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Abstract. We show that the unit area Liouville quantum gravity sphere can be constructed in two equivalent ways. The first,
which was introduced by the authors and Duplantier in (Liouville quantum gravity as a mating of trees (2014) Preprint), uses a
Bessel excursion measure to produce a Gaussian free field variant on the cylinder. The second uses a correlated Brownian loop
and a “mating of trees” to produce a Liouville quantum gravity sphere decorated by a space-filling path. In the special case that
y = 4/8/3, we present a third equivalent construction, which uses the excursion measure of a 3/2-stable Lévy process (with
only upward jumps) to produce a pair of trees of quantum disks that can be mated to produce a sphere decorated by SLE¢. This
construction is relevant to a program for showing that the y = +/8/3 Liouville quantum gravity sphere is equivalent to the Brownian
map.

Résumé. Nous montrons que la sphere de gravité quantique de Liouville d’aire unité peut &tre construite de deux fagons équiva-
lentes. La premiere, introduite par les auteurs et Duplantier dans (Liouville quantum gravity as a mating of trees (2014) Preprint),
utilise la mesure d’excursion d’un processus de Bessel pour définir une variante du champ libre gaussien sur le cylindre. La se-
conde utilise une boucle d’un mouvement brownien corrélé et un « accouplement d’arbres » pour produire une sphere de gravité
quantique de Liouville décorée par un chemin remplissant 1’espace.

Dans le cas particulier ol y = /8/3, nous présentons une troisi¢me construction équivalente, utilisant la mesure d’excursion
d’un processus de Lévy stable d’exposant 3/2 (sans sauts négatifs) pour produire une paire d’arbres de disques quantiques que 1’on
peut accoupler pour obtenir une sphere décorée par un SLEg. Cette construction intervient dans un programme ayant pour but de
montrer que la sphere de gravité quantique de Liouville pour y = 1/8/3 est équivalente 2 la carte brownienne.

MSC: 60J67; 28C20

Keywords: Gaussian free field; Liouville quantum gravity; Schramm-Loewner evolution; Continuum random tree; Conformal welding

1. Introduction
1.1. Overview

Suppose that 4 is an instance of the Gaussian free field (GFF) on a planar domain D and y € [0, 2) is fixed. Then
the y-Liouville quantum gravity (LQG) surface associated with £ is described by the measure w;, which is formally
given by e""®) dz where dz denotes Lebesgue measure on D. Since the GFF h does not take values at points, one
has to regularize in some way to make this definition precise. Let h¢(z) be the average of & on dB(z, €), a quantity
that is a.s. well defined for each € > 0 and z € D such that B(z,€) € D [11, Section 3]. The process (z, €) > h(2) is
jointly continuous in (z, €) and one can define ") dz to be the weak limit as € — 0 along negative powers of 2 of

€?*2Vhe@ dz [11]. We will often write u;, for the measure ¢”"® dz. LQG surfaces have also been constructed and
analyzed for y > 2 [2,7,10] and for y = 2 [8,9] but this paper will only be concerned with the case that y € [0, 2).
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The regularization procedure used to construct pj, leads to the following change of coordinates formula [11, Propo-
sition 2.1]. Suppose that D, D are planar domains and ¢: D — D is a conformal map. If % is a GFF on D and

|4

~ 2
h=hog+ Qlog|y| whereQ:——i—E, (1.1)
14

then
i (A) = wj; (9(A)) (1.2)

for all Borel sets A. This allows us to define an equivalence relation on pairs (D, #) by declaring (D, h) and (5, E)
to be equivalent if 4 and h are related as in (1.1). An equivalence class of such (D, k) is then referred to as a quantum
surface [11]. A representative (D, h) of such an equivalence class is referred to as an embedding of the quantum
surface. In many situations, it is natural to consider quantum surfaces with one or more marked points or paths. In
this case, the equivalence relation is defined in the same way except we require in addition that the conformal map
in (1.1) takes the marked points and paths associated with the first surface to the corresponding marked points and
paths associated with the second surface.

As described above, LQG has a number of variants because the GFF has a number of variants (e.g., free boundary,
fixed boundary, free boundary plus a harmonic function). And this brings us to a natural question: what is the right
way to define Liouville quantum gravity on the sphere, which has no boundary? More precisely, how do we describe
the object that one would expect to see as the scaling limit of the most natural discrete random planar map models
on the sphere? The most obvious answer (sample the ordinary GFF on the sphere — which is defined modulo additive
constant — and adjust the constant a posteriori to make the total w;, area 1) appears to be wrong.

In fact, this problem is more subtle than one might initially guess. It turns out that there are a number of ways
to describe the right answer mathematically, but they all require at least a page or two of text to properly motivate
and explain. One somewhat less explicit approach is to describe the answer using limits,! an idea suggested and
briefly sketched in [42]. Another more explicit construction, appearing in [7], uses the cylinder as a parameter space
(mapping one “quantum typical” point to each of its two endpoints), and makes use of a reparameterized Bessel
excursion measure to describe the averages of & on cylinder slices. It is shown in [7] that the limit suggested in [42] is
well-defined and equivalent to the object constructed in [7].

A third approach, presented by David, Kupiainen, Rhodes, and Vargas in [5], uses the complex plane C as a
parameter space, fixes the location of three “quantum typical points,” and describes the law in terms of an integral
over the space of possible averages of the field & w.r.t. a fixed background measure. Although it is not obvious from
their construction, a work of Aru, Huang, and Sun [1] shows that the construction of [5] is equivalent to the ones we
mentioned above. We note that [5] (see also [6,21]) closely follows similar constructions that appeared in the physics
literature some decades ago; it also surveys and recovers a number of explicit calculations from that literature, which
is quite extensive and which prefigures much of the recent mathematical work in this area.” We will not attempt to
survey the physics literature here.

In [7], the authors along with Duplantier explain how to construct and interpret infinite-volume LQG surfaces as
conformal matings of pairs of trees. Along the way, [7] develops a number of connections between different types of
LQG surfaces and random curves related to the Schramm—Loewner evolution (SLE) [39]. These results build on the
imaginary geometry theory derived in [33-35,37] and the conformal welding theory derived in [42]. The goal of the
present article is to extend these results and connections to the unit area quantum sphere described in [7].

Let us stress however that this is far from a straightforward extension of [7], and that the work in this paper is
very different in character from what appears in [7]. As we outline in Section 1.5, the main work in the current paper

IShort version: one defines a fixed boundary GFF & on a fixed domain D, conditions on puj (D) = C, rescales to make puy, (D) = 1, and then
considers the C — oo of the resulting law on surfaces.

2Both [7] and [5] also discuss “non-unit-area” LQG spheres. One way to describe a general quantum surface with finite area is via a pair (S, A)
where A is the total area, and S is the unit area surface obtained by “rescaling” the original (i.e., by adding a constant to 4 to make the total 1,
mass 1). If dS is a measure on unit area quantum spheres, then for any measurable function f : Ry — Ry, there is a measure dS ® f(A)dA on
(S, A) pairs. In [7] this f is a taken to be a power of A. In [5], it is a power of A times e_“A, where 1 is the so-called cosmological constant.
In both papers, it turns out to be sometimes easier to first construct the non-constant-area measure, and then obtain the unit area measure as the
conditional law of S once A is given.
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Fig. 1. Several constructions of the Liouville quantum gravity sphere and their relationships. The boxes represent equivalent LQG-sphere defini-
tions.

involves making sense of various types of “bottleneck conditioning,” which are conceptually clean but technically
quite subtle.

We also remark that it remains an important open problem to establish higher genus analogs of the statements in
this paper (where the sphere is replaced by a genus g torus). Figure 1 illustrates how the results of the present paper
fit into the existing literature, and the higher genus analogs of most of the boxes and arrows shown there have not
yet been established. Exceptions include the Brownian map box (work in preparation by Bettinelli and Miermont [4])
and the triple-fixed-point construction box (work of Guillarmou, Rhodes and Vargas [13], which builds on physics
literature constructions).

1.2. Scaling limit motivation

The unit area quantum sphere is significant in part because when y? € [2, 4) it has been conjectured to be the scaling
limit of the FK-weighted random planar map on the sphere, as discussed for example in [43, Section 4.2]. But why
do we expect this conjecture to be true? In other words, how do we know that the LQG sphere definition (in any of
its equivalent forms) is the right one for the purpose of understanding FK-scaling limits? There are various ways to
answer this question, but our strongest answer is that there is one version of this conjecture that has actually been
proved in work by Gwynne and Sun [19,20], as indicated by one of the arrows in Figure 1.

As explained in [43], one may encode a loop-decorated quadrangulation of the sphere by a spanning tree and dual
tree pair, which are in turn encoded by a walk on Z%_. The two coordinate functions in this walk are the contour
functions of the trees, and the loop-decorated map is viewed as a gluing of this pair of trees along a space-filling
path. The work in [19,20] establishes a precise form for the scaling limit of this pair of trees: it is a particular pair of
correlated finite-diameter trees, each closely related to the continuum random tree (CRT).

In this paper, we show in Theorem 1.1 that the unit area quantum sphere constructed in [7] can be understood as a
“conformal mating” of the same pair of trees. Thus, together with [19,20], this implies that the FK-decorated random
planar maps converge to CLE-decorated LQG spheres in a topology where two decorated spheres are considered
close when their corresponding trees are close. Although the topology may not be the first that would come to mind
when formulating a scaling limit conjecture, this is already an “honest” scaling limit result in the sense that in both
the discrete and continuum settings, the pair of trees encodes the entire structure of the surface. The infinite volume
version of this story is developed and explained in much more detail in [7,43].

A work in progress is [16], which builds on [19,20] in order to strengthen this topology of convergence. The
work in [16] aims to show that the entire discrete loop structure (lengths of loops, areas of regions surrounded by
loops, locations along loops — as measured by loop length — where self-intersections and intersections with other
loops appear) converges to the analogous continuum loop structure. This “continuum loop structure” is a countable
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collection of measure-endowed loops, together with a set of intersection points and a planar embedding defined up to
homeomorphism. It is essentially the object one gets by looking at a CLE,-decorated y-LQG sphere (k' = 16/y2)
and remembering all the loop lengths and intersection points but “forgetting” how the whole structure is conformally
embedded. It is shown in [16] that the continuum loop structure a.s. uniquely determines the embedding, so this
forgetting involves no actual loss of information.

A similar convergence result for bipolar oriented maps of the sphere towards the /4/3-LQG sphere decorated by
SLE1; has been established in [22] and extended in [15]. (See also [23] for more on bipolar orientations on a planar
lattice.)

The works mentioned above do not address the (still open) question of whether the natural conformal embeddings
of the discrete models in the sphere (circle parkings, square tilings, Riemannian uniformizations of glued-together unit
squares, etc.) approximate the analogous embeddings of the continuum models. (See [17] for a statement of this type
for a random planar map model defined out of the mating of trees construction of LQG. See also [18] for a statement
of this type for the adjacency graph formed by the cells in the Poisson—Voronoi tessellation of a Brownian surface.)

1.3. Brownian map motivation

In the special case y = +/8/3, the current work will also play an important role in a program announced by the
authors in [36] to use the so-called QLE(8/3, 0) to put a metric on /8/3-Liouville quantum gravity, and to show that
the resulting metric space agrees in law with the Brownian map, the scaling limit of uniformly random maps on the
sphere [27,28]. Indeed, the current paper shows that a whole-plane SLEg drawn on top of an independent /8/3-LQG
sphere satisfies the correct symmetries so that we can make sense of a form of QLE(8/3, 0) on the +/8/3-LQG sphere.
In particular, we will show that:

e The holes cut out by an SLEg are given by a Poissonian collection of quantum disks,

e The law of the region which contains the target point of an SLEg is equal to that of a quantum disk weighted by its
quantum area, and

e The law of the tip of an SLEg is distributed according to the quantum length measure on the boundary of the
unexplored region.

The final point mentioned above implies that the reshuffling operation introduced in [36] when applied in the present
setting has the interpretation of being a continuum analog of the Eden model on a 4/8/3-LQG sphere. These three
properties will in fact be critical in [30], in which the metric for 1/8/3-LQG is constructed.

The rest of the program for connecting the Brownian map and the 1/8/3-LQG sphere is carried out in [29-32]. We
refer the reader to the introduction of [30] for an overview of how the different articles fit together.

1.4. Main results

When stating our results (and throughout the paper) we assume that y € (0, 2) and

16 16 2
k=72 e(0,4), K/=7=ﬁ€(4,oo), and Q=;+%e(2,oo). (13)

We also assume that the reader is familiar with the definitions of

e LQG surfaces for y € (0, 2) (briefly described above; see also [11]) and the GFF [41].

e SLE and SLE, (p) processes. See [25,39,45] for more on SLE and [24, Section 8.3] as well as [40] and the prelim-
inaries sections of [33—-35,37] for more on SLE, (p) processes.

e Space-filling SLE. See the introduction of [37]. (We will provide an additional review in Section 2.2.)

We further assume that the reader is familiar with the tree-mating constructions as they are described in the introduc-
tion of [7]. That is, since this paper is in some sense a follow up to [7], we will not replicate the introduction here. It
is, however, not necessary for the reader to have digested all of [7] in order to understand the present paper. For the
convenience of the reader and to set notation we will recall below some constructions that are used repeatedly.
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First let us briefly recall the construction of the unit area quantum sphere given in [7]. In order to do so, we first
need to introduce some Hilbert spaces. For functions f, g: C — R with L? gradients, we define their Dirichlet inner
product to be

1
(f,e)v= o / Vf(x)-Vgx)dx. (1.4)
T JD

For a domain D C C, we let H(D) be the Hilbert space closure of the subspace of C°°(D) with L? gradients with
respect to (-, -)v. Let C = R x [0, 27r] denote the infinite cylinder with the lines R and R + 277 identified. We then
let H1(C) (resp. H2(C)) denote the subspace of H(C) given by those functions which are constant on vertical lines
(resp. have mean-zero on vertical lines). Then H1(C) & Hy(C) gives a (-, -)y-orthogonal decomposition of H(C);
see [7, Lemma 4.3].

The starting point for the construction of the unit area quantum sphere is a certain infinite measure Mpgs on
doubly-marked quantum surfaces (C, h, —00, +00). To describe the measure, we assert that one may sample from the
measure via the following steps:

e Take the projection of & onto H1(C) to be given by the process % log Z reparameterized to have quadratic variation

BES

du where Z is picked from the It excursion measure vy~ of a Bessel process of dimension § =4 — %. (We

review the construction of v}?ES in Section 2.1.1. Even though § < 0 for y € (0, «/E], UEES still makes sense.)

e Sample the projection of 2 onto H2(C) independently from the law of the corresponding projection of a whole-
plane GFF on C.

Since v?ES is an infinite measure, so is Mpgs. However, if one conditions on the quantum area of Mpgs being a

particular positive and finite value, then the conditional law is a well-defined probability measure.> The unit area
quantum sphere is the measure which is given by sampling (C, h, —o0, +00) as above conditioned on having unit
quantum area.

As mentioned earlier, it is also shown in [7] that the law of the unit area quantum sphere can be constructed
using the limiting procedure suggested in [43]. It is shown in [7, Proposition A.13], which follows from the limiting
construction, that the points which correspond to 00 conditionally on (C, &) as a quantum surface are uniformly and
independently distributed according to wj. That is, the law of the field # (modulo a horizontal translation and global
rotation about 00) is invariant under the operation of picking x, y € C independently from pu;, letting ¢ : © — C be
a conformal transformation with ¢(+00) = x, ¢(—00) =y, and then replacing / with the field & o ¢ + Q log|¢’|.

The infinite volume companion of the unit area quantum sphere is the so-called y-quantum cone described in
[7,42]. Just as in the case of the former, the latter can also be constructed using Bessel processes; we will recall its
construction in Section 2.3 as it will play an important role in this paper. Two of the main results of [7], namely [7,
Theorem 1.9 and Theorem 1.11], give that a y-quantum cone can be constructed and described entirely in terms of a
certain (correlated) two-dimensional Brownian motion. In particular, if (C, h, 400, —00) is a y-quantum cone with
y € [v/2,2) where —c0 (resp. +00) is the marked point about which neighborhoods have infinite (resp. finite) mass
and n’ is a space-filling SLE,+ process [37] from —oo to —oo sampled independently of / and then reparameterized so
that wj, (7’ ([s, t])) =t —s forall s < ¢ then the change in the quantum lengths (L, R) of the left and right boundaries of
n’ relative to time 0 evolve as a correlated two-dimensional Brownian motion with (up to a linear reparameterization
of time)*

var(L;) = |t], var(R;) = |t|, and cov(L;, R;) = —cos(ny2/4)|t| > 0. (1.5)

Moreover, (L, R) a.s. determines both 1’ and the quantum surface (C, h, +00, —00). It is in fact shown in [7] that
the quantum lengths (L, R) of 5’ evolve as a two-dimensional Brownian motion for all values of y € (0, 2) and that

3This point is justified carefully in [7, Section 4] for the quantum disk measures that describe the pieces of so-called thin quantum wedges. The
quantum disk measures in [7, Section 4] are constructed from Bessel excursions the same way as Mggg but with a different range of choices for
the parameter §. The conditioning argument used in [7, Section 4] also applies to MBgs.

4Space—ﬁlling SLE,/ from oo to oo in C is constructed in [37]. The process in € from —oo to —oo is defined in the same way with a whole-plane
GFF on C. Alternatively, it can be constructed by taking the process on C and then applying a conformal transformation which takes oo to —oo.
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(L, R) a.s. determines the path decorated quantum surface (C, k1, +00, —00), n’. It was later shown in [14] that the
covariance matrix for (L, R) is the same function of y as in (1.5) for all y € (0, 2).

