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Abstract. We consider small perturbations of a dynamical system on the one-dimensional torus. We derive sharp estimates for
the pre-factor of the stationary state, we examine the asymptotic behavior of the solutions of the Hamilton—Jacobi equation for the
pre-factor, we compute the capacities between disjoint sets, and we prove the metastable behavior of the process among the deepest
wells following the martingale approach. We also present a bound for the probability that a Markov process hits a set before some
fixed time in terms of the capacity of an enlarged process.

Résumé. Nous considérons de petites perturbations d’un systéme dynamique sur le tore unidimensionnel. Nous obtenons des
estimations précises pour le pré-facteur de I’état stationnaire, nous examinons le comportement asymptotique des solutions de
I’équation de Hamilton—Jacobi pour le pré-facteur, nous calculons les capacités entre des ensembles disjoints et nous prouvons
le comportement métastable du processus parmi les puits les plus profonds en suivant 1’approche martingale. Nous présentons
également une borne pour la probabilité qu’un processus de Markov atteigne un ensemble avant un certain instant en termes de
capacité d’un processus élargi.
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1. Introduction

Variational formulae for the capacity between two sets have been derived recently in the context of continuous time
Markov chains and diffusions [9,13,18]. These formulae were used to prove the metastable behavior of asymmetric
condensing zero-range processes [11], random walks in a potential field [15], mean field Potts model [14], and to
derive the Eyring—Kramers formula for the transition time of non-reversible diffusions [13].

To estimate the capacity through the variational formulae alluded to above, one needs to know explicitly the sta-
tionary state. This property is shared by all the dynamics mentioned in the previous paragraph, where the invariant
measures are the equilibrium states of the reversible version of the dynamics. Usually, however, the stationary states
of non-reversible Markovian dynamics are not known explicitly.

It is possible, nonetheless, to derive through dynamical large deviations methods a formula for the quasi-potential
of non-reversible dynamics and estimates for the stationary state with exponentially small errors [8]. A natural de-
velopment of this approach consists in using potential theory to get sharper bounds of the stationary state, that is, to
provide precise estimates for the first-order term in the expansion of the quasi-potential, the so-called pre-factor.
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For one-dimensional diffusion processes with periodic boundary conditions,
dXe(t) =b(X.(1))dt +~2edW,, (1.1

where b : T — R is a smooth drift, £ > 0 a small parameter and W, the Brownian motion on the one-dimensional
torus T = [0, 1), one may derive sharp estimates for the pre-factor due to an explicit formula for the stationary state
obtained by Faggionato and Gabrielli [7]. This estimate and the precise bounds for the capacity between two wells
constitute the first main result of the article.

The pre-factor of the stationary state solves a Hamilton—Jacobi equation. We take advantage of the explicit formulae
to examine the asymptotic behavior of the solution of the Hamilton—Jacobi equation in the hope that these results might
give some insight on the behavior of the pre-factor in higher dimensions.

The second main result of this article provides an extension to diffusion processes of the martingale approach
proposed in [1-3] to derive the metastable behavior of Markov chains. The main difficulty in applying this method
to diffusions lies in the fact that the martingale approach requires an analysis of the trace of the process on the wells.
While for Markov chains the trace process is still a Markov chain [with long range jumps], for diffusions the trace
becomes a singular diffusion with jumps along the boundary of the wells, a dynamics very different from the original
one and difficult to analyze.

We present in this article an entirely new approach inspired by results in partial differential equations obtained
by Evans, Tabrizian and Seo, Tabrizian [6,17]. Here is the idea. Denote by &;, 1 <i < n, the wells, and let G be
a function defined on the entire space and which is constant [with possibly different values] in each well. Denote
by L. the generator and by F; the solution of the Poisson equation L. F, = G. Assume that for all such functions
G the solution F, is uniformly bounded and is asymptotically constant in each well. We prove in Section 7 that
the convergence in law of the projection of the trace process on the wells follows from the previous property of the
solutions of the Poisson equation.

This new way of deriving the metastable behavior of a Markov chain is applied here to small perturbations of the
dynamical system (1.1). It also provides the first example where the reduced chain, which describes the asymptotic
dynamics among the wells, is a irreducible, non-reversible Markov chain.

The third main result of the article consists in a bound on the probability that the hitting time of a set is less than
or equal to a constant in terms of capacities. In view of the variational formulae for the capacity, this result provides a
general method to obtain upper bounds for the probability of an event which appears in many different contexts.

We conclude this introduction with some historical remarks and a description of the article. The convergence of the
order parameter, in the sense of finite-dimensional distributions, of small perturbations by reversible Gaussian noises
of dynamical systems has been proved by Sugiura in [19]. Imkeller and Pavlyukevich [10] obtained a similar result
in one-dimension when the Brownian motion is replaced by a Lévy process. More recently, Bouchet and Reygner [4]
derived a formula for the transition time between two wells for non-reversible diffusions. A rigorous proof of this
result is still an open problem.

The paper is organized as follows. In Section 2, we introduce the model and the main assumptions on the drift b.
In Section 3, we present the main results of the article in the case of two wells. In Section 4, we introduce the notion
of valleys and landscapes used throughout the article. In Sections 5 and 6, we derive sharp asymptotic estimates for
the pre-factor and for the capacity between two wells. In Section 7, we prove the metastable behavior of the process
by showing that the projection of the trace process on the wells converges in an appropriate time scale to a finite-state
Markov chain. In Section 8, we prove a bound on the probability that a certain set is attained before a fixed time in
terms of the capacities of an enlarged process. Finally, in Section 9, we prove that the solutions of certain Poisson
equations are asymptotically constant on the wells.

2. The model
We introduce in this section the model, the main assumptions and known results.
2.1. The diffusion process

Let T =[O0, 1) be the one-dimensional torus of length 1. Consider a continuous vector field b : T — R. Throughout
this article, we assume that b fulfills the following conditions:
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(H1) The closed set {# € T : b(#) = 0} has a finite number of connected components, denoted by I; =[[;,7;], 1 <
J<p,forO<li<ri<b<---<l, <rp<1.Some of these intervals may be degenerate, as we do not exclude
the possibility that /; =r;.

(H2) b is of class C? in the set T \ /, where [ = U1<j<p I;.

(H3) If (c,d) is a connected component of T \ I, then &'(c+) # 0 and b'(d—) # 0. When the interval [Zj,rj]is
degenerate, /; = r;, the left and right derivatives of b at r; may be different: it may happen that b'(r; —) # b'(r;+).
However, both right and left derivatives do not vanish.

The generator of the diffusion (1.1), denoted by L., is given by
(L f)O) =bO) f'©O) +ef" ().

If the average drift vanishes,
/ b(0)do =0,
T

there exists a potential U : T — R such that (@) = —U’(0). In this case the stationary measure is given by
z; 1 exp{—U (0)/e} dO for a suitable normalization factor Z; I and the process is reversible with respect to this mea-
sure.

Assume, from now on, that

B ::/b(e)de >0, @2.1)
T

so that the process X (¢) is non-reversible. In [7], the stationary measure of this process has been explicitly computed.
Regard b as an 1-periodic function on R. Let S : R — R be the function given by

X
S(x) = — / b(z)dz, 2.2)
0
and let 7, m; : R — Ry be given by
x+1 1
e (x) = f S=SOVE gy g (x) = —— e (1), (2.3)
X c(e)

where c(¢) is the normalizing constant which turns m, the density of a probability measure on T. Indeed, 7, m are
1-periodic and can be considered as defined on T. By [7], the measure (. (d0) = m:(6) d6 on T is the stationary state
of the diffusion (1.1).

2.2. The quasi-potential

Let z : R — R be the function which indicates the position of the farthest maxima of § to the right: z(x) = z, is the
largest point in [x, co) at which a maximum of the set {S(y) : y > x} is attained. More precisely,

(@) S(zx) =max{S(y):y > x},
(b) If y>x and S(y) = S(zx), then y < z,.

Note that, for all x € R, z(x) not only exists but also satisfies z(x) € [x, x4 1) because S(y+1) = S(y)—B < S(»).

Moreover, z, is a local maximum of S if z, # x. In this case, b(zy) = —8(zx) =0.
Let V :R — R be given by

Vix)=Sx) — S(zy). (2.4)

Since S(y + k) = S(y) — kB for y € R, k € Z, z(x + k) = z(x) + k. In particular, V (x + 1) = V(x), so that V is a
1-periodic function and can be considered as defined on the torus T. By [7, Proposition 2.1], V is the quasi-potential
associated to the diffusion (1.1), and by [7, Theorem 2.4] it is a viscosity solution of the Hamilton—Jacobi equation
associated to the Hamiltonian H (x, p) = p[p — b(x)].
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Fig. 1. The graphs of b, § and V. In the first graph, the gray arrows represent the direction of the drift in the dynamical system d X (t) = b(X (¢)) dt.
Thus, m; and m, are stable equilibria, and 2 and 9, are unstable equilibria. The existence of two stable equilibria separated by unstable one
implies a metastable behavior of the perturbed dynamics (1.1).

3. Main result: Two stable points

We present in this section the main results of the article in the case, illustrated in Figure 1, where the drift b is smooth
and the dynamical system d X (t) = b(X (¢)) dt exhibits two stable equilibria and two unstable ones.
In addition to the conditions (H1)—(H3), we shall assume in this section that

(HO) The drift b is smooth and the set {6 € T : b(8) = 0} consists of four points.

Condition (HO) is not needed in the proofs of the results presented in this article. It is assumed in this section
because it simplifies significantly the notation and the statement of the results, helping the reader to access the content
of the article. Further assumptions will be formulated along the section.

3.1. Notation

By assumptions (HO) and (H3), S(-) has two local maxima 9t;, ), and two local minima my, my. Without loss
of generality, we assume that 0 < ] < m; < My < my < 1, and that that SEIT) > SONL) > S(M3), where we
adopted the convention that 913 = 1 4 MT;. We refer to Figure 1 for the graphs of b(-), S(-) and \7(-).

Foreachi =1,2,let ¢; = inf{x > 9; : S(x) = S(M;+1)} and set

%=, 4, Vi=W;, Mir), i=12

Note that V, can be regarded as the subset of T given by (£2, 1] U (0, 9t;). These notations will be comprehensively
extended to a general drift b in Section 4. Note that for x € ¥ U ¥, one has that z(x) = x and hence V (x) =0 (cf.
Figure 1). Thus, the sets X;, i = 1, 2, represent the saddle intervals between two valleys V1 and V;. The notion of
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valley is extended to the one of landscape in Section 4 to handle more general situations. The depth of the valleys V
and V, are —V (mp) and —V (m,), respectively. Assume that

V(my) =V(my) =—H, 3.1)

so that the depth of the two valleys coincide. This assumption is not necessary for the results below, but without it the
results become trivial and can easily be deduced from the argument.

Fori=1,2,let & =[e; , ef] C V; be such that f/\(m,-) < V(elf) = V(e;r) < 0 so that m; € §;. The set &; repre-
sents the metastable well around the stable point m;.

3.2. Sharp asymptotics for the pre-factor
The first main result of the article provides a sharp estimate of the stationary state. Write m, as
me(6) = Fe(0)e™ " /",
where V(0) = V(@) + H. The function F¢(-) is called the pre-factor. Its behavior as ¢ — 0 plays a fundamental role
in the estimation of the capacity between two wells, which is one of the crucial steps in the proof of the metastable

behavior of a Markov chain. Such a result is still open in the non reversible context except in the trivial case where the
pre-factor is constant. The first main result of this article provides an expansion in ¢ of the pre-factor. Fori =1, 2, let

2
a(mi)=‘/m, */wsm Z= Za(m,)w(9ﬁ,+1>

Theorem 3.1. Under the assumptions (HO)-(H3),

1. (Pre-factor on valleys) for all x € Vi, i =1, 2,
w(Miy1)
ZJe

where o(1) — 0 as € — 0 uniformly on Vi U 'V;.
2. (Pre-factor on saddle intervals) for all x € £1 U 3,

Fo(x)=[1+o(D)]

Fex) =[14+o0()]—— 700"

where o(1) - 0 as ¢ — 0 forall x € ¥1 U .

The general case, without assumption (HO), is presented in Propositions 5.2 and 5.3. Note the difference in the
scaling factor in parts (1) and (2). This difference is explained along with a connection to the Hamilton—Jacobi equation
for F; in Section 5.5. The scaling difference of the pre-factor indicates that its asymptotic analysis in higher dimension
may be a difficult problem.

3.3. Metastable behavior
We turn to the metastable behavior of the diffusion X, () between the valleys & and &,. Let X, (1) := X (ef/51) be
the speeded-up process. As in the approach developed in [1,2], we define the metastable behavior of the diffusion as

the convergence of the projection of the trace process.
To define the trace process of X.(¢) on & = & U &, let

t
7o) = [ xe(®)ds, Sew)=supls = 0:Te(s) <}
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In this formula and below, x4, A C R, represents the indicator function of the set A:
xa(x)=1 forxeA, xa(x) =0 otherwise.

