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Abstract. We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal
matrix models. In the classical cases β = 1,2,4, this corresponds to studying the fluctuations of the largest eigenvalues of additive
rank one perturbations of the GOE/GUE/GSE random matrices. In the infinite-dimensional limit, we arrive at a one-parameter
family of random Feynman–Kac type semigroups, which features the stochastic Airy semigroup of Gorin and Shkolnikov (Ann.
Probab. 46 (2018) 2287–2344) as an extreme case. Our analysis also provides Feynman–Kac formulas for the spiked stochastic
Airy operators, introduced by Bloemendal and Virág (Probab. Theory Related Fields 156 (2013) 795–825). The Feynman–Kac
formulas involve functionals of a reflected Brownian motion and its local times, thus, allowing to study the limiting operators
by tools of stochastic analysis. We derive a first result in this direction by obtaining a new distributional identity for a reflected
Brownian bridge conditioned on its local time at zero. A key feature of our proof consists of a novel strong invariance result for
certain non-negative random walks and their occupation times that is based on the Skorokhod reflection map.

Résumé. Nous accédons à l’extrémité du spectre des ensembles bêta gaussiens avec perturbation de rang un par l’entremise de
grandes puissances des matrices tridiagonales qui y sont associées. Pour les valeurs traditionnelles β = 1,2,4, ceci correspond
à l’étude des fluctuations des valeurs propres maximales des matrices aléatoires GOE/GUE/GSE assujetties à une perturbation
additive de rang un. En dimensions infinies, nos résultats nous mènent vers une famille de semi-groupes de type Feynman–Kac
qui, dans un cas extrême, correspond au stochastic Airy semigroup introduit par Gorin et Shkolnikov (Ann. Probab. 46 (2018)
2287–2344). De plus, nos résultats ont pour corollaire des formules de Feynman–Kac pour les spiked stochastic Airy operators
introduits par Bloemendal et Virág (Probab. Theory Related Fields 156 (2013) 795–825). Ces formules sont exprimées à l’aide de
certaines fonctionnelles du mouvement brownien réfléchi et de ses temps locaux. Ce faisant, les opérateurs en question peuvent être
étudiés à l’aide du calcul stochastique. Nous obtenons un premier résultat dans cette lignée en démontrant une nouvelle identité
décrivant la distribution du mouvement brownien réfléchi ayant été conditionné sur son temps local à zéro. La principale innovation
de notre démonstration consiste en la preuve d’un nouveau résultat sur l’approximation forte du mouvement brownien réfléchi et
de son temps local par une marche aléatoire non négative en utilisant la méthode de réflexion de Skorokhod.
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1. Introduction

A remarkable advance in the study of random matrices and related point processes has been the development of a the-
ory of operator limits for such objects in [8,9,14,16,18,19,23,31,32,34,36–38]. This line of research originates from
the publications [13,14] by Edelman and Sutton, who have realized that the random tridiagonal matrices of Dumitriu
and Edelman [12] (see (1.2) below for a definition) can be viewed as finite-dimensional approximations of suitable
random Schrödinger operators. Since the joint eigenvalue distributions in the Dumitriu–Edelman models for the pa-
rameter values β = 1,2,4 are given by the eigenvalue point processes of the Gaussian orthogonal/unitary/symplectic
ensembles (GOE/GUE/GSE), respectively, the insights of [13,14] suggest that the limiting fluctuations of the largest
eigenvalues of the latter can be read off from the random Schrödinger operators associated with the former. This ap-
proach has been carried out rigorously in the seminal paper [32] by Ramírez, Rider and Virág. We also refer to [23]
for a corresponding universality result, to [8,9] for extensions to spiked random matrix ensembles, to [18,31,34] for
operator limits describing the fluctuations of the smallest eigenvalues of large positive definite random matrices, and
to [36,38] for operators arising in the study of the bulk eigenvalues of random matrices.

More recently, Gorin and Shkolnikov [16] have proposed a different operator limit approach to the study of the
largest eigenvalues in the Gaussian beta ensembles. The latter are point processes on the real line, in which the joint
density of the points λ1 ≥ λ2 ≥ · · · ≥ λN is proportional to

∏
1≤q1<q2≤N

(xq1 − xq2)
β

N∏
q=1

e−βx2
q/4. (1.1)

For β = 1,2,4, the Gaussian beta ensemble describes the eigenvalue process of a random matrix from the
GOE/GUE/GSE, respectively (see e.g. [1, Section 2.5]). Gaussian beta ensembles with general values of β > 0 ap-
pear frequently in the statistical physics literature and are commonly known therein as “log-gases”, see e.g. [15,
Section 4.1].

The starting point of [16] is the celebrated result of Dumitriu and Edelman [12] establishing (1.1) as the joint
eigenvalue distribution, for all values of β > 0, of the random matrix

H
β
N := 1√

β

⎡⎢⎢⎢⎢⎢⎢⎣

√
2G1 χ(N−1)β

χ(N−1)β

√
2G2 χ(N−2)β

χ(N−2)β

√
2G3

. . .

. . .
. . . χβ

χβ

√
2GN

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.2)

where G1,G2, . . . ,GN are independent standard Gaussian random variables, χβ , χ2β, . . . , χ(N−1)β are independent
chi random variables indexed by their parameters, and the chi random variables are independent of the Gaussian
random variables. According to [32, Theorem 1.1], the rescaled eigenvalues of H

β
N ,

�q,N := N1/6(2
√

N − λq), q = 1,2, . . . , (1.3)

converge in finite-dimensional distributions as N → ∞ to the eigenvalues �1 ≤ �2 ≤ · · · of the stochastic Airy
operator

Hβf :=
(

− d2

dx2
+ x + 2√

β
W ′

x

)
f, f ∈ L2([0,∞)

)
, f (0) = 0, (1.4)

where W ′ is the white noise on [0,∞). Thus, the simple computation(
λq

2
√

N

)	T N2/3

=

(
1 − �q,N

2N2/3

)	T N2/3

→ e−T �q/2, T ≥ 0 (1.5)
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suggests the convergence of the high powers

(
H

β
N

2
√

N

)	T N2/3

, N ∈ N (1.6)

to e−THβ/2 in a suitable operator topology. The main result of [16] (see [16, Theorem 2.8]) establishes a more general
version of such an operator convergence directly, without relying on the findings of [32]. The proof is achieved
by expressing the entries of (1.6) in terms of expectations of certain functionals of simple symmetric random walk
bridges and their occupation times, and the asymptotics of such expressions are obtained by making use of various
strong invariance principles for the considered discrete processes. In contrast to Hβ , the operator e−THβ/2 is an
integral operator, and the corresponding integral kernel can be written in terms of the Brownian motion W and an
independent Brownian bridge (see [16, equation (2.4)]). This allows to study the properties of e−THβ/2 by tools of
stochastic analysis (see [16, Proposition 2.14], [17, Theorem 1.1] for an example).

In this paper, we continue the program initiated in [16] and consider the case of Gaussian beta ensembles with
one spike. To this end, it is useful to recall that the stochastic Airy operator Hβ describes the limiting behavior of
the largest eigenvalues in the Laguerre beta ensemble (see [12,32]). The latter interpolates between the eigenvalue
processes of sample covariance matrices XX∗, where the entries of X are independent standard Gaussian random
variables. From the point of view of statistical applications, the Laguerre beta ensemble is arguably not the most
interesting model, since the entries in the columns of X are uncorrelated. Instead, one often considers multiplicative
perturbations of XX∗ of the form X�X∗, where � = �̃r ⊕ IN−r is the direct sum of a deterministic full rank r × r

matrix �̃r and the (N − r) × (N − r) identity matrix IN−r . Such models are known in the literature as the spiked
covariance models, and we refer to the introduction in [8] for an excellent summary of their practical applications in
statistics.