Our first main result (stated just below) serves to extend this result to the setting of the unit area quantum sphere.
In this setting, the pair (L, R) is no longer a correlated Brownian motion but rather a correlated Brownian loop. Fix
y € (0,2) and suppose that (X, Y) is a two-dimensional Brownian motion starting from the origin with the same
covariance as in (1.5). Let (L, R) be given by the law of (X, Y) conditioned on X| = Y; =0 and X;, ¥; > 0 for all
t € [0, 1]. (This involves conditioning on an event of measure zero; we explain how to make this precise in Section 3.)

Theorem 1.1. Suppose that y € (0, 2) and that (C, h, —00, +00) is a unit area quantum sphere. Let ' be a space-
filling SLE, process from —oo to —oo sampled independently of h and then reparameterized by quantum area. That
is, we take 1’ (0) = —o0 and we parameterize time so that for 0 < s <t < 1 we have that v, (0’ ([s, t])) =t —s. Let L,
(resp. R;) denote the quantum length of the left (resp. right) side of ' ([0, t1). Then the law of (L, R) is as described
Jjust above. Moreover, the path-decorated quantum surface (C, h, —oo, +00), 0’ is a.s. determined by (L, R).

In [7, Theorem 1.17], it is shown that it is also natural to explore a y-quantum cone (C, /, 0, co) with a whole-plane
SLE,/ (k" — 6) process 7’ from 0 to co. The quantum surfaces which correspond to the complementary components of
C\ 7/ are described by so-called forested lines. In the case that ¥’ = 6 so that 7’ is an ordinary whole-plane SLEg, it
is shown in [7, Corollary 10.2] that the evolution of the quantum length of the boundary of the unbounded component
of C\ 7/([0, 1]) is given by a totally asymmetric 3/2-stable Lévy process with only negative jumps conditioned to be
non-negative when 77’ is parameterized by quantum natural time (quantum natural time is introduced just before the
statement of [7, Theorem 1.18]). In our next theorem, we describe the analog of this latter statement in the case of a
unit area quantum sphere with y = /8/3.

Suppose that X; is a totally asymmetric 3/2-stable process with only upward jumps and let I; = inf{X; : s <t} be
the running infimum of X. Let N be the excursion measure associated with the excursions that X; — I; makes from
0. We note that N is an infinite measure (we will recall its construction in Section 2.1.2; see also [3, Chapter VIIL.4]),
though for each € > 0 we have that N assigns finite mass to those excursions which have length at least €. Let My gy
be the infinite measure on collections of oriented, marked quantum disks such that sampling from Mgy amounts to:

e Sampling a stable Lévy excursion e from N.

e Given e, sampling a collection of conditionally independent quantum disks (we will review the definition of a
quantum disk in Section 2.3.2) indexed by the jumps of e whose boundary length is equal to the size of the jump
made by e and then orienting each by the toss of an i.i.d. fair coin.

e Marking the boundary of each quantum disk with a conditionally independent point chosen from its quantum
boundary measure.

Theorem 1.2. Let (C, h, —00, +00) be a unit area quantum sphere with y = /8/3. Let ' be a whole-plane SLEg
process in C from —oo to +00 sampled independently of h and then parameterized by quantum natural time. For each
t >0, let X; denote the length of the boundary of the connected component of C\ 1 ([0, t]) which contains +oc. Then
the joint law of X and the oriented (by the order in which 7' draws the disk boundary), marked (by the last point on
the disk boundary visited by ') quantum disks cut out by 7 is equal to the time-reversal of a sample produced from
MLEv conditioned on the total quantum area of the quantum disks being equal to 1. Moreover, the path-decorated
quantum surface (C, h, —00, +00), 7' is a.s. determined by the ordered sequence of oriented, marked components cut
out by 7' viewed as quantum surfaces.

We will show in Lemma 6.1 that for each a > 0, Mgy assigns finite mass to those configurations for which the
sum of the area of the quantum disks is at least a.

Remark 1.3. By [7, Proposition A.13], the points which correspond to —oo and +o¢ in the unit area quantum sphere
as constructed above are independent and uniformly distributed according to the quantum measure conditional on
the surface. In particular, Theorem 1.2 applies if one starts with a unit area quantum sphere, picks points x,y € S
independently and uniformly at random using the quantum area measure, and then lets " be a whole-plane SLE¢ on
S from x to y.
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Remark 1.4. We expect statements analogous to Theorem 1.2 to also hold for other values of y € (+/2,2). Namely,
we expect it to be possible to describe a certain kind of doubly-marked quantum sphere decorated with a whole-
plane SLE,. process in terms of a «’/4-stable Lévy excursion where each of the jumps correspond to conditionally
independent quantum disks whose boundary length is equal to the size of the jump. The case y = /8/3 is special
because the surface is given by the unit area quantum sphere. For other values of y, the law on spheres should be
constructed in the same manner as the unit area quantum sphere except with a different Bessel process dimension. In
particular, for y # /8/3, the starting and ending points of the SLE, process are not uniformly distributed according
to the quantum area measure. It should also be possible to describe a (standard) unit area quantum sphere with y €
(+/2,2) decorated by an independent whole-plane SLE, (k' — 6) process connecting two points chosen uniformly
from the quantum measure in terms of finite volume analogs of the forested lines considered in [7]. We will describe
some extensions in this direction in Section 7.

Theorem 1.2 implies that M; gy can be thought of as an infinite measure on path-decorated doubly-marked quantum
spheres. More generally, Theorem 1.2 implies that a sample produced from Mgy conditioned on having a given
quantum area A > 0 has the same law as a sample produced from Mpgs conditioned on the quantum area being
equal to the same value A. It therefore follows that the Radon—Nikodym derivative of Mgy with respect to Mpgs is a
function of quantum area alone. Our final main result is the explicit identification of this function.

Theorem 1.5. There exists a constant cig > 0 such that

= CLB. (1.6)

Let A denote the quantum area of a quantum surface S sampled from My gy or Mggs. For y = 4/8/3, it turns
out that the density of A under Mpgs with respect to Lebesgue measure is given by a constant times A~>/2; see
Proposition 6.3. Theorem 1.5 then implies that the density of A under Mgy with respect to Lebesgue measure is
given by a constant times A~3/2. It is not a coincidence that this is the same exponent that one encounters in the
“grand canonical” doubly marked Brownian map measure /,LépH, as discussed for example in [29].

The equivalence of Mgy with Mpgs implies that the conditional law of the two marked points of Mgy given the
underlying surface are uniformly random from the quantum measure. For this reason, in the subsequent papers [30-32]
we will refer to this measure as M%PH. We can generate spheres with fewer or more marked points by unweighting or
weighting MéPH by quantum area. In particular, the infinite measure on quantum spheres MéPH with only one marked
point can be sampled by first picking A from the infinite measure A~>/2d A where d A denotes Lebesgue measure on
R and then, given A, picking a quantum sphere with area equal to A, and then finally picking the marked point from
the quantum area measure. This measure is in correspondence with ,uéPH from [29]. More generally, we define the
infinite measure M’§PH on quantum spheres with k marked points by first picking A from the measure A~7/>tKdA,
and then, given A, picking a quantum sphere with area equal to A, and then finally picking the k marked points
conditionally independently from the quantum area measure. This measure is in correspondence with ,ulng from [29].

1.5. Outline

The remainder of this article is structured as follows. We will review some preliminary facts about Bessel and stable
Lévy processes, quantum surfaces, and conformal maps in Section 2. In particular, we will recall in Theorem 2.1
how to describe a quantum disk in terms of a correlated two-dimensional Brownian excursion; this result already
appeared in [7]. Next, in Section 3 we will give a rigorous construction of the measure on correlated Brownian
loops described just before the statement of Theorem 1.1. This measure essentially corresponds to a correlated two-
dimensional Brownian bridge, starting and ending at the origin and conditioned to stay in the positive quadrant. We
construct and make some basic observations about this process. In Section 4 we will explain how one can construct
a unit area quantum sphere from a y-quantum cone. We will then make use of this result in Section 5 and Section 6,
where we will respectively establish Theorem 1.1 and Theorems 1.2 and 1.5. We will discuss extensions of our results
for y = \/8/3 to general values of y € (+/2,2) in Section 7.
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All of the results in this paper build on the infinite volume constructions that appear in [7]. Intuitively, one way to
get from an infinite volume quantum surface to a unit area quantum sphere is to condition the former to have a small
“bottleneck,” so that the area to one side of the bottleneck is about 1. One can take a limit as the bottleneck is required
to be, in some sense, smaller and smaller. For each of the different ways to describe the infinite volume surface that are
shown to be equivalent in [7] (via the Bessel process, the correlated 2D Brownian motion, or the stable Lévy process)
there is natural way to define a bottleneck and to make sense of the sphere obtained in the “small bottleneck™ limit.
The technical challenge, which the bulk of this paper is devoted to addressing, is to show that all of these different
approaches actually agree in the limit.

Before addressing these challenges, we will recall that a quantum cone is a random surface with two marked points,
an “infinite mass” point (about which every neighborhood has infinite mass) and a “finite mass” point (about which
small neighborhoods have finite mass). We will then consider various ways to explore this random surface from the
infinite mass point toward the finite mass point — either deterministically (parameterizing the surface by a cylinder
and exploring the cylinder from left to right) or randomly (drawing a whole plane SLE from one endpoint to another).
With each approach, we may stop the exploration when (in some sense) the boundary of the unexplored region is
small and then consider the conditional law of the unexplored region — in particular, we would like to understand the
law of the unexplored region conditioned on the event that its quantum area is much larger than one would expect.

This analysis will require some work, and a number of careful estimates, but there are a few tricks that make the job
more pleasant than it might otherwise be. One involves using some basic conformal map estimates, similar to those
that appear in [7], to argue that certain fairly drastic local operations on a quantum surface (such as cutting out a disk
with a very small quantum area and then gluing in a disk with the same boundary length but a much larger quantum
area) actually have little effect on the global conformal embedding. Another involves using the “target invariance” of
certain types of SLE along with properties of the quantum cone to show that one can sometimes partially “forget” the
location of the finite-mass endpoint of a quantum cone — and resample it from the LQG measure on some specified
region — without changing the overall law of the path decorated surface.

2. Preliminaries

In this section, we will review some preliminary facts about random processes and quantum surfaces. We will begin
in Section 2.1 with a short review of Bessel and stable Lévy processes. Next, in Section 2.2 we will give a review
of space-filling SLE, as constructed in [37]. Then in Section 2.3 we will remind the reader of the various types of
quantum surfaces which were constructed in [7] and are relevant for the present article. Finally, in Section 2.4, we will
record an elementary estimate for conformal maps which will be used when we perform cutting/gluing operations on
quantum surfaces.

2.1. Bessel and stable Lévy processes

We will now collect a few facts about Bessel and stable Lévy processes. For the former, we refer the reader to [38,
Chapter XI] for a more detailed introduction; see also [7, Section 3.2]. For the latter, we refer the reader to [3].

2.1.1. Bessel processes
A Bessel process X; of dimension § € R, denoted by BES?, is described by the SDE

§—1 1
dX; = — - —dt+dB;, Xp=>0, 2.1
t ) X +dB; 0= (2.1)

t

where B is a standard Brownian. Standard results for SDEs imply that a unique strong solution to (2.1) exists up
until the first time 7 that X, < 0 for all § € R. For § > 2, a BES? a.s. does not hit 0 (except possibly at its starting
point) while for § < 2, a BES? a.s. hits 0 in finite time. This can be seen by observing that th,(; is a continuous
local martingale. For § € (1,2), a BES’® process can be defined for all times, is instantaneously reflecting at O, is a
semimartingale, and satisfies the integrated form of (2.1). For § € (0, 1], there is also a unique way of defining a BES?
for all times which is instantaneously reflecting at 0. In this case, the process is not a semimartingale and satisfies (2.1)
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only in those intervals in which it is not hitting 0. In order to make sense of the integrated version of (2.1) in this case,
it is necessary to introduce a principal value correction.

For § € (0, 2), one can use It excursion theory to decompose a BES? into its excursions from 0. In order to describe
this, we let &, be the set of continuous functions ¢ : [0, /] - R and € = | J,,_( Ex. We then let UEES be the (infinite)
measure on £ which can be sampled from by:

e Picking a sample ¢ from the measure c5t/>~2dt where dt denotes Lebesgue measure on Ry and ¢s > 0 is a
constant.
e Given 1, picking an excursion of a BES? from 0 to 0 of length 7.

Note that a Bessel process can be constructed as a chain of excursions: precisely, a sample from the law of a BES? can
be produced by first picking a Poisson point process (p.p.p.) A with intensity measure du ® USBES on Ry ® £, where
du is Lebesgue measure on R, and then concatenating together the second component of the elements (u, ¢) of A
with (u, €) coming before (u’, ') if and only if u < u’'.

One can also generate a p.p.p. A with intensity measure du ® U?ES when § < 0. In this case, however, it is
not possible to string together the excursions chronologically to form a continuous process. As explained in the
introduction, the excursion measure associated with a BES? is the starting point for the construction of the unit area
quantum sphere given in [7].

Another way to generate a Bessel process is by exponentiating a Brownian motion with linear drift and then
reparameterizing it to have quadratic variation d¢. Namely, if X; = B; 4+ at where B is a standard Brownian motion,
then the process which arises by setting Z, = eX* and then changing time so that d (Z); = dt is a BES? with § =2+ 2a
(stopped at the first time that it hits 0). Conversely, if Z is a BES?, then X, = log Z; reparameterized to have quadratic
variation d(X); = dt is a standard Brownian motion with linear drift ar with a = (§ — 2)/2. (See [38, Chapter XI] or
[7, Proposition 3.4].)

2.1.2. Stable Lévy processes
Fix a € (0, 2) and recall that a Lévy process X is said to be «-stable if for each u > 0 fixed it has the property that
(0w X ) £ (X)),

Suppose that X is an «-stable process with o € (1, 2) with only positive jumps. Let I; = inf{X; : s € [0, ¢]} be the
running infimum of X. Then the process X — I can be decomposed into a Poissonian collection of excursions from 0
[3, Chapter VIIL.4]. Let N be the measure which is sampled from using the following steps:

e Pick a lifetime ¢ from the measure cot°~%dt where p = 1 — 1/ is the positivity parameter of the process [3,
Chapter VIII. 1], dt denotes Lebesgue measure on Ry, and ¢4 > 0 is a constant.

e Given ¢, pick a sample from the normalized excursion measure of an «-stable Lévy process and then rescale it
spatially and in time so that it has length 7.

One can then produce a sample from the law of the process X — I by sampling a p.p.p. A with intensity measure
du ® dN, with du given by Lebesgue measure on R, and then concatenating the second component of the elements
(u, e) € A where (u, ) comes before (u’, ¢’) if and only if u < u’.

The collection of jumps made by X up to a given time 7" also has a Poissonian structure. Namely, if A is a p.p.p.
on [0, T] x Ry sampled with intensity measure dt ® Cou~ "% du where dr denotes Lebesgue measure on [0, T'], du
denotes Lebesgue measure on R, and ¢, > 0 is a constant, then the elements (7, u) are in correspondence with the
jumps made by X up to time 7 where ¢ gives the time at which the jump occurred and u gives the size of the jump.

We finish by recording one final useful fact about «-stable Lévy processes with only positive jumps. Suppose that
X, is an a-stable process with only positive jumps, Xo > 0, and let T = inf{r > 0 : X, = 0}. Then the time-reversal
X+ has the law of an a-stable process with only negative jumps conditioned to be non-negative and stopped at the
last time that it hits X [3, Chapter VII, Theorem 18].

2.2. Space-filling SLE
Fix «’ > 4. In this section, we will recall the construction of space-filling SLE, from [37] and also explain how

it is related to chordal and radial SLE,/. Roughly speaking, space-filling SLE,. for ' € (4, 8) is an SLE process
which iteratively fills up the bubbles as it cuts them off from oo (or its target point) and for ¥’ > 8 it is the same as
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ordinary SLE,. The particular variant of space-filling SLE,, which is most important for this article is the version
which is defined on C and is an infinite path from oo back to itself. The starting point for its construction in [37] is a
whole-plane GFF & with values defined up to a global multiple of 2 x where

2 16
X:——ﬁ and K:—/€(0,4).
K

It is shown in [37] that it is possible to construct the flow lines of the formal vector field ¢//X (this only requires
us to have defined the field values modulo a global multiple of 27 x ). For z € C, the flow line n; of & from z to 0o
is a whole-plane SLE, (2 — «) process from z to co. More generally, for 6 € R we can define the flow line 17 of h
from z to o0 as the flow line of A + 0 x and ’71 is a whole-plane SLE, (2 — «) process from z to co. If =06+ 2w x

then nz = nz but otherwise nz, ’71 are distinct paths. In other words, we have a 2w range of angles for flow lines
starting from each z € C. It is shown in [37, Theorem 1.9] that for z, w € C distinct we a.s. have that the flow lines
Nz, Ny Starting from z, w, respectively, a.s. merge with each other and do not subsequently separate. The same is also
true for the nf, n% for each value of 6. This means that we can use the flow lines to define a space-filling tree and a
space-filling dual tree.

More precisely, for each z € C we let nz (resp. n; R) be the flow line of / starting from z with angle Z 7 (resp. —7).
The paths nZL are the branches of the tree and the paths ’71 are branches of the dual tree. Given a countable dense set
(z) of C, we can define an ordering on the z,, by saying that z,, comes before z,, if nan merges with ’7sz on its right
side. This turns out to be equivalent to 175{ merging with nfm on its left side. Whole-plane space-filling SLE,/ from co
to oo is a continuous, non-self-tracing and non-self-crossing path n” which fills all of C and visits the points of (z,)
according to the above order. It is not difficult to see from the construction that the resulting path is a.s. the same for
any two fixed choices of countable dense sets. Space-filling SLE,/ can thus be thought of as the peano curve which
traces between the tree and dual tree defined above.