The process Ye (1) = X +(Sg(1)) is called the trace of the process X on &. Informally, one obtains a trajectory of Y, (¢)
from X (t) by deleting the excursion of X outside &. In Section 7.4, we show that Y, (-) is a Markov process on &
with respect to a suitable filtration. Let W : & — {1, 2} be the projection defined by W (x) = xg, (x) +2xs, (x). Clearly,
x¢(t) = W(Y,(¢)) takes values in the set {1, 2}, and represents the valley visited by the process Y, (¢). Following [1,2],
we shall say that the process X, (¢) is metastable in the time-scale eHEifx,. () converges to a Markov chain on {1, 2},
and if the process X, ¢ (t) remains outside & for a negligible amount of time.

The method developed in [1-3] provides a robust way to establish these results. Moreover, it has been shown in
[12] that under some mild extra assumptions the metastability as stated above entails the convergence of the finite-
dimensional distributions of the projections of X, ().

This approach to metastability was successfully enforced in the context of Markov chains. Its extension to diffu-
sions, such as the one considered in the current paper, faced a major difficulty due to the singular behavior of the
trace process Y, (¢) at the boundary of &. In this paper, we propose a new way of establishing the convergence of the
projection of the trace process based on results from the theory of partial differential equations (cf. [6,17]). This is the
content of Sections 7 and 9.

Let

1 1

K2= ey &V smean)

and consider the Markov chain X (¢) on {1, 2} with generator given by
(L) =RG D[FGH—FD], i, jy=1{1,2).

Let Qj, Jj =1, 2, be the law of the Markov chain X () starting from ;.

Theorem 3.2. Fix j € {1,2}, 0y € &; and suppose that X(0) = g for all & > 0. Then, the law of the process Y.(-)
converges to Q jase—0.

The general version of this result is presented in Theorem 7.3. Although, under (HO), the process X (¢) is reversible
with respect to its invariant distribution, this is no longer true in the general setting. Actually, Theorem 7.3 provides
the first example of a dynamics whose asymptotic evolution is described by a non-reversible and irreducible Markov
chain.

The proof of Theorem 3.2 is divided in two parts. We have first to establish the tightness of the process x(¢) (cf.
Section 7.5). The core step in the proof of this result is an estimation of the escape time from a metastable well. For
this purpose we establish a general inequality, presented in Proposition 8.1, which bounds the hitting time of a set in
terms of a capacity which can be easily estimated through the variational formulae for the capacity. We believe that
this inequality, the third main result of the article, can be useful in numerous different contexts.

The second part of the proof consists in the characterization of the limit point. This part is based on the analysis of
the solution of a certain Poisson equation (cf. Proposition 9.1). This sort of analysis has been carried out in [6,17] for
reversible diffusions based on ideas from PDEs.

4. Valleys and landscapes

We introduce in this section the notion of valleys and landscapes which play an important role in the description of
the quasi-potential V.

Let Ar = [, , 9], 1 <k <q,q =0, (resp. U; =[m;,m/], 1 <j<gq’, ¢ >0) be the sub-intervals of [0, 1)
where S assumes a local maximum (resp. minimum). For the local maxima, this means that b vanishes on each
interval [907,, zm,j] and that b’(zm,j) >0, b'(M,) > 0. Similar relations hold for the intervals where S attains a local
minimum. Note that ¢, ¢’ might be equal to 0. The set +4; is represented in Figure 2.
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my =Lf
S(x)
m+
4 e my = e
A b my
-
I >
¥
0! ! 1
A() Al A2

Fig. 2. This figure represents the graph on the interval [—4, 1 4 §] of a function S : R — R associated by (2.2) to a vector field b defined on the
torus T. In this example, the set {# € T : b(6) = 0} has p = 10 connected components. There are g = 4 local maxima, and m = 2 landscapes
indicated in brown. The landscape A1 has two valleys represented in blue, while the landscape A, has only 1 valley. The two saddle intervals Xy,
¥, are displayed in red.

Since each local maxima is succeeded by a local minima, ¢’ must be equal to ¢. The intervals A, Uy might be
reduced to points, and they are supposed to be ordered in the sense that 0<M < amf <m; < m;’ <M, <--- <
_ . + +
zm(j <mg §m7; <..1.Form ez, 1.§] §q,let9ﬁj+mq —m+£m ]+m =m+m;.
Recall the definition of the function z : R — R introduced in Sectlon 2.2. Observe that

z(x)=x or z(x)e{M M > x}. 4.1

Indeed, if z(x) # x, z(x) must be greater than x and z(x) must be the right endpoint of an interval where S attains a
local maximum.

If ¢ = 0, the diffusion X, (¢) has a nonnegatlve drift. In this case, S is a non- increasing functlon and S(x) = S(zyx)
for all x € R so that the quasi-potential V introduced in (2.4), vanishes: V=o. Conversely, if V= 0, S(zx) =Sx)
for all x, which implies that S has no local minima. Hence,

V=0 ifand onlyif »>0 ifandonlyif ¢ =0.
Assume from now on that ¢ > 1. Consider a local maximum Sﬁfj such that
(M) =y’ (4.2)

There is at least one maximum which comply with this condition: if 9311* does not fulfill it, then z(i)ﬁfr) does. In
Figure 2, M, E)ﬁj{ are the maxima which satisfy this condition.

Denote by m the number of local maxima which satisfy condition (4.2), and represent them by Si zm]i(n),
1 <n < m, for some sequence 1 < j(1) <--- < j(m) <q. As m > 1 and m < g, we have that Ofﬂf <<
2* < 1. Assume, without loss of generality, that ot = 9)?;2 and extend the definition of the maxima Sff by setting
et =r+8EreZ 1<n<m.

n+rm n>

Assertion 4.A. Fix a point £ = M . We claim that £n+1 =z(MT,

iy G+

Proof. Figure 2 illustrates this assertion, as Q = z(im+) To prove the claim, we have to show that z(9)tT i F)+1)
fulfills (4.2) and that no maxima DJI in the interval (M7 ; (n), Z(ONT i) +1)) satisfies (4.2). It is clear that z(OT i) )
fulfills (4.2). We turn to the second property. By (4.1), z(O (n)+1) = E)ﬁ for some ¢ > j(n) + 1. By definition of z,

S(Em,j) < S(z(i)ﬁj(n)H)) orall j(n)+ 1<k <. Hence Em+ does not satisfy (4.2) for k in this range, which proves
the claim. O
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Fix a point £ = zmj(n) Consider the next maximum, 9t G+ As z(T ; (n)) j(n), S(imj )+ D<Ss ot
and S(&F

S(z(imj (n)+1)) < S(zm] (n)) Let ¢, be the first point x larger than £, such that S(x) = St

J(n))
n+1) _ n+l)
ty=inf{x > g5 S(x) = (£;+1)}

We refer to Figure 2 for a representation of £; and 5. It is clear that S(¢,) = S (Sn Jrl)

Assertion 4.B. Fix a point £} = Then,

J(n)

—~ 0 £7<X<Env
V() = "
Sx) — S(S 1) ly<x<g

n+1°
In particular, V(E )= V(S 1) =0, and on the set [£,, 2n+1] the functions Vand S differ by an additive constant.

Proof. We leave to the reader to check that

S(x) £ <x <y,
S = "
£@) {S(£n+l) bhsx=L,

The assertion follows from this identity and from the definition of V. ]

Note that it is not true that z(x) = x for x € [2 E n] because there might be subintervals of [Sj, £,] where S is

constant. We refer to Figure 2. In contrast, z(x) = £/ +1 for x € [¢,, Sn +1]
The previous result characterizes the function V in the interval (£, L, " l] and, therefore, in T. Let {40 =7 + €5,
reZ,1 <n<m,and let
m m
= (L. ), =[t.g]. ===, A=A 4.3)
n=1 n=1

The sets A, are named landscapes and the sets %, saddle intervals. Of course, {X, A} forms a partition of T.

Remark 4.1. By Assertion 4.B and by definition of A,, ¥,, V vanishes on X and V and S differ by an additive
constant on each landscape A, . This additive constant may be different at each set A,,.

Note that £, < £,. Hence, even if the connected components of the set {6 € T : b(9) =0} are points (that is, if
ri =1; forall 1 <i < p), the intervals ¥, at which the quasi-potential V vanishes are non-degenerate. (See Figure 1).
By Assertion 4.B, S(¢,) = S(£n+l) If ¢, = I for some 1 <k < p, let £;7 = ry, otherwise let £;7 = ¢,,:

6 =sup{x > €, : S(y) = S(¢,) forall £, <y < x}.

Each landscape A, = [£,, £, ] may contain in «r, ) local maxima 9ﬁ+ of S such that S (S)JT+) =S,

n+1]

n+1
(and thus V(Sm"’) =0). Let £} < om an, 1) - < sma =1y < £, be an enumeration of these local maxima. Set
a(n,ry) = j(n+1) so that im:(n ) = Em](n+1) = £n+1 The sets

Vo1 = (ﬂ m;(n 1)) Vr, = (m:(n rn—1)° £;+1)’

M-

4.4
a(n,jJrl))’

vn’j+1:(m 1<j<r-2

a(n,j)’

are called the valleys of the landscape A,. To simplify some equations below let 9" a(n.0) = 9)?;(,1 0= =4{, =4,.
Note that there is an abuse of notation since 9= a(n.0) = ¢+ may not be a maxima.
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In Figure 2, the landscape A| = [61,9)@'{] has 2 valleys, (Z+, SDT; ) and (smf, M, ), while the landscape As =
[€2, EITI;F] has only one valley. Each landscape has at least one valley. If there are no local maxima Dﬁk+ of S in
(&, £, ) such that S(M) = S(¢y), then r,, = 1 and the set (£, £, ) forms a valley.

Remark 4.2. The quasi-potential v may have plateaux {§ € T : Vo) = 0} which are not saddle intervals, but which

belong to a landscape. This happens if one of the local maxima sm;(n i) 0 < j <y, introduced above is such that

93?2'("’ M # DJT;(n’ M [with the convention adopted concerning a(n,0) and a(n, r,)]. This possibility is illustrated in

Figure 2 by the intervals [25, zm; 1, [41, ET]. However, if the connected components of the set {# € T : b(6) = 0} are
points, all plateaux of V are saddle intervals because in the landscapes the quasi-potential differ from S by an additive
constant.

Remark 4.3. In a landscape A, = [£{,, E:[H], the process X.(t) evolves among the valleys V, ; as a reversible

process until it leaves A,. Since S(£,) > S(£,) =S (Sf{Jr 1)» with a probability exponentially close to 1, X, (z) leaves
the landscape A, through the saddle interval %,1. In ¥,4, as the drift is nonnegative, X.(¢) slides to the next
landscape A,+1. Once in A,41, with a probability exponentially close to 1, the process X, () does not return to
¥,+1. In particular, the saddle interval ¥, is only visited during the excursion from A, to A, 4. This explains why

the quasi-potential V vanishes on the saddle intervals.

Remark 4.4. It is not possible to recover S from V. Given a maximal interval [61, 6>] at which V is constant equal to
0, it not possible to determine whether this interval is a saddle interval or whether it belongs to a landscape. However,
if the connected components of {# € T : b(#) = 0} are points, it is possible to recover S from V and the pre-factor
introduced in the next subsection.

5. The stationary state

One important question in the theory of non-reversible Markovian dynamics is to access the stationary state. Bounds
for the quasi-potential with small exponential errors can be deduced from the theory of large deviations [8]. We
present in Propositions 5.2, 5.3 and 5.7 below sharp asymptotics for the first-order term of the expansion in ¢ of the
quasi-potential, the so-called pre-factor, defined in (5.2) below.

Precise estimates of the pre-factor play a central role in the derivation of the metastable behavior of a random
process based on the potential theory, as one needs to evaluate the measure of a valley and the capacity between
valleys (cf. [1,2,5]). An asymptotic analysis of the pre-factor for non-reversible dynamics similar to the one presented
in this section has never been carried out before.

One available tool to obtain estimates for the pre-factor is the Hamilton—Jacobi equation (cf. (5.12) below). Write
this equation as H, (F;) = 0. One is tempted to argue that F, should converge, as ¢ — 0, to the solution of Hy(Fp) = 0.
We show in Section 5.5 the limits of this analysis, proving that F; converges to a function which is discontinuous at
the saddle points.

The main results of this section are based on the explicit expression (2.3) for the stationary state obtained by
Faggionato and Gabrielli in [7]. Some of the claims below appear in [7]. They are stated here in sake of completeness
as they will be used in the next sections.

5.1. Definition

Recall the definition of the quasi-potential VandletV:T — R be the non-negative function given by
V©)=V®)+H. (5.1

Since the quasi-potential is defined up to constants, V can be regarded as another version of the quasi-potential. Write
the density m.(0) of the stationary distribution as

me(0) = Fe(0)e™VO/¢, (5.2)

The function F; is called the pre-factor, and corresponds to the first order correction of the quasi-potential.
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5.2. Sharp asymptotics

We introduce three functions G : T — R, 0 < k <2, which appear in the pre-factor. These functions are defined
separately on each interval A,, £,, 1 <n <m.

