in law). Thus we can apply our coupling to the process (X̄s)s≥t to get a process (Ȳs)s≥t

with initial point Xt(x) and the same transition probabilities as (Ys)s≥0 (and thus also (Xs)s≥0). Now if we define the
coupling time τ := inf{r > t : X̄r = Ȳr } then we can put

Ŷs(x) :=

⎧⎪⎨⎪⎩
Xs(x) for s < t,

Ȳs for t ≤ s < τ,

X̄s for s ≥ τ,

and we obtain a process with the same transition probabilities as (X
(t,u)
s (x))s≥0 and thus also (Xs(x))s≥0. This follows

from a standard argument about gluing couplings at stopping times, see e.g. Section 2.2 in [38] for a possible approach.
This way we get a coupling (Xs(x), Ŷs(x))s≥0 such that

E
[∣∣X(t,u)

T (x) − ŶT (x)
∣∣ |Ft

]≤ c1(T − t)
∣∣g(Xt−, u)

∣∣
holds for any T ≥ t (from our construction we see that X

(t,u)
t (x) − Ŷt (x) = g(Xt−, u) and we use (5.22)). Now we
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can easily compute

E
[
Dt,uf

(
XT (x)

) |Ft

]= E
[
f
(
X

(t,u)
T (x)

)− f
(
XT (x)

) | Ft

]
= E

[
f
(
X

(t,u)
T (x)

)− f
(
ŶT (x)

) | Ft

]
≤ E

[∣∣X(t,u)
T (x) − ŶT (x)

∣∣ |Ft

]
≤ c1(T − t)

∣∣g(Xt−, u)
∣∣, (5.23)

where we used the coupling property in the second step. In particular, if there exists a measurable function g∞ : U →R

such that |g(x,u)| ≤ g∞(u) for any x ∈ R
d and u ∈ U , then we obviously get

E
[
Dt,uf

(
XT (x)

) |Ft

]≤ c1(T − t)g∞(u). (5.24)

To end this section, let us consider briefly the case of the equation (2.14), where we have two jump noises, given
by a Lévy process (Lt )t≥0 and a Poisson random measure N . Then we can easily obtain analogous bounds on the
Malliavin derivatives with respect to (Lt )t≥0 and N , which we denote by DL and D, respectively. Namely, in the
framework of Theorem 2.3 we obtain a coupling (Xt , Yt )t≥0 such that

E
[|XT − YT |/Ft

]≤ C̃e−c̃(T −t)|Xt − Yt |

holds for any T ≥ t ≥ 0 with some constants C̃, c̃ > 0. Then, repeating the reasoning above, we easily get

E
[
DL

t,uf
(
XT (x)

) |Ft

]≤ C̃e−c̃(T −t)u (5.25)

and

E
[
Dt,uf

(
XT (x)

) |Ft

]≤ C̃e−c̃(T −t)g∞(u). (5.26)

6. Proofs of transportation and concentration inequalities

Proof of Theorem 2.1 and Theorem 2.2. We first briefly recall the method of the proof of Theorem 2.2 in [39] and its
extension from [25] (however, we denote certain quantities differently from [25] to make the notation more consistent
with the original one from [39]). We will make use of the elements of Malliavin calculus described in Section 1.
Specifically, we work on a probability space (�,F, (Ft )t≥0,P) equipped with a Brownian motion (Wt )t≥0 and a
Poisson random measure N , on which we define the Malliavin derivative ∇ with respect to (Wt )t≥0 (a differential
operator) and the Malliavin derivative D with respect to N (a difference operator). We use the Clark–Ocone formula,
i.e., if F is a functional such that the integrability condition (1.9) is satisfied, then

F = EF +
∫ T

0
E[∇tF | Ft ]dWt +

∫ T

0

∫
U

E[Dt,uF | Ft ]Ñ(dt, du). (6.1)

From the proof of Lemma 3.2 in [25] we know that if we show that there exists a deterministic function h : [0, T ] ×
U → R such that

∫ T

0

∫
U

h(t, u)2ν(du)dt < ∞ and

E[Dt,uF | Ft ] ≤ h(t, u) (6.2)

and there exists a deterministic function j : [0, T ] → R
m such that

∫ T

0 |j (t)|2 dt < ∞ and∣∣E[∇tF |Ft ]
∣∣≤ ∣∣j (t)

∣∣, (6.3)
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then for any C2 convex function φ : R→R such that φ′ is also convex, we have

Eφ(F −EF) ≤ Eφ

(∫ T

0

∫
U

h(t, u)Ñ(dt, du) +
∫ T

0
j (t) dWt

)
. (6.4)

In particular, for any λ > 0 we have

Eeλ(F−EF) ≤ exp

(∫ T

0

∫
U

(
eλh(t,u) − λh(t, u) − 1

)
ν(du)dt +

∫ T

0

λ2

2

∣∣j (t)
∣∣2 dt

)
. (6.5)

The way to prove this is based on the forward–backward martingale method developed by Klein, Ma and Privault in
[19]. On the product space (�2,F2,P2) for any (ω,ω′) ∈ �2 we can define