If z € C is fixed, then we can consider n’ targeted at z, which means that we parameterize the path by capacity as
seen from z. Call this path 7. In other words, 7, does not fill in the bubbles that it disconnects from z. It turns out
that the law of 7, is that of a whole-plane SLE, (k" — 6) process from oo to z and is the counterflow line of / from
oo to z. For different points z, w, the paths 7, 7,, agree with each other until z and w are separated and afterwards
their evolution continues independently.

2.3. Quantum cones and disks

We are now going to give a brief overview of the types of quantum surfaces which will be important for this article.
We refer the reader to [7, Sections 1 and 4] for a much more detailed introduction and motivation for the definitions
we give here.

Throughout, we let § =R x [0, ] and 4+ = Ry x [0, wr]. We also let C =R x [0,27] and C+ = Ry x [0, 2]
with the top and bottom identified in both cases. When X € {4, 84, C, C+}, we let H(X) be the subspace of H(X)
consisting of those functions which are constant on vertical lines and let H,(X) be the subspace of H(X) consisting
of those functions which have mean zero on vertical lines. As explained in the introduction (see also [7, Lemma 4.3]),
we have that H(X) @ H(X) gives an orthogonal decomposition of H (X).

2.3.1. Quantum cones
Fix ¢ < Q. An «-quantum cone C = (C, h, 400, —00) is the quantum surface whose law can be sampled from using
the following steps:

e Take the projection of & onto 1 (C) to be given by 2y ~! log Z parameterized to have quadratic variation du where
Z is the time-reversal of a BES® with § =2 + %(Q — «a) > 2 starting from 0. This determines the projection of &
onto H1(C) up to horizontal translation; we can fix the horizontal translation by taking it so that the projection first
hits 0 at u = 0.

e Sample the projection of & onto H>(C) independently from the law of the corresponding projection of a GFF on C.

In many instances, it is also natural to parameterize a quantum cone by C rather than C. For the purposes of this
article, however, we will always parameterize our cones by C.
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The reason that we take the time-reversal of Z in place of Z itself is so that every neighborhood of —oo a.s. contains
an infinite amount of quantum area and every sufficiently small neighborhood of +o0 (i.e., bounded away from —o0)
a.s. contains a finite amount of quantum area; at times it will be useful to explore from the “infinite area” end to the
“finite area” end of the cylinder, so it is mildly more convenient to orient time that way.

As explained in [7], it is natural to explore a y-quantum cone with an independent space-filling SLE,/ process.
When parameterized by € as above, we take 1’ to be a space-filling SLE,/ from —o0 to —oo sampled independently of
h and then reparameterized by y-LQG area with time normalized so that n’(0) = +o00. [7, Theorem 1.9] implies that
the processes (L, R) which describe the change in the quantum length of the left and right boundaries of n’ relative to
time O (i.e., Lo = Ry = 0) evolve as a pair of correlated Brownian motions with covariance as in (1.5) (the covariance
for y € (0, ﬁ) is identified in [14]) and [7, Theorem 1.11] implies that (L, R) a.s. determines both the quantum cone
and 1/, up to a rotation and translation (i.e., conformal transformation of € which fix £00).

By [7, Corollary 10.2], it is also natural to explore an a-quantum cone,

_y2+8
=

o

, 2.2)

with an independent whole-plane SLE,s process ' from +o00 to —oo when y € (+v/2,2) so that «” € (4, 8). When
7 is parameterized by quantum natural time, the quantum length X of its outer boundary evolves as a «’/4-stable
process with only downward jumps starting from O and conditioned to be non-negative. Given the realization of X,
the regions cut out are conditionally independent quantum disks (a type of finite-volume surface described in the
next subsection) whose boundary lengths are given by the jump sizes of X. Moreover, by [7, Theorem 1.17] the
quantum cone is a.s. determined by X, the quantum disks, their orientation (whether or not they are surrounded on
the left or right side of 77"), and the marked boundary point on each which corresponds to the first (resp. equivalently
last) point visited by 7. The value y = /8/3 (corresponding to k¥’ = 6) is special because it is the unique positive
solution to (y2 + 8)/(4y) = y. More generally, by [7, Theorem 1.17] it is natural to explore a y-quantum cone with
an independent whole-plane SLE,/(x’ — 6) process 77’ from —oo to +oo though for «” # 6 the process which gives
the quantum length of the outer boundary of 7’ is more complicated to describe.

2.3.2. Quantum disks

As in the case of the unit area quantum sphere described in the Introduction, the starting point for the construction of
the unit boundary length quantum disk is an infinite measure on quantum surfaces which is derived from the (infinite)
excursion measure for a certain Bessel process. As in [7], we will take our quantum disks to be parameterized by
4 (with “marked” points at the two endpoints). A natural infinite measure M on quantum disks with two marked
boundary points can be sampled from by:

e Taking the projection & onto #(48) to be given by 2y ~!log Z where Z is sampled from the excursion measure of
a Bessel process of dimension 3 — -5 parameterized to have quadratic variation 2du.

e Sampling the projection of & onto H;(4) from the law of the corresponding projection of a free boundary GFF on
5.

The unit boundary length quantum disk is the law on quantum surfaces that one gets by sampling from the measure
M conditioned to have quantum boundary length equal to 1.

As in the case of y-quantum cones, it is shown in [7] that it is also natural to explore a unit boundary length
quantum disk using a space-filling SLE,/ process. We are going to give a precise statement of this result below for the
convenience of the reader. Before we do so, we first need to remind the reader of the definition of so-called 7 /2-cone
times and excursions. Suppose that Z = (X, Y) is a continuous process. Then a time ¢ is said to be a 7 /2-cone time
for Z if there exists & > 0 such that Z; > Z, (i.e., this inequality holds coordinate-wise) for all s € [¢, ¢ + h]. We
call the restriction of Z to an interval of time [s, ] a w/2-cone excursion if it has the property that Z, > Z for all
r €[s,t] and Xy = X; or Yy = Y;. We refer to the quantity max (X, — Xy, Y; — Y;) as the terminal displacement of
the 7t /2-cone excursion. In the case that Z is a two-dimensional Brownian motion, it is not difficult to see that it is
possible to represent Z as a Poissonian collection of 7r/2-cone excursions sampled using a certain infinite measure
on i /2-cone excursions (this is essentially carried out in the proof of [7, Proposition 10.3]). We will give a direct
construction of the law of a 7 /2-cone excursion for a correlated Brownian motion of either unit length or terminal
displacement in Section 3.
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Theorem 2.1. Fix y € [/2,2) and suppose that (8, h, —o0, +00) is a unit boundary length quantum disk. Let 1)’ be
a space-filling SLE,/ process from —oo to —oo sampled independently of h and then reparameterized by quantum
area. Let L; (resp. R;) denote the length of the left (resp. right) side of n' ([0, t]). Then (L, R) evolves as a 7 /2-cone
excursion with terminal displacement 1 of a two-dimensional Brownian motion with covariance as in (1.5). Moreover,
(L, R) a.s. determines both h and v, up to a conformal transformation of 8 which fixes —oo.

Remark 2.2. Theorem 2.1 describes the behavior of (L, R) when one conditions on the quantum boundary length of
the quantum disk. What happens when one conditions on both the quantum area and boundary length? The process
(L, R) is a function of the quantum disk and the independent space-filling SLE, process n’. We know that if we fix
the boundary length of the disk, then (L, R) evolves as a 7 /2-cone excursion with terminal displacement given by the
boundary length. If we condition further on the quantum area of the disk, then this has the effect of fixing the length
of the 7 /2-cone excursion. Since this extra conditioning only depends on the quantum disk and not on 7’, it follows
that when we explore a quantum disk of a given quantum boundary length and area with an independent space-filling
SLE, process then the left/right boundary lengths evolve as a correlated Brownian excursion of the given length and
terminal displacement.

2.4. Distortion estimate for conformal maps on the cylinder

In our proofs of Theorem 1.1 and Theorem 1.2, we will perform a number of “cutting” and “gluing” operations for
quantum surfaces. The following elementary estimates for conformal maps tell us how much these operations distort
the embedding of the rest of the surface. Recall that a set K € C is said to be a hull if it is compact and C\ K is
simply connected, where C denotes the Riemann sphere. We begin with a restatement of [7, Lemma 9.6].

Lemma 2.3. There exist constants C1, Ca > 0 such that the following is true. Let K1 C C be a hull of diameter at
most r and Ky C C another hull such that there exists a conformal map F: C\ K1 — C\ K, with |F(z) —z| = O as
z — 00. Then whenever dist(z, K1) > Cr we have that

|F(2) —z] < Car?lz — by 7",

where by is the harmonic center of K. That is, if F1: C\ D — C\ K| is the unique conformal map fixing oo and
with positive derivative at oo then by is equal to the average of F on d B(0,r) for any r > 1. (It is elementary to check
that this definition does not depend on the choice of r.)

We say that a set K C C is a hull if the image of K under the map € — C given by z — e* is a hull as defined
above. We are now going to use Lemma 2.3 to deduce a similar estimate in the setting of hulls in €. As in Section 2.3,
we let C_ ={z € C:Re(z) <0} and Cy ={z € C:Re(z) = 0}.

Lemma 2.4. There exist constants C1, Cy > 0 such that the following is true. Suppose that K1 C C_ is a hull and
K> C C is another hull such that there exists a conformalmap F: C\ K1 — C\ Ky with |F(z) —z| = 0 as z — 400.
Then we have that

|F(w) — w| < Crexp(—Re(w)) forallw e Cy + Cj. (2.3)

Proof. Let G(z) =exp(F(log(z))). Then G is a conformal transformation of C\ K 1to C\ Ez where Ei =exp(K;)
for i = 1,2 with |G(z) — z| — 0 as z — oo. Note that diam(K) < 1 since K; < C_. Consequently, Lemma 2.3
implies that there exist constants C, C» > 0 such that |G(z) — z| < Cp whenever |z| > C1. Suppose that z € C with
lz| > C; and let w = log(z) € C. Then this implies that

lexp(F (w)) — exp(w)| < C,.
Equivalently,

lexp(F(w) —w) — 1] < Ez}exp(—w)‘. 2.4)



1724 J. Miller and S. Sheffield
By the triangle inequality, this implies that

exp(Re(F(w) —w)) < C, exp(—Re(w)) + 1.
Taking logs of both sides, we get for a constant C, > 0 that

Re(F(w) —w) < 10g(52 exp(—Re(w)) + 1) < Crexp(—Re(w)). (2.5)
Similarly, we also have that

1< 52 exp(— Re(w)) + exp(Re(F(w) — w))
which implies that

1-— 52 exp(— Re(w)) < exp(Re(F(u)) — w))
This gives us that, by possibly increasing the value of C,, we have

Re(F(w) — w) = —Caexp(—Re(w)) (2.6)
and therefore combining (2.5) and (2.6) we have

|Re(F(w) — w)| < Crexp(—Re(w)). 2.7)
Inserting (2.7) into (2.4), we see that by possibly increasing the value of C» we have

lexp(i Im(F (w) — w)) — 1| < C2exp(—Re(w)). (2.8)

Combining (2.7) with (2.8) implies (2.3) with C; =log 51. O

3. Correlated Brownian loops and excursions

We are now going to give a rigorous construction of the correlated Brownian loop which was described just before
the statement of Theorem 1.1. We will at the same time give the construction of the law of a 7 /2-cone excursion of
length 1 and given terminal displacement. We will then show that the correlated Brownian loop can be constructed as
the limit of a 7 /2-cone excursion of a correlated Brownian motion of length 1 and terminal displacement tending to
0. This is natural in the context of relating quantum disks and spheres.

Theorem 3.1. Fix « € (—1,1) and (x1,y1) € BRi. There exists a unique law on pairs of continuous processes Z =
(X, Y) defined on [0, 1] with Xo = Yo =0 and X1 = x1, Y1 = y1 such that the following hold.

G) P[X;,Y,>0]=1forallt €(0,1).

(ii) Foreach0 <s <t <1, the conditional law of Z||s 1) given Z|0,5] and Z|[; 1] is given by that of a two-dimensional
Brownian motion (A, B) on [s, t] with var(A,) = var(B,) =u — s and cov(A,, B,) = a(u — s) conditioned on
Ay, By >0 forallu € [s,t] and on (A, By) = Zs and (A;, By) = Z;.

Throughout, we let Z = (X,Y) be a two-dimensional Brownian motion with var(X;) = var(¥;) =t and
cov(Xy,Y;) = at for a € (—1,1) fixed. For z € C, we let P* denote the law under which Zy = z and let E* be
the corresponding expectation. The first step in the proof of the existence component of Theorem 3.1 is to prove the
existence of a process taking values in R%r which corresponds to Brownian motion conditioned to stay in R%r. This
process was constructed by Shimura in [44] and the next two lemmas can be found in [44].

For each § > 0, we let P;s be the event that X;, Y; > —¢& forall ¢ € [0, 1].

Lemma 3.2. There exists a law v on continuous processes W : [0, 1] — R%r with Wy = 0 such that:
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(1) P[W,>0]=1forallt €(0,1),

(ii) Foreacht € (0, 1), the conditional law of W |[; 11 given W |(0.1] is that of a Brownian motion (A, B) on [t, 1] with
var(Ay) =u —t, var(By) =u —t, and cov(A,, B,) = a(u — t) conditioned (on the positive probability event) to
stay in Rﬁ in [t, 1] and starting from W;, and

(iii) With respect to the topology of uniform convergence, we have both
(a) The law of Z|[0,1] under PO[. | Ps] converges weakly to v as § — 0.

(b) The law of Z|[o,1] under P*[- | Py] converges weakly to v as z — 0 in R%r.

Lemma 3.3. For 0 <s <t <1, we let p>'(z, w) be the transition density for the process constructed in Lemma 3.2.
Then (s, t,z, w) = p>!(z, w) is bounded and continuous in 7, w € Ri. Moreover, p*'(z,w) > 0forall0<s <t <1
and z,w € R%r.

We direct the reader to [44] for an explicit formula for p*’(x, y). By combining Lemma 3.2 and Lemma 3.3, we
obtain the following.

Lemma 3.4. Fix w € R%_, s,t € (0,1) with s <t, and let v be as in Lemma 3.2. Then both of the following hold with
respect to the topology of uniform convergence.

(1) The law of Z|[0,s) under PO[. | Ps, Z; = w] converges weakly as § — 0 to v[- | Z; = w].
(ii) The law of Z|[o,s) under P*[- | Py, Z; = w] converges weakly as z — 0 in Ri tov|-| Z, = w].

Proof. We are going to prove the first assertion of the lemma. The second assertion is proved similarly. Fix s, t € (0, 1)
withs <t and w € Ri. By a Bayes’ rule calculation and the Markov property, the Radon—Nikodym derivative of the
law of Z|[o,s] under PO[- | Ps, Z; = w] with respect to PY[. | Ps]is given by

st Py (Zs,w)

= , 3.1
" py 0, w)

where pg "' is the transition density for Z given Ps. Moreover, the Radon—Nikodym derivative Z‘” of v[- | Z; = w]

with respect to v takes the same form. Lemma 3.3 implies that Z 5 s bounded and continuous as a function of Z;

and it follows from [44] that Z;;,ta — Z5! uniformly as § — 0. Therefore the result follows from Lemma 3.2. O

Proof of Theorem 3.1. We are first going to show that there is at most one such law.

Suppose that Z and 7 are two processes which satisfy the hypotheses of the proposition. Fix ¢ € (0, 1) and note that
the Markovian hypothesis implies that both Z; and Z, have continuous densities with respect to Lebesgue measure
which are everywhere positive in Ri. Moreover, Lemma 3.4 implies that for each r € (0, 1) and w € R2+ we have that
the laws of Z|jo,/) given Z; = w and 2“0,;] given Z = w are the same. Similarly, the laws of Z|; 1} given Z; = w
and Z||; 1) given Z; = w are the same.

Fix0=1) <t <t <t3 =1 and fix R > 0. Consider the Markov chain which in each step sequentially resamples
Z, given Z, _, and Z,] 4 for j =1,2 conditioned on Z, < R (i.e., each coordinate is at most R) Then we have that
the laws of both (Z;,, Z,) conditioned on Z;; < R for j = 1,2 and (Z,l, th) conditioned on Z, < Rfor j=1,2are
invariant for this chain (i.e., the same resamphng kernel). Note that the conditional law of Z, conditioned on Zy, <R
given any value of Z;, has a density with respect to Lebesgue measure on [0, R)? which is positive on (0, R)*. The
same is likewise true with the roles of #; and f, swapped and with Z in place of Z. It thus follows that by running
this chaNin for one step, we can couple Z and 7 conditioned on both coordinates being at most R at times #1, f, so that
Z;; = Z;; for j = 1,2 with positive probability (since the conditional law of each given its neighbors is the same).
Therefore it follows from [12, Theorem 14.10] that the law of (Z;,, Z;,) conditioned so that Zi;, <R for j=1,21is
the same as the law of (le Zz) conditioned so that Z < R for j =1, 2. Indeed, the above implies that this chain
cannot have distinct ergodic measures because distinct ergodlc measures are necessarily singular. Since R > 0 was
arbitrary, we therefore have that the law of (Z;,, Z;,) is the same as the law of (Z,l, th) Uniqueness follows since
the Markov hypothesis for Z and Z implies that we can sample the rest of Z and Z to be a.s. the same given that the
two processes agree at times #; and ;.
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We will now prove existence. Let Z have the law of the process constructed in Lemma 3.2. We are now going
to construct the law of Z conditioned on X 1 =x1 and ?1 = y1 and then argue that the resulting conditioned process
satisfies the properties listed in the proposition. This will complete the proof of existence.