We first consider the landscape. Fix 1 < n < m and consider the set A, = [{,, SIH]. Denote by Go : A, > Ry
the function given by

S
Go(x) :/ 1{S(y) =St} dy

In this formula, 1{A} takes the value 1 if A holds and O otherwise. The value of G at x provides the Lebesgue measure
of the set [x, SZ’H] N{y eR:S(y) = S¥,)}. Note that G is non-increasing, that it is constant on each valley of the
landscape A,, and that it vanishes if the connected components of {§ € T:b(0) = 0} are points.

We turn to the definition of G ;. Denote by n , 1 <i <g, alocal maximum 9)1 or a local minimum m of S, and

let
IR b4 ] b4
a)+(ni ) = —2|b/(nl-+ N w— (ni ) = —2|b’(n;—)|. 5.3)

Recall the definition of the valleys V,, j, 1 < j <y, introduced in (4.4), and that omt Z,J{. Denoteby G1: A, —

a(n,0) —
R the function given by

Gi(x) =wy (Zm;(n o))l{b(m:(n,O)) 0.x = zmj(n 0)}
+ Z Mg VU < My b+ or (M, ) U =9, 1], G4

Remark 5.1. The function G| is non-increasing. It may be discontinuous at S)ﬁ:(n 0)° it is discontinuous at the points
£m— om 1 < j <ry,, and it is constant on the valleys V,, y = (sma 1.k)" M e k+1)) 0 <k <ry,. Actually, we

a(n,j)’ a(n,j)’
deﬁned the valleys as open intervals instead of closed ones for the last property to hold.

We turn to the definition of the pre-factor on the saddle intervals. Fix 1 <n < m and consider the set ¥, = (Sj, £n).
This set may contain connected components of the set {§ € T : b(8) = 0}. Denote by s, > 0 the number of such

components and by [c ; 1 ;1"1] lens,s n 5,] the components. Note that some of these intervals might be points:
¢,.; may be equal to c ;- Assume that these intervals are ordered in the sense that ¢, ; <c, ;.
Let
Sn m m
Fo=Uleeril g=2\F  F=U% =% (5.5)

j=1 n=1 n=1
Define Go: ¥, — R as
Go(x) =z(x) — x.
cF 1:

As S is non-increasing on ¥, G vanishes on §,, and Go(x) = ¢, i Cn.j

a,j — X On the interval [cn’

Sn

Go() =) (6, = X)Xie o 100)-

n,j’ n/
j=1

Define G1: ¥, — R as

Sn

Gi(x) =) oo )X

j=1

o ](x).

"J "I
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As Gy, the function G| vanishes on on §,,. Finally, define G>: ¥, — R as

Ga(x) = (x).

b

We are now in a position to present a sharp asymptotics for 7, (-).

Proposition 5.2. Assume that g > 1. Then,

(1) (Sharp estimate on the landscapes)

1 — ~
lim sup ﬁev(x)/ﬂr[s(x) — e_V(x)/S{GO(x) + «/EGI(X)H =0.

e—>0,eA

(2) (Sharp estimate on the saddle intervals) On the set ¥,

76 (x) = {Go(x) + veG1 (x) + O(ﬁ)}e—‘?(x)/g7
and on the set §,
7o () = [1 + 0o(1)]eGa(x)e ™V W/,

In these formulas and below, o(:/¢), resp. o(1) represent quantities [which may depend on x| with the property that
lim,_.00(s/€)//€ =0, resp. lim,_00(1) = 0.

We turn to the normalizing constant c(e). For 1 <k <g,leto (m,‘:) be the weights given by
o(mf) =0 (mf) + o (m}). 56)
where the weights w4 have been introduced in (5.3). Denote by H the depth of the deepest well,

H = —Igneiqu}V(G) = Orélfi(l{S(zx) — S(x)}.

Clearly, H > 0 because H > S(z(m[)) — S(m|) = Sz(M})) — S(m]) > S(MJ) — S(m[) > 0. Let I be the set
given by
I={jell,....q}: V(m})=—H], (5.7)

and let Z, be the normalizing constant given by

Ze = 3 {Go(m]) VG () {[mf —m;]+ oo (m)).

jel
Proposition 5.3. Assume that g > 1. Then,
c(e) = [1 +o(v/&)] ZeeM/.
Of course, a sharp asymptotic for the pre-factor F, can be derived from Propositions 5.2 and 5.3.
5.3. Proofs
We present in this subsection the proofs of Propositions 5.2 and 5.3. We start with an elementary observation.

Lemma 5.4. The quasi-potential V () is continuous.
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Proof. This result follows from Assertion 4.B. On each landscape A, the quasi-potential V differs from S by an
additive constant. At the boundary of the landscape A,, V(E ) = V(£ 1) = 0. On each saddle interval %, v

vanishes, which proves the continuity of V, and therefore the one of V. ]
We continue with a uniform bound for the density 7, on the landscapes.

Lemma 5.5. There exists a continuous function & : Ry — Ry vanishing at the origin such that for each 1 <n <m,

sma:}wV“Vﬂnax>—eW“”{GMx»+v661u>Hf;E@y

xeA, VE

Proof. Fix alandscape A, = [£,, £ Jrl] and x € A,. Since S(z(x)) = S(£,) on this landscape, rewrite 7. (x) as
x+1 ~ x+1
S =S/ / SI=SEDV/e gy, — o=V (0)/e / ASO=SV/e gy,
X X

It remains to estimate the integral. Note that S(y) — S(¢,) <0 for y > x.
The integral is estimated in three steps. Recall from (4.4) the definition of the local maxima ¢, < Dﬁj( nly <

© < Ema(n ra—1)
[zma(n,k), sma(n’k)]. Then, over the intervals [Dﬁa(n)k) + n, zm;(n,kﬂ)
+ + - -
[gﬁa(n,k)’ gﬁa(n,k) + 77] and [Sﬁa(n’k) -1, ma(n’k)].
Let .V, be the set of points x” in the landscape A, such that S(x’) = S(£,,). With the notation just introduced,

< £ il of S such that ST a(n k)) = S(¢,). We first consider the integral over the intervals
— n] for some n > 0. Finally on the sets

n

No={x" € Ap: S(x") =S} = [0 M- (5.8)
k=0
provided sm a(nrn) = Sn 1 zmjt(n 0= Z,jf, £, ={£,. Of course, some of these intervals may be reduced to points. Since
S(y) = S(£,) on Ny,
x+1 x+1
/ ASO=SEVe gy / 2o (0 dy + / ASO=SE@Ve gy,
x X [x,x+11\ N,

The first term on the right hand side is equal to Go(x).
We turn to the second integral. We first estimate the integral over open intervals between the maxima. Consider
each local maximum 93?2'(" K 1 <k <r,. Note that the first one, zmj(n 0= £+ has not been included and will be
treated separately. At each of these points b a(n, k)) = 0 and, by assumption (H3), b’ ot an, k)+) > 0. Choose n > 0
small enough such that »'(y) > (1/2)b’(fma(n ) forall y € [ima(n Y Ema(n,k) + n] and all k.
Repeat the same procedure for the left endpoints 21, iy 1= k < ry. For the point 93?;(” 0= =¢F

n?

either b(¢,) =
or b(£;}) > 0. In the former case, by assumption (H3), b'(¢,;+) > 0, and we may choose 7 > 0 small enough such
that b'(y) > (1/2)b' (¢ +) for all y € [£;], £, + n]. In the latter case, choose n > 0 such that b(y) > b(¢,5)/2 for all
y € L6, £ 40l

Recall that the landscape A, = [£,, En +1] [Dﬁ;(n 0)° 9ﬁ+(n’ rn)]' Hence, for any x € A,, the interval [x, x 4+ 1] is

a

contained in [£,,, EIL | +11. Let &, C R be the closed set given by
Cn= [E:zr + 1, £+ at 1] \ U(ma_(n,k) - im:zr(n,k) + ’7)}

k=1

For any y € G, S(y) < S(¢,). There exists, therefore, a constant c¢(n) > 0 such that S(y) < S(¢,) — c(n) for all
y € C,. Hence,

x+1
f Ko, (0)elSO =S gy < p=cm/e.
X
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In view of formula (5.8) for the set .V, it remains to estimate the integral on the intervals [£;7, £ + 7], U
- + +
UE ma(n,k)]’ [ma(nyky ma(n’k) + n] Let

n n

Dn = [E: E,J[ ] U[gﬁ;(n,k) - m;(n,k)] U[gﬁ:(n,k)’ m;(n,k) + ’7]~
k=1 k=1

Assume that b(Z,J[) = 0. By Assertions 5.A and 5.B below,

‘ / SO =SEVE gy — feG(x)| < VEE(e),
[x,x+1]ND,

where

'n

E(e) = CoB(D (67 4).€) + Co Y B (M, 1y %) &)

k=1

In the second sum, it has to be understood that there are two sums, one for the terms E)LTZ and one for M a(nk)
Ifb(£}) >0, ¢, = ¢, and by the choice of n and Assertion 5.C below,

‘ / ASO=SVe gy | < 2
e x+ 100G, 6 +n] = b))
This completes the proof of the lemma. (]

Proof of Proposition 5.2. Fix x € T. The case where x belongs to some landscape has been considered in the previous
lemma. Consider a saddle interval X,,. Recall the definition of the intervals [Cn_, j c;f’ j], 1 < j < s, introduced in (5.5).

Ifxelc, ], since z(x) = c

n]’n] n,j

~ N
ns(x)ze—V(X)/E/ SIS e 4
X

On the interval [x, c ] Sy)=S (cJr ). Hence the integral on this interval is equal to c nj X = Go(x)
By assumption (H3) b/(c > 0 Let n > 0 such that b'(y) > b/(c jH)/2 forall y e [cn /’ ; +nl. Since
S(y) < S(c ) forall y > c there exists ¢(n) > 0 such that S(y) < S(c ) —c(n) forall y > C + r) Hence,

x+1 c,:r--i-n

/ SIS e gy / S ISOI=SE e gy 4 R
.

C

N
n.j Cn.j

where R, < e~¢/¢ By Assertion 5.A, the last integral is equal to [1 4 0(1)]\/¢G1(x). This completes the proof in

the case where x € [c,; o :]] O

In the case where x € §,, the statement of the proposition follows from Assertion 5.D.

Proof of Proposition 5.3. Recall the definition of the set I introduced in (5.7). Fix n > 0, to be chosen later, and let
8B, be an n-neighborhood of the global minima of V:

B, = U(m]_ - n,m}L +1n).

jel
Since, by Lemma 5.4, V is continuous and since V > — H on the closed set ;B,‘?' , there exists c(n) > 0 such that

inf{V(©):0 ¢ 8} = —H +c(). (5.9)
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Hence, as
sup{S(y) — S() :x <y <x+1}=5(z(x)) — Sx) = -V (x),

for every n > 0,
x+1
/ e (x)dx :/ dx/ S =S()]/e dy < elH—c()/e
JB’; ;1 x

We examine the integral of 7, on the set &8,,. Each set [m;, m;.“] is contained in the interior of a valley. Choose 7,

small enough for each [m; -, mj + 1] to be contained in the same valley. In this case, by Lemma 5.5, and since G
and G are constant in the valleys

m; =

m;-r+n mj-&-n ~
/ e (x) dx = {Go(m}) + veGi(m]) £ ﬁa(g)}f ) e Ve gy,
m; -

Since [m; -, m}' + n] is contained in a landscape, since in each landscape V and S differ only by an additive
constant, and since ?(mj) =—H,on[m; —n,m} 4], Vix)=V(x)— V(mj) — H=S(x)— S(m?}) — H. Hence,

gue N T+
m

i m; =

Choose 1 small enough to fulfill the assumptions of Assertions 5.A, 5.B (with the obvious modifications since
b/(mj) < 0). By these results,

mt4y
f 71 o IS=SmD/e 4o {[mT —m ]+ [1+0()]Veo (m])},
m;

where o (mT) has been introduced in (5.6).
Putting together the previous estimates yields that

c(e) = Z{Go(mj) +[1+0()]VeG) (m;r) H [m;L — m,_] +[1+o0(1)]veo (mj-)}eH/e,
jel
which completes the proof of the proposition. 0

We conclude this section with some estimates used in the proofs above.

Remark 5.6. The proof of these estimates relies on a Taylor expansion of the function S around the local maxima of
this function. We need in this argument S” [that is &] to be Lipschitz continuous. It is for this reason that we assumed
b to be in C? in the intervals [r i+ 1j+1]. We could have assumed the weaker assumption that 5’ is Lipschitz continuous
on these intervals.

Denote by Ky the Lipschitz continuity constant of b'.
Assertion 5.A. Let x € R be a point such that b(x) =0, b'(x+) > 0. Let n > 0 be such that b'(y) > (1/2)b’(x+) for

all y € [x, x + n]. Then, there exists a finite constant Cqy, which depends only on K, and a function  : Rﬁ_ —- R4
such that limg_, o E(a, &) =0 for all a > 0, and for which

f”" [S)-Se g e | CovRE( (v4),¢)
e — 2(b'(x+), ).
g e | T
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Proof. We derive an upper bound for the integral. The lower bound is obtained by changing + signs into — signs.