As first discovered by Baik, Ben Arous and Péché [2] in the case of complex covariance matrices, the fluctuations
of the largest eigenvalues exhibit a phase transition (known as the BBP phase transition) depending on the size of the
perturbation. In the subcritical regime, the perturbation � is so insignificant that the limiting behaviour is the same as
in the unperturbed case; in the critical regime, the fluctuation exponents are the same as in the unperturbed case, but
the limiting distributions are different; and in the supercritical regime, the size of the perturbation is so large that the
largest eigenvalues of X�X∗ separate from the bulk of the spectrum.

The BBP phase transition was later extended to finite rank additive perturbations of the form X + �, where X

is a Wigner random matrix (i.e., Hermitian with independent entries) [27]. Similarly to covariance matrices, the
asymptotic edge fluctuations of X + � can be characterized in terms of the size of �, and the same trichotomy
(subcritical, critical, and supercritical phases) described above occurs. Such additive perturbation models and their
generalizations find applications in physics [5,22] and signal processing problems [20].

For rank one perturbations, the critical regime of the BBP phase transition has been analyzed in detail by Bloe-
mendal and Virág [8], and we describe their main result in the case of an additive perturbation. The corresponding
tridiagonal model

H
β;w
N := 1√

β

⎡⎢⎢⎢⎢⎢⎢⎣

√
2G1 + √

βN�N χ(N−1)β

χ(N−1)β

√
2G2 χ(N−2)β

χ(N−2)β

√
2G3

. . .

. . .
. . . χβ

χβ

√
2GN

⎤⎥⎥⎥⎥⎥⎥⎦ (1.7)

can be obtained for β = 1,2,4 by applying the Dumitriu–Edelman tridiagonalization procedure to the sum of a
GOE/GUE/GSE matrix and a rank one matrix with non-zero eigenvalue

√
N�N , where

lim
N→∞N1/3(1 − �N) = w ∈ R. (1.8)
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Then, for all β > 0 and under the scaling of (1.3), the ordered eigenvalues of H
β;w
N converge in finite-dimensional

distribution sense, as N → ∞, to the ordered eigenvalues of the spiked stochastic Airy operator

Hβ;wf :=
(

− d2

dx2
+ x + 2√

β
W ′

x

)
f, f ∈ L2([0,∞)

)
, f ′(0) = wf (0). (1.9)

The case w = ∞ formally corresponds to the Dirichlet boundary condition f (0) = 0, motivating the convention
Hβ;∞ := Hβ .

Remark 1.1. The limit in (1.8) determines the regime in the BBP phase transition: a limit of ∞ corresponds to the
subcritical regime, a finite limit to the critical regime, and a limit of −∞ to the supercritical regime.

We turn to our main results. For the sake of convenience, we work with a modification of the tridiagonal model
(1.7):

M
β;w
N :=

⎡⎢⎢⎢⎢⎢⎢⎣

√
N�N

√
N + ξ0√

N + ξ0 a1
√

N − 1 + ξ1√
N − 1 + ξ1 a2

. . .

. . .
. . . 1 + ξN−1

1 + ξN−1 aN

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.10)

The following assumption summarizes the conditions we impose on the matrix entries throughout the paper. We
emphasize that we allow the random variables a1,a2, . . . and ξ0, ξ1, . . . to vary with N , even though the dependence
on N is suppressed to simplify the notation.

Assumption 1.2. The random variables a1,a2, . . . and ξ0, ξ1, . . . are mutually independent and such that:

(a) |E[am]| = o((N − m)−1/3) and |E[ξm]| = o((N − m)−1/3) as (N − m) → ∞,
(b) E[a2

m] = s2
a + o(1) and E[ξ2

m] = s2
ξ + o(1) as (N − m) → ∞, where sa, sξ are non-negative constants satisfying

s2
a
4 + s2

ξ = 1
β

for some β > 0,
(c) E[|am|p] ≤ Cppγp and E[|ξm|p] ≤ Cppγp for all N , m and p, with some constants C < ∞ and 0 < γ < 2/3.

Moreover, we assume that the non-random sequence �N , N ∈ N satisfies (1.8) and use the convention a0 := 0.

Remark 1.3. Assumption 1.2 holds, in particular, when the am’s are chosen to be i.i.d. Gaussian with mean 0 and
variance 2/β , whereas the ξm’s are drawn independently such that each

√
β(

√
N − m + ξm) is a chi random variable

with parameter β(N − m) (see [16, Lemma 2.2]). However, we note that this is slightly different from the spiked
Gaussian β-ensemble (1.7), since there is no Gaussian random variable with

√
N�N . We show in Remark 1.8 that the

results of this paper also apply to (1.7).

Motivated by the computation in (1.5), we consider the powers

Mβ;w
T ;N :=

(
M

β;w
N

2
√

N

)	T N2/3

, T ≥ 0. (1.11)

The operator limits of the latter turn out to be given by the following definition.

Definition 1.4. For every β,T > 0 consider the operator

(
Uβ;w

T f
)
(x) := ERx

[
exp

(
−
∫ T

0

Rx
t

2
dt +

∫ ∞

0

La
T (Rx)√

β
dWa − w

L0
T (Rx)

2

)
f
(
Rx

T

)]
(1.12)
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acting on the space

D := {
f ∈ L1

loc

([0,∞)
) : ∣∣f (x)

∣∣ ≤ C1e
C2x

1−δ

for some C1,C2 < ∞, δ ∈ (0,1)
}
, (1.13)

where

(a) Rx is a reflected Brownian motion started at x ≥ 0,
(b) ERx [·] is the expectation with respect to Rx ,
(c) the local time of Rx is defined as the continuous version of

La
T

(
Rx

) := lim
ε↓0

1

ε

∫ T

0
1[a,a+ε)

(
Rx

t

)
dt, a ≥ 0, (1.14)

(d) W is a standard Brownian motion independent of Rx ,
(e) the Itô integral with respect to W is defined pathwise, as per [21].

Remark 1.5. A trivial restatement of Definition 1.4 is that Uβ;w
T is a random integral operator with the kernel

K
β;w
T (x, y) := exp(− (x−y)2

2T
) + exp(− (x+y)2

2T
)√

2πT

· ERx

[
exp

(
−
∫ T

0

Rx
t

2
dt +

∫ ∞

0

La
T (Rx)√

β
dWa − w

L0
T (Rx)

2

) ∣∣∣ Rx
T = y

]
. (1.15)

Remark 1.6. For each N , the matrix Mβ;w
T ;N can be regarded as an integral operator acting on L1

loc([0,∞)) by asso-

ciating R
N+1 with the subspace of step functions

L1
N

([0,∞)
) :=

{
N∑

l=0

vl1[N−1/3l,N−1/3(l+1)) : v0, v1, . . . , vN ∈R

}
, (1.16)

and then mapping functions f ∈ L1
loc([0,∞)) into L1

N([0,∞)) via

(πNf )(x) :=
N∑

l=0

N1/6
∫ N−1/3(l+1)

N−1/3l

f (y)dy · 1[N−1/3l,N−1/3(l+1))(x) (1.17)

before acting with Mβ;w
T ;N on them.

Our main convergence result reads as follows.