Mt

(
ω,ω′) := ∫ t

0

∫
U

E[Ds,uF |Fs](ω)Ñ(ω, ds, du) +
∫ t

0
E[∇sF |Fs](ω)dWs(ω), (6.6)

which is a forward martingale with respect to the increasing filtration Ft ⊗F on �2 and

M∗
t

(
ω,ω′) := ∫ T

t

∫
U

h(s,u)Ñ
(
ω′, ds, du

)+ ∫ T

t

j (s) dWs

(
ω′), (6.7)

which is a backward martingale with respect to the decreasing filtration F ⊗ F∗
t , where F∗

t is the σ -field generated
by N([r,∞),A) and Wr for r ≥ t where A are Borel subsets of U . Application of the forward–backward Itô formula
(see Section 8 in [19]) to φ(Mt + M∗

t ) and comparison of the characteristics of Mt and M∗
t shows that for any s ≤ t

we have

Eφ
(
Mt + M∗

t

)≤ Eφ
(
Ms + M∗

s

)
.

This follows from Theorem 3.3 in [19]. However, it is important to note that if we replace (6.3) with a weaker
assumption, stating that for any adapted, R+-valued process g and for any [s, r] ⊂ [0, T ] we have

E

∫ r

s

gu

∣∣E[∇uF | Fu]
∣∣2 du ≤ E

∫ r

s

gu

∣∣j (u)
∣∣2 du, (6.8)

then the argument from [19] still holds (check the page 493 in [19] and observe that what we need for the proof of
Theorem 3.3 therein is that the integral of the process φ′′(Mu +M∗

u) appearing there is non-positive and that is indeed
the case if M and M∗ are given by (6.6) and (6.7), respectively, and the condition (6.8) holds). Now we will use the
fact that by the Clark–Ocone formula (6.1) we know that Mt + M∗

t → F −EF in L2 as t → T . Observe that since φ

is convex, we have

φ
(
Mt + M∗

t

)− φ(0) ≥ φ′(0)
(
Mt + M∗

t

)
and thus we can apply the Fatou lemma for φ(Mt + M∗

t ) − φ(0) − φ′(0)(Mt + M∗
t ) to get

Eφ(F −EF) − φ′(0)E(MT ) ≤ lim
t→T

Eφ
(
Mt + M∗

t

)
.

Here φ(0) cancels since it appears on both sides and by (6.1) we know that E(MT ) = E(F −EF) = 0. Thus we get

Eφ(F −EF) ≤ lim
t→T

Eφ
(
Mt + M∗

t

)≤ lim
t→T

Eφ
(
M∗

0

)= Eφ
(
M∗

0

)
,

which proves (6.4).
Now we can return to the equation (2.1). Using the assumption (2.3) we can get a bound on the Malliavin derivative

D of a Lipschitz functional of XT (x), i.e., for any f :Rd → R with ‖f ‖Lip ≤ 1 we have

E
[
Dt,uf

(
XT (x)

) | Ft

]≤ c1(T − t)
∣∣g(Xt−, u)

∣∣≤ c1(T − t)g∞(u) (6.9)



2054 M. B. Majka

(see the discussion in Section 5.2, in particular (5.23) and (5.24)). Note that the square integrability condition on the
upper bound required in (6.2) is satisfied due to our assumptions on g∞. On the other hand, due to the assumption
(2.4), via Theorem 2.14, for any adapted R+-valued process g and any [s, r] ⊂ [0, T ] we get

E

∫ r

s

gu

∣∣E[∇uf (XT ) |Fu

]∣∣2 du ≤ c2
2(T )σ 2∞E

∫ r

s

guc
2
3(u) du. (6.10)

It is easy to see that with our bounds, directly from (6.4) we obtain (2.7). Note that as the integrand in the Brownian
integral appearing in (2.7) we can take any m-dimensional function whose norm coincides with our upper bound in
(6.10). For the inequalities on the path space D([0, T ];Rd) we can still use our coupling (Xs(x), Ŷs(x))s≥0 which
we discussed in Section 5.2. Denote by Ŷ[0,T ] a path of the process (Ŷs(x))t∈[0,T ]. Then for any Lipschitz functional
F : D([0, T ];Rd) → R (where we consider D([0, T ];Rd) equipped with the L1 metric dL1(γ1, γ2) := ∫ T

0 |γ1(t) −
γ2(t)|dt) such that ‖F‖Lip ≤ 1 we have

E
[
Dt,uF

(
X[0,T ](x)

) | Ft

]= E
[
F
(
X

(t,u)
[0,T ](x)

)− F
(
X[0,T ](x)

) | Ft

]
= E

[
F
(
X

(t,u)
[0,T ](x)

)− F
(
Ŷ[0,T ](x)

) | Ft

]
≤ E

[∫ T

0

∣∣X(t,u)
r (x) − Ŷr (x)

∣∣dr |Ft

]
=
∫ T

t

E
[∣∣X(t,u)

r (x) − Ŷr (x)
∣∣ |Ft

]
dr

≤
∫ T

t

c1(r − t)
∣∣g(Xt−, u)

∣∣dr

≤ g∞(u)

∫ T

t

c1(r − t) dr.