Let § = 8(¢) > 0 be a sequence such that 83 < & < §2. We first estimate the integral in the interval [x, x +§]. Since
S"(x+) = —b'(x+) < 0 and 2’ is uniformly Lipschitz continuous, in view of the properties of §, a Taylor expansion
and a change of variables yield that

x+8 ) ,
/ (SO=SWI/e g, < [1+Co(33/8)]/ o~ (/2 e g
X 0

TE
20 (x+)

<[1+ Co(83/6)]

It remains to estimate the integral on the interval [x + &8, x + n]. By assumption, §”(y) < (1/2)S”(x) for all
y € [x, x + n]. Hence,

X+ o0 " 2
/ JASO=S@V/e 4, 5/ SO gy < R (K (), €).
x+6 8

This proves the assertion. U
The same argument yields the next assertion.
Assertion 5.B. Let x € R be a point such that b(x) =0, b’ (x—) > 0. Let n > 0 be such that b'(y) > (1/2)b'(x—) for

all y € [x — n, x]. Then, there exists a finite constant Cy, which depends only on Ky, and a function E : Ri — R4
such that limg_. ¢ E(a, &) =0 for all a > 0, and for which

X
[S)=S@Ve gy _ [ T8 | — o0 JeB(Y (x—). £).
/x—ne Y 2b’(x—)‘_ 0eE(Hx=).e)

It remains to consider the case where b(x) > 0.

Assertion 5.C. Let x € R be a point such that b(x) > 0. Let n > 0 such that b(y) > b(x)/2 for all y € [x,x + n].
Then,

+
/ T sm-seove gy < 28
x b(x)

Proof. By a Taylor expansion and by hypothesis,

x+n x+n 00 e
/ ASD=S/e gy < / £ ~HWOO=0/28 gy, / ob2/2e g 2 .
X x 0 b(x)

If we assume that S(y) < S(x) for all x <y, we may estimate the integral over the interval [x, x + 1].

Assertion 5.D. Let x € R be a point such that b(x) > 0. Assume, furthermore, that S(y) < S(x) forall y € (x,x + 1].
Then,

L so—sw &
W=SOI/e gy — 1 + o(1 -
/x e y [+0( )]b(x)

Proof. Let8 = 8(s) > 0 be a sequence such that 82 < & < 8. By the Taylor expansion and an elementary computation,
as §'(x) = —b(x),

x+8 8 2 e
/ PASOI=S@/e g, :/ LPHOGNe gy 1 4 o(1)]——
X 0 b(x)
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Leto = b(x)/2 > 0. There exists n > 0 such that S(y) — S(x) < —a(y —x) forall y € [x, x +n]. On the other hand,
since S(y) < S(x) for all y € [x + n,x + 1] and since S is continuous, there exists ¥ > 0 such that S(y) < S(x) —«
for all y € [x 4+ n, x + 1]. Therefore,

x+n n
/ AS=S/e gy < / e~ @Y gy — o(1)e,
x+8 )

x+1
/ e[S()’)—S(x)]/S dy < e_K/E = 0(1)8.
x+n

The assertion follows from the three previous estimates. O
5.4. When the set {0 € T : b(0) = 0} is finite

We present in this subsection a formula for the pre-factor in the case where the connected components of the set
{6 € T:b(0) =0} are points.

(H4) Assume that the connected components of the set {# € T : b(8) = 0} are points, that b is of class C 2(T) and that
b'(0) # 0 for all @ € T such that b(6) = 0 [that is S”(x) # O at the critical points of S].

Note that these assumptions imply that E:[ =4,,b({,) > 0 for all left endpoints of a landscape and that sm,j =M,
m,': =m,_ for all k. Moreover, the sets £, introduced in (5.5) are empty, so that X,, = G,.

Set My, := SDT,:“ my = m,‘:, L= 2,‘: for all indices k. Fix a landscape A,. Under the previous hypotheses, Gy =0
and G is given by (5.4). In a saddle interval ,, Go = 0 and G| = 0, while the function G, is unchanged. The weights
w(My), o(mg), 1 <k < g, become

2 2
w(imk):dm’ U(mk)=,/m'
t

Z=Y Gi(mj)o(m).

jel

Se

By the definition of Z, and by Proposition 5.3, Z, = ¢Z and

c(e) = [1 +o(/e)]|Zee /. (5.10)
Thus, Proposition 5.2 can be restated in this context as follows.
Proposition 5.7. Assume that hypotheses (H4) are in force. Then,

(1) (Pre-factor on the landscapes)

11
lim sup v/geV /¢ m (x) — = —G(x)e” V¢ = 0.
5%0xeR«/— ¢ () YANE) 1(x)

(2) (Pre-factor on the saddle intervals)
1
me(x) =[1+ 0(1)]EG2(x)e_V(x)/8, x€eX.

Remark 5.8. The results of this article remain in force if we add a (d — 1)-transversal drift. More precisely, consider
the diffusion on T¢ given by

dXe(1) =b(X: (1)) dt + v 2edW,,
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where W, is a Brownian motion on T, and b = (b1,...,bg) : T4 — R a drift. The same results hold provided that

d
bi(x1,...,xq) =bi(x1) and Z(aijj)(x) =0.
j=2

5.5. The Hamilton—Jacobi equation

We examine in this subsection the asymptotic behavior, as ¢ — 0, of the solution of the Hamilton—Jacobi equation
satisfied by the pre-factor of the stationary measure. We consider this problem under the assumptions (H4).
Since m is the density of the stationary state,

em, — (bmg) =0. (5.11)

Since the quasi-potential V' is not continuously differentiable, but only smooth by parts, we consider the previous
equation separately on the landscapes A, and on the saddle intervals X,,, 1 <n <m.
Inserting expression (5.2) for the stationary state m, in (5.11) yields the following equation:

¢F/+Fb=0 onA and ¢F/—F/b—Fb' =0 onZX, (5.12)

which is the Hamilton—Jacobi equation for the pre-factor.
Denote by F the solution of the Hamilton—Jacobi equation (5.12) with ¢ = 0. Clearly, there exist constants cp and
c1 such that

F(0)=c; ateach connected component of {6 : b(6) # 0} N A,

o (5.13)
F(0) = —— ateach connected component of X.

b(0)
Note that the constants may differ on distinct connected components.
We now compare (5.13) with the asymptotic behavior, as ¢ — 0, of the solution of the Hamilton—Jacobi equation
on the set A. The solution is given by

0
Fo@) =co+c1 / SV gy,

6o

for Ccp, C1 € R, 90 eT.

Recall from (4.3) that the connected component A, of A are intervals of the form (¢, £,+1), 1 <n <m. Keep
in mind that £, is a local maximum of S and ¢, a point such that S’(¢£,) < 0. Moreover, S(£,) = S(£,+1) and
SO) <S¢, forall b € (£,, £,+1).

For F, () to converge at 6§ = £,,41 to a non trivial value, we have to choose c| as c’le
c/1 € R. In contrast, the choice of 6 is not important. With this choice,

~1/2 exp{—S(£,)/e)} for some

1 0
F.(0)=co+ ¢ — e[S(y)—S(in)]/S dy. (5.14)
’ Ve oy

The next result follows from the calculations presented in Assertions 5.A-5.D.
Assertion 5.E. Fix 6y € (¢, £,41) and consider F; given by (5.14). Then, for all 0 € [{,,, £,+1],

F(6) = lim F(6) = co+ 4 [G1®) — G1(80)].

The function F inherits the properties of G1, it is constant in the valleys V, ;, 1 < j < r;, and discontinuous at the

local maxima 93?:(,!’ i) unless c’l = 0. In particular, it fulfills the conditions in the first line of (5.13).
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We set the value of ¢ for F,;(£,+1) to converge. Choosing ¢ for F,(6;) to converge, for some 6; € A, such that
S(61) < S(£,), would produce a limit equal to =00 at every point y such that S(y) > S(61).

We turn to the set X. Fix a connected component X, = (£,, £,). An elementary computation yields that the
solution of equation (5.12) on X, is given by

1 Y s
F.(0) = E{CO/(J eS=5OI/e gy, —i—cle_s(e)/g} (5.15)

0

for constants cp, ¢; € R, which may depend on ¢, and some 6y € ¥,, which may also depend on ¢.
Assertion 5.F. There are no choices of the constants co(g), c1(€), 6y(€) for which Fg has a non-trivial limit as ¢ — 0.

Proof. If we set 6y = £,,, a Taylor expansion yields that (5.15) is equal to

1 e _
Fe(0)= E{[l oWl ey " +C1}e o

The expression inside braces is a function of ¢ which can compensate the factor ¢~' or which can be of a smaller
order. In any case, this constant is multiplied by exp{—S(8)/¢} which may converges for one specific 8 € %, but
which will diverge for all other 6. Hence, if 6y = £, there is no choice of cy(¢), c1(¢) which provide a non-trivial
limit for (5.15). A similar analysis can be carried through if 6y is chosen in (£, £, ], which proves the assertion. [l

1

The previous assertion shows that on the set X the solution F.(0) of (5.12) does not converge, as ¢ — 0, to the
solution F(0) of (5.13) unless we consider the trivial solutions F,(0) = F(0) =0.

6. Equilibrium potential and capacities

We estimate in this section capacities between wells. We start with an explicit formula for the adjoint of L, in LZ(MS),
the Hilbert space of measurable functions f : T — R endowed with the scalar product given by

(f: 8 = /T F(©)g0) e (db).
Integrating the equation (5.11) once provides that

m,(0) = —R. + 1b(@)mg(e), where R, = L(1 — eiB/‘E). 6.1
£ c(e)

Note that R, is positive and that it vanishes if B = 0.
Denote by L} the adjoint operator of L, in Lz(,ug). It follows from (6.1) that for every twice continuously differ-
entiable function f: T — R,

2eR;

(L:f)©® = (b(G) T

)f/(e) +ef"(0).

In particular, L} = L, if B =0, and the symmetric part of the generator, denoted by S, = (1/2)(L, + L}), is given by

eR;
me(6)

(Se )(©) = (b(9) - )f/(9) +ef"(0).
The Dirichlet form, denoted by D, (-), associated to the generator L. is given by

D¢(f) :=—Af(O)(sz)(G)me(G)dG=8/T[f/(9)]2ms(9)d9- (6.2)



1868 C. Landim and I. Seo

Equilibrium potential and capacity

Fix two disjoint closed intervals +4; = [0, 91+ 1, A2 =16, , 6’;r ] of T. Without loss of generality, we suppose that
0<6, <6 <6, <6, <1. (6.3)

Note that we allow the intervals to be reduced to a point. The unique solution to the elliptic problem

(Le f)(0) =0, 0T\ (A UA),
FO)=xA,(0), 0€AUA

is called the equilibrium potential between the sets +4 and #>, and is denoted by h 4, 4, = thl Ay
In dimension 1, an explicit formula for the equilibrium potential is available, a straightforward computation shows
that

, . _f;z_ eS(y)/sdy ’ /602+ eS(y)/edy
At O) = =" X g (O) + — o ———
f9+ eSW/E gy f9+ eSO/e dy
1 2

X[92+,1+91*](9)- (6.4)

Define the capacity between 4| and +4> as the Dirichlet form of the equilibrium potential:

cap, (A1 A2) = Dy (hpy py) = ¢ /;I (W, 4, 6)'me ) db.
We show in Assertion 6.B below that

cap. (Ar, A2) = e{ily, uy 07)me(67) = g, 4, (07)me(67))- ©5)
Moreover, as h,, 4, =1 — hoa; Ay

cap, (2, A1) = cap, (A1, A2).
Estimation of capacity

We present in Propositions 6.1-6.3 below sharp estimates of the capacity between two sets which satisfy the conditions
below.
Assume that the intervals A; = o, 91+ 1, A2 =10, , 92+ ] represent wells (cf. Section 7.1) in the sense that

V©)<V(7)=V(0)<H forallde(6,6"),i=12. (6.6)

We refer to Figure 3. In particular, each interval +4; is contained in some valley, denoted by ‘W; = V,,(;) k(i), of some
landscape A = A, ;. Of course, the valleys and the landscapes may coincide or not.
As the sets »; are contained in valleys and the pre-factors G,, a =0, 1, are constant in valleys,

Ga(07)=Ga(6F), a=0,1,i=1,2. (6.7)

This identity will be used repeatedly below to replace 6, by 9;‘.
By Assertion 4.B, V and S differ only by an additive constant on the valley ‘W;. In particular,

S@)=V(@O)+Ci, 0eA;,
and V is differentiable in ‘W;. It follows from (6.6) that V' 07)=<0< 74 (9i+). We assume a strict inequality:

V(7)) <0< V'(67F). (6.8)
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Ay Az

Fig. 3. This figure represents two disjoint intervals 41, 4> of T which belong to a valley ‘W. In this case, the energy barrier between 4 and )
is much smaller inside the valley (that is, in the interval [01Jr , 65 1) than outside it. The calculation of the capacity is thus reduced to a computation
in the latter interval.