Let w; = (x1, y1). In order to construct this process, we first fix € > 0 and consider the law of Z conditioned on
the positive probability event that Z € B(w1, €). By an application of Bayes’ rule, the Radon—Nikodym derivative of
the conditioned law of 2|[0, (] with respect to the unconditioned law is given by

P[Z) € B(w,€) | Z = y]

ZE(y) = i
) PIZ) € B(wy, ©)]

for y e R%. (3.2)

We define

P[Zi € B(wi,€)| Z, =0] = ul)iLnOP[Z € Bwi, )| Z =w].

It is easy to see from the explicit form of p* given in [44] that there exists a constant ¢y > 0 such that

P[Z) € B(wi,€) | Z; =0]
P[Z € B(wy, €)]

G < Co( ) forall y € R (3.3)

Fix h >0sothatt <t+h < 1 and let

o~

O n= {z eRL :P[21 € B(wi, €) | Zyin =z]> [21 € B(w,€)| Z, =0]}.

1
2
The Markov property together with Lemma 3.3 implies that Q 1.» has positive Lebesgue measure. Applying Lemma 3.3
again implies that there exists p; , > 0 depending only on ¢ and % such that

P(Zin € Qrnl=pis > 0. (3.4)

Combining (3.4) with the Markov property for 7 implies that
P[Z) € B(w,e)] > %P[Z € Bw,€) | Z =0]. (3.5)
Inserting (3.5) into (3.3) implies that

- 2
sup Z5(y) < -2 < 0. (3.6)
yERi DPt.h

Therefore the random variables Z6 Z Ze (Z,) are uniformly integrable. Therefore there exists a positive sequence
(ex) decreasing to 0 such that the law of Z (Z,) converges weakly to a 11m1t Z, which has expectation 1. By passing
to a further (diagonal) subsequence if necessary, we can arrange so that Z converges weakly as k — oo to a limit
which has expectation 1 for all rational 7 € (0, 1). It is easy to see that the family of measures obtained by weighting
the law of 2|[0,,] by Z for t € (0, 1) is consistent and the measure obtained from the + — 1 limit satisfies the Markov
property described in the statement of the lemma. The continuity of the process at the terminal point can be seen by a
time-reversal argument. O

As recalled in Theorem 2.1, it is shown in [7] that when « € [0, 1), a 7 /2-cone excursion of Z of terminal dis-
placement € > 0 naturally encodes a quantum disk with y € [v/2, 2) with quantum boundary length ¢ where « and y
are related as in (1.5). We are now going to show that if one generates such a 7 /2-cone excursion conditioned further
on the event that its length is equal to 1, then the conditional law converges as € — 0 to the law constructed and
characterized in Theorem 3.1. This is natural in view of Theorem 1.1 because it is natural to expect that the law of a
quantum disk with boundary length € and area 1 converges to that of a unit area quantum sphere as € — 0.
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Proposition 3.5. Fix € > 0 and suppose that Z has the law of a w /2-cone excursion of length 1 and terminal displace-
ment equal to €. Then the law of Z converges weakly as € — 0 to the law constructed in Theorem 3.1 with respect to
the topology of uniform convergence.

Proof. Let Z = (X, Y) be a w/2-cone excursion with length 1 and terminal displacement equal to € and let Z be the
time-reversal of Z. Then arguing as in the proof of Theorem 3.1 we can view Z as a correlated Brownian motion
conditioned to stay in Ri and conditioned to terminate at the origin. The argument of the proof of Theorem 3.1 gives
that the Radon—-Nikodym derivgtive between the law of Z 0,71, t € (0, 1) fixed, and the law of a correlated Brownian
motion in [0, 7] starting from Zy and conditioned to be in R2+ is bounded from above by a constant which depends
only on ¢. For the latter law, the results of [44] imply that we have a limiting process as Z) — 0. This limiting process
clearly satisfies the hypotheses of Theorem 3.1, which completes the proof. ]

We end this section with the following estimate for the probability of a bi-infinite correlated Brownian motion
having a 7 /2-cone excursion with terminal displacement at most 1 and starting time in the interval [k — 1, —k].

Proposition 3.6. Fix« € (—1, 1). Suppose that Z = (X, Y) is a Brownian motion R — R?* normalized so that Zo =0
with

var(X;) =var(Y;) = |t| and cov(Xy,Y;) =alt]|.

There exist constants cy > 0, B > 1 depending only on « such that the following is true. For each k € N, let Ey. be the
event that Z has a w /2-cone excursion starting in [—k — 1, —k] of length at least k 4+ 1 and terminal displacement at
most 1. Then

PEL] < cok ™", 3.7)
In particular, the number of k € N such that Ej occurs is finite a.s.

Proof. Fix € > 0; we will adjust its value at the end of the proof. We first note that the reflection principle for Brownian
motion implies that there exist constants c1, ¢ > 0 such that the probability of the event Fj that sup; ,cj_x—1. k) |Zs —
Z;| > k€ is at most ¢ ¢~2K* 1t therefore suffices to establish (3.7) with E; N F,f in place of Ey.

The probability of the event Ex N F is bounded from above by the probability of the event Gy that a Brownian
motion Z in R2 with the same covariance as Z starting from k€ (1 +4{) stays in R%r for all ¢ € [0, k] and hits 9 B(0, 2k¢)
after time k before exiting Ri.

We note that there exist constants c3, ¢4 > 0 such that the probability of the event that 4 l[0.k] stays in B(0, k26N
R%r is at most C36_C4k2€. Indeed, the reason for this is that in each round of time of length kl_ZE, we have that Z has
a positive of chance of leaving B(0, k1/2=€) which is uniform in its starting point in B(0, k1/2=€) at the start of the
round. It therefore suffices to bound the probability of the event G, that Z hits 3 B(0, k'/2=¢yn Ri and then hits
B(0, 2k€) before exiting R%_.

Let

Ao 1 <(1 —aH)l/2 0)'

(1 _0[2)1/2 —a 1

Then Z = AZ is a standard Brownian motion in R%. Moreover, A takes Ri to a Euclidean wedge Wy of opening
angle 6 = arccos(—a) € (0, ). Let { =7/6 > 1. Fix a € C with |a| = 1 so that the map z > az® takes W)y to H and
let Z be the image of Z under this map.

The event that Z hits 9 B(0, k'/2~€) before exiting R%r corresponds to the event that Z escapes to distance of order
k¢(1/2=€) pefore exiting H. Since Z starts with imaginary part of order k%€, it follows that there exists a constant
¢5 > 0 such that the probability of this event is at most

cskfCe=1/2) (3.8)
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Conditional on this event, it is clear from the explicit form of the Poisson kernel on H that there exists a constant
¢ > 0 such that the probability that Z hits a ball centered at the origin with size proportional to k*¢ after reaching
distance of order k¢1/27€) and before exiting H is at most

cekSCe1/2), (3.9)

By taking € > 0 sufficiently small, (3.7) follows by combining (3.8) and (3.9).
The second assertion of the proposition is an immediate consequence of the first and the Borel-Cantelli lemma. [J

4. Constructing a unit area quantum sphere from a y -quantum cone

The purpose of this section is to show how to construct a unit area quantum sphere by pinching off a unit of quantum
area from a y-quantum cone. This construction will be important for our proofs of Theorem 1.1 and Theorem 1.2. We
remark that this result is similar to [7, Proposition A.11], though the present setting turns out to be simpler.

Proposition 4.1. Fix y € (0, 2) and suppose that C = (C, h, +00, —00) is a y -quantum cone. Let X be the projection
of h onto H1(C). For eachr e Rand € > 0, let

t=influeR: X, <r} and Epe={1<pup(Cs+1)=<1+e€}. 4.1

The laws of the quantum surfaces (C+ + 1., h) given E,  converge weakly in the space of distributions to that of the
unit area quantum sphere when we take a limit first as r — —oo and then as € — 0. More precisely, if we start with
the quantum surface (C+ + 1, h) given E, ¢ and then embed it by taking the horizontal translation so that the amount
of quantum mass in C+ is equal to 1/2, then its law converges weakly in the space of distributions as r — —oo and
then € — 0 to that of the unit area quantum sphere with the embedding taken so that the amount of mass assigned C
is 1/2.

Moreover, for any fixed S > 0, the conditional law of the surfaces (C+ + t,, h) given E, ¢ and the restriction of h
to U, = (—o0, T + S] x [0, 27r] converges in probability to that of the unit area quantum sphere with respect to the
topology of weak convergence in the space of distributions (over the realization of the restriction of h to U, ) when we
take a limit first as r — —o0 and then € — 0.

The idea of the proof of Proposition 4.1 is to introduce the auxiliary event (defined in the statement of Lemma 4.2
just below) that X takes on the value y ~'log(8~") after time 7, for a fixed value of 8 > 0. Standard facts about
Bessel processes imply that the law of X conditioned on this event converges as r — —oo to the log of the same
type of Bessel excursion used to construct the unit area quantum sphere conditioned to take on a large value and then
reparameterized by quadratic variation. We will then argue that this event occurs with probability tending to 1 given
E, ¢ as we decrease 8 and that, conversely, E, ¢ occurs with positive probability for each fixed choice of 8 uniformly
in r (Lemma 4.3). Combining these two results will lead to the first assertion of Proposition 4.1. The second assertion
follows from a similar argument.

Lemma 4.2. Suppose that we have the setup described in Proposition 4.1. Let

E;’ﬂz{sup X, Zy_llog(ﬂ_l)}. 4.2)

U=ty

Let X be given by 2y ~Vlog Z reparameterized to have quadratic variation du where Z is sampled from the excursion
measure of a Bessel process of dimension § =4 — % conditioned on having maximum at least B~'/2. Then the law of

u > Xy, conditioned on E| p converges asr — —oo weakly with respect the topology of local uniform convergence

to the law of X, where we have taken the horizontal translation for both so that they hit B~'/? for the first time at

u=0.

Proof. This follows from some standard properties of Bessel processes, which can be found in [7, Section 3]. (See,
for example, [7, Lemma 3.6].) In particular,
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e If B is a standard Brownian motion and a € R, then the process given by e%+%' reparameterized to have quadratic

variation dr is a Bessel process of dimension 2 + 2a. Applying this to the process X, we see that ¢/?X: reparam-

eterized to have quadratic variation dt is a Bessel process of dimension 4 — 8/y2. Sending r — —oo corresponds
to taking the starting point of the Bessel process to be equal to 0.

e Conditioning X to exceed the value y ' log(8~!) is equivalent to conditioning ¢/?X+ to exceed the value g~1/2.

O

Lemma 4.3. Suppose that we have the same setup as described in Proposition 4.1. Let E, ¢ be as in (4.1) and E; P
be as in (4.2). Then we have both

P[E;’ﬁ | E,YE] — 1 asp — oouniformlyinr <0 and 4.3)
P[E“ | E;ﬁ] >0 uniformly inr <0 for e, B > 0 fixed. “4.4)
Proof. This follows from the same argument used to prove [7, Lemma A.4]. (I

Proof of Proposition 4.1. By Lemma 4.2 and Lemma 4.3, it follows that the law of /& conditioned on both E, . and
E; ,,p CONverges as r — —00 and then as € — 0 to that of a unit area quantum sphere conditioned on the positive

probability event that the supremum of its projection onto #(C) exceeds y ~!log(8~!). Taking a further limit as
B — oo yields the law of a unit area quantum sphere. The first assertion of the proposition then follows because
Lemma 4.3 implies that the conditional law of & given both E;.  and E; P is close to the law conditioned on only E, ¢
when B > 0 is large.

We are now going to justify the second assertion. Fix S > 0. Let b, be the distribution on C4 + 7 which is given
by harmonically extending & from U, to C4 + 7 + S. We first claim that, given both E, . and E/ "B b, restricted to
Cyt + 1,4+ S+ T is close to a constant with respect to the uniform topology for large 7. Lemma 4.2 implies that this
is the case when we only condition on E/ e Indeed, we can write this harmonic extension as the sum f; 4+ f> where
fi is the part which comes from harmomcally extending the projection of & onto H,; (C) for i = 1, 2. The restriction of
fito .+ S+ T is constant as it is given by the harmonic extension of a function which is constant on vertical lines.
The law of f> restricted to C+ + 7 + S + T converges weakly to a constant with respect to the uniform topology
because conditioning on E ! does not affect &, hy is independent of 7,, and the law of A, is translation invariant.
Lemma 4.3 implies that the same convergence holds when we condition on both E, . and E B The remainder of the
proof of the second assertion thus follows from the same argument used to establish the first assertion. (I

5. Equivalence of Bessel and Brownian constructions

The purpose of this section is to give the proof of Theorem 1.1. A variant of this argument, which we will explain in
Section 6, gives Theorem 1.2.

5.1. Setup and strategy

Before we proceed to the proof, we will first give an overview of the steps (and introduce many of the objects and
events). We will first consider the case that y € (v/2,2). We suppose that we are working on a y-quantum cone

= (C, h, 400, —00) and that n’ is a space-filling SLE, process in € from —oo to —oo sampled independently of
h and then reparameterized by quantum area. In other words, for each s < ¢t we have that w, (7' ([s, t])) =t — s with
the normalization that 7' (0) = +o00. Let 7' : R — € be the SLE,/ (k" — 6) process from —oo to +0o which arises by
taking 1’ and reparameterizing it according to capacity as seen from +oo. Equivalently, 7" is the counterflow line from
—00 to 00 of the GFF used to generate 5. For each time 7, we let 6, be equal to 27 times the harmonic measure
of the left side of 7' ([0, 7]) as seen from +o0. Since 6; 1s continuous in 7 we have that the set 7 of times # such that
0; =0 or 6; =2 is closed in R. Hence we can write R\ T as a countable disjoint union of open intervals [ J ; j (sj,t)).

We then let 7 be the countable and discrete subset (i.e., without limit points) of T which consists of those ¢ j such

that 6;; # 6;;. These times correspond to when 77’ makes loops which disconnect +o0o from —oo with alternating
clockwise and counterclockwise orientation.
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Let L (resp. R) denote the change in the quantum boundary length of the left (resp. right) side of n'((—oo,t])
relative to time 0. Each of the times in 7, 7 corresponds to a 7 /2-cone excursion of the time-reversal (Z, ﬁ) of
(L, R) on intervals of time which contain 0. Recall that the definition of a 7 /2-cone time is given in Section 2.3.2
and the connection between 7 /2-cone times for (L, R) and the behavior of space-filling SLE,- is explained in the
introduction of [7]; see in particular [7, Figure 1.13].

For r e R_ and C > 1, we let ¢, ¢ be the first time # € T that the quantum boundary length of the component
containing +o0 is at most C~'e?"/2. We note that a first such time 7 a.s. exists by Proposition 3.6 as the complementary
component containing +oo of 77’ drawn up to such a time corresponds to a 7 /2-cone excursion of (L, R) with terminal
displacement at most C~'e?’/2. Let U, ¢ be this component and let £, ¢ be its quantum boundary length.

Let Fy ¢ c be the event that ¢, ¢ is contained in [, ¢ := [%, 1]- C1er"/? and the quantum area of U, ¢ is in
[1, 1+ €]. Throughout, we let 7. and E, . be as in (4.1).

The first step (carried out in Section 5.3) is to show that the conditional probability of E, . given F, ¢ converges
to 1 as C — oo uniformly in r and that the conditional probability of F; ¢ c given E, ¢ is uniformly positive in » when
C is fixed. This implies that we can view the joint law of & and 1’ conditioned on F; ¢ ¢ as arising by first conditioning
on E, . and then subsequently conditioning the resulting law on the uniformly positive conditional probability event
F r,e,C-

The second step (carried out in Section 5.4) is to show that the conditional law of & and 1’ given E, ¢ is close to
the law which results when we condition further on F, . c. The idea to establish this is first to take the horizontal
translation of the embedding of C into C so that the quantum area of Cy is equal to 1/2. Whether or not the event
Fy¢.c occurs is determined by the behavior of " and 4 in C_ + u for u < 0 very negative. Since the conditional law
of n’ and h in G4 + v for v much larger than u given their behavior in C_ + u is not far from their unconditioned law
(both h and n’ “forget their past™ quickly), it follows that their joint conditional law converges to that of a unit area
quantum sphere decorated by an independent space-filling SLE,+ process upon taking limits.

The result then follows for y € (ﬁ, 2) because by Proposition 3.5 the law of (L, R) conditional on F; ¢ ¢ restricted
to the interval J, ¢ of time in which n’ is filling U, ¢ converges when we take appropriate limits to a correlated
Brownian loop as constructed in Section 3.

At the end of this section, we will explain how a variant of this argument gives the case that y € (0, +/2].

5.2. Exploring a y -quantum cone

We are now going to identify the conditional law of the unexplored region in a y-quantum cone, y € (+/2,2), when
one draws a whole-plane SLE,/ (k" — 6) in € from —oo to 400 up to the first time ¢ € 7 that the quantum boundary
length of the complementary component containing the origin falls below 1. This result will in particular imply that
the surface parameterized by this component is conditionally independent of the outside surface given its quantum
boundary length.

Proposition 5.1. Suppose that y € (v/2,2) and let © be the first time t € T that the quantum boundary length of
the component U of C \ 7 ([0, t]) containing 400 falls below 1. Then the conditional law of the quantum surface
(U, h) given its quantum boundary length is that of a quantum disk weighted by its quantum area. That is, if b denotes
the quantum boundary length of U and MP denotes the law of a quantum disk with boundary length b, then the
conditional law of (U, h) given b has Radon—Nikodym derivative with respect to M? equal to the quantum area of U
times a normalization constant to make it a probability measure. Moreover, given its quantum boundary length, the
quantum surface (U, h) is conditionally independent of the quantum surface (C \ U, h) and the ordered sequence of
marked, oriented quantum surfaces separated by 1 from +oo before time t. Finally, 7' (t) is uniformly distributed
from the quantum boundary measure on dU .