Theorem 1.7. For every β > 0, w ∈R, and with D defined in (1.13), one has

∀f,g ∈ D, T ≥ 0 : lim
N→∞(πNf )�Mβ;w

T ;N(πNg) =
∫ ∞

0
f (x)

(
Uβ;w

T g
)
(x)dx, (1.18)

where the convergence is in distribution and in the sense of moments. Moreover, these convergences hold jointly
for any finite collection of T ’s, f ’s and g’s, and in the case of the convergence in distribution also jointly with the
convergence in distribution

√
β lim

N→∞N−1/6
	N1/3x
∑

m=0

(
am

2
+ ξm

)
= Wx, x ≥ 0 (1.19)

with respect to the Skorokhod topology. Here W is the Brownian motion from (1.12).
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Remark 1.8. We note that Theorem 1.7 also holds for the matrix model (1.7). Indeed, instead of �N , we may consider
�̃N := �N + g/

√
N where g is a fixed Gaussian random variable independent of all other entries in M

β;w
N . If we

condition on the event {g = y} for some y ∈ R, then �̃N clearly satisfies (1.8). Consequently, Theorem 1.7 holds under
this conditioning. Since the limit in distribution and moments thus obtained does not depend on the value of y, it
immediately follows from disintegration that the convergence in distribution holds without the conditioning as well.
As for the convergence of moments without the conditioning, we need only ensure that the bound (3.48) holds for �̃N .
To this end, note that the right-hand side of (3.55) becomes e−(w+o(1)−N−1/6g)·(θN−1/3ρk) in the present context, and
that E[egθρkN

−1/2] can be controlled by using the Gaussian moment generating function and (3.51).

Remark 1.9. As in [16], the central idea in the proof of Theorem 1.7 consists of expressing the high powers (1.11)
in terms of functionals of random walks and their occupation times. However, in comparison to (1.6), the presence
of the spiked term

√
N�N in (1.10) induces complications in the asymptotic analysis of the random walks associated

to (1.11). As a consequence, the classical strong invariance results used in the asymptotic analysis carried out in [16]
cannot be applied in the present case. In this context, one of the main technical innovations of this paper is to provide
a new strong invariance principle for certain non-negative random walks and their occupation times, which is based
on the observation that the non-negative random walks in consideration can be viewed as images of simple random
walks under the Skorokhod reflection map. We expect the same idea to apply for a wide variety of constrained discrete
processes.

Next, we present some natural properties of the operators Uβ;w
T , T ≥ 0, viewed as operators on L2([0,∞)), and,

in particular, connect them to the spiked stochastic Airy operator Hβ;w in (1.9).

Proposition 1.10. For every β > 0 and w ∈ R, the following statements hold.

(a) If the same Brownian motion W is used in the definitions of Hβ;w and Uβ;w
T , then for every T ≥ 0,

Uβ;w
T = exp

(
−T

2
Hβ;w

)
almost surely, (1.20)

in the sense that if (fq,�q : q ∈ N) are the eigenfunction-eigenvalue pairs of Hβ;w , then Uβ;w
T is the unique

operator on L2([0,∞)) with eigenfunction-eigenvalue pairs (fq, e−T �q/2 : q ∈N) almost surely.

(b) The family (Uβ;w
T : T ≥ 0) has the almost sure semigroup property in the sense that for all T1, T2 ≥ 0, one has

Uβ;w
T1

Uβ;w
T2

= Uβ;w
T1+T2

almost surely.

(c) For every T > 0, the operator Uβ;w
T is symmetric, non-negative and belongs to the Hilbert–Schmidt class almost

surely.
(d) For every T > 0, the operator Uβ;w

T is almost surely trace class and obeys the trace formula

Tr
(
Uβ;w

T

) =
∫ ∞

0
K

β;w
T (x, x)dx. (1.21)

(e) The family (Uβ;w
T : T ≥ 0) is L2-strongly continuous in expectation, that is, for all p > 0, T ≥ 0 and f ∈

L2([0,∞)), one has

lim
t→T

E
[∥∥Uβ;w

T f − Uβ;w
t f

∥∥p

L2([0,∞))

] = 0. (1.22)

Remark 1.11. Proposition 1.10(a) should be viewed as a Feynman–Kac formula for the spiked stochastic Airy oper-
ator Hβ;w .

Remark 1.5 shows that one might be able to understand observables of the limiting operators Uβ;w
T , T ≥ 0, such

as moments of certain linear statistics of their spectra, by investigating the corresponding functionals of reflected
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Brownian motions conditioned on their endpoints. As a first step in this direction, we consider E[Kβ;w
T (0,0)], which,

in view of the next proposition, seems to be the simplest object to study.

Proposition 1.12. For every β,T > 0 and w ∈ R,

E
[
K

β;w
T (0,0)

]
=

√
2

πT
E
[

exp

(
−T 3/2

2

(∫ 1

0
rt dt −

∫ ∞

0

La
1(r)2

β
da

)
− T 1/2w

L0
1(r)

2

)]
, (1.23)

where rt , t ∈ [0,1] is a reflected Brownian bridge.

Since the density of L0
1(r) is known (see e.g. [28, equation (3)]), it suffices to find the conditional distribution of

the functional∫ 1

0
rt dt −

∫ ∞

0

La
1(r)2

β
da (1.24)

given L0
1(r) to compute the right-hand side in (1.12). For β = 2, this leads to the following theorem of independent

interest.

Theorem 1.13. Let rt , t ∈ [0,1] be a reflected Brownian bridge. Then, for every α ≥ 0, the conditional distribution of
the functional∫ 1

0
rt dt −

∫ ∞

0

La
1(r)2

2
da (1.25)

given L0
1(r) = α is Gaussian with mean −α/4 and variance 1/12.

Remark 1.14. Conditional on L0
1(r) = 0, the process rt , t ∈ [0,1] is a standard Brownian excursion, so that The-

orem 1.13 is a generalization of the distributional identity for the latter found in [16, Corollary 2.15] (see also [17,
Theorem 1.1]).

As a consequence of Theorem 1.13, we obtain an explicit formula for E[K2;w
T (0,0)].

Corollary 1.15. For any w ∈R and T > 0, and with

Cw;T :=
√

T (T − 4w)

4
√

2
, (1.26)

it holds

E
[
K

2;w
T (0,0)

]
=

√
2

πT
exp

(
T 3

96

)(
1 + √

πCw;T exp
(
C2

w;T
)(

erf(Cw;T ) + 1
))

, (1.27)

where erf(z) := 2√
π

∫ z

0 e−a2
da denotes the error function.

For β �= 2, we were not able to obtain an analogue of Theorem 1.13.

Open Problem 1.16. Find the conditional distribution of the functional in (1.24) given L0
1(r) for all β > 0.
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Remark 1.17. A simple computation based on Theorem 1.13 shows that the unconditional distribution of the random
variable

A := √
12

(∫ 1

0
rt dt −

∫ ∞

0

La
1(r)2

2
da

)
(1.28)

has a moment-generating function given by

E
[
exp(κA)

] = exp

(
κ2

2

)
−

√
3

2
κ exp

(
2κ2) erfc

(√
3

2
κ

)
, (1.29)

where erfc(z) := 2√
π

∫ ∞
z

e−a2
da denotes the complementary error function. Therefore, it seems natural to view the

density of A as a sum of the standard Gaussian density and a function that integrates to 0, which yields a corresponding
decomposition of the moments of A (see Table 1 for the first few moments). In particular, Table 1 suggests the
following formula for the odd moments of A:

E
[
A2n−1] = −2n(2n − 1)!

4(n − 1)!
√

6π, n = 1,2, . . . , (1.30)

leading us to believe that A admits an interesting combinatorial interpretation.