Two points o, resp. o* in (91+ , 80, ), resp. (62"' , 1 4+6,), are called saddle points between A and A, if
S(o)=max{S(y): 0] <y <65},
S(o*) =max{S(y): 6, <x <146, }.

Of course, there may be more than one, but let us fix two saddle points between +; and A3, 012 € (91+ ,0,),00,1 €
07, 1406)).

Observe that V(02,1) = H if V(01,2) < H.Indeed, if V(012) < H, 41, 42 belong to the same valley. This implies
that V(o) = H for all saddle points in O, 1+ 0,).

In the computation of the capacity between #A1, #2, three cases emerge. The sets 41, 42 may belong to the same
valley, to different valleys but to the same landscape, or to different landscapes. Consider first the case, illustrated in
Figure 3, in which both sets belong to the same valley.

Assume that the sets s; are contained in a valley W = (v ™, 0 ™). If o~ < 0, < 92+ <ot let E1 2 be the set of
local maxima zm,j of S in (8", 65 °) such that S(Dﬁ,‘:) = S(01,2):

Eio={ke(l,....q}: M €[00, ]. S(M) =S(o1.0)}. (6.9)

Ifro™ <6, <1+ 91+ <, E1 > represents the set of local maxima zm,j of §in (02+, 1 +6,7) such that S(szr) =
S(02,1). In Figure 3, Ey » = {a, b} if o1 » = M, M =M.
For1<i <gq,let

o(MF) = wp (MF) + o_ (M)). (6.10)

Proposition 6.1. Let A1 = [0, , 91+], Ay =16, 92+] be two intervals satisfying conditions (6.3), (6.6), (6.8). Suppose
that the sets A1, A2 belong to a valley W = (to~, "), 1 < j <n. Then,

& Go(0)) + veG1(6,") +o(/e) VO

Ze Y ker, M — My + Vo M) +o0(Ve)

cap, (A1, A2) =[1+0(e)]

We may replace on the right hand side 91+ by 92"’ because Gy, G are constant in the valleys.

We turn to the case in which the sets +1, 47 belong to different landscapes, so that z(@l+ ) < 1(92+ )< z(1+ 01+).
Figure 4 illustrates this situation.

Proposition 6.2. Let A = [0, 491+], Ay =[0,, 92+] be two intervals satisfying conditions (6.3), (6.6), (6.8). Suppose
that they belong to different landscapes. Then,

&
cap, (A1, A2) =1+ 0(1)]Z—e—H/8.
&
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02,1

m

Ay o -~
Al E1 A2 E2

Fig. 4. This figure illustrates the case in which the intervals «+; belong to different landscapes. Starting from -4 the process reaches Ay
by surmounting the energetic barrier [S(o1,2) — S(m)]/¢e, while it reaches A when starting from ~4», by surpassing the energetic barrier
[S(02,1) — S(m)]/e because at the large deviations level, it never visits a landscape A, once in A, . The capacity represents the height of
the saddle point which in this case is equal to H in both cases since V(o1 2) = V(0p,1) = H.

Fora =0, 1, let
(A12G) =Ga(0]) = Ga(0)),  (A2,1Ga) =Ga(65) — Ga(0]).

Suppose that 01+ , 92+ belong to the same landscape but to different valleys. Then, either 1(92+ )= 1(91+ ) or 1(92+ )=
z(1 460, If 2(65) = z(6]), G1(85) < G1(8]") so that (A 2Gy) > 0. While, if z(6)) = z(1 + 6;"), G1(6]") =
Gi(1+ 91+ )< G (92+ ) so that (A 1G1) > 0. Similar conclusions hold if we replace G by G¢ and a strict inequality
by an inequality.

Proposition 6.3. Let A1 =[0], 01+], Ay =1[0,, 92+] be two intervals satisfying conditions (6.3), (6.6), (6.8). Suppose
that they belong to different valleys, but to the same landscape. Then, if z(91+) = z(92+ ),

~ & _pe Go6) +VEGIO)) +o(VE)
cap; (A1, 42) =[1 +0(Ve)] e (A1.2Go) + Ve(A12G1) + 0(5)

If2(0) = z(1 +6,"), cap, (A1, A2) is equal to

Go(0]) + /eG1(0;) + 0(/¢) >

i —H/e
[1 +otven] 7-e (1 o G0 T Ve (Ba1Gr) + (Vo)

The proofs of the previous results rely on the next claim.
Assertion 6.A. Let A1 =[0, 61"—], Ay =[6,, 92+] be two intervals satisfying conditions (6.3), (6.6), (6.8). Then,

cap, (A1, A2) =1+ 0(Ve)] Zi [Go(6) + V2G1 (67) + o(/&) fe ™V E/e

1 1
X{ 40— + o= " }
S(y)—=S(1+6, S(y)—S(@©®
fg; L lSM=SA+0 /e dy fgli eSO =SEI/e dy

Proof. Fix two intervals A; = o, 01+ 1, A2 =10, , 92+ ] satisfying the hypotheses of the assertion.
In view of equations (6.4), (6.5),

eSU+0) /e B 65(91*)/8 N
cap, (A1, A2) = 8{1+9_—m£(91 ) + 9_71718(91 )}
ot L eSW/edy fei eSW/e dy
2 1
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Note that in the first ratio on the right hand side we have 1 + 6, instead of 6, because we are now working on the

line so that the harmonic function is defined on the interval [62+ » 1 +0,]. Asm, is periodic, m¢(1 + 60 ) =m0, ).
Propositions 5.2, 5.3 provide a formula for m, = 7. /c(¢). By (6.7), we may replace G,(8, ) by G, (91+), a=1,2.

To complete the proof, it remains to recall that V (0,") = V(91+ ) by hypothesis. ([

Proof of Proposition 6.1. Fix two intervals +4; = [0, 91+ ], A2 =16, 9; ] satisfying the hypotheses of the proposi-
tion.

We estimate the second term inside braces in the formula for the capacity appearing in Assertion 6.A. Since
and 4> belong to the same valley, by Assertion 4.B, in the interval [9]+ ,0, 1, the functions V and § differ only by an
additive constant. Recall the definition (6.9) of the set E >. By the computation performed in Assertion 5.A,

0
/2 e[s(}’)—s(er)]/é‘dyz ( Z [ +\/_ Z m‘l’ +0(\/_)) [S(U]Vz)—S(Qr)]/s.
0

+
1 keE o keE

Since V and S differ by a constant, we may replace in the previous formula S(o72) — § (91+ )by V(o1,2) — V(91+ ).
We turn to the first term inside braces. As 41, /> belong to the same valley, 1(6’;r ) =2z(6, ), so that z(92+ ) <1+6,
because z(6,) < 1 + 6, . Therefore, since S(1+6,)=—B + 50, ),

1467 _ N _ 146, N
/ eSO =SUFOD/e gy, — ([S(0,))=5, )+B]/s/ S=8GONN/E gy,
o 05

As 2(92+) =z(0,), S(z(92+)) —-80,)= —V(Ql_). On the other hand, since 1(0;') < 1+ 6, , by the computation
performed in Assertion 5.A

146
/ JASO=SCEDE 4y > ¢4 /e
o)

for some positive constant Cy mdependent of ¢. Thus, the right hand side of the penultimate displayed equation is
bounded below by Cy./¢ exp{— [V(@ ) — B]/s}.

To complete the proof of the proposition, it remains to show that V(01 2) < B, but this is clear because V(ol 2) <
0<B. ([

Proof of Proposition 6.2. In the formula for the capacity of Assertion 6.A, write the second term in the expression
inside braces as

0, 0,
/ P eISM=SONVE gy,  JISON-SO/E / P ISW=S@@ e g
N o,

Since z(91+ ) < 6, , the integral on the right hand side is equal to Go(91+ ) + 4/eGy (01+) + o(/¢), while the term
appearing in the exponential is equal to —V(Qf“).
We turn to the first term in the expression inside braces in Assertion 6.A. It can be written as

N ~ 146; N
SO =S+ e / SSD=SENe gy,
o

Since 1(9;) < 146, , the integral on the right hand side is equal to G0(92+) + ﬁGl(OgL) +o(Ve). AsS(1+6;) =
S, ) — B and —f/\(@f') = —V(Gl_) = 8(z(9,)) — S0 ), to complete the proof of the proposition, it remains to show
that S(z(6;)) < S(z(9;)) + B. This is clear because S(z(6; ) — B = S(1 +2z(6;)) = S(z(1 +6,)) < S(z(6;)). The
last inequality follows from the fact that z(92+ )<1+0,. |
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Proof of Proposition 6.3. Assume that z(@f’ )= Z(92+ ). We estimate the integrals appearing in Assertion 6.A. Clearly,

05 N 1+6; N 1+0; N
/ ASOI=SON/e gy, — / SISO Ne gy, / SISO Ne gy,
0 o

+ —
1 02

Since z(0, ) = 1(91+) < 146, in the second integral we may replace 1 + 91+ by 146, . By Proposition 5.2, the right
hand side is equal to

[Go(6) + VG (67) + 0(/&) felSCE N =S E@N1/e
—{Go(65) + VEG1(87) + (/&) el e N=SEDI/e,
As z(65) = z(0;") and G, (65 ) = G4(65"), in view of the definition of A1 >G,, this difference is equal to
[(A12Go) + Ve(A12G1) + o(ﬁ)}e—V(ep/s.

On the other hand, since z(é’;r ) =2z(8,) <146, there exists a constant Cy > 0, independent of ¢, such that
146, _ + _
/ SO =SUH6/e gy, > 0 SeelSEEN=SA+67/e.
0y

As z(92+ )=2z(0,)and S(1+6,) = S(0,) — B, the expression in the exponential in the previous formula is equal to
—V(Gl_ )+ B= _"7(91+ ) + B. This proves the first assertion of the proposition.

We turn to the case 1(92+ )y=1z(1+ 91+ ). We estimate the integrals appearing in Assertion 6.A. Since z(@l‘Ir ) <
z(1+6;"), we have that z(9;") < z(65). This implies that z(6;") < 65, so that

0, -
/92 e[SO=5ED/e gy, {Go(gr)+G1(9;r)\/g+0(\/g)}e—vwr)/g

N
1
On the other hand,

14+6; N

/ ASO=SA+6)1/e g

o
1465 . 1465 .
_ / ASOI=SU+01I/e gy, / SOI=SA+00I/z 4,
o 1+6;
Since z(1+6,) = z(€2+) <1+ 92+ and since G,(1 +6,) = G4(0, ), a =1, 2, this expression is equal to
+

{GO(Q;) +\/§cl(9;) +0(\/§)}e[5(2(92+))—5(1+91 )/

—{Go(67) + v2G1(67) + 0(\/5)}e[S(z(l+01_))—S(1+0,+)]/S.

As z(02+) =z(1+6,)=z(1+ 91+), and \7(1 + 9;’) = V\(er), the expressions in the exponential above are equal to
—V(é)fr ), which completes the proof of the proposition because G, (0, ) = G, (01+ ),a=0,1. U

We conclude this section providing an alternative formula for the capacity.
Assertion 6.B. Fix two disjoint closed intervals 41 = [0, 91+], Ay =16, , 92+] of T. Then,

Caps('A'l’ ‘AZ) = 8{]1:/%1,«/%2 (ef)mf (9;) - fAl,Az (GIJF)MS(QT)}
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Proof. By the expression (6.2) for the Dirichlet form, and since the harmonic function is constant on the sets A1, 42,
D¢ (ha,,4,) is equal to the sum of two integrals. The first one is carried over the interval [91+ ,0, 1, while the second
one over the interval [02 ,0, 1. We estimate the first integral. By an integration by parts,

b2 ’ 2 ’ 0,
o [ Ty T 0 6 = g s O, GO (6

1

0y
_ 8/9+ gy, Ay ()05 { Ry 4, ()M (x) } dx

1

Since the harmonic function vanishes at 6, and is equal to 1 at o, by (6.1) and since Lgh 4, 4, =0 on (91‘*' ,0; ), the
previous expression is equal to

b
—eh'y, 4, (67)me(6]) + eRe f9+ By o Oy, 4, (X) dx.
1
The integral is equal to (1/2)eRe{h 4, 4,05 ) — by 4, (0%} = —(1/2)eR,.
For similar reasons, the contribution to Dg(h4,,4,) of the integral carried over the interval 05, 6, 1 is equal to
ehfAl Ay (0, )me(0,) + (1/2)e R,. This completes the proof of the assertion. O

7. Metastability among the deepest valleys

We examine in this section the metastable behavior of X, (¢#) among the deepest valleys. The goal is to define a finite-
state, continuous-time Markov chain, called the reduced chain, which describes the evolution of the diffusion X, (t)
among the deepest wells in an appropriate time scale.

A similar analysis could be carried out for shallower valleys. This task is left to the interested reader. We assume
throughout this section that the drift b satisfies the conditions (H4) of Section 5.4.