Recall that weighting the law of a quantum disk by its quantum area corresponds to adding a marked point to the
interior of the disk which is sampled from its quantum area measure. In the setting of Proposition 5.1, the role of the
marked point will be played by the origin of the quantum cone (C, h, 400, —00), i.e., the point at +oc0. Before we
proceed to the details of the proof of Proposition 5.1, let us briefly review the strategy. We first recall from [7] that if we
draw an independent SLE, (k" — 6) process on top of a quantum cone, then the structure of the components (viewed as
quantum surfaces) that it cuts out is described by a Poissonian collection of quantum disks. We will combine this fact
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with the target invariance of SLE,/(k’ — 6) processes where the new target point will come from moving the marked
point at 400 of the quantum cone using an independent space-filling SLE,.

It is natural in view of considerations from the discrete models that in the statement of Proposition 5.1 we require
that € 7. Indeed, 7 € 7 is the continuous analog of having the boundary conditions for the discrete model on U
all having “the same color.” Proposition 5.1 will be a consequence of the following two observations. The first is a
version of [7, Lemma 8.3].

For each z € G, we let ¥,: C — C be the unique conformal transformation with ¥.(z) = +o0 and 1//Z/(—oo) >
0. Explicitly, ¥, () = —log(e™ — e™%). We note that ¥, is the analog of the map C — C which corresponds to
translating a point z € C to the origin in the setting in which we represent C by € with 400 (resp. —oo) corresponding
to O (resp. 00).

Lemma 5.2. Suppose that we have the same setup as in Proposition 5.1. Conditionally on h and 7, we suppose
that w € U is picked uniformly from the quantum area measure on U and let 7, be a whole-plane SLE,: (k' — 6)
process from —oo to w coupled so as to agree with ' until w and +oc are first separated and then taken to continue
conditionally independently afterwards. Then we have as path decorated surfaces that

(€ hoyy" + Qlog|(¥;") ], +00, =00, ¥ (i) Z (€, h, +00, —00, 7).

Proof. We take 7" and 77, to be coupled together so that they both correspond to taking the whole-plane space-filling
SLE,- process n’ from —oo to —o0, respectively targeted at +o0o and w. The idea of the proof is to generate a marked
point z chosen uniformly from the quantum measure on n’([—R, R]) for R > 0 large. Since 7’ is parameterized
according to quantum area, this is equivalent to taking z = ’(V') where V is chosen uniformly in [— R, R] according
to Lebesgue measure independently of everything else. It is convenient to work with the point z in place of w because
[7, Lemma 9.3] implies that the quantum surface (C, i, +00, —00) decorated by 5’ has the same law as the quantum
surface (G, ho 1//2_1 + Qlog |(wz_1)’|, +00, —00) decorated by the path v, (). Since v (77’.) is generated from v (1)
in the same deterministic manner as 7 is generated from 7', it follows that the quantum surface (G, i, +00, —00)
decorated by 7’ has the same law as the quantum surface (C, 1 o ¥ '+ Qlog (¥ 1|, 400, —00) decorated by the
path ¥, (77.). As we will see momentarily, the lemma will follow by considering the latter conditioned on the event
Egthatz e U.

Let A be any positive probability event for (C, h o wz’l + Qlog |(1p;1)’|, +00, —00, ¥ (77.)). By Bayes’ rule, we
have that

PlER | Al

P[A| ER]= PlEL]

P[A]. 6D
As explained above, by [7, Lemma 8.3], we have that P[.A] is equal to the probability of the same event with
(C, h, +00, —00,7") in place of (C,h o w;l + Qlog|(1ﬂz_1)’|, +00, —00, ¥, (77.)). Assume that A is an event of
the form A N {a <up(U) <a+ 48} for some a >0 and 6§ > 0. Then sending R — 0o, we see that the right hand side
of (5.1) is bounded from below by a constant times aP[.4] and from above by the same constant times (a + §)P[A].
Therefore the conditional law of (€, h o wz_l + Qlog |(w;1)/|, +00, —00, ¥ (77.)) given Eg converges as R — 00 to
the law of (G, h, +00, —00, 1) weighted by the quantum area of U. We note that if we fix the quantum area of U,
then the conditional law of (€, o ! + Qlog (¥ 1)], +00, —00, ¥ (i1.)) given Eg converges as R — oo to that
of (C,hoyy;! 4+ Qlog|(¥y")|, +00, —00, ¥, (77,,)) (With the quantum area of U for the latter fixed to be the same
as the former). Therefore the law of (C, h o 1//1;1 + Qlog |(1//L;1)’|, +00, —00, Yy (7,,)) given the quantum area of U
is equal to the law of (@, h, +00, —00, 1) given the quantum area of U. This implies the result because both laws
induce the same law on the quantum area of U. O

Lemma 5.3. Suppose that we have the same setup as in Proposition 5.1 and let 7} be given by 7' |[r,oc)- Suppose that
w is picked uniformly in U from the quantum area measure conditionally independently of everything else and let Uy,
be the component of U \ 7 which contains w. Suppose that we condition on the following:

1. The event that dU,, is entirely contained in either the left or the right side of 7,
2. The quantum area and boundary length of (U, h), and
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3. The quantum areas and boundary lengths of all of the components of U \ 7.

Then we have that the quantum surface (U, h) has the law of a quantum disk with the given quantum boundary length
and area. In particular, (Uy, h) is conditionally independent of the other components of U \ 7 (viewed as quantum
surfaces) given its quantum boundary length and area.

Proof. This follows because we know from [7, Theorem 1.17] (see also [7, Figure 1.18]) that the quantum surfaces
parameterized by the components of U \ 77 whose boundary is entirely contained in either the left or right side of 7’
are conditionally independent quantum disks given their boundary length. (|

Suppose that I = [s, ] is an interval of time in which (L,R)hasanw /2-cone excursion. Then we say that the 7 /2-
cone excursion has a left (resp. right) orientation if L = ZS (resp. ﬁt = §S). This terminology is motivated because a
left (resp. right) cone excursion exits Ri + (Z‘Y, ﬁ ¢) in its left (resp. right) boundary; see [7, Figure 1.13]. We note that
the left (resp. right) 77 /2-cone excursions of (Z , E) whose time-interval / contains O correspond to the clockwise (resp.
counterclockwise) loops made by the SLE,/(x’ — 6) process i’ around +o00. We say that such a 7 /2-cone excursion
(on the interval 1) is orientation changing if it has the property that if 7’ D I is any interval of time during which (Z , ﬁ)
has a 7 /2-cone excursion, there exists an interval of time I” during which it is having another 7 /2-cone excursion
of the opposite orientation of that on I with I C I” C I’. We note that orientation changing 7 /2-cone excursions
whose time-interval contains 0 cannot cluster. Indeed, this follows because 7’ is continuous and orientation changing
7 /2-cone excursions correspond to the times when 77’ makes a loop around +oo with the opposite orientation of the
previous loop. See Figure 2 for an illustration of these definitions in the context of an SLE, (x” — 6) (but in this with
the quantum cone parameterized by C with marked points at 0 and co). (However, an orientation changing 7 /2-cone
excursion is typically preceded by a cluster of 7 /2-cone excursions with the opposite orientation.)

Lemma 5.4. Let T be the collection of w/2-cone excursions of(z, ﬁ) whose time interval contains 0. For A, A, € f,
we say that A1 comes before A if the interval of time for Ay contains that for A;. Let T consist of those 1 /2-cone
excursions in I which are orientation changing. (As remarked above, the elements in 7 are in correspondence with
the times in T and the elements in T are in correspondence with the times in T.) Let A be the largest element in T
whose terminal displacement d is at most 1. Given d, the conditional law of A is that of a 7w /2-cone excursion with
terminal displacement d weighted by its length. That is, the Radon—Nikodym derivative between the law of A given d
and the law of a 7w /2-cone excursion with terminal displacement d is given by the length of A times a normalization
constant.

Fig. 2. Left: A whole-plane SLE,/(x" — 6) process from oo to O stopped at a time that it has just closed a clockwise bubble around 0. The
time-reversal of the associated space-filling SLE,, will enter this bubble and then fill it up before exiting, which is why it corresponds to a
7 /2-cone excursion of the corresponding boundary length process. Middle: More of the SLE,/ (k" — 6) process is drawn. The component containing
0 is surrounded by one side of the SLE,(k” — 6) so again corresponds to a 7/2-cone excursion (which is nested inside the previous one). Right:
The SLE,/ (x" — 6) drawn up until finishing the first bubble with a counterclockwise orientation after the time shown in the left panel. This bubble
corresponds to an orientation changing 7 /2-cone excursion.
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Proof. We begin by noting that the following is true. Fix Lo > 0 large. We will eventually take a limit as Lo — oo.
Pick V in [0, L] uniformly at random. Then

~ ~ ~ ~ d ~ ~
(Ly4s— Ly, Ry4s — Ry) = (L, Ry).

Therefore the 7 /2-cone excursions of (Z , ﬁ) which contain V have the same law as those which contain 0.
Fix My > 0 large. We will eventually take a limit as My — oo after taking a limit as Ly — co. We begin by making
two observations:

e The probability of the event that the outermost orientation changing 7 /2-cone excursion which contains V of ter-
minal displacement at most My is distinct from the outermost orientation changing 7 /2-cone excursion of terminal
displacement at most 1 tends to 1 as My — oo.

e For M fixed, the probability that the outermost orientation changing m /2-cone excursion E( of terminal displace-
ment at most M containing V is contained in the time-interval [0, L] tends to 1 as Lo — oo.

Consequently, if we let V be chosen uniformly in the time interval for Eq and let E be the outermost orientation
changing 7 /2-cone excursion of terminal displacement at most 1 contained in E, then we have that the total variation
distance between the laws of E and A (as in the statement of the lemma) tends to 0 as Ly — oo and then My — oo.

Let (E;) be the collection of outermost orientation changing 7 /2-cone excursions of terminal displacement at most
1in Eg. We let T (resp. T}) be the terminal displacement of E (resp. E ;). We assume that the E; are ordered so that
Ti > T, > ---. Fix an event A such that P[E; € A] is positive for all j. Fixd,§ > 0 and let ] = [d d + 8]. We have
that,

=~ =~ T PIE=E; E, Tiel
P[EeA|Te1]:P[E€:4’T€’]_Z [ WEje AT ell
P[T e 1] P[T 1]
= P[T; € I]
:ZP[E:EjIEjeA,TjeI]P[EjeA|Tj61]%. 52)

J

Fix ¢ > 0 and assume that A is an event of the form lev N {€ <l < £+ ¢} where [ is the length of the time-interval for
the 7 /2-cone excursion. Then we note for a constant cp > 0 that

PIE=E;|E;e A Tjell=col(l+ 0()). (5.3)

Combining (5.2) and (5.3), we have that

P[EeA|?el]=£(1+0(g))<COZP[E,- eA|T;ell

J

P[T; 1]
— ). 5.4
P[T 1]

It is not difficult to see that if we take a limitas Ly — 0o, My — 00, and § — 0, we have that the term in the parenthesis
on the right hand side of (5.4) converges to a constant times the probability of A under the law on 77 /2-cone excursions
with terminal displacement equal to d. Thus taking a further limit as ¢ — 0 implies the result. (|

Proof of Proposition 5.1. We begin by picking w € U uniformly from the quantum area measure conditionally
independently of everything else. Let " be as in the statement of Lemma 5.3 and let 77, be an SLE, (v’ — 6) process
in U starting from the same point on dU as 7’ and coupled to be the same as 77" until the first time that +o00 and w are
separated and to evolve conditionally independently afterwards. Let Uy be the component of U \ 77, which contains
+o00. Let F be the o-algebra which is generated by the quantum area and boundary length of (Uy, /) and the quantum
areas and boundary lengths of all of the components of U \ 7. Lemma 5.3 implies that conditional on the event that
dU is entirely contained in either the left or right side of 77/, (i.e., 77}, separates +oo from dU) and given F, we have
that the quantum surface (Up, i) has the law of a quantum disk with its given quantum boundary length and area. Let
T be the first time 7 € T strictly after time 7. As the event that the component Vy of U \ 7'([0, T]) containing 400 is
equal to Uy is measurable with respect to the o-algebra that we have conditioned on, it follows that the same holds
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when we further condition on the event that Vy = Uy. Throughout the rest of the proof, we shall assume that we have
conditioned on this event.
We are now going to show that:

1. The conditional law of the quantum area of the quantum surface (Up, h) given its quantum boundary length is
conditionally independent of the quantum areas and boundary lengths of all of the other components of U \ 77, and
that

2. The conditional law of the quantum area of (Uy, &) given its quantum boundary length is equal to that of a quantum
disk weighted by its quantum area with the given quantum boundary length.

Recall that the quantum surface (U, h) corresponds to the first w/2-cone excursion of the time-reversal (Z, ﬁ) of
(L, R) which contains 0 with terminal displacement at most 1 such that the previous cone excursion has the opposite
orientation. The quantum surface (Uy, h) corresponds to the next ;r/2-cone excursion of (Z, ﬁ) with tlle gpposite
orientation as for (U, h) and the other components of U \ 77, correspond to other 7 /2-cone excursions of (L, R) which
occur in intervals of time which are disjoint from the one which corresponds to (Up, ). The first claim is obvious
from this representation of the joint law of the quantum areas and boundary lengths. The second claim follows from
this representation together with Lemma 5.4.

We have shown so far that the conditional law of (Up, k) given its quantum boundary length is given by that of
a quantum disk weighted by its quantum area. The proof works verbatim if we take U instead to correspond to the
component containing +oo at the first time ¢ € T that its quantum boundary length falls below R > 0 where R > 0
is fixed. By taking R > 0 very large, the result follows by successively exploring the components which contain +o0o
until first reaching the one with quantum boundary length at most 1. |

5.3. Comparison of pinched quantum cones

In Section 4 we exhibited one way of constructing a unit area quantum sphere by pinching a unit of quantum area
off a y-quantum cone. In both this subsection as well as the next, we will be interested in another way of pinching a
unit area quantum sphere off a y-quantum cone by conditioning on the event that an SLE,/(x’ — 6) process cuts out
a quantum disk with small quantum boundary length and area close to 1. The purpose of the following proposition,
which is the main result of this subsection, is to compare this type of conditioning with that used in Section 4. We will
make use of the same notation as in Section 4.

Proposition 5.5. Fix y € (v/2,2) and suppose that C = (C, h, +00, —00) is a y-quantum cone. Let 7 be an
SLE, (k" — 6) process from —o0 to +0o sampled independently of h. For each €,8 > O there exists Co > 1 such
that for all r € R_ and C > Cy the following is true. Let T, ¢r.c, Uy.c, and £,,c be as described in the beginning of
the section and let A, c be the quantum area of U, c. Let

Lc= B 1] .Clerr/? (5.5)
and let

Frec={celc,1<Ac<1+€} (5.6)
Then

P[E;c | Frecl=1-34. 5.7

Moreover, for each fixed choice of C > 1 and € > 0 there exists po > 0 such that
PlFreclErel>po forallr eR_. (5.8)

Fix C > 1 and r € R_. We are going to prove Proposition 5.5 by considering three different laws:
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e The joint law m of a y-quantum cone C = (C, h, +00, —00) and an SLE,/(k’ — 6) process 7' in € from —o0 to
+o00 sampled independently of /.

e The law mp given by m conditioned on Fj. ¢ c.

e The law m¢ on pairs consisting of a quantum surface and a path whose joint law can be sampled from by:

1. Sampling a y -quantum cone and an independent SLE, (x” — 6) process conditioned on F; ¢ ¢ as in the definition
of meg.

2. Resampling D = (Uy,¢, h) (which on the event F; ¢ ¢ has boundary length ¢, ¢ € I, ¢ and quantum area A, ¢ €
[1, 1 + €]) according to its m-conditional law given £, ¢ to yield D.

The laws m and mg correspond to the laws considered in the statement of Proposition 5.5. The law m is an auxiliary
law that will be used in the proof of Proposition 5.5 (but does not appear in the statement).
The first step is to compare m and mg.

Lemma 5.6. Let

Zr,e,C = m (5.9

be the Radon—Nikodym derivative of mg with respect to m. For each €, > 0 there exists K > 1 such that

mZ.cc>K]>1-68 forallr eR_andC > 1.

We will first need to collect Lemmas 5.7-5.11 before completing the proof of Lemma 5.6. Before we proceed with
the details, we will give an overview of the different steps used to prove Lemma 5.6. First, we will prove in Lemma 5.7
that the Radon—Nikodym derivative Z, ¢ ¢ from Lemma 5.6 is a function of the boundary length £, ¢, so that it suffices
to compare the law of £, ¢ under mg and m. This will involve controlling how likely it is that £, ¢ € I, ¢ under m.
This will be accomplished by observing in Lemma 5.9 that the log of the successive loop boundary lengths are i.i.d.
and have a density with respect to Lebesgue measure, which reduces the problem to an overshoot analysis for random
walks carried out in Lemma 5.8 and Lemmas 5.10, 5.11. The density of ¢, ¢ under mg is then given by weighting
its density under m by the probability that the quantum area of U, ¢ is in [1, 1 4 €] and noting that this probability is
comparable for different values of ¢, ¢ in I, c.

Lemma 5.7. The Radon—Nikodym derivative Z, ¢ c in (5.9) is equal to the Radon—Nikodym derivative between the
laws of the boundary length £, c under mg and m. In particular, it depends only on £, c.