The remainder of the paper is structured as follows. In Section 2, we prove the strong invariance principle for
non-negative random walks that was alluded to in Remark 1.9. Section 3 is devoted to the proof of Theorem 1.7. The
proof has the following general structure: first, we write the entries of the matrix Mβ;w

T ;N as expectations of suitable

functionals of the non-negative random walks of Section 2 and the entries of the matrix M
β;w
N ; then, we derive the

limiting behavior of suitably truncated versions of such expectations using the strong invariance principle of Section 2;
finally, we remove the truncation by obtaining appropriate uniform moment estimates on the functionals involved. In
Section 4, we show the properties of the limiting operators Uβ;w

T , T ≥ 0 listed in Proposition 1.10. Lastly, in Section 5
we establish Theorem 1.13, as well as Proposition 1.12 and Corollary 1.15. The proof of Theorem 1.13 combines the
ideas of [17] with the analogue of Jeulin’s theorem for a reflected Brownian bridge conditioned on its local time at
zero from [29, Corollary 16(iii)].

Table 1
The first few moments of A

E[A] −√
6π/2

E[A2] 1 + 6

E[A3] −6
√

6π

E[A4] 3 + 108

E[A5] −120
√

6π

E[A6] 15 + 2646

E[A7] −3360
√

6π

E[A8] 105 + 85,032

E[A9] −120,960
√

6π

E[A10] 945 + 3404,430

E[A11] −5322,240
√

6π

E[A12] 10,395 + 163,446,660

E[A13] −276,756,480
√

6π

E[A14] 135,135 + 9153,449,550



1410 P. Y. G. Lamarre and M. Shkolnikov

2. A strong invariance principle

This section focuses on the strong invariance principle for certain non-negative random walks and their families of
occupation times, which is at the heart of the proof of Theorem 1.7. For starters, we let Y = (Y0, Y1, . . .) be a random
walk on the non-negative integers with transition probabilities

P[Yn+1 = z + 1 | Yn = z] = P[Yn+1 = z − 1 | Yn = z] = 1

2
, z = 1,2, . . . ,

P[Yn+1 = 1 | Yn = 0] = P[Yn+1 = 0 | Yn = 0] = 1

2
.

(2.1)

In other words, when Y is away from 0, it behaves like a simple symmetric random walk (SSRW), and when Y is at
0, it stays at 0 or moves to 1 with equal probability.

Given T > 0 and N ∈ N, we let k = k(T ,N) := 	T N2/3
 and Tk := kN−2/3. Moreover, for each x ≥ 0, we define
a process X

k;x
t , t ∈ [0, Tk] satisfying(

X
k;x
0 ,X

k;x
N−2/3, . . . ,X

k;x
Tk

) d= (
Y0, Y1, . . . , Yk | Y0 = ⌊

xN1/3⌋) (2.2)

and interpolating linearly between these time points (see Figure 1 for an illustration). We also introduce the normalized
occupation times of Xk;x for positive levels:

La
(
Xk;x) := N−1/3

∣∣{t ∈ [0, Tk] : Xk;x = aN1/3}∣∣, a > 0 (2.3)

and use the convention

L0(Xk;x) := lim
a↓0

La
(
Xk;x). (2.4)

Remark 2.1. Note that the normalized occupation times as defined above have the property that for any measurable
function ϕ :R→ R that vanishes on (−∞,0], one has∫ Tk

0
ϕ
(
X

k;x
t

)
dt =

∫
R

ϕ(a)La
(
Xk;x)da. (2.5)

Finally, we let

H
(
Xk;x) := ∣∣{t ∈ [0, Tk] ∩ N−2/3

N : Xk;x
t−N−2/3 = X

k;x
t = 0

}∣∣ (2.6)

be the number of the horizontal steps at zero in (X
k;x
0 ,X

k;x
N−2/3 , . . . ,X

k;x
Tk

). Our strong invariance principle can now be
stated as follows.

Theorem 2.2. For every T > 0 and x ≥ 0, there exists a coupling of the sequence of processes Xk;x , N ∈ N and a
reflected Brownian motion Rx such that

sup
t∈[0,Tk]

∣∣N−1/3X
k;x
t − Rx

t

∣∣ ≤ CN−1/3 logN, N ∈ N, (2.7)

0

2

4

Fig. 1. A sample path of Xk;x with k = 28 and 	xN1/3
 = 3.
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sup
a>0

∣∣La
(
Xk;x)− La

T

(
Rx

)∣∣ ≤ CN−1/16, N ∈N, (2.8)∣∣N−1/3H
(
Xk;x)− L0

T

(
Rx

)
/2

∣∣ ≤ CN−1/3 logN, N ∈N, (2.9)

where C is a suitable finite random variable.

A direct construction of the coupling in Theorem 2.2 appears to be difficult. Instead, our proof of Theorem 2.2
relies on the Komlós–Major–Tusnády coupling of a SSRW with a standard Brownian motion and an application of
the Skorokhod reflection map. We briefly recall the definition and some properties of the latter.

Definition 2.3. Given a T > 0 and a continuous process Zt , t ∈ [0, T ], we define the Skorokhod map evaluated at Z

as the continuous process

�(Z)t = Zt + sup
s∈[0,t]

(−Zs)+, t ∈ [0, T ], (2.10)

where (·)+ := max(0, ·) denotes the positive part of a real number.

A reflected Brownian motion Rx can be defined by Rx = |x + W̃ |, where W̃ is a standard Brownian motion.
According to Tanaka’s formula (see e.g. [33, Chapter VI, Theorem 1.2]) one has

Rx
t = x +

∫ t

0
sgn(W̃s)dW̃s + L−x

t (W̃ ), t ∈ [0, T ]. (2.11)

Furthermore, if we let

Bx
t := x +

∫ t

0
sgn(W̃s)dW̃s, t ∈ [0, T ], (2.12)

which is a Brownian motion started at x, then it follows from a classical result of Skorokhod [33, Chapter VI,
Lemma 2.1 and Corollary 2.2] that

Rx
t = Bx

t + sup
s∈[0,t]

(−Bx
s

)
+ = �

(
Bx

)
t
, t ∈ [0, T ], (2.13)

sup
s∈[0,t]

(−Bx
s

)
+ = L−x

t (W̃ ) = L0
t (x + W̃ ) = L0

t (R
x)

2
, t ∈ [0, T ]. (2.14)

We give in the next proposition a discrete analogue of these results.

Proposition 2.4. Let Ỹ = (Ỹ0, Ỹ1, . . .) be a SSRW and define the process X̃k;x , t ∈ [0, Tk] by using the same procedure
as for Xk;x (that is, equation (2.2) followed by a linear interpolation), but with with the SSRW Ỹ instead of the
random walk Y . Then, Y and Ỹ can be coupled in such a way that X

k;x
t = �(X̃k;x)t , t ∈ [0, Tk] and H(Xk;x) =

supt∈[0,Tk](−X̃
k;x
t )+.

Proof. Both Xk;x and X̃k;x can take a total of 2k possible sample paths, and the measures that Y and Ỹ induce on
these paths are uniform in both cases. Therefore, we need to show that � is a bijection taking paths of X̃k;x to paths
of Xk;x and that H(�(X̃k;x)) = supt∈[0,Tk](−X̃

k;x
t )+.

Whenever min X̃k;x ≥ 0, the Skorokhod map � leaves X̃k;x unchanged, and trivially H(�(X̃k;x)) = 0 =
supt∈[0,Tk](−X̃

k;x
t )+. On the other hand, whenever min X̃k;x < 0, the application of � can be described as follows

(see Figure 2):

(a) one determines the first hitting times τ−1 < τ−2 < · · · of the negative integer levels by X̃k;x ;
(b) one sets �(X̃k;x)t := X̃

k;x
t for t ∈ [0, τ−1 − N−2/3];
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−2

0

2

4

�−1(Xk;x) or X̃k;x

−2

0

2

4

Xk;x

Fig. 2. Illustration of the discrete Skorokhod map.