7.1. The deepest valleys

Denote by 'W; = (m]T, m}L), 1 < j <m, all valleys of depth H. These are the valleys V; introduced in (4.4) such that
mingey; V(0) =0. Denote by m; , € W;, 1 <k <«(j), the global minima of V on W;. Let §; = (e;, ej) be a subset
of ‘W; which contains all minima m; ; and such that V(ej_) = V(e;’) <H, V() < V(ej_) for all 6 € &;. The sets
& are called wells. We refer to Figure 5 for an illustration. Assume, without loss of generality, that the valleys are
ordered in the sense that 0 <mj; <--- <my, < 1. Denote by 7 () the weight of the well &;:

k(j) k()

n(J)—Zo(m,k) Z S//(m o 1=isn (7.1)

where o (m; ¢) has been introduced in (5.6).

Let M x, 1 <k < v(j), be the global maxima of V which belong to the interval (ej', e;_H) and to the landscape
which contains ‘W;. Hence if the valley 'W; is contained in the landscape [£,, E:H] Mir:1<k=<v(j)}= {sm+
sz € (e;r, e;+1) N[, th1] V(Emf) = HY}. We refer to Figure 5 for an illustration. Denote by o ; j;1 the sum of
the weights of these local maxima:

v(j) v(j)

a,m—Zw(zm,k) Z s”(sm o lsise (72)
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Fig. 5. This figure represents the wells and valleys in two landscapes. There are 3 valleys whose depth is maximal, Wy, W, and ‘W3. The first one
contains two global minima of the quasi-potential V, while the other two only one. If the process starts from the well ‘W, the next well visited may
be either ‘W) or ‘W3, while if it starts from ‘W; the next well visited can only be 'W5.

7.2. The evolution among the wells &;

The asymptotic behavior of the diffusion X, (¢#) among the wells & can be foretold. Rename the valleys Wy, ..., W,
as Wyk, 1 <a <p,1 <k <n,, insuch a way that two valleys ‘W, x, W, ;- belong to the same landscape if and only
if a = a’. Denote the minimum wy , by m, x » if W; = W, ; and assume that the valleys are ordered in the sense that
Mok r <My pgifa<a orifa=d andk <k’

Assume that X (0) belongs to 'W;. The next visited valley can only be ‘W;_; or W, where we adopt the conven-
tion that W41 = r + Wi. However, if W; = W, | for some a, since, by Remark 4.4, the diffusion does not visit a
landscape to its left, modulo a probability exponentially close to 1, the next visited valley is necessarily ‘W, . Hence,
if p(i, j) represents the jump probabilities of the reduced chain, we must have that

pl i+ +pG,i—1)=1 and pG,i+1)=1 if W =W, for some a. (7.3)

We may compute the jump probabilities using formula (6.4) for the equilibrium potential. Assume that W; = ‘W,
for some k > 2, and let

Ps(ia l + 1) = h’W,'+1,’Wi,1 (mi,1)7
where h, , w,_, is the equilibrium potential introduced in (6.4). An elementary computation gives that

pe(i,i+1)= [1 + o(l)]L~
0i-1it+0iit1
Therefore, we have to set

pli+1)=—27N if g — W, for some k > 2. (7.4)
Oi—1,i+0ji+1

Equations (7.3) and (7.4) characterize the jump probabilities of the reduced chain. We turn to the holding rates of the
reduced chain. By Proposition 5.3 and Lemma 5.5,

1
1e(€) =[1+o()]n@@) where p(i) = 7 G1mi ) @). (7.5)
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On the other hand, by similar computations to the ones presented in the previous section and by Proposition 5.7,
cap, (Wi, Wi—1 U Wit1) =[1+o(D)]e H/2c(i), where,

Gimiy) 1
e(iy = S it pl i+ =1,
Z 011
Gi(m; 1 1
(i) = l(m”1)< + ) if pliyi+1) < 1.
4 Oi-1i Oiitl

It follows from the previous estimates and from equation (A.8) in [2], that on the time-scale e/t the diffusion
X (1) is expected to evolve among the valleys ‘W; as the {1, ..., n}-valued, continuous-time Markov chain with jump
probabilities given by (7.4) and holding times A (i) given by A(i) = c(i)/u(i).

7.3. The reduced chain

At this point we have all elements to define the Markov chain which describes the metastable behavior of X, (¢). Let
S =1{1,...,n} and denote by R(j, k) the jump rates of the continuous-time S-valued Markov chain whose holding
rates are A and whose jump probabilities are p: R(j, k) = A(j)p(j, k), j # k € S. By the previous computations,

! 1
R(j,j+1)= ———, RG+1,/))=0 or — (7.6)
T(j)oj j+1 x(j+1)o; i+
and R(j, k) =0 if k # j = 1. More precisely, R(j + 1, j) =0 if W; 41 = W, for some a, and R(j + 1, j) =
[ (j + Do j117" otherwise.
In view of the previous computation, denote by X (7) the continuous-time Markov chain on S whose generator L
is given by

LHG =D RG.j+a)[F(+a)— F(j)]. (1.7)

a==1

Summation is performed modulo »n in the previous formula. The next result is proved at the end of this section.
Lemma 7.1. The measure p, introduced in (7.5), is the stationary state of the Markov chain X (t).

Denote by D(R., S) the space of right-continuous functions x : Ry — § with left-limits endowed with the Sko-
rohod topology, and by @, 1 < j < n, the probability measure on D(R, S) induced by the Markov process whose
generator is L and which starts from j.

7.4. The metastable behavior

Denote by X, (1) the process X, () speeded-up by e///¢. This is the diffusion on T whose generator, denoted by L, is
given by Lo=e"/¢L,. LetC (R4, T) be the space of continuous trajectories X : Ry — T endowed with the topology
of uniform convergence on compact subsets of Ry. Denote by P, 6 € T, the probability measure on C(Ry, T)
induced by the diffusion X, (t) starting from 6. Expectation with respect to Pj is represented by .

Let

n
=J&. a=T\&. &= & (7.8)
j=1

kiks£j

Denote by Tg(t), t > 0, the total time spent by the diffusion X, «(1) on the set & in the time interval [0, 7]:

t
o) = [ e (Re(w) s
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Denote by {Sg(¢) : t > 0} the generalized inverse of Tg(¢):
Se(t) :==sup{s > 0: Tg(s) <t}.
Clearly, for allr >0, ¢ >0,
{Se(r) =1} ={Te(®) <r}. (7.9)

It is also clear that for any starting point 6 € T, lim;_, 5, Tg () = oo almost surely. Therefore, the random path {Y,(¢) :
t > 0}, given by Y. (¢t) = 5(\5 (Sg(1)), is well defined for all + > 0 and takes value in the set &. We call the process
{Y(t) : t > 0} the trace of {}?E(t) 1t >0} ontheset &.

Denote by {?’,0 :t > 0} the natural filtration of C (R4, T): ?‘to = a()?s :0 <s <1). Fix 6y € & and denote by
{F; : t = 0} the usual augmentation of {?’,0 .t > 0} with respect to Pgo. We refer to Section II1.9 of [16] for a precise
definition.

Lemma 7.2. For each t > 0, Sg(t) is a stopping time with respect to the filtration {¥;}. Let {4, : r = 0} be the
filtration given by §, = Fs.(r), and let T be a stopping time with respect to {§,}. Then, Sg(7) is a stopping time with
respect to {F}.

Proof. Fixt >0 and r > 0. By (7.9),

{Se)<r}=({Se®) <r+q}=({Tet+q)>1},
q

q

where the intersection is carried out over all g € (0, 00) N Q. By definition of Tg, {Tg(r 4 g) > t} belongs to F, 4.
Hence, as the filtration is right-continuous, {Sg () <r} € q Fr+q = F, which proves the first assertion.

Fix a stopping time 7 with respect to the filtration {§,}. This means that for every t > 0, {t <1} € §; = Fse(r)-
Hence, for all r > 0,

{r=3n{Se) <r}e .

We claim that {Sg(7) < ¢} € ;. Indeed, by (7.9), this event is equal to {Tg(t) > 7}, which can be written as

Ut =ain{Te) > g} =tz g} n {Se(q) <t}
q

q

=JUt=an{se@ =1 - a/m},

q n>1

where the union is carried over all ¢ € Q. By the penultimate displayed equation, each term belongs to F;_(1/,) C 7,
which proves the claim.
We may conclude. Since

{Se() <t} =({Se(r) <t +4q}.

q

where the intersection is carried out over all g € (0, 0c0) N Q, and since the filtration {¥;} is right continuous, by the
previous claim, {Sg(7) <t} € %;. O

Since Sg(¢) is a stopping time with respect to the filtration {¥;},

Ye(r) = X (Se (1))
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is an &-valued, Markov process with respect to the filtration §; = Fs. ;). Let W : & — S = {1, ..., n} be the projection
given by

n
o)=Y jxe®),
j=1
and denote by x () the projected process which takes value in S = {1, ..., n} and is defined by
xe (1) =W (Ye(0)).

Denote by Qj, 6 € &, the probability measure on D(R, &) induced by the process Y () starting from 6, and by Qjp
the probability measure on D(R,, S) induced by the function W: Qf = Qj o W~ Note that Qj, corresponds to the
distribution of x,(¢) starting from W (0).

Theorem 7.3. Fix 1 < j <n and 6y € &;. The sequence of measures ng converges, as € — 0, to the probability
measure Q; introduced below (7.7).

Remark 7.4. This is the first example, to our knowledge, that the reduced chain is an non-reversible, irreducible
dynamics.

7.5. Tightness

The proof of Theorem 7.3 is divided in two steps. We prove in this subsection that the sequence ng is tight and that
all its limit points fulfill certain conditions. In the next subsection, we prove uniqueness of limit points.

Lemma 7.5. Forevery 1 < j <n, 0) € &;, the sequence of measures ng is tight. Moreover, every limit point Q* of
the sequence ng is such that

Q*{x:x(O):j}:l and Q*{x:x(t);éx(t—)}zo

foreveryt > 0.

Proof. Fix 6y € &. According to Aldous’ criterion, we have to show that for every § > 0, R > 0,
lim Tim sup sup Qg [|W (Y (r + @) — ¥ (Y (1))| > 8] =0,
a—>Y ¢0

where the supremum is carried over all stopping times t bounded by R and all 0 <a < ag.
By definition of the measure ng and since |V (Ye(t +a)) — ¥ (Ye(1))| > § entails that W (Y. (t +a)) # ¥ (Y. (1)),
the probability appearing in the previous displayed equation is bounded by

B [ (X (S (r + ) # W (X (Se ()]

Fix b = 2aq so that b — a > ag. Decompose this probability according to the event {Sg(t + a) — Sg(r) > b} and its
complement.

Suppose that Sg(t +a) — Sg(t) > b. Inthis case, Sg(t) +b < Sg(r +a), sothat Tg(Sg(t) +b) < Tg(Sg(t+a)) =
T +a. Hence, as Tg(Sg(1)) =1, Te(Sg(t) + b) — Te(Sg (1)) < a, that is,

Seg(t)+b
/ xg(X(s)) ds <a.
Se(7)
Equivalently,

Se(1)+b
/ XA(X(S))dSZb—a.
Se(t)
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By Lemma 7.2, Sg(7) is a stopping time for the filtration {¥;}. Hence, by the strong Markov property and since
X (Sg(t)) e &forallt >0,

b

PZO[S@(T +a) — Sg(t) > b] <suplP; [/ XA(X(S)) ds>b— a:|.
0e€ 0

By Chebychev inequality and by our choice of b, this expression is less than or equal to

1 b 1 2aq
b supEj [/ XA(X(S)) ds:| < —supEj |:/ XA(X(S)) ds].
—dgeg 0 0

ao geg

By Lemma 8.5, this expression vanishes as ¢ — 0 for every ag > 0.

We turn to the case {Sg(t 4+ a) — Sg(r) < b}. On this set we have that {V (X (Sg(t + a))) # V(X (Sg(1)))} is
contained in {W(X (Sg(tr) 4+ ¢)) # V(X (Sg(7r))) for some 0 < ¢ < b}. By Lemma 7.2, since Sg(7) is a stopping time
for the filtration {¥;} and since X (Sg(¢)) belongs to & for all ¢,

IP’;O[\IJ(X(Sg(t + a))) #* \I-’(X(Sg(‘[))), Seg(t+a) — Sg(r) < b]
<supPj [\II(X(C)) # W (h) forsome 0 < ¢ < b].
fe&
If 6 € &;, this later event corresponds to the event { H (é i) < b}, where I3 = Uk;,,E i &y. The supremum is thus bounded
by '

max sup P [H(E:“j) < b] = max sup ]P’g[H(E:“j) < 2a0].