Proof. This follows because Proposition 5.1 implies that, under m, the quantum surface parameterized by U, ¢ is

conditionally independent of the quantum surface parameterized by C \ U, ¢ given £, c. The same is therefore true

under mg and mg, which implies the result. O
We next collect the following elementary fact about random walks.

Lemma 5.8. Let (X;) be an i.i.d. sequence in R and assume that the law of X1 has a density f with respect to

Lebesgue measure on R which is positive Lebesgue almost everywhere. For each j, let Y; = X1 +---+ X . Fix

A C R with positive Lebesgue measure, let T4 =inf{j > 1:Y; € A}, and assume that P[ts < 0o] = 1. Then the law

of Y1, has a density with respect to Lebesgue measure on A which is positive Lebesgue almost everywhere on A.

Proof. Let f; be the conditional density of Yj given t4 > k. An elementary calculation implies that the conditional
density of (Yr,—1, Yz,) given 14 =k is equal to

g, y) = Z a0 f(y — X) fre1(x)  where Zx=/RlA(y)f(y—X)dy- (5.10)

Therefore the conditional density of Y;, given t4 =k is equal to

a0y = /R Z7A ) F (0 — ) fiot (6) dx. 5.1
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Letting px = P[t4 =k + 1] we thus have that the density of Y, is given by
g(y) =/RZ;11A(y)f(y - x)(Z fk—l(x)Pk—1> dx. (5.12)
k

The result therefore follows from our assumptions on f. (|

In the next series of lemmas, we will make use of the following notation. Fix R € R. We let (U ]R )jez be the

sequence of components of C \ %' ((—o0, t]) which contain +oo for 1 € 7 where we take U to be the first such
component with quantum boundary length at most R. For each j, we let ¥ ]R be the log of the quantum boundary

length of U R and we let X R — YJR — YR In the next two lemmas, we are going to check that the criteria of

Lemma 5.8 hold for the sequence (Y )jeN Where we will take A to be an interval of the form (—oo, x] for x € R.

Lemma 5.9. The (X f )jen are i.id. and X f has a density with respect to Lebesgue measure on R which is positive
Lebesgue almost everywhere.

Proof. That the (X f ) jeN are 1.i.d. follows from Proposition 5.1. Alternatively, this follows since the corresponding
quantum surfaces (U ]R, h) correspond to a certain subset of the 77 /2-cone excursions of (Z , E) whose time interval

contains 0. Consequently, we just need to show that X f has an almost everywhere positive density with respect
to Lebesgue measure on R. To see this, we pick a (-, -)v-orthonormal basis (¢;) of H2(C) consisting of COO(G)
functions such that ¢>1|@\UR =0 and ¢1|3UR =0for j#1 and (bllaUR > 0. Since ¢; € H2(C), we can write h =

(h — a1¢1) + a1¢; so that h — ay¢p; and oclqbl are conditionally independent given 77’ and the restriction of % to
C\ U, R Let v (resp. v1) be the y-LQG boundary length measure associated with % (resp. & — a1¢1). Then we have
that

d_(x) — V19102

dvl

Consequently, we have that
XE :10g< [ e”“‘"’l(")/zdvl(x)) ¥ (5.13)
AUR

Note that X f is smooth and strictly increasing viewed as a function of «1. Moreover, Y(f is determined by & — o1 ¢ .
Applying the change of variables formula using the representation of X f as in (5.13) implies the result. (]

LetY = CeV"/ 215,,@. Combining Lemma 5.8 and Lemma 5.9 we obtain the following.

Lemma 5.10. The law of Y under m has a density with respect to Lebesgue measure on [0, 1] which is almost
everywhere positive on [0, 1] and which does not depend on C or r.

Proof. Since the law of a y-quantum cone is invariant under the operation of adding a constant to the field, it follows
that the law of Y is independent of » and C. The result then follows in the case that we condition on the event PjR that

the first j such that Y jR < C~'er"/? is at least 1 by combining Lemma 5.8 and Lemma 5.9. The result follows more
generally using that the probability of P jR tends to 1 as R — oo. (]

We are now going to establish an analog of Lemma 5.10 for mp.

Lemma 5.11. The law of Y under mg has a density with respect to Lebesgue measure on [1/2, 1] which is almost
everywhere positive in [1/2, 1] and bounded from above by a constant times the density of Y under mon [1/2, 1].
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Proof. Let J C[1/2, 1] be an open interval. We have by Bayes’ rule that

— — m[F, YeJl — —
mglY € J1=m[Y € J | Frecl= MiFreclY €1 v e . pm[¥ e J1. (5.14)
m[F¢cl

Lemma 5.10 implies that m[Y €[1 /2, 111 > 0, which in turn implies that P; < 1 as the conditional probability of F; ¢ ¢
given Y is comparable for each value of Y €[1/2, 1]. Indeed, this latter claim follows as the conditional probability
of F, ¢ c given Y is the probability of having a 7 /2-cone excursion of length in [1, 1 4 €] with terminal displacement
C—lerr/?y. O

We can now complete the proof of Lemma 5.6.

Proof of Lemma 5.6. By Lemma 5.7, we have that Z, . ¢ is equal to the Radon—-Nikodym derivative of the law of the
quantum boundary length ¢, ¢ of U, ¢ under m¢ with respect to its law under m. Thus the result follows by combining
Lemma 5.10 and Lemma 5.11. (]

Let u, ¢ (resp. vy, c) be the infimum (resp. supremum) of Re(dUy. ). In other words, [u, c, vr c] x [0, 27] is the
smallest annulus in € which contains U, c.

Lemma 5.12. Let H be the average of h on u, c + [0, 2ri] in C. For any fixed s € R_ we have that

mH >r+s]—0 as C — oo uniformlyinr e R_.

Proof. Suppose that H has the law as described in the statement of the lemma for r = 0 and C = 1. Then H =
H4r—2 log C has the law described in the statement of the lemma with the given value of r and C. The result then

follows since m[H <oo]=1. O
We are now going to establish an analog of Lemma 5.12 for mp.

Lemma 5.13. Let H be the average of h on u, c + [0, 2ri]. For any fixed s € R_ we have that
mrp[H>r+5s]—0 asC — oo wuniformlyinr € R_.

We will deduce Lemma 5.13 from the corresponding result with mg in place of mg, which in turn follows from
Lemma 5.6 and Lemma 5.12. The idea of the proof will be to assume that we have samples from my and mg
coupled together on a common probability space so that one can transform from the former to the latter by cutting
out the surface parameterized by U, ¢ and then gluing in one sampled from the m-conditional law given ¢, c. This
cutting and gluing operation involves applying a conformal transformation to the complement of U, ¢ in C. As we
have just mentioned above, we have already proved that under mg, the average considered in Lemma 5.13 is very
likely to be smaller than r 4- s when C is large. The difficulty is that if we apply a conformal transformation to the
circle u, c 4+ [0,27i] in C we will not get another circle. In order to deal with this challenge, we will first prove
an intermediate result in which we have replaced the average over the circle u, ¢ + [0,27i] in € with the worst-
case average of the field when integrated against all smooth functions with compact support with support at most a
bounded distance of u, ¢ + [0, 27i] (and with bounded derivative). As we will see, averages of this type work well
when applying conformal transformations because precomposing such a function with a conformal transformation
leads to a function of the same type. See Figure 3 for an illustration of how we will implement this idea. Before we
give the proof of Lemma 5.13, we will need the following.

Lemma 5.14. Fix a,b > 0 and let (I);’b be the set of C;°(C) functions which are supported in the annulus [0, a] x
[0, 2] with ¢ > 0, f¢(x) dx=1,and ||¢'||cc <b. Fixr,s € R_ and let

M(h) = sup (h, ¢+ rrﬂ)).
ped,) ,
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Fig. 3. Tllustration of the setup of the proof of Lemma 5.13. Top: a surface sampled from the law mg. The red region is the part of the surface
separated from -+oco up until the first time that the SLE,, (k" — 6) process 7’ makes a loop with boundary length at most C ~Le¥r/2_ Bottom: the

surface sampled from mg after resampling D to yield D. The superscripts F' and G are used to indicate quantities associated with 4 and hg,
respectively.

We have that
m[M(h) > r] — 0 ass— —oo uniformlyinr € R_.

Proof. We will first assume that » = 0 and we take our quantum cone to be embedded so that the horizontal translation
is so that the projection of & onto H1(C) first hits » + s = s at u = 0. Then we have that the restriction of & to C4
has the same law as the sum of the function (y — Q) Re(z) and a whole-plane GFF on C restricted to C4 with the
additive constant fixed so that its average on [0, 27i] is equal to s. Therefore it suffices to prove the result in the case
that /4 is the sum of (y — Q) Re(z) and a whole-plane GFF on C with this normalization. The argument explained in
the paragraph just after [7, Proposition 9.19] implies that, in this setting, M (h) — s is a.s. finite with law which does
not depend on s. This proves the result for r = 0. The result then follows for other values of r because one can switch
from the r = 0 setting to the setting of general r € R_ by adding r to the field. |

Proof of Lemma 5.13. In the proof, we will be working with samples from both mg and from mg, coupled onto
a common probability space. We will add an extra subscript F or G in order to clarify to which law each will be
associated.

Suppose that (C, hg, 400, —00) and 1; are sampled from the law m¢g. We think of the embedding of the surface
into C as taking place in two steps. Namely, we first embed the surface as usual for quantum cones as described in
Section 2.3.1 so that the horizontal translation is such that the projection of hg onto H;(C) first hits 0 at u = 0 and
then we adjust the horizontal translation so that u, ¢, =0.

Suppose that (C, hr, +00, —00) is a sampled from mr. We take the embedding into C to be the same as for (C, hg)
described above (but with u, c r in place of u,c ). We assume that (C, hr, 400, —00) and (C, hg, +00, —00)
are coupled together as in the definition of mg. That is, we can transform from the former to the latter by cutting
out the quantum surface (U, c.r,hr) and then gluing in a conditionally independent copy sampled from the m-
conditional law with given boundary length ¢, ¢ g (without any conditioning on its quantum area). Let ¢ be the
conformal transformation which corresponds to this cutting and gluing operation. Thatis, ¢ : C\ U, c,c = C\U,c.F
is a conformal transformation fixing —oo with hig =hr o+ Qlog|¢’| in C\ U, cg.
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It follows from Lemma 5.6 and Lemma 5.12 that the mg-probability that the average of g on [0, 27i] is at most
r tends to 1 as C — oo uniformly in r € R_. Our goal is to use this to deduce that the same is true with . ¢ in place
of hg. The difficulty is that ¢ ([0, 2i]) is not a circle in C. To deal with this, we will instead work with the field
integrated against smooth test functions rather than on circles. In order to do this, we will need to make sure we are
working with test functions which are on a domain in which the distortion which arises by applying ¢ is bounded and
this is where we will make use of the distortion bound Lemma 2.4.

Let Cq, C> be the constants from Lemma 2.4. By Lemma 5.6, the modulus of continuity for the projection of i
onto H1(C) is the same as that for a standard Brownian motion as this is also true under m. Fix s € R_. It thus follows
that 7,45, < —C1 — 3C2 with mg-probability tending to 1 as C — oo uniformly in r € R_. Let <I>1 » and M (h) be
as in the statement of Lemma 5.14 with a =3C3 and b > 1 very large but fixed. Then Lemma 5.6 and Lemma 5.14
together imply that for each 6 > 0 there exists so € R_ such that for each s < s there exists Co > 1 such that C > Cy
implies

mg[M(h) > r] <46 uniformly inr € R_. (5.15)

Let Ry be the annulus in € which is given by 7,5 + [0, 3C>] x [0, 2x].

Lemma 2.4 implies that ¢ (R;) contains a non-empty rectangle Ry =[p, g] x [0,27] in C. Let ¢g, € Cgo(@) with
¢r, > 0 be a function which is rotationally symmetric about +00 with f ¢Rr,(x)dx =1 and support contained in R;
andlet ¢ = [(¢~1)'|?pgr, o p~!. Then ¢ € CJ°(C) is supported in Ry, ¢ > 0, and [ ¢ (x) dx = 1. Moreover, by taking
b > 1 large enough relative to Cy, C», we have that ||¢’||oo < b. Consequently, it follows from (5.15) that we can make
the probability that (hg, ¢) <r as close to 1 as we like by choosing s € R_ small enough and C > 1 large enough,
uniformly in r € R_. Since Q log|(¢~')’| restricted to R; is bounded by a deterministic constant it thus follows that
we can make the probability of the event that (2 r, ¢g,) < r as close to 1 as we like by choosing s € R_ small enough
and C > 1 large enough, uniformly in r € R_. As ¢, is rotationally symmetric about =00 with support contained in
R, it follows that on the event that (hr, ¢g,) <r we have that the projection of /¢ onto H;(C) first hits r to the left
of the right side of R». ]

Proof of Proposition 5.5. By the definition of u, ¢, under mg the quantum area of U, ¢ is in [1, I + €]. Recall from
the statement of Lemma 5.13 that H is the average of & on the vertical line u, ¢ + [0, 27i]. Lemma 5.13 thus implies
that under mp, we can make the probability that 7, < u, ¢ arbitrarily close to 1 by making C large. Thus to finish
proving that (5.7) holds, we need to explain why the quantum area of the part of C \ U, ¢ which is to the right of 7,
tends to 0 in probability under mg provided r € R_ is small enough (uniformly in the choice of C). This holds since
the amount of quantum area in € which is to the right of 7, tends to 0 in probability as »r — —oo under m hence also
under mg by Lemma 5.6. Therefore the claim for mr holds because of the natural coupling between mg and mg.
We now turn to explain why (5.8) holds. Let E. and E ; 8 be as in Lemma 4.3. We have that

P[Fr’g,c, Er,g] - P[Fr,e,Ca Er,e» E;’ﬂ] . P[Fr,e,C, Er,e | E,/ﬁ,ﬂ]
PlE.] PLE, ] P[E,c]/PLE, 4]

P[Fr,e,C | Er,e] =

Lemma 4.3 implies that the denominator is bounded above by a constant ¢y > 0 which depends only on € and S.
Therefore it suffices to give a lower bound for P[F, ¢ c, Er¢ | E; ﬂ], but this is easy to see from the definitions. This
proves (5.8). O

5.4. Extra conditioning does not affect the limiting law

Proposition 5.5 implies that we can think of conditioning on F;. ¢ c as taking place in two steps: we first condition the
surface on E, . and then condition the result on the uniformly positive probability event F; ¢ c. The purpose of this
section is to argue that this second conditioning step does not have a significant effect on the resulting law. This, in
turn, will complete the proof of Theorem 1.1.

Lemma 5.15. Fix r € R. Suppose that (C, h, +00, —00) is a y-quantum cone. Let t, be as in Proposition 4.1 and
vy as defined just before the statement of Lemma 5.12. Then we have that

Plv,.c >t + S| Ere, Fre,cl— 0 asr— —oo and then S — oo
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at a rate which only depends on €, C.

Proof. Let H be the average of & on u, c + [0, 2mi]. Then we have that

P[H>r+ M, Er,e | Fr,e,C]
P[Er,e | FV,E,C] .

PH=r+M|Ec, Frecl=

Using (5.7) of Proposition 5.5, we see that the probability is at most a constant times P[H > r + M | F, ¢ c]. By
Lemma 5.13, we know that the probability of this event decays to 0 as M — oo uniformly in € R_. Therefore it
suffices to show that for each fixed M we have that

Plvc>v+S, H<r+M|E;c,Fre.cl >0 asr— —oo and then S — oo.

Using (5.8) of Proposition 5.5 in the inequality, we see that there exists a constant ¢g > 0 depending only on C and
€ such that

P[vr,C >, +S. H<r+M, Fr,e,C | E (]
P[Fr,e,C | Er,e]

=< COP[Ur,C >t +S, H<r+M, Fr,e,C | Er,e]~

P[Ur,C zfr+SaH§r+M|Er,e, Fr,e,C]=

Let E; 8 be as in Lemma 4.2. We also have that

P[Ur,C >, +S H<r+M, Fr,E,C | Er,e]
= P[Ur,C >4 +S, H<r+M, Fc, E;,ﬂ | Er,e] +P[(E;,/3)C | Er,e]‘

By Lemma 4.3, the second term above can be made arbitrarily small by choosing 8 > 0 to be sufficiently large. By
Bayes’ rule, the first term on the right hand side above is bounded from above by

P[Ur,C >, +S, H<r+M, Fr,e,Cv Er,e | E;yﬁ]
PIE,. [ E,] '

By Lemma 4.3, the ratio is bounded from above by a constant times the numerator. Therefore it suffices to show that
Plv,.c>t+S, H<r+M,F..c| E;,ﬁ] — 0 asr — —oo then S — oco. We will deduce this from Lemma 4.2.

Let og be the first u > 7, that the projection X of & onto H;(C) hits y ~'log B~!. We consider two possibilities:
either u, c < og or u,c > og. We will first argue that the second possibility is very unlikely, so that we can exclude
it. We note that the event that H <r + M, u, c > og, and F, ¢ ¢ all hold is contained in the event that the quantum
area in the part of ¢ which is to the right of where X first hits » + M after og is at least 1. It is easy to see that the
conditional probability of this given E ; 8 tends to 0 as r — —oo as claimed.

We are thus left to bound

Plo,c =7+ S H=<r+Mu.c<og|E].