(c) for j = 1,2, . . . ,−min X̃k;x , one lets �(X̃k;x)t := 0 for t ∈ (τ−j − N−2/3, τ−j ];
(d) for j = 1,2, . . . ,−min X̃k;x − 1, one defines �(X̃k;x)t := X̃

k;x
t + j for t ∈ (τ−j , τ−j−1 − N−2/3];

(e) one puts �(X̃k;x)t := X̃
k;x
t − min X̃k;x for t ∈ (τmin X̃k;x , Tk].

It follows immediately from this description that the horizontal steps at zero in (�(X̃k;x)0,�(X̃k;x)N−2/3, . . . ,

�(X̃k;x)Tk
) occur at τ−1 − N−2/3, τ−2 − N−2/3, . . . , τmin X̃k;x − N−2/3, so that H(�(X̃k;x)) = −min X̃k;x =

supt∈[0,Tk](−X̃
k;x
t )+. Moreover, for every path of Xk;x , one can uniquely reconstruct the corresponding path

�−1(Xk;x) = X̃k;x by inferring the sequence τ−1 < τ−2 < · · · from the horizontal segments in the path of Xk;x ,
solving the equations in (b), (d), (e) above, and inserting the remaining H(Xk;x) downward sloping segments. �

Next, we prepare another coupling needed for the proof of Theorem 2.2.

Lemma 2.5. For every T > 0 and x ≥ 0, there exists a coupling of the sequence of processes X̃k;x , N ∈ N defined in
Proposition 2.4 and a standard Brownian motion B such that

sup
t∈[0,Tk]

∣∣N−1/3X̃
k;x
t − (x + Bt)

∣∣ ≤ CN−1/3 logN, N ∈ N, (2.15)

where C is a suitable finite random variable.

Proof. Consider a probability space which supports a standard Brownian motion B and define the standard Brownian
motions

B
(N)
t := N1/3BtN−2/3, t ≥ 0 (2.16)

for all N ∈ N. According to a well-known procedure of Komlós, Major and Tusnády (see e.g. [24, Section 7]), one can
construct random walks (Ỹ

(N)
0 , Ỹ

(N)
1 , . . .), N ∈ N as deterministic functions of the Brownian motions B(N), N ∈ N,

respectively, such that for every α > 0, there exists a C < ∞ so that

P
[

max
0≤n≤k

∣∣Ỹ (N)
n − B(N)

n

∣∣ ≥ C logN
]

≤ CN−α, N ∈N. (2.17)

As a result, we can couple the sequence X̃k;x , N ∈ N with B ensuring

P
[

max
0≤i≤k

∣∣N−1/3X
k;x
N−2/3i

− BN−2/3i

∣∣ ≥ CN−1/3 logN
]

≤ CN−α, N ∈N. (2.18)
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Lastly, we let α > 1 and conclude by applying the Borel–Cantelli lemma and the Lévy modulus of continuity theo-
rem. �

Finally, we define the random walk Y = (Y 0, Y 1, . . .) on the integers, to be used in the proof of Theorem 2.2, by

P[Yn+1 = z + 1 | Yn = z] = P[Yn+1 = z − 1 | Yn = z] = 1

2
, z ∈ Z\{0},

P[Yn+1 = 1 | Yn = 0] = P[Yn+1 = −1 | Yn = 0] = 1

4
, P[Yn+1 = 0 | Yn = 0] = 1

2
.

(2.19)

For every n ∈ N, we let

Hn(Y ) = ∣∣{1 ≤ i ≤ n : Y i−1 = Y i = 0}∣∣ (2.20)

be the number of the horizontal steps at zero among the first n steps of Y and define v(Y )n, n = 0,1, . . . as the process
obtained from Y by removing all the horizontal steps at zero, so that

Yn = v(Y )n−Hn(Y ), n = 0,1, . . . . (2.21)

We also introduce, for m ∈N, T > 0 and a �= 0, the normalized occupation times

La
m;T (Y ) := m−1/2

∣∣{0 ≤ t ≤ 	mT 
 : Y t = √
ma

}∣∣, (2.22)

where we define Y for non-integer times by linear interpolation. Lastly, we let La
m;T (v(Y )) be given by (2.22) with

v(Y ) in place of Y .

Remark 2.6. By examining the transition probabilities of Y it becomes clear that v(Y )n, n = 0,1, . . . is a SSRW, and
that Y and Y can be coupled to obey

|Yn| = Yn, n = 0,1, . . . , (2.23)

provided the two processes have the same starting point. If we condition on the starting point Y0 = Y 0 = 	N1/3x
,
then it holds under this coupling that

La
(
Xk;x) = La

N2/3;T (Y ) + L−a

N2/3;T (Y ), a > 0. (2.24)

We conclude the section with the proof of Theorem 2.2.

Proof of Theorem 2.2. The maps � and f �→ supt∈[0,T ](−f (t))+ are 2-Lipschitz and 1-Lipschitz with respect to the
supremum norm, respectively, so that (2.7) and (2.9) follow from (2.15) by combining Proposition 2.4 with (2.13) and
(2.14), respectively.

We finish the proof of Theorem 2.2 by showing that (2.8) is a consequence of the estimate (2.7) and the regularity
of the local time processes involved. To prove this, we follow the same argument as in [16, Appendix B]: Suppose
that f1, f2 : [0, T ] → [0,∞) are measurable functions that have local times La(fi), in the sense that∫ T

0
ϕ
(
fi(t)

)
dt =

∫
R

ϕ(a)La(fi)da, i = 1,2 (2.25)

for any measurable ϕ :R→ R that vanishes on (−∞,0]. Suppose that κ,η > 0 satisfy

sup
a1,a2>0,|a1−a2|≤κ

∣∣La(fi) − La(fi)
∣∣ < η, i = 1,2. (2.26)
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Then, [4, Lemma 3.1] stipulates that3

sup
a>0

∣∣La(f1) − La(f2)
∣∣ ≤ κ−2 sup

t∈[0,T ]

∣∣f1(t) − f2(t)
∣∣+ η. (2.27)

We note that a �→ La
T (Rx) inherits the regularity properties of a �→ La

T (W̃ ) due to Rx = |x + W̃ |. Therefore, it
follows from [35, (2.1)] that

sup
a1,a2>0

|a1−a2|≤N−2/15

∣∣La1
T

(
Rx

)− L
a2
T

(
Rx

)∣∣ ≤ CN−1/15(logN)1/2, N ∈ N (2.28)

almost surely for some random variable C. At this point, if we combine (2.7) with (2.28), then the proof of (2.8) is
reduced to following statement: for every ε > 0, there exists a finite random variable Cε such that

sup
a1,a2>0

|a1−a2|≤N−2/15

∣∣La1
(
Xk;x)− La2

(
Xk;x)∣∣ ≤ CεN

−1/15+ε, N ∈N. (2.29)

To this end and in view of (2.24), it suffices to prove that

sup
a1,a2∈R\{0}

|a1−a2|≤N−2/15

∣∣La1
N2/3;T (Y ) − L

a2
N2/3;T (Y )

∣∣ ≤ CεN
−1/15+ε, N ∈N. (2.30)

Applying [3, Proposition 3.1] to the SSRW v(Y ) we get

sup
t∈[0,T ]

sup
a1,a2∈N−1/3

Z

|a1−a2|≤N−2/15

∣∣La1
N2/3;t

(
v(Y )

)− L
a2
N2/3;t

(
v(Y )

)∣∣ ≤ CεN
−1/15+ε, N ∈N, (2.31)

and this can be extended to a1, a2 ∈R by the same argument used for [16, Equation (B.9)]. The desired estimate (2.30)
follows then from (2.21). �

3. Proof of Theorem 1.7

This section is devoted to the proof of Theorem 1.7. Since the proof is rather long, we first present an informal
overview of the arguments in Section 3.1, before rigorously carrying out the proof in Sections 3.2–3.4.