I=j=ngeg; I=j=ngeg;

By Corollary 8.4, this expression vanishes as ¢ — 0 and then ap — 0. This completes the proof of the tightness.
The same argument shows that for every ¢ > 0,

lim lim sup Qf [x(t —a) # x (1) for some 0 <a <ap] =0.
ap—0 £—0

Hence, if Q* is a limit point of the sequence ng,
limOQ*[x(t —a) #x(t) forsome 0 <a < ao] =0.
ap—>

This completes the proof of the second assertion of the lemma since {x : x(¢f) # x(t—)} C {x : x(t — a) #
x(t) for some 0 < a < agp} for all ag > 0. The claim that Q*{x : x(0) = j} =1 is clear. O

7.6. Uniqueness of limit points
The proof of the uniqueness of limit points of the sequence Qj relies on a PDE approach to metastability [6,17].

Lemma 7.6. Fix 1 < j <n and 6y € &;. Let Q* be a limit point of the sequence on. Then, under Q*, for every
F:5—R,

!
F(x(t)) — /0 (LF)(x(s)) ds
is a martingale.

Proof. Fix 1 < j <mn, 6y € & and a function F : § — R. Let f; : T — R be the function given by Proposition 9.1.
By this result,

t t
Ms(t)zfe(Xs(t))_/o (Lfs)(Xs(S))dszfs(Xe(t))_/0 ES(XE(S))dS
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is a martingale with respect to the filtration ¥; and the measure IE”(";O. Since {Sg(t) : t > 0} are stopping times with
respect to ¥;,

- Sg (1) —
Me(t)=Ma(Sé‘(t))=fe(Ya(t))_/O gg(xe(s))ds

is a martingale with respect to §,. Since g, vanishes on &¢, by a change of variables,

t

Se(t) R Se (1) R . ~
fo 7. (Xo()) ds = /0 xe (Xo(9))2. (Re(s)) ds = fo 2. (Xe(Se())) ds.

Hence,

t
Mo (1) = fo(Ye(D)) — /0 2o (Ye(s))ds

is a {G,;}-martingale under the measure Qf}o.

Since lim,—,¢r(¢) =0, g, — g vanishes uniformly in & as ¢ — 0. By Proposition 9.1, the same holds for ]‘; - f.
Hence, since Y. (s) € & for all s > 0, we may replace in the previous equation g., f: by g, f, respectively, at a cost
which vanishes as ¢ — 0. Therefore,

t
o) = £(¥.(0) - fo ¢(Ya())ds +o(1)

is a {§,}-martingale under the measure ng.

Since f and g are constant on each set &; with values given by F, G, respectively, f(Y:(?)) = F(x.(1)),
g(Ye(t)) = G(x.(t)). By Lemma 7.5, all limit points of the sequence QZO are concentrated on trajectories which
are continuous at any fixed time with probability 1. We may, therefore, pass to the limit and conclude that
F(x(@)) — fot (LF)(x(s))ds is a martingale under Q*. O

Proof of Theorem 7.3. The assertion is a consequence of Lemma 7.5, Lemma 7.6 and the fact that there is only one
measure Q on D(R4, S) such that Q[x(0) = j] =1 and

'
F(x(t)) — /0 (LF) (x(s)) ds

is a martingale for all F : § — R. O

7.7. Proof of Lemma 7.1

We have seen in Section 7.3 that the jump rates depend on the position of the valley in the landscape. If the valley is
the left-most valley, it jumps only to the right. We need therefore a notation to indicate if a point j € § is the index of
a left-most valley or not.

Recall that the wells ‘W; which belong to the same landscape are represented as W, 1, ..., Wy ,,. We may thus
associate each j € S to a pair (a, £), where a € {1, ..., p} represents the landscape and £ € {1, ..., n,} the position in
the landscape. Hence, S can also be written as

S={LD,....(0,n),....(p. D), ....(p.np)}.

Consider the subset S; = {(a, 1), ..., (a,n,)} of S. Recall from (7.2) the notation o'[j, j + 1] =0 j4+1. For 1 <
Jj < ng, the Markov chain X (¢) defined in Section 7.3 jumps from (a, j) to (a,j + 1) at rate {m(a, j)o[(a, j),
(a, j+ D1)~" and from (a, j + 1) to (a, j) at rates {m (a, j + D)o[(a, j), (a, j + 1)]}~'. Additionally, it jumps from
(a,ny) to (a + 1, 1). If we disregard this last jump, on the set S,, the Markov chain behaves as a reversible Markov
chain whose equilibrium state is . The additional jump from (a, n,) to (a + 1, 1) changes the stationary state by the
multiplicative factor G1(my,j 1). This is the content of Lemma 7.1.
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Proof of Lemma 7.1. Consider a function F: S — R, and recall that a point j € S is also represented as (a, k). With
this notation, E,[L F] becomes

1

;W’ ") el n @t Lo @t b - Fano]
p ng—1 {
+;;M( D@ pela . @ 1+1)][ (a,j+1) = F(a, )]
p ng—1 |
+;;M(a I @ i+ Del@ ). @ J+1)][ (a.j)— Fa.j+1)].

Since the first summation is performed modulo p and since, by (7.5), u(a, j)/m(a, j) = (1/Z)G1(m,,j 1), a change
of variables yields that the first sum can be rewritten as

li G1(Wa—tn, 1,1) 1 i G1(Ma,n,.1)
[

Fa,1)——= F(a,ng,).
ol(a—1,n4_1), (a,1)] Zazlo (a,ng), (a+1,1)]

By definition of G| and o ; j11, the previous ratios are equal to 1 and the difference becomes

1 & 1<
EZF(a,1)—EZF(a,na). (7.10)
a=1 a=1

Use the identity u(a, j)/m(a, j) = (1/Z2)G1(mg, j,1) to rewrite the last two terms of the first displayed formula of
this proof as

_ZZF( ]){ Gi(mgj-1,) Gi(mg, 1) }
a=1j=2 J - 1)a (av.])] 0[(a,j - 1)’ (aa.])]

2”:2‘: { Gimgjs1,)  Gilmgj) }
pr o ol(a j), (@ j+ D1 ol j), (@ j+D1})

By definition of Gy and 0, G1(mg,j—1,1) — G1(my j 1) =0[(a, j — 1), (a, j)]. This sum is thus equal to

p ng—1
—ZZF(a - —Z Y Fa,j)= —Z{F<a,nu) — F(a, 1)}
a=1j=2 a=1 j=1 a=1
This term cancels (7.10), which completes the proof of the assertion. (]

The same proof yields the next claim, which is needed later.

Lemma 7.7. Fix a function F : S — R. Forevery 1 <a < p and every 1 <{ <ng,

a—1 np
F(a, )= F(1,1)= Y (LF)(b, k)m (b, k)G 1(mpx 1)
b=1k=1
£—1
+ ) (LF) @, kym(a,B)[Gi(ma1) — Gi(mg )]
k=1
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8. Hitting times estimates via enlarged processes

We prove in this section an upper bound for the probability of the transition time between wells to be small. This esti-
mate plays a central role in the proof of the tightness of a sequence of metastable processes. The argument presented
below is absolutely general and does not rely on the one-dimensionality of the process.

The argument is based on an enlargement of the process X, (¢). Fix y > 0, let To =T x {—1, 1}, and consider the
process X)) =X©, o (1)) on T, whose generator LY is given by

(LY f)0.0) = Le )0, 0) +y[fO, —0) — f(0,0)].

In the first term on the right hand side, the derivatives act only on the first coordinate. The process X (¢) is named the
enlarged process. The first coordinate evolves as the original process, while the second one, independently from the
first, jumps from £1 to 1 at rate y.

Denote by P{éir) the probability measure on D(R., T>) induced by the Markov process X} starting from (9, o).

It is clear that the measure .1}, given by
y 1 1
f O, o) (d9,d0)=—/ f(9,1)ug(d9)+—/ F O, =Due(df),
T, 2J)r 2J)r

is the unique stationary state of the process X .
Fix an open interval / of T, and let (I°,1) ={(0,0) € T2:0 € I°,;0 =1}, (T, 1) ={(0,0) € T2 : 0 = —1}.
Denote by i : To — Ry the equilibrium potential between (/¢, 1) and (T, —1):

hr6.0)= P{é;)[H(I”,l) < Hr,—nl. (8.1

Clearly, fz}(@, —1)=0forall 9 € T. Let hy : T — R4 be given by h;(0) = fz}(@, 1), and denote by Capy)s[(lc, 1),
(T, —1)] the capacity between the sets (¢, 1), (T, —1), which is given by the energy of k;:

1
cap, [(I°. 1), (T. ~1)] = 5 ee/* /1 (8051 ©))* e (a0) + /, 71(0)? 116 (d6). (8.2)

Proposition 8.1. Let [ be an open interval of T, 6 € I. Then, for every A >0, m € I and n > 0 such that (m —n, m+
nCl,

PglHie <Al<  sup  PG[Hje < Hy]
m—n<6’'<m+n
2eA
He(m—n, m~+n)

capy’e[(lc, 1), (T, —1)],
where y = A™L.
Remark 8.2. We will select later / as a valley and m as a minimum in /.

Remark 8.3. Let I be an open interval of T. The same arguments show that for every A >0, J C I,

_ : 2eA . )
e (J) /JPG[HIC < Alue(dO) < —H«g(.]) Capy,s[(l , l), (T, 1)],

where y = A~!. But the proof does not use the one-dimensionality of the process, that is, the fact that the process
visit points. We leave the proof of this remark to the reader.

The proof of Proposition 8.1 relies on an idea taken from [3], and it is divided in several assertions.
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Assertion 8.A. Let [ be an open interval of T,0 € I. Fix A > 0, and let ¢ 5 be a mean-A, exponential random variable
independent of the process X.. Then,

Py[Hpe < Al <ePj[Hpe <eul.
Proof. By independence, if y = A~!,
o o
Py[Hpe <eal > / Po[Hpe <tlye V'dt > Pj[Hje < A]/ ye Vdt,
A A
as claimed. O
To estimate ]P’g[H 1c < e4] in terms capacities, we interpret the exponential time ¢4 as the time the process X 40)

starting from (6, 1) jumps to (T, —1) provided y = A~!. Indeed, since the second coordinate jumps at rate y, inde-
pendently from the first one, for any open interval / of T and any 6 € I,

PglHe < eal =P’ [Hue 1) < Her,—1)] = h1 (6). (8.3)

Assertion 8.B. Let I be an open interval of T, 0 € I. Then,
v [ i@t =2cap, [(1°,1). (7. <],

Proof. The function H(6,0) = h;(8)1{c = 1} is harmonic on (I, 1), so that L} H = 0 on this set. Multiplying this
identity by 1 — Ay, integrating over (I, 1) with respect to ), and integrating by parts yields that

O:seH/E/I(h/,)szdG—seH/gj;(l — hy)hml, d6

+ef/e /(1 —hy)hybm.do —y /(1 —hp)himedo.
I 1

By (6.1), em|, — bm; is equal to a constant, denoted below by —¢ R. Hence, if I = (u, v), the sum of the second and
third terms of the previous equation is equal to

1
eR.e!/e / (1= hp)h;d6 = —eRee"*{[1 = 1)) = [1 = @]’} =0,
I
because /7 (u) = hy(v) = 1. This proves the assertion in view of formula (8.2) for the capacity. O

In the next assertion we take advantage of working in a one-dimensional space. More precisely, although the next
statement is correct in higher dimension, it is empty since the first term on the right-hand side is equal to 1.

Assertion 8.C. Let I be an open interval of T. For every 6,0’ € I, A > 0,
Py[Hpe < Al <PGlHe < Ho']l + Py [Hpe < A].

Proof. Intersect the set { Hjc < A} with the event {Hjc < Hy/} and its complement. The first set appears on the right
hand side. On the other hand, on {Hy < Hjc}, Hre = He o ¥ (Hy') + Hpr, where ¥ (t) represents the translation of a
trajectory by ¢. In particular, H;c < A implies that Hjc o ¥ (Hy') < A. Hence, by the strong Markov property,

P;[Hy < Hye, Hie < A] <Pj[Hy < Hje, Hie 09 (Hy) < A]
=Ej[1{Hy < Hj<}Py[H;e < Al] <Py [Hje < Al

This proves the claim. U
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We are now in a position to prove Proposition 8.1.

Proof of Proposition 8.1. By Assertion 8.C,

PylHpe < A] < sup P5[Hje < Hy']

m—n<0’'<m-+n

1 m+n

+ Pé,[Hye < Alm.(0") d6’.
pem—nm+mn Ju, ? (%)

By Assertions 8.A and 8.B and (8.3), the integral appearing in the second term is less than or equal to

m-n
e / P5 [Hpe <ealme(0")do’ <e / Py [Hpe < ealme(0") do’
m—n 1

2e
S 7capy’g[(lc5 1)5 (Ta _1)]
which completes the proof of the proposition. (I

We apply Proposition 8.1 to the case in which the interval I is a valley 'W;, 1 < j < n, introduced in Section 7.1.
Denote by d(0, J) the distance from 6 to a subset J of T: d(@, J) = inf{d(0,0’) : 6’ € J}, where d represents the
distance in the torus. Recall from Section 7.1 the definition of a well ;.