Note that on H <r + M and u, c < og (and given E; ﬂ), we have that v, ¢ is (non-strictly) to the left of the first
loop of 7’ around +oo which is completed after X attains its infimum on [z, og]. Since the conditional law of X
given E ; P in [7,, 0] is that of a Brownian motion with positive drift starting from r and run until the first time it hits
y ~log B~1, it follows that the length of time it takes after time 7, for the infimum to be attained has an exponential
tail. Thus the result easily follows. U

Lemma 5.16. Suppose thatr € R, € > 0, and C > 1. Suppose that (C, h, +00, —00) is sampled from mg. Then we
have that the quantum surfaces (C+ + vy c, h) converge weakly to the unit area quantum sphere (in the same sense as
in Proposition 4.1) when we take a limit as r — —o0, C — 00, and then € — 0.
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Proof. Proposition 5.5 implies that the conditional law of (C4 + v, c, h) given F, ¢ c is close in total variation to its
conditional law given both F.. ¢ and E, . as the conditional probability of the latter given the former can be made
arbitrarily close to 1. Lemma 5.15 implies that, conditional on these two events, we can fix a value of S large so that
with high probability we have that v, ¢ < 7, + S, given both F, ¢ ¢ and E, . Whether this occurs is determined by the
values of the field and the path in (—oo, 7, + S] x [0, 277 ]. Therefore the result follows by applying the final assertion
of Proposition 4.1. (]

Proof of Theorem 1.1, y € (ﬁ, 2). Suppose that (C, h, +00, —00) and 1’ are sampled from mg. Then Lemma 5.16
implies that the laws of the surfaces (C+ 4 v, c, i) converge weakly to the law of the unit area quantum sphere when
we take a limit as r — —oo, then C — 00, and then € — (0. Moreover, by Proposition 3.5 we have that the joint law of
(L, R) restricted to the interval J,. ¢ of time in which n’ is filling the component U, ¢ converges weakly with respect
to the topology of uniform convergence as r — —oo, then C — 00, and then € — 0 to that of a correlated Brownian
loop of unit length.

We next claim that " converges to a space-filling SLE,s from —oo to —oo which is independent of the limiting
surface. We know that for each fixed r, C, and e that the conditional law of " in J, ¢ given h, U, ¢, and 7' (¢r.c)
is that of a space-filling SLE,+ in U, ¢ from 7'(¢-.c) to (¢, c). Moreover, Lemma 5.15 implies that v, ¢ — —o0
in probability as r — —oo and then C — oo. In particular, this implies that the law of the GFF used to generate n’
restricted to U, ¢ converges to a whole-plane GFF on C in the sense that for each fixed x € R its restriction to the
half-infinite cylinder [x, co) x [0, 2] converges in the total variation to the law of the corresponding restriction of a
whole-plane GFF (see [37, Proposition 2.10]). This implies the claim.

Suppose that (C, h, —00, +00) has the law of a unit area quantum sphere and that 5’ is an independent space-filling
SLE, process from —oo to —oo reparameterized by quantum area. Let (L, R) be the quantum boundary length of the
left/right side of n’. We have shown so far that (L, R) evolves as a correlated Brownian loop. To finish proving the
result, we need to show that (L, R) a.s. determines (C, k, —00, +00) and 1’ up to a conformal transformalion. We let
7’ be the SLE,/(k’ — 6) process which arises by reparameterizing n’ by capacity as seen from +oo, let 7 be the set
corresponding to 77’ as defined in the beginning of the section, and let 7, be the first € 7 that the component U, of
C\ 7([0, #]) which contains +o00 has quantum boundary length at least €. Then it follows from the first part of the
proof that the conditional law of the quantum surface (U, h) given its quantum boundary length, quantum area, and
7 (te) is the same as in the setting of an exploration of a y-quantum cone by an independent SLE,+ (k" — 6) process.
Also, as in the setting of a y-quantum cone, we have that (U, h) corresponds to a 7 /2-cone excursion A, of the
time-reversal of (L, R). By the limiting construction, we know that the joint law of (U, h) and A¢ is the same as
in the setting of a y-quantum cone, conditional on quantum boundary length and area. It therefore follows that both
(Ue, h) and 7’ restricted to the interval of time in which it is filling U, are a.s. determined by A, since we know this
to be true in the case of a y-quantum cone. The claim follows since Lemma 2.4 implies that the effect of resampling
(C\ Ug, h) given (U, h) tends to 0 as € — 0. O

We are now going to explain how a variant of the argument given above handles the case that y € (0, v/2].

Proof of Theorem 1.1, y € (0, +/2). We suppose that (€, i, 400, —o0) has the law of a y-quantum cone and that
n’ is a space-filling SLE, on € from —oo to —oo sampled independently of 4 and then reparameterized by quantum
area. We normalize time so that 7' (0) = +o00. Let A, be the first time 7 (if it exists) that the quantum boundary length
of the boundary of U; = n'([0, t]) is equal to ev"/?. Let F, ¢ be the event that A, (which is equal to the quantum
area of Uy, ) is in [1, 1 4 €]. Let (L, R) denote the change in the quantum boundary length of the left/right side of
n’ relative to time 0 so that Lo = Rp = 0. Conditional on A, and (L4,, R4, ), and the length L (resp. R) of the left
(resp. right) side of n’((—o0, 0]) up until it merges with the left (resp. right) side of n'([A,, 00)) (see Figure 4 for an
illustration when the quantum cone is parameterized by C) we have that (L, R) in [0, A, ] evolves as a (correlated)
two-dimensional Brownian motion starting from (0, 0), conditioned to be in (L,R)+ Rﬁ, and conditioned to take the
value (L4, , R4,) at time A,.

This process is characterized by a certain Markovian resampling property. Namely, if we condition on part of its
initial and terminal segments, then the conditional law of the remaining part is that of a (correlated) two-dimensional
Brownian motion with given starting and ending points conditioned to stay in (L, R) + Ri. Conditional on F} ., we
have that (L, R) converges to 0 as » — —oo and we have that A, — 1 as r — —oo and € — 0. Arguments analogous
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Fig. 4. Illustration of the setup for the proof of Theorem 1.1 for y € (0, /2] and «” > 8. Shown is a space-filling SLE,./ process 1’ on an y-quantum
cone parameterized by C normalized so that (0) = 0. The blue (resp. dark blue) path represents the left (resp. right) side of 5’ stopped at time 0
and the green (resp. dark green) show the left (resp. right) side of 1’ stopped at the time A, up until merging with the blue (resp. dark blue) path.
The light blue region is 1’ ([0, A, ]). The left/right boundary length process (L, R) is normalized so that Ly = Ry =0 and L4, (resp. Ry4, ) is equal
to the length of the green (resp. dark green) path minus the length of blue (resp. dark blue) path up until they merge and L;, R; are defined similarly
for general ¢ values. In particular, for ¢ € [0, A, ], we have that L; (resp. R;) is at least —1 times the length of the blue (resp. dark blue) path up
until merging with the green (resp. dark green) path.

to those in Section 3 imply that the law of (L, R) in [0, A, ] conditional on F . converges weakly with respect to the
topology of uniform convergence when we take a limit as » — —oo and then € — 0 to that of a correlated Brownian
loop of length 1. Indeed, this follows because any subsequential limit will satisfy the Markovian resampling property
that conditional on an initial and terminal segment, the conditional law of the remaining part is that of a (correlated)
two-dimensional Brownian motion with the given starting and ending points conditioned to stay in R2+. Moreover,
this resampling property uniquely characterizes the limiting law.

The same argument given in the case that y € (+/2,2) implies that the conditional law of the quantum surface
(Ua,,h) given F, . converges as r — —oo and € — 0 to that of the unit area quantum sphere and 7" in [0, A]
converges to an independent space-filling SLE, process from —oo to —oo.

Suppose that (€, k, +00, —o0) has the law of a unit area quantum sphere, 1’ is an independent SLE,/ process from
—00 to —oo reparameterized by quantum area, and (L, R) is the quantum length of the left/right side of »’. To finish
the proof, it is left to show that (L, R) a.s. determines (C, i, +00, —o0) and 1. Fix § > 0. Then the conditional law of
the quantum surface parameterized by € \ (n'([0, 8]) Un'([1 — 8, 1])) given (Ls, Rs) and (L1_s, R1—s) is the same as
the corresponding conditional law in the case of a y -quantum cone. In the latter setting, we know that (L, R) restricted
to [8, 1 — 8] a.s. determines both the surface and 1'|[5,1—s) (viewed as a path in the surface) Thus arguing as in the end
of the proof in the case that ¥ € (v/2,2), the result follows because the distortion estimates from Section 2.4 imply
that the effect of resampling the part of the surface which is parameterized by 7'([0, §]) and »'([1 — 8, 1]) a.s. tends
to0asd — 0. ]

6. Lévy excursion construction for y = ,/8/3

In this section, we are going to complete the proof of Theorem 1.2. We will then show that the conditional law of
the tip of the SLEg grown up to a given time conditional on the region it has cut off from its target point (as a path-
decorated quantum surface) is uniformly distributed on the hull boundary according to the quantum length measure
and identify the law of the surface component containing the target point of the SLEg. We will end by completing the
proof of Theorem 1.5.

One notion which will be important for this section is the so-called quantum natural time, constructed in [7]. Itis a
quantum analog of the natural parameterization first defined in [26]. We now review its definition and basic construc-

tion. Its existence is implied by [7, Theorem 1.15], which considers a quantum wedge of weight 2 — VTZ This is the
quantum surface that one obtains by considering a y-quantum cone (C, &, 0, 00) decorated by an independent space-
filling SLE, curve " from oo to oo normalized so that '(0) = 0 and then taking the quantum surface parameterized
by 1'([0, 00)). If k¥’ € (4, 8), then this surface is not homeomorphic to H and is described by a Poissonian string of
beads (and this is the case were interested in) while for ¥’ > 8 it is homeomorphic to H. If we assume we are in the
former setting, then we can draw on top of the surface a concatenation of independent SLE,/(k'/2 — 4; k' /2 — 4)
processes, one for each bead. This divides the surface parameterized by 1’([0, 00)) into a collection of quantum disks
and it is shown in [7, Theorem 1.15] that the path decorated surfaces can be represented as a gluing of a pair of
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independent forested lines. A forested line is a forest of stable looptrees which is defined out of a «’/4-stable Lévy
process. In particular, there is a natural time parameterization associated with a forested line which corresponds to
the time parameterization of the underlying Lévy process. Recall that for a stable Lévy process, one can recover its
time parameterization as a measurable function of its jumps. Indeed, one can recover the time elapsed by counting
the number of jumps between € and 2¢, normalizing by an appropriate power of €, and then sending € — 0 (we will
remind the reader of this in the proof of Theorem 1.5 in additional detail). In the case of SLE, on top of an LQG
surface, the jumps correspond to quantum disks which the SLE separates from its target point.

We begin by collecting the following which implies that we can make sense of My gy conditioned on having
quantum area in a given interval [a, b] with 0 <a < b < 400.

Lemma 6.1. Let A be the total quantum area of the quantum disks associated with a sample produced from Mgy .
For each a > 0 we have that M gy[A > a] < 0.

We will identify M gy[A > a] explicitly in Section 6.2 below.

Proof of Lemma 6.1. Suppose for contradiction that there exists a > 0 such that M{gy[A > a] = co. Let X; be
a 3/2-stable Lévy process with only upward jumps and let /, be its running infimum. Assume that Xo = 1 and let
7 =inf{r > 0: X, = 0}. Given X|j0,], we sample a family A; of conditionally independent quantum disks indexed
by the jumps of X|[o,;] where the boundary length of the disk associated with a given jump has boundary length
equal to the size of the jump. Let A; be the total quantum area of the quantum disks in .4;. Note that the jumps
of (X — I)|[o,7] are equal to those of X|[o,;]. By the Poissonian representation of the excursions that X — I makes
from O, it follows from the assumption that M gy[A > a] = oo that P[A| = oo] = 1. It therefore suffices to show that
P[A] < oo] = 1. One can either see this using a direct computation or, alternatively, noting by [7, Corollary 10.2] and
[3, Chapter VII, Theorem 18] that A is equal in law to the amount of quantum area cut out by a whole-plane SLE¢
from a /8/3-quantum cone stopped at the last time that the quantum length of its outer boundary hits 1. ]

6.1. Proof of Theorem 1.2

We know from [7, Corollary 10.2] that the quantum boundary length of the complementary component containing
—o0 of a whole-plane SLE¢ process 7’ from +00 to —oco drawn on top of a 4/8/3-quantum cone (C, h, +00, —00)
evolves as a totally asymmetric 3/2-stable Lévy process with negative jumps and conditioned to be non-negative (see
[3, Chapter VIIL.3] for more on this process). Moreover, the components viewed as quantum surfaces separated by
7’ from —oo are conditionally independent quantum disks with quantum boundary length equal to the size of the
corresponding jump made by the boundary length process and the ordered sequence of quantum disks together with
whether they were surrounded on the left or right side of 77" and the marked point corresponding to the last point on
the disk boundaries visited by 77 a.s. determine both 7’ and the quantum cone. This implies that we can sample from
the law of a /8/3-quantum cone decorated with an independent whole-plane SLEg using the following steps:

e Sample a totally asymmetric 3 /2-stable Lévy process X with only downward jumps conditioned to be non-negative.

e Given X, sample a collection of conditionally independent quantum disks D with boundary lengths equal to the
size of the jumps made by X and orient each such disk either clockwise or counterclockwise by the result of an
i.i.d. fair coin flip.

e For each quantum disk in D, sample a uniformly chosen point in its boundary from its quantum boundary measure.

Fix 8, A >0and s € R_. We let & , be the first time 7 that X falls below e?*/? after exceeding A and let Qy A
be the event that ES, A < 0o and the area separated from —oo by 77’ is in [1 — &, 1]. See Figure 5 for an illustration of
the setup. We want to show that the surface S separated from —oo by 7’ |[0’§S Al conditional on Qy, A5 converges to
that of the unit area quantum sphere decorated with an independent SLEg from —o0 to 400 when we take a limit as
s — —o0o, A — 0, and then § — 0. This is a consequence of the following sequence of observations. We let F; ¢ ¢
and 7’ be as in Section 5.3, where we take 7" and 7’ to be time-reversal of each other.

1. The conditional probability of Qg, A.s given F . ¢ tends to 1 when we take a limit first as » — —o0, then € — 0,
then s — —oo, then A — 0, and then § — 0.
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(8,7 l0.6rc) (87 log, o)

Fig. 5. Illustration of the setup of the last four steps of the proof of Theorem 1.2. Shown in light red is the path-decorated surface (g 7 0,2, 1)
which consists of the part of S and " up until the time ¢, ¢ defined in Section 5.3. Shown in light blue is the path decorated surface S.7 |[0 E A])
Es,

which consists of the part of S and 7 up until time Es’ A, the first time 7 that the quantum boundary length of the hull of 7’ [[0,7] as seen from —oo

falls below e¥* i 2 after first hitting A. On the event that S and S are disjoint, the three surfaces are conditionally independent (S, S, and the part
of Snotin S, S).

2. The conditional probability that ﬁ’|[0y§w] is disjoint from 7'|[0,¢, ] given Fy.c.c and Qg A 5 tends to 1 when we
take the same sequence of limits as in the previous item. ~

3. Let S be the surface separated from +oo by 7'ljo,¢, 1. Then the path decorated surfaces (S, % |[0,, 1) and
(S, ﬁ’|[0,§S‘A]) are conditionally independent given their boundary lengths on F, ¢ c, ES,A,S’ and the event that
Sand S are disjoint. In particular, the conditional law of (S, 7’ |[0,§S Ry given its boundary length and conditional
on QY, A.s does not change when we further condition on F; ¢ ¢ and that the two surfaces are disjoint.

4. By the proof of Theorem 1.1 given in Section 5 we have in the setting of the previous item that the surface
parameterized by the complement of S converges to a unit area quantum sphere when we take a limit as r — —oo
and € — 0. As remarked above, the conditional probability that S is contained inside of the complement of S tends
to 1 when we take the further limits as s — —oo, A — 0, and then § — 0. In particular, when we take this sequence
of limits, the limit of 7’ |[0’§Y R yields a path on top of a unit area quantum sphere. Recall that we took 77’ and 7’
to be time-reversals of each other. From the construction, 7 in the limit yields an independent whole-plane SLE¢
on top of the quantum sphere. Therefore 7}’ also yields an independent whole-plane SLE¢ on top of the quantum
sphere by the reversibility of whole-plane SLE¢q. By Proposition 6.2 stated and proved below, the joint law of its
boundary length process and the quantum disks it separates from 00 converges to the time-reversal of the type of
3/2-stable Lévy excursion described in the statement of Theorem 1.2. ]

Proposition 6.2. Let X, ES,A,(S’ and ES,A be as earlier in this section. For each t > 0, let A, be the collection of
marked, oriented quantum disks cut out by 7' |j0.11. The joint law of the time-reversal of Y|[0 £ Al and .715 , cut out by

ﬁ’|[0 Al conditional on ES,A’(; converges as s — —o0o, A — 0, and then § — 0 weakly to M gy conditioned on the
total quantum area of the quantum disks being equal to 1 (as described just before the statement of Theorem 1.2).

Proof. [3, Chapter VII, Theorem 18] implies that the conditional law of the time-reversal of X | [0.E, A1 and Xg( R given

§s’ A < 00 converges to the law given by Mgy conditioned on the maximum of the Lévy excursion being at least A
when we take a limit as s — —oo. Therefore the conditional law of the time-reversal of Y|[0 E Al and 715 R given

637 A5 converges as s — —oo to the law given by Mgy conditioned on the maximum of the Lévy excursion being at
least A and the quantum area of the quantum disks being between 1 — § and 1. Taking a further limit as A — 0 yields
MpEgv conditioned on the quantum area being in [1 — §, 1], so the result follows by sending § — O. U

6.2. Comparison of Bessel and Lévy measures

We are now going to complete the proof of Theorem 1.5. Before we do so, we first collect the following result which
gives the distribution of the quantum area associated with the Bessel construction of the unit area quantum sphere.