3.1. Informal overview of the proof

Let β > 0, w ∈ R, T > 0 and f,g ∈ D be fixed. Our object of study is the scalar product

(πNf )�Mβ;w
T ;N(πNg) =

N∑
l,l′=0

(πNf )[l] ·Mβ;w
T ;N

[
l, l′

] · (πNg)
[
l′
]
. (3.1)

Here and throughout the paper, we index all (N + 1) × (N + 1) matrices A by l, l′ ∈ {0,1, . . . ,N} and write A[l, l′]
for the (l, l′)-entry of A. Similarly, the entries of all (N + 1)-dimensional vectors v are denoted by v[l] for l ∈

3It should be noted that, as stated in [4], [4, Lemma 3.1] does not require the condition (2.26), but instead

sup
|a1−a2|≤κ

∣∣La(f1) − La(f2)
∣∣ < η

(see [4, Equation (3.1)]). However, this is easily remedied by implementing the following modification to the proof of [4, Lemma 3.1]: Instead of
defining �(x) := [1 − x sgn(x)]1[−1,1](x), we define �(x) := [1 − (x − 1) sgn(x − 1)]1[0,2](x); the arguments in the proof of [4, Lemma 3.1]
then go through by (2.25).



Spiked beta ensembles 1415

{0,1, . . . ,N}. By the definition of πN in (1.17), we then see that

(πNf )�Mβ;w
T ;N(πNg) =

∫ N2/3

0

∫ N2/3

0
f (x)K

β;w
T ;N(x, y)g(y)dx dy, where

K
β;w
T ;N :=

N∑
l,l′=0

N1/3Mβ;w
T ;N

[
l, l′

]
1[N−1/3l,N−1/3(l+1))×[N−1/3l′,N−1/3(l′+1)).

Recalling k = k(T ,N) = 	T N2/3
 and the definition of Mβ;w
T ;N in (1.11), we find for all l, l′ ∈ {0,1, . . . ,N}:

Mβ;w
T ;N

[
l, l′

] = 1

(2
√

N)k

∑
0≤l1,...,lk−1≤N

M
β;w
N [l, l1]Mβ;w

N [l1, l2] · · ·Mβ;w
N

[
lk−1, l

′]. (3.2)

Since M
β;w
N is tridiagonal, only (k + 1)-tuples (l0, l1, . . . , lk) that satisfy l0 = l, lk = l′ and |ls−1 − ls | ∈ {0,1} for all s

contribute to Mβ;w
T ;N [l, l′]. Any such (k + 1)-tuple can be thought of as a path from l0 to lk that takes steps of size +1

or −1 (when |ls−1 − ls | = 1), and horizontal steps (when ls−1 = ls ). In the following, we rely on this observation to
write the sum on the right-hand side of (3.2) in terms of expectations with respect to the random walks of Section 2.

For j = 0,1, . . . and x ≥ 0, we define the random walk Xk−j ;x , its normalized occupation times and its number of
horizontal steps at zero by (2.2)–(2.6), with (k−j) in place of k. We also let X̂

k−j ;x
t , t ∈ [0, Tk−j −N−2/3H(Xk−j ;x)]

be the path obtained from X
k−j ;x
t , t ∈ [0, Tk−j ] by removing all horizontal segments at zero (see Figure 3). Finally,

we introduce the functional

Fj

(
Xk−j ;x,a, ξ

)
:=

k−j−H(Xk−j ;x)∏
i=1

√
N − X̂

k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i√

N

·
k−j−H(Xk−j ;x)∏

i=1

(
1 +

ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N − X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

)
�
H(Xk−j ;x)
N

·
(

1

(2
√

N)j

∑
0≤i1≤···≤ij ≤k

j∏
j ′=1

a
X̂

k−j ;x
N−2/3i

j ′

)
, (3.3)

where the random walk Xk−j ;x is independent of all am’s and ξm’s. (We recall our convention a0 := 0 in Assump-
tion 1.2, so that paths segments (X̂

k−j ;x
i1

, . . . , X̂
k−j ;x
ij

) that visit zero do not contribute to the sum on the last line of
(3.3).)

If x ∈ [N−1/3l,N−1/3(l + 1)) and y ∈ [N−1/3l′,N−1/3(l′ + 1)), then by definition of M
β;w
N , one has

Mβ;w
T ;N

[
l, l′

] =
k∑

j=0

Q
x,y
k−j

2k−j
EXk−j ;x

[
Fj

(
Xk−j ;x,a, ξ

) | Xk−j ;x
Tk−j

= ⌊
N1/3y

⌋]
, (3.4)

with Q
x,y
k−j being the number of paths Xk−j ;x can take such that X

k−j ;x
Tk−j

= 	N1/3y
, or equivalently,

Q
x,y
k−j := 2k−j P

[
X

k−j ;x
Tk−j

= ⌊
N1/3y

⌋]
. (3.5)

In the above, the parameter j represents the number of times it holds ls−1 = ls �= 0 within a (k+1)-tuple (l0, l1, . . . , lk).
Removing the corresponding horizontal steps from the associated path leaves us with a path of Xk−j ;x . At the same
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Fig. 3. Realizations of Xk−j ;x (top) and X̂k−j ;x (bottom).

time, the term in the third line of (3.3) keeps track of all the possible ways j horizontal steps away from zero can
be inserted into a given realization of Xk−j ;x . Finally, the term Q

x,y
k−j arises from the normalization inherent to the

conditional expectation EXk−j ;x [· | Xk−j ;x
Tk−j

= 	N1/3y
].
Next, we denote the scalar products

Scj
k (f, g) :=

∫ N2/3

0

∫ N2/3

0
N1/3f (x)

· Q
x,y
k−j

2k−j
EXk−j ;x

[
Fj

(
Xk−j ;x,a, ξ

) | Xk−j ;x
Tk−j

= ⌊
N1/3y

⌋]
g(y)dx dy, (3.6)

j = 0,1, . . . and observe

(πNf )�Mβ;w
T ;N(πNg) =

k∑
j=0

Scj
k(f, g). (3.7)

We also note that, by the total probability rule,

Scj
k (f, g) =

∫ N2/3

0
f (x)EXk−j ;x

[
Fj

(
Xk−j ;x,a, ξ

) · N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

g(y)dy

]
dx, (3.8)

j = 0,1, . . . . The proof of Theorem 1.7 now hinges on justifying the following heuristic computation.