Corollary 8.4. Fix 1 < j <n. Then,

lim limsup sup Py[Hye <a]=0.
a=0 50 6eg; /

Proof. Let m =m; ; and fix > 0 such that (m — n, m + n) C &;. We need to estimate the two terms which appear
on the right hand side of Proposition 8.1. On the one hand, it follows from the explicit formulae for the equilibrium
potential derived in Section 6 that

lim sup sup sup Py [Hye < Hy]=0.
e—>0 0€&; m—n<'<m+n J

On the other hand, since V (m) = 0, there exists a constant c(n) > 0, independent of ¢, such that . (m—n, m-+n) >
c(n). It remains, therefore, to show that

lim limsupa capyﬁg[(W]‘f, 1), (T, -D)]. (8.4)

a=0 ¢ 0

where y =a~!.

Since the process is interrupted as it reaches the boundary of the valley ‘W;, it evolves as a reversible process, and
all computations can be performed with respect to this later one.

On the set of functions f : I — R which are equal to 1 at the boundary of I, the energy which appears on the right
hand side of (8.2) is minimized by the equilibrium potential /; introduced in (8.1). Hence, in order to prove (8.4), it
is enough to exhibit a function f; : W; — R which is equal to 1 at the boundary of ‘W; and such that

lin})hmsup{aemge/ (39f5(9))2m8(9)d9 +/ Fo(0) m(0) d@} =0.
a— e—0 j Wj
Let f; : W; — R be the continuous function defined by

0,80y m.,s
fme /e dy e O/e gy
T —

f:(0) = X o 1(0) + S X110 m1(O)-
2T e5/e dy ) S eS/e gy s
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Note that this function is not differentiable at m = m ;. It is easy to check that this test function fulfills the condition
introduced in the penultimate displayed equation, which completes the proof of the corollary. ([

We turn to an estimate for the time spent outside the wells. Recall from Section 7.4 the definition of the speeded-up
processes X (-).

Lemma 8.5. Foreveryl <j<n,t >0,

t
lim sup Ej |:/0 XA (Xs(s)) dsi| =0.

6—)09€gj

Proof. Fix n > 0 and let 8/(.'7) ={0 € & :d(0, A) > n}. The time integral appearing in the statement of the lemma is
bounded above by

t+H8(.n) -
Hgo) +/ 7 xa(Xe(s)) ds.

As observed in Section 6, in one-dimension diffusions visit points and one can compute the capacity between single-
tons and sets. It follows from the proof of Proposition 3.3 in [13] that

—H/e
£ T (N = ¢ * ! ! !
ElHgn (5O =20 &") /Thww}”) (O )me(@) o'

—H/e

where the factor e appeared because the process X, ¢(5) has been speeded-up by ef//¢. In this formula, h?@}

(m)
,Sj

represents the equilibrium potential between {#} and 81(.'7) for the adjoint process. Therefore,

By [Hgo (Re0)] = — -
S[Hoon (Re())] < ————
oL cap, ({6}, €7)

As in Section 6, it is possible to derive an explicit formula for this capacity and to show that this expression vanishes
as ¢ — 0, uniformly in 6 € &;.
By the strong Markov property, it remains to show that forevery 1 < j <mn,t>0,n >0,

t
lim sup Eg[/ﬂ XA(S(\S(S))dsi| =0.

6_)09€8§U)

Let n" > 0 be such that m; | € 8](.2”/) . It follows from the explicit formulae for the equilibrium potentials computed
in Section 6 that

lim sup sup Pj[HA < Hp]1=0.
8_)09581(-'7) 9’681(.”,)

Since the time integral appearing in the statement of the lemma is bounded, it follows from the previous estimate that
we may insert inside the expectation the indicator of the set { Hy < Ha}. Since we may start the time integral from
Ha, on the set {Hy < HA}

t

t t
/OXA(XS(S))ds=/H XA(Xs(S))dSS/O xa(Xe(s))ds o9 (Hyr).
0/
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Hence, by the strong Markov property,

t t
EZ[I{H(,/ < HA}/O XA(XS(S))ds} gEg,[/o XA(Xg(s))dsi|.

Note that the starting point changed from 6 to 6’.
In view of the previous bounds, to prove the lemma it is enough to show that

1 mj i+

'
lim Ez, |:/0 XA (5(\5(.?)) dsi|M6 (dé’/) —o.

e=0 pe(fmjr —n',mj 1 +0'D) Jm; -y

Since V(m; 1) = 0, there exists a constant ¢(n') > 0, independent of ¢, such that . ([m; 1 —n’,m; 1 +7n']) > c(n).
On the other hand, the integral is bounded by

t
[25] [ xs®eoas fuctar) e,

which vanishes as ¢ — 0. ]

9. The Poisson equation

We examine in this section properties of the solution of the equation L, f = g for a function g : T — R which has
mean zero with respect to u.. We assume in this section the conditions (H4) of Section 5.4. Recall the notation
introduced in Section 7, and that we denote by mijE the endpoints of the well ‘W;. Throughout this section, we assume,
without loss of generality, that ‘W, is the left-most valley of a landscape: 'W; = W, ; in the notation introduced in the
paragraph below (7.2). Therefore, there exists n > 0 such that

S(x)>S(my,1)+n forall —oo <x <to. ©.1)

Fix a function F: § — R, and let G = LF. Denote by g: T — R the function given by

g= Y G)xs.

1<i<n
Assertion 9.A. We have that lim;_,o0 E,,[g] = 0.

Proof. By definition of the function g,

Eulgl=) G(i)u:(&).

i=1
Fix 1 <i < n. By definition of u., by Proposition 5.7 and since, by Remark 5.1, G is constant on valleys,
11:(6) = [1 4 0(1)] = =Gy (m 1)/xS-(x>e*V<x>/€dx
&€ l Z \/E 1, i .
By Remark 4.1, V and § differ by an additive constant on valleys. Hence, since V (m; ;) = 0, the previous expression

is equal to

k(i)
1
[1+oM]ZGitmin Y o mi=[1+oD]u),

k=1

where the last identity follows from the definition of u given in (7.5).
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In conclusion,

n n
Eplg]=[1+0()] Y GOrG) =[1+0D] Y (LF)Dn@).
i=1 i=1
To complete the proof, it remains to recall the statement of Lemma 7.1 ]

Letg,: T — R be given by

ga :g—}"(é‘))(gl,

where r(¢) = E;,[g]/1(81) and E, [g] represents the expectation of g with respect to .. Clearly, E,, [g.] =0,
and, by Assertion 9.A and (7.5), lim, 7 (¢) = 0. The following proposition is the main result of this section.

Proposition 9.1. Let f, : [t , 1+ ] — R be the function given by

fe(x) = F(1) +a(e) " S0 dy

o,

+ Letre /" eS(”/S/y 8.()e SO dzdy, ©.2)
& W W
where
o 1 1 —H/e e —S(y)/e
a(e) = Wge / g8:(y)e dy.

o,

Then, f. is 1-periodic, and solves the elliptic problem Zg fe =g, in'T. Moreover, there exists a finite constant Cq such
that

sup sup|f:(0)| <Co and limsup|f.(0) — f(0)| =0,
0<e<16€eT e=>0pcg

where f : T — R is given byf:leifn F@)ys,.

The proof of this proposition is divided in several steps. In the next lemma, we show that the function f; is 1-
periodic and solves the Poisson equation.

Lemma 9.2. Let g : T — R be a bounded function which has mean zero with respect to |, and let fo :[0,1] > R
be given by

X 1 [r* y
fex)=A+ a(s)/ SVV/E gy 4 " / eSO/ / g(2)e 59 dzdy,
0 0 0

where A € R and

1! s
- - —S(y)/e

ae)= g 5/0 g(ye dy.
Then, f. solves the elliptic problem L. f = g in T.

Proof. We have to show that (L, f:)(x) = g(x) for all x € (0, 1) and that f/(1) = f(0), fe(1) = f=(0). The first two
properties are straightforward. The third one is proved in Assertion 9.B below. ]

Assertion 9.B. We claim that f:(1) = f¢(0).
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Proof. In view of its definition, [ f; (1) — f¢(0)] is equal to

1 1 y
8a(8)/ eSW/e dy—i—/ es(")/S/ g(2)e 3D/ dz dy.
0 0 0

Change the order of integration in the second term, and recall the definition of a(e). Since B = S(0) — S(1), this
expression is equal to [eB/¢ — 1]71e=5M/¢ times

1 1
LS/ / 2(2)e=5De g / SOV gy
0 0

1 1
1[50/ _ gS/e] / 2(2)e=S@/e / SO gy dy.
0 b4

This difference is equal to

1 b4
S/ / 2(2)e=S@/e / SOV 4y d
0 0

1 1
+ SO/ / g(z)e S@/e / S gy dz. (9.3)
0 z

Rewrite the second integral as

1 14z 1 14z
/0 2(2)e—S@/e / SOV 4y iz — /O 2()e=S@/e /1 SOVe gy dz.
Z

Note that in the first integral the density . appears. Since g has mean zero with respect to (i, the first term vanishes.
In the second integral, change variables y = y’ + 1 and recall that S(y" + 1) = S(y") — B to obtain that the second
integral of (9.3) is equal to

1 4
_e[S(O)fB]/s/ g(z)efS(z)/e/ eS(y)/e dydz.
0 0

Since S(0) — B = S(1), the terms in (9.3) cancel, which completes the proof of the assertion. O

Proof of Proposition 9.1. We proved in Lemma 9.2 that f; is 1-periodic and solves the elliptic equation L, fe=28.
in T. It remains to show that f; is uniformly bounded and converges uniformly to f on the set & We examine
separately the second and third terms on the right-hand side of (9.2).

We claim that the second term vanishes as ¢ — 0, uniformly in x € [t ", 1 + 1o} ]. On the one hand, since S(x) <
S(to;) for all x > ro| [because tv| is the left endpoint of a valley],

1 ]+mf _
JSOI=SDIE 4y < 9.4)

NG oy
for some finite constant Cyp independent of . On the other hand, since [g,(x)| < Co, eBle — 1> (1 — e B)ebB/e for

sufficiently small ¢ > 0, and S(1 +w|) = S(tv;) — B,

L istop—mye L

eBle —1 Je
1 1+m,’

Ve Jwp

I+
f 2.(Ne S0 qy

w,

< Coe[S(lerf)*H]/& e S/ dy. 9.5)
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Since tv; is the left endpoint of a valley whose depth is H, S(1 +tv}) — H = §(1 +my 1). By (9.1), there exists
n > 0 such that §(y) > S(1 +my 1) + 7 for all o] <y <1+ to] . Multiplying (9.4) and (9.5) yields that the second
term in the formula of f; vanishes as ¢ — 0, uniformly for x € [, 1 + 10, ].

We turn to the third term on the right hand side of (9.2). Exchange the order of the integrals to write it as

1 x * S0
ge_H/E/}E(Z)/ ASI=S@VE gy gz (9.6)
o, 4

Since g, is uniformly bounded, the absolute value of this expression is bounded by
I+ pl+
CO o—H/e / 1 / Ze[S(Y)*S(Z)]/dedZ: QefH/gc((;‘),
)

where c(¢) is the normalizing constant introduced below (2.2). By (5.10), this expression is uniformly bounded in &.
This proves one assertion of the proposition. It also proves that we may replace g, in (9.6) by g because, by Asser-
tion 9.A, r(e) converges to 0 as £ — 0.

It remains to prove the uniform convergence in & of the sequence f. with g, replaced by g. As the integral in (9.6)
is carried over pairs (y, z) such that z < y the maximum value of the difference S(y) — S(z) is H and it is attained
only when y, z belong to the same landscape and V (y) = H, V (z) =0, that is, when y is an endpoint of a valley, and
z is a global minima of a valley in the same landscape. Hence, the dominant terms of the integral are the ones in which
y belongs to a neighborhood of an endpoint of a valley and z to a neighborhood of a global minima of a valley.

Recall from Section 7.2 that the valleys 'W; which belong to the same landscape are represented as Wy 1, ..., Wa n,,
1 <a < p.To prove uniform convergence in &, fix apointx € &; = &, ¢. By the observation of the previous paragraph,
the contribution to the integral of the points z which do not belong to a neighborhood of point my, ;. ; [that is a global
minimum of V in the valley ‘W, ] is negligible.

Fix b < a, 1 <k < np. The contribution to integral when z belongs to the neighborhoods of the local minima of
Wy i is given by w (b, k)G 1(my k1), where r has been introduced in (7.1). For b = a, 1 <k < { < ng,, the contribution
to integral of the neighborhoods of the local minima of ‘W,  is equal to m(a, k)[G1(mg k1) — G1(mg ¢, 1)]. Hence,
the integral (9.6) with g, replaced by g is equal to

a—1 np

> N WF)b. kym (b, k)G (mp i)
b=1k=1
—1
+ ) (LF)(a,bm (@, b)[Gi(mai1) — Gi(mae1)] + R(e),
k=1

where R(¢) is a remainder which converges to 0 as ¢ — 0, uniformly for x € [t , 1+ to}]. By Lemma 7.7, the
previous sum is equal to F(a, £) — F (1), which proves that f, converges to f uniformly in &. ]
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