In order to get a bound on E[∇·F(X[0,T ](x)) | F·], we proceed similarly as in the proof of Theorem 2.14, using
again the coupling (Xt , Y

′
t )t≥0 satisfying the assumption (2.4). Namely, we can show that for any bounded, adapted

process h we have

E
〈∇F

(
X[0,T ](x)

)
, h
〉
L2([0,T ];Rm)

= lim
ε→0

1

ε
E

(
F
(
X[0,T ](x)

)(
W· + ε

∫ ·

0
hu du

)
− F

(
Y ′[0,T ](x)

)
(W·)

)
≤ lim

ε→0

1

ε

∫ T

0
E

∣∣∣∣Xr(x)

(
W· + ε

∫ ·

0
hu du

)
− Y ′

r (x)(W·)
∣∣∣∣dr

≤
∫ T

0

(
c2(r)

∫ r

0
c3(u)σ∞|hu|du

)
dr

=
∫ T

0

(∫ T

u

c2(r)c3(u)σ∞|hu|dr

)
du

≤
(∫ T

0

(∫ T

u

c2(r) dr

)2

c2
3(u)σ 2∞ du

)1/2(∫ T

0
|hu|2 du

)1/2

.

Then we can extend this argument to obtain for any adapted R+-valued process g and any [s, t] ⊂ [0, T ] the inequality

E

∫ t

s

gu

∣∣E[∇uF
(
X[0,T ](x)

) | Fu

]∣∣2 du ≤ σ 2∞E

∫ t

s

guc
2
3(u)

(∫ T

u

c2(r) dr

)2

du.
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This, due to (6.4), gives (2.8). This finishes the proof of Theorem 2.2. Notice that the inequalities therein are true
even if the expectation on the right hand side is infinite. However, if we want to obtain transportation inequalities
from Theorem 2.1, we need the Assumption E. Then we can apply our reasoning and the inequality (6.4) with the
function φ(x) = exp(λx) and after simple calculations we obtain (6.5), which in the case of our bounds on Malliavin
derivatives reads as

Eeλ(f (XT (x))−pT f (x)) ≤ exp

(∫ T

0
β
(
λc1(T − t)

)
dt + λ2

2
σ 2∞c2

2(T )

∫ T

0
c2

3(t) dt

)
(6.11)

and on the path space as

Eeλ(F (X[0,T ](x))−EF(X[0,T ](x)))

≤ exp

(∫ T

0
β

(
λ

∫ T

t

c1(r − t) dr

)
dt + λ2

2
σ 2∞
∫ T

0
c2

3(t)

(∫ T

t

c2(r) dr

)2

dt

)
. (6.12)

Then, by the Gozlan–Léonard characterization (1.4) and the Fenchel–Moreau theorem, we easily get (2.5) from (6.11)
and (2.6) from (6.12). �

Remark 6.1. Note that if instead of (2.3) we have an inequality like

E
[|Xt − Yt |/Fs

]≤ c1(t − s)
(|Xs − Ys | + 1

)
, (6.13)

then, by the same reasoning as in Section 5.2, instead of (6.9) we get

E
[
Dt,uf

(
XT (x)

) | Ft

]≤ c1(T − t)
(
g∞(u) + 1

)
.

Then, if we want to obtain transportation or concentration inequalities, g∞(u) + 1 has to be square integrable with
respect to the measure ν. However, if ν is a Lévy measure, this implies that ν has to be finite. This could still allow
us to obtain some interesting results in certain cases that are not covered by Corollary 2.9, where Assumption L5 is
required, which we do not need to obtain (6.13) (cf. Remark 2.6). For the sake of brevity, we skip the details.

Proof of Corollary 2.9. In the presence of two Gaussian and two jump noises, we use the Clark–Ocone formula of
the form

F = EF +
∫ T

0
E
[∇1

t F | Ft

]
dB1

t +
∫ T

0
E
[∇2

t F | Ft

]
dB2

t

+
∫ T

0

∫
U

E
[
DL

t,uF | Ft

]
ÑL(dt, du) +

∫ T

0

∫
U

E[Dt,uF | Ft ]Ñ(dt, du),

which holds for square integrable functionals F , where ∇1, ∇2, DL and D are the Malliavin derivatives with respect
to (B1

t )t≥0, (B2
t )t≥0, NL and N , respectively (see e.g. Theorem 12.20 in [10]). Then we proceed as in the proof of

Theorem 2.1, using the fact that under our assumptions, Theorem 2.3 and Theorem 2.8 provide us with couplings such
that the conditions (2.15) and (2.16) are satisfied and this allows us to obtain the required bounds on the Malliavin
derivatives (of the type (6.9) and (6.10)). More precisely, under our assumptions we obtain (2.20) and (2.21) from
Corollary 2.15, whereas (5.25) and (5.26) follow from our reasoning at the end of Section 5.2. Combining all these
bounds and using (6.4), just like in the proof of Theorem 2.1, allows us to obtain the desired transportation inequal-
ities. Furthermore, taking T → ∞ in the αT -W1H inequality, we obtain (2.17) by the argument from the proof of
Lemma 2.2 in [11]. �
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