Heuristic computation 3.1. We recall the strong invariance principle of Theorem 2.2. Since log(1 + z) = z + O(z2)

when z ≈ 0, we have for j = 0,1, . . . that

k−j−H(Xk−j ;x)∏
i=1

√
N − X̂

k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i√

N

= exp

(
1

2

k−j−H(Xk−j ;x)∑
i=1

log

(
1 −

X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

N

))

≈ exp

(
− 1

2N2/3

k−j−H(Xk−j ;x)∑
i=1

( X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

N1/3

))
→ exp

(
−
∫ T

0

Rx
t

2
dt

)
, N → ∞. (3.9)



Spiked beta ensembles 1417

At the same time, (1 − z)−1/2 = 1 + O(z) when z ≈ 0 suggests for j = 0,1, . . . that

k−j−H(Xk−j ;x)∏
i=1

(
1 +

ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N − X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

)

=
k−j−H(Xk−j ;x)∏

i=1

(
1 +

ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N

(
1 −

X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

N

)−1/2)

≈ exp

(
k−j−H(Xk−j ;x)∑

i=1

log

(
1 +

ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N

))

≈ exp

(
k−j−H(Xk−j ;x)∑

i=1

ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N

)

= exp

( ∑
a∈N−1/3(N−1/2)

La
(
Xk−j ;x)ξ	N1/3a


N1/6

)
→ exp

(
sξ

∫ ∞

0
La

T

(
Rx

)
dWξ

a

)
, (3.10)

as N → ∞, where Wξ is the Brownian motion arising from a Donsker type invariance principle for the sequence
ξ0, ξ1, . . . (see (3.20) below). Moreover,

�
H(Xk−j ;x)
N =

(
1 − N1/3(1 − �N)

N1/3

)N1/3·(H(Xk−j ;x)/N1/3)

→ exp

(
−w

L0
T (Rx)

2

)
, N → ∞,

(3.11)

for j = 0,1, . . . .
Next, we consider j = 2 and make the simple observation

1

N

∑
0≤i1≤i2≤k

a
X̂

k−2;x
N−2/3i1

a
X̂

k−2;x
N−2/3i2

= 1

2N

(
k∑

i=0

a
X̂

k−2;x
N−2/3i

)2

+ 1

2N

k∑
i=0

a2
X̂

k−2;x
N−2/3i

. (3.12)

In addition, from k = O(N2/3) and Assumption 1.2 we infer that the second summand on the right-hand side of (3.12)
is negligible in the limit N → ∞. Similar reasoning for j = 3,4, . . . reveals that, for all j = 1,2, . . ., as N → ∞,

1

(2
√

N)j

∑
0≤i1≤···≤ij ≤k

j∏
j ′=1

a
X̂

k−j ;x
N−2/3i

j ′

≈ 1

j !(2√
N)j

(
k∑

i=0

a
X̂

k−j ;x
N−2/3i

)j

= 1

j !2j

( ∑
a∈N−1/3N

La
(
Xk−j ;x)a	N1/3a


N1/6

)j

→ 1

j !2j

(
sa

∫ ∞

0
La

T

(
Rx

)
dW a

a

)j

, (3.13)

where W a is the Brownian motion in a Donsker type invariance principle for the sequence a1,a2, . . . (see (3.20)
below).
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Finally, the Lebesgue differentiation theorem suggests that

N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

g(y)dy → g
(
Rx

T

)
, N → ∞. (3.14)

All in all, we expect that, for each j = 0,1, . . ., the quantity Scj
k (f, g) converges, as N → ∞, to∫ ∞

0
f (x)ERx

[
exp

(
−
∫ T

0

Rx
t

2
dt

+ sξ

∫ ∞

0
La

T

(
Rx

)
dWξ

a − w
L0

T (Rx)

2

)
1

j !
(

sa

2

∫ ∞

0
La

T

(
Rx

)
dW a

a

)j

g
(
Rx

T

)]
dx. (3.15)

Summing over j = 0,1, . . . and letting W := √
β(sξW

ξ + sa
2 W a) we end up precisely with the right-hand side of

(1.18).

3.2. Truncated convergence

Our first step in the rigorous proof of Theorem 1.7 consists in establishing a convergence result for truncated versions
of Scj

k(f, g), j = 0,1, . . . . To this end, we define for all S ∈ [−∞,0] and S ∈ [0,∞] the truncated functionals

F̃
(S,S)

j

(
Xk−j ;x,a, ξ

)
= S ∨

(
k−j−H(Xk−j ;x)∏

i=1

√
N − X̂

k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i√

N

·
k−j−H(Xk−j ;x)∏

i=1

(
1 +

ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N − X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

)
�
H(Xk−j ;x)
N

· 1

j !(2√
N)j

(
k−j−H(Xk−j ;x)∑

i=0

a
X̂

k−j ;x
N−2/3i

)j)
∧ S, j = 0,1, . . . (3.16)

and for all K ∈ N ∪ {0,∞} the truncated functions fK = f hK and gK = ghK , where the continuous hK : [0,∞) →
[0,1] satisfy hK ≡ 1 on [0,K) and hK ≡ 0 on [2K,∞).

Remark 3.2. Note that, apart from the truncation at S and S, the functionals Fj and F̃
(S,S)

j differ in the way the am’s
enter into them.

We now truncate the terms Scj
k (f, g), j = 0,1, . . . according to

S̃c
j

k (f, g;S,S)

:=
∫ N2/3

0
f (x)EXk−j ;x

[
F̃

(S,S)

j

(
Xk−j ;x,a, ξ

) · N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

g(y)dy

]
dx. (3.17)

We also introduce the limiting operators

(
U (S,S)

T ;j f
)
(x) := ERx

[(
S ∨ exp

(
−
∫ T

0

Rx
t

2
dt + sξ

∫ ∞

0
La

T

(
Rx

)
dWξ

a − w
L0

T (Rx)

2

)
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· 1

j !
(

sa

2

∫ ∞

0
La

T

(
Rx

)
dW a

a

)j

∧ S

)
f
(
Rx

T

)]
(3.18)

for f ∈ D and j = 0,1, . . . . (The latter are truncated versions of the limits described in (3.15), whose sum over j

yields UT .)

Proposition 3.3. Let S, S and K be finite. Then, for all functions f ∈D and g ∈D ∩ C([0,∞)),

lim
N→∞ S̃c

j

k(fK,gK ;S,S) =
∫ ∞

0
fK(x)

(
U (S,S)

T ;j gK

)
(x)dx (3.19)

in distribution and in the sense of moments. These convergences hold jointly for any finite collection of j ’s, T ’s, f ’s
and g’s, and in the case of the convergence in distribution also jointly with the convergences in distribution

lim
N→∞

	N1/3x
∑
m=0

am

N1/6
= saW

a
x , x ≥ 0 and lim

N→∞

	N1/3x
∑
m=0

ξm

N1/6
= sξW

ξ
x , x ≥ 0 (3.20)

with respect to the Skorokhod topology.

The key ingredient in the proof of Proposition 3.3 is the next lemma. Therein and henceforth, for probability
measures μ on [0,∞), we use the notations Xk;μ and Rμ for the random walk Xk;x started according to the image of
μ under the map x �→ 	xN1/3
 and the reflected Brownian motion Rx started according to μ, respectively.

Lemma 3.4. Let n ∈ N and μ1,μ2, . . . ,μn be probability measures on [0,∞). Then, there exists a coupling of in-
dependent Xk;μ1,Xk;μ2, . . . ,Xk;μn with independent Rμ1,Rμ2 , . . . ,Rμn such that the following limits in distribution
hold jointly over l = 1,2, . . . , n, and also jointly with (3.20),

lim
N→∞ sup

t∈[0,Tk]
∣∣N−1/3X

k;μl
t − R

μl
t

∣∣ = 0, (3.21)

lim
N→∞

∑
a∈N−1/3(N−1/2)

La
(
Xk;μl

)ξ	N1/3a

N1/6

= sξ

∫ ∞

0
La

T

(
Rμl

)
dWξ

a , (3.22)

lim
N→∞N−1/3H

(
Xk;μl

) = L0
T (Rμl )

2
, (3.23)

lim
N→∞

∑
a∈N−1/3N

La
(
Xk;μl

)a	N1/3a

N1/6

= sa

∫ ∞

0
La

T

(
Rμl

)
dW a

a . (3.24)