Proposition 6.3. There exists a constant co > 0 such that the density of the distribution of the quantum area A of a
/8/3-quantum sphere sampled from Mpgs with respect to Lebesgue measure on Ry is given by coA™>/?.
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Proof. We first recall that the Bessel dimension used in the construction is given by 8 =4 — 8/y% = 1. Consequently,
the result follows from [7, Proposition 4.18]. O

Proof of Theorem 1.5. We assume throughout that y = /8/3. We are going to derive the result using scaling.
Namely, we consider the transformation given by multiplying the quantum area of the surface by a constant. This, in
turn, corresponds to adding a constant to the field used to parameterize the surface. If we add the constant C to this
field, then the total quantum area is multiplied by e”€.

We are now going to determine how the quantum natural time of the SLEg¢ path is scaled under this operation. First,
we suppose that X is a 3/2-stable process with only upward jumps. Fix 7' > 0. We recall that there exists a constant
co > 0 such that the following is true. Let A be a p.p.p. on [0, T'] x R, with intensity measure codt ® u~=>/% du where
dt (resp. du) denotes Lebesgue measure on [0, 7] (resp. R4). Then A is equal in law to the set of jump time/size pairs
for X in [0, T], i.e., the set of pairs (¢, X,- — X;) with 7 € [0, T] and X,- — X; # 0. (Recall that X has downward
jumps so that X,- — X; > 0.) Using this fact, we can a.s. determine the amount of time that such a 3/2-stable Lévy
process has been run if we only observe its jumps in that time interval (and not the length of the interval). Indeed, for
0 < x1 < x3, we let N(x1, x3) be the number of jumps made by X in that interval with size contained in [x1, x2]. Then
the almost sure limit as j — oo of

N(e 771, e )
%coe3/2j /2 -1

6.1)

is equal to the length of the interval.

Using the same principle, we can a.s. determine the length of a 3/2-stable Lévy excursion if we only observe its
jumps. Suppose that we have a sample (S, x, y) produced from Mrgv. Let 7 be the length of the Lévy excursion
used to generate the surface. Now suppose that we add C to the field used to parameterize the surface and let T¢
be the length of the resulting Lévy excursion. Then the quantum boundary lengths of each of the components cut
out by the SLEg path are scaled by the factor ¥ /2. Therefore the number of quantum disks with boundary length
between e/~ and e~/ after adding C to the field is given by N (e~/~17vC/2 ¢=i=vC/2) If we divide this quantity
by %coe3/2j (€32 — 1) as in (6.1) and then send j — oo, the almost sure limit that we obtain is Tc = 3 ¢/4T.

Letting ML gv (| #) be the probability measure under which we have conditioned the length of the Lévy excursion to
be equal to 7, we therefore have that

Miev(A €la,a+el|t) =Miev(A e[l, 1 +e€/alla*). (6.2)

Thus,

oo
MLev(A € [a,a +€]) = c/ Miev(A € [a,a + €] | t)t*5/3 dt  (Section 2.1.2; ¢ = c3/2)
0
o
:c/ Miev(A €1, 1 +e/alla™*)>Pdr  (by (6.2))
0

oo
= ca_1/2/ MLEV(A ell,1+e€/all t)t_s/3 dt
0
=a "*Miey(A €[1, ¢/a)).
Dividing both sides by € and sending € — 0 implies that the density of A with respect to Lebesgue measure on R
is given by a constant times A~3/2. (The constant is explicitly given by the density of A with respect to Lebesgue
measure evaluated at 1.) Combining this with Proposition 6.3 proves (1.6). (]

6.3. Tip is uniformly random and law of the unexplored region

We are now going to show that if one performs an SLE¢ exploration on a y = 4/8/3 unit area quantum sphere (S, x, y)
from x to y where x, y are sampled independently from the quantum measure on S then:
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e The location of the tip of the path is uniformly distributed according to the quantum boundary measure on its hull
relative to its target point y and

e The conditional law of the complement of the hull given its boundary length is that of a quantum disk weighted by
its quantum area.

These results will be important in [30] in which we construct a version of QLE(8/3, 0) on a quantum sphere. We will
then deduce from this the analogous results in the setting of a 1/8/3-quantum cone.

Both of these statements hold if we explore the SLEg up to any stopping time t for the filtration (F;) which is
defined as follows. For each ¢, we let F; be the o -algebra which is generated by the collection of quantum disks that
77'|10,¢] has separated from y, each marked by the last point on their boundary visited by 7’ and oriented by the direction
in which 7" has traced their boundary. Here, we assume that 77’ has the quantum natural time parameterization. (Note
that the quantum boundary length of the component of S\ %/([0, ¢]) is F;-measurable for each deterministic ¢ since
the boundary length process is absolutely continuous to a 3/2-stable Lévy process and F; determines the jumps made
up to time ¢. The same holds if 7 is replaced by a stopping time.)

Proposition 6.4. Fix t > 0 and suppose that (S, x, y) is distributed according to Mgy conditioned on the event that
the amount of quantum natural time for 7' to go from x to y is at least t. Let T be a stopping time for (F;) as defined
just above with P[t > t] = 1. Then the conditional law of the component Uy, of S\ 7/'([0, t1) containing y, viewed as
a quantum surface, given its boundary length is that of a quantum disk with the given boundary length weighted by its
quantum area. Moreover, 7' (v) is uniformly distributed from the quantum boundary measure on dU,.

Proof. This follows from an argument which is very similar to that used to prove Proposition 5.1, though the present
case is actually simplified because we are working with a finite volume surface rather than an infinite volume surface.
In particular, we can resample the target point y by picking another independent point from the quantum measure. We
are going to prove the result first for deterministic times s > ¢, then deduce that the result holds for stopping times
which take on dyadic rational values, and then finally by continuity deduce the result for general stopping times.

Fix s > ¢ deterministic. Let w be a point on S picked from the quantum area measure independently of everything
else. Using an argument which is analogous to that in the proof of Proposition 5.1, it is easy to see that if w lands in
one of the bubbles that 77’ separates from y, then the conditional law of that bubble given its boundary length is that
of a quantum disk weighted by its quantum area with the given boundary length. By the symmetry of w and y, it thus
follows that if we run %’ until the first time 7 that it separates y from w, then the conditional law of the component of
S\ 7 ([0, T]) containing y given F; is that of a quantum disk weighted by its quantum area with the given boundary
length. This holds even if we condition further on which component contains w. The claim thus follows for the
deterministic time s by conditioning on the event that w is contained in a component which is separated by 7" from y
in the time interval [s, s + €] for € > O fixed and then taking a limit as € — O.

Now suppose that T is a stopping time for (F;) with P[t > ¢] = 1. Fix k € N and let 7; be the first multiple of
2% which occurs after time 7. Then the conditional law is as above at the time 7%. Finally, we note that the law of
a quantum disk weighted by its quantum area with given boundary length is a continuous function of the boundary
length since we can change the boundary length by adding a constant to the field. Therefore the form of the conditional
law at the time t follows by taking a limit as k — oo. |

We are now going to use Proposition 6.4 to deduce the conditional law of the region with infinite quantum area
when we explore a 4/8/3-quantum cone with an independent whole-plane SLE¢q parameterized by quantum natural
time. We will not give an explicit description of this law, but rather describe it in terms of certain resampling properties.

Proposition 6.5. Suppose that (C, h, +00, —00) is a «/8/3-quantum cone and that 7' is a whole-plane SLE¢ process
Jfrom +00 to —oo sampled independently of h and then reparameterized by quantum natural time. Let T be an a.s.
finite stopping time for the filtration generated by the quantum surfaces separated by 7 from —oo. Let ¢ be the
unique conformal transformation from the component of € \ 77([0, t]) containing —o0 to C_ with p(—00) = —00
and ¢’ (—o0) > 0, let h=ho o'+ Qlog|(¢~ Y|, and let b be the quantum boundary length of dC_ assigned by V3.
Then the law of n possesses the following properties:
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1. For each r > 0, the conditional law ofﬁ in the annulus [—r, 0] x [0, 2] C C_ given its values on C_ — r is that
of a GFF with free boundary conditions on dC— and Dirichlet boundary conditions on dC_ — r given by those of
h, conditioned so that the quantum boundary length of dC_ is equal to b.

2. The conditional law of h given its values on dC_ is equal to that of the sum of the function z — (y — Q) Re(z) and
a GFF on C_ with boundary conditions on d C_ which agree with i

Proof. Step 1: Local behavior of a quantum sphere at its marked points is described by quantum cone. Suppose that
(S,x,y) =(C, h, —00,+00) is a doubly-marked quantum sphere sampled from Mygy = c; gMpgs conditioned so
that its mass is at least 1. We are first going to explain why the local behavior of the surface near +oo (hence also
near —oo by symmetry) is described by a y-quantum cone. Since the amount of mass that a quantum sphere contains
has a density with respect to Lebesgue measure, it follows that (S, x, ¥) a.s. has mass which is strictly larger than
1. Suppose that we take the horizontal translation for the embedding into € so that C_ has quantum area equal to 1.
Then the conditional law of 4 in C4 given its values in C_ is that of a GFF with the given boundary values on 0C4+
plus the function (y — Q) Re(z). By [7, Proposition 4.13], the following is true. Let t¢ be the smallest # > 0 so that
the average of 1 + C on u + [0, 27i] is equal to 0. Then A (- 4 7¢) 4+ C converges as C — o0 to a y-quantum cone.

Step 2: Resampling property for quantum sphere conditioned on both quantum natural time and area. Suppose
that we fix € > 0 and we now let (S, x, y) = (C, h, —00, +00) be a doubly-marked quantum sphere sampled from
Mpev = cLgMggs. Let 77’ be an independent whole-plane SLEg from +00 to —oo parameterized by quantum natural
time. We assume that (S, x, y) is conditioned so that the amount of quantum natural time for %’ to go from +o0 to
—o00 is at least € (without conditioning on the quantum area for the moment). By Proposition 6.4, we know that the
quantum surface parameterized by the component of € \ n’([0, €]) containing —oo is a quantum disk weighted by its
quantum area. Let ¢ be the unique conformal transformation from this component to C_ which fixes and has positive
derivative at —oo. By [7, Proposition A.9], we know that the conditional law of h=ho o+ Qlog (@~ 1] in
[—r, 0] x [0, 27] given its values in (—oo, —r] x [0, 277] is that of a GFF with the given Dirichlet boundary conditions
on —r + [0, 2] and free boundary conditions on [0, 27i] conditioned to have quantum boundary length equal to
that of the component of € \ '([0, €]) containing —oo.

Now suppose that we condition further on the quantum area of (S, x, y) being at least 1. On the event that the
quantum area assigned to (—oo, —r] x [0, 2] by h is at least 1 we have the same form for the conditional law for the
field in [—r, 0] x [0, 27] as above, even with this extra conditioning. We also note that the probability of this event
tendsto 1 as e — 0.

Step 3: Completion of proof of property 1. We now want to combine the observations made in Step 1 and Step
2 in order to complete the proof of property 1 in the case of the y-quantum cone. We suppose that (S, x,y) =
(C, h, —00, +00) is a doubly marked quantum sphere with quantum area conditioned to be at least 1 and let 7’ be an
independent whole-plane SLE¢ from +o00 to —oo which is subsequently reparameterized by quantum natural time.
Recall from the proof of Proposition 6.3 that replacing & with & 4 C has the effect of multiplying the quantum natural
time by e37¢/4. So, if we run 7 for ee~37¢/4 units of quantum natural time measured using / then the amount of
quantum natural time elapsed measured using i + C is €. Suppose that we condition further on the quantum natural
time required by 7 to go from 400 to —oo to be at least ee~37C/* We note that the probability of this event tends
to 1 as C — oo. Therefore in the limit as C — o0, the first observation implies that (after horizontally translating) we
obtain a y -quantum cone decorated by an independent whole-plane SLEg. Combining this with the second observation
implies that property 1 holds for a quantum cone.

Step 4: Completion of the proof of property 2. Suppose that (C, h, 400, —00) is a y-quantum cone and 7’ is an
independent whole-plane SLEg from +o00 to —oo, reparameterized according to quantum natural time. Let I be the
field which describes the unexplored region after mapping back to C_ as in the statement of the proposition. We first
claim that the average of HondC_ —r multiplied by »~! converges to y — Q in probability as » — co. We are going
to deduce this from the corresponding property of a y-quantum cone parameterized by C. Since we will be applying
a conformal mapping, it will be more convenient to consider the field integrated against a smooth test function and
then make use of the argument used to prove Lemma 5.13. In order to accomplish this, we will consider two annuli
on our quantum cone which differ by a horizontal translation of  along C and then use that they are transformed into
approximate annuli by the conformal map using Lemma 2.4.

To make the idea sketched above more precise, we begin by letting C1, C» be the constants from Lemma 2.4. Let
vo = inf{Re(z) : z € 7' ([0, €])}, Ry = —C + [vo, vo — 3C2] x [0, 2], and Ry = —r + [vg, vg — 3C2] x [0, 27]. It
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follows from the definition of a y -quantum cone that the difference in the average of the field on R, and R multiplied
by ! converges in probability to y — Q as r — oco. Lemma 2.4 implies that ¢(R;) for i = 1, 2 contains a non-empty
rectangle ﬁ,- in @_ where the distance of R from dC_ is bounded and the distance between R, and R is given by r
up to a constant error which does not grow with r. It follows from the argument used to prove Lemma 5.13 that the
difference in the average of i on 132 and ﬁl multiplied by r~! converges in probability to y — Q as r — oo.

Fix u > 0 and consider z € C_ with Re(z) = —u. Let ¢y (resp. ¢,-) be the function which is harmonic in C_ (resp.
C+ — r) with boundary values given by those of h on 0C_ (resp. dC4+ — r). Finally, let ¢ be the function which is
harmonic in the annulus [—r, 0] x [0, 27 ] € C_ with boundary values given by those of # on dC_ and dC_ —r. Then
we know that

¢(z) = <1 - %)4’1(1) + ;d)z(z) +o(l) asr— oo.

We note that ¢ (z) converges as r — oo to the harmonic extension of the boundary values of 4 from dC_ to C_ and
the previous claim implies that

%qﬁz(z) - (Q—y)u asr— oo.

This completes the proof. ]

7. Exploring a quantum sphere with SLE,/ («’ — 6)
We will now establish some generalizations of our earlier results to the case of y € (V2,2).

Theorem 7.1. Let (C,h, —00, +00) be a unit area quantum sphere with y € (v/2,2). Let 7 be a whole-plane
SLE,/ (" — 6) process in C from —oo to +00. Let Uy be the collection of components of C \ 1 which are cut off
by 7 from +00 by 1 (viewed as a path in the universal cover of C \ {+00}) and let U, be the remaining components
of C\ 7' which are cut off by 7' from +o0. (The elements of Uy are marked by the first, equivalently last, bound-
ary point visited by 7| and the elements of U are doubly marked by the first and last boundary point visited by 7'.)
Conditional on their quantum boundary lengths and areas, the elements of Uy, Us are conditionally independent. The
elements of the former are quantum disks and the elements of the latter are surfaces sampled from the infinite measure
on quantum surfaces used to construct a weight 2 — y2 /2 quantum wedge with the given conditioning.

Moreover, (C, h, —00, +00) and 7] are a.s. determined up to horizontal translation and a global rotation of C
about 100 by the ordered sequence of oriented, marked components cut out by 7j' viewed as quantum surfaces.

We note that in Theorem 7.1 we do not describe the evolution of the boundary length of the component containing
+00. However, the proof of Theorem 7.1 follows from the same argument used to prove Theorem 1.2.
We now state the analog of Proposition 6.4 in the general case of y € (V2,2).

Proposition 7.2. Suppose that (C,h, —00,+00) is a unit area quantum sphere with y € (v/2,2) and that 7' is a
whole-plane SLE,/ (k' — 6) process in C from —oo to +00 which is sampled independently of h and then reparam-
eterized by quantum natural time. Let T be a stopping time for the filtration generated by the bubbles cut out by
710,11 such that a.s. the boundary of the component U of C \ 7 ([0, t]) containing +00 is contained in one side of
7. Conditional on its quantum boundary length and area, the quantum surface (U, h) has the law of a quantum disk.
Moreover, 7 (t) is uniformly distributed from the quantum boundary measure on 3U .

Proof. This follows from the same argument used to prove Proposition 5.1. (|

By combining Theorem 7.1 and Proposition 7.2, we can determine the law of the components which are cut off
when we perform an exploration by a radial SLE,/(x" — 6) on a disk.
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Theorem 7.3. Suppose that (Cy, h, +00) is a quantum disk (where +00 is uniform from the area measure given the
quantum surface (C+, h)), x € 3C+ is chosen uniformly from the quantum boundary measure on 3C4, and 7' is a
radial SLE, (k" — 6) starting from x and targeted at +00 which is sampled conditionally independently of h given x.
Let Uy be the collection of components of C4 \ 1 which are cut off by 7' from +oo by 1 viewed as a path in the
universal cover of C4 \ {+00} and let Uy be the remaining components of C+ \ 1 which are cut off by 7 from +oc.
(The elements of Uy are marked by the first, equivalently last, boundary point visited by 7|’ and the elements of U, are
doubly marked by the first and last boundary point visited by 7'.) Conditional on their quantum boundary lengths and
areas, the elements of Uy, Uy are conditionally independent. The elements of the former are quantum disks and the
elements of the latter are surfaces sampled from the infinite measure on quantum surfaces used to construct a weight
2 — y2/2 quantum wedge with the given conditioning.

Moreover, (Cy, h,+00) and 7' are a.s. determined up to a global rotation of C, about +00 by the ordered se-
quence of oriented, marked components cut out by 7 viewed as quantum surfaces.
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