Proof. The lemma can be obtained from the coupling construction of Theorem 2.2 by the same arguments as in
the derivation of [16, Proposition 4.9] from the coupling in [16, Proposition 4.1]. More specifically, one starts with
the case n = 1 and μ1 = δx for some x ≥ 0. Then, the joint convergences (3.21)–(3.24) in distribution are due to the
convergence of the associated joint characteristic functions, which under the coupling of Theorem 2.2 is a consequence
of the almost sure convergences of the conditional characteristic functions

lim
N→∞ Eξ

[
exp

(
iθ

∑
a∈N−1/3(N−1/2)

La
(
Xk;x)ξ	N1/3a


N1/6

)]
= EWξ

[
exp

(
iθsξ

∫ ∞

0
La

T

(
Rx

)
dWξ

a

)]
, (3.25)

lim
N→∞ Ea

[
exp

(
iθ

∑
a∈N−1/3N

La
(
Xk;x)a	N1/3a


N1/6

)]
= EW a

[
exp

(
iθsa

∫ ∞

0
La

T

(
Rx

)
dW a

a

)]
(3.26)

for all θ ∈ R (see [16, first half of p. 18] for more details). The latter follow from the central limit theorem in the form
of the upper bound in [6, Theorem 8.4], the coupling of Theorem 2.2 and Assumption 1.2 (see [16, pp. 18–19] for
more details).
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In the case of n = 1 and a general probability measure μ1, the joint convergences (3.21)–(3.24) in distribution
can be deduced from the previous case by integrating with respect to μ1 and relying on the uniform boundedness of
characteristic functions. Finally, in the case of n > 1, one can repeat the same proof, but invoking the multidimensional
version of the central limit theorem used before, obtaining this way also the convergences of (3.20) in the sense of
convergence of finite-dimensional distributions. The latter can be improved to the desired distributional convergences
of processes by applying a standard tightness result (see e.g. [7, Problem 8.4 and proof of Theorem 8.1]). �

We also prepare the following lemma needed in our proof of Proposition 3.3.

Lemma 3.5. Let μ be a probability measure on [0,∞). Then, for each j = 0,1, . . ., under any coupling such that
limN→∞ N−1/3X

k−j ;μ
Tk−j

= R
μ
T almost surely, it holds

lim
N→∞N1/3

∫ N−1/3(X
k−j ;μ
Tk−j

+1)

N−1/3X
k−j ;μ
Tk−j

g(y)dy = g
(
R

μ
T

)
(3.27)

with probability one, for any uniformly continuous function g : [0,∞) → R.

Proof. It suffices to write

N1/3
∫ N−1/3(X

k−j ;μ
Tk−j

+1)

N−1/3X
k−j ;μ
Tk−j

g(y)dy

= N1/3
∫ N−1/3(X

k−j ;μ
Tk−j

+1)

N−1/3X
k−j ;μ
Tk−j

g(y) − g
(
N−1/3X

k−j ;μ
Tk−j

)
dy + g

(
N−1/3X

k−j ;μ
Tk−j

)
(3.28)

and to note that the integral on the right-hand side tends to 0 with probability one, as N → ∞, by the uniform
continuity of g, whereas limN→∞ g(N−1/3X

k−j ;μ
Tk−j

) = g(R
μ
T ) almost surely. �

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. Let us first consider fixed j , T , f and g. Since the terms S̃c
j

k (fK,gK ;S,S) are bounded
uniformly in N , it suffices to show the convergence of moments. Further, without loss of generality we may assume
fK ≥ 0 and

∫ ∞
0 fK(x)dx = 1 (otherwise we write fK as the difference of its positive and negative parts, and the latter

as multiples of functions of the described kind). In particular, this allows us to define μ as the probability measure
with the density fK .

With i.i.d. copies Xk−j ;μ1,Xk−j ;μ2, . . . ,Xk−j ;μn of Xk−j ;μ and i.i.d. copies Rμ1,Rμ2, . . . ,Rμn of Rμ, the nth

moment of S̃c
j

k (fK,gK ;S,S) can be expressed using Fubini’s theorem as

E

[
n∏

l=1

(
F̃

(S,S)

j

(
Xk−j ;μl ,a, ξ

) · N1/3
∫ N−1/3(X

k−j ;μl
Tk−j

+1)

N−1/3X
k−j ;μl
Tk−j

gK(y)dy

)]
, (3.29)

whereas the nth moment of
∫ ∞

0 fK(x)(U (S,S)

T ;j gK)(x)dx reads

E

[
n∏

l=1

((
S ∨ exp

(
−
∫ T

0

R
μl
t

2
dt + sξ

∫ ∞

0
La

T

(
Rμl

)
dWξ

a − w
L0

T (Rμl )

2

)

· 1

j !
(

sa

2

∫ ∞

0
La

T

(
Rμl

)
dW a

a

)j

∧ S

)
gK

(
R

μl

T

))]
. (3.30)
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To establish the convergence of the expectation in (3.29) to that in (3.2) we work under the coupling of
Lemma 3.4 (that is, we upgrade the joint convergence in distribution in Lemma 3.4 to almost sure conver-
gence by an application of the Skorokhod representation theorem [11, Theorem 3.5.1]) and view the random
walks Xk−j ;μ1,Xk−j ;μ2, . . . ,Xk−j ;μn as the respective restrictions of Xk;μ1,Xk;μ2, . . . ,Xk;μn to [0, Tk−j ]. Then,
Xk−j ;μ1,Xk−j ;μ2, . . . ,Xk−j ;μn inherit the asymptotics (3.21)–(3.24) from Xk;μ1,Xk;μ2, . . . ,Xk;μn , and Lemma 3.5
applies, so that

lim
N→∞N1/3

∫ N−1/3(X
k−j ;μl
Tk−j

+1)

N−1/3X
k−j ;μl
Tk−j

gK(y)dy = gK

(
R

μl

T

)
, l = 1,2, . . . , n (3.31)

with probability one.

We proceed to the asymptotics of F̃
(S,S)

j (Xk−j ;μl ,a, ξ), l = 1,2, . . . , n. Our first claim is that

lim
N→∞

k−j−H(Xk−j ;μl )∏
i=1

√
N − X̂

k−j ;μl

N−2/3(i−1)
∧ X̂

k−j ;μl

N−2/3i√
N

= exp

(
−
∫ T

0

R
μl
t

2
dt

)
(3.32)

for l = 1,2, . . . , n almost surely. Indeed, for every such l, according to the Taylor expansion log(1 + z) = z + O(z2)

about z = 0, an approximation as in the third line of (3.1) (with Xk−j ;x , X̂k−j ;x replaced by Xk−j ;μl , X̂k−j ;μl ) holds
up to a multiplicative error of at most

exp
(
O
(
N−4/3

(
sup

t∈[0,Tk−j ]
X

k−j ;μl
t

)2))
. (3.33)

Writing the resulting approximation in terms of Xk−j ;μl we obtain (3.32) as an elementary consequence of (3.21).
Next, we prove the joint convergence in distribution

lim
N→∞

k−j−H(Xk−j ;μl )∏
i=1

(
1 +

ξ
X̂

k−j ;μl

N−2/3(i−1)
∧X̂

k−j ;μl

N−2/3i√
N − X̂

k−j ;μl

N−2/3(i−1)
∧ X̂

k−j ;μl

N−2/3i

)

= exp

(
sξ

∫ ∞

0
La

T

(
Rμl

)
dWξ

a

)
(3.34)

for l = 1,2, . . . , n. To this end, we use the Taylor expansion (1 − z)−1/2 = 1 + O(z) about z = 0 to conclude that, for
each l, an approximation as in the third line of (3.10) (with Xk−j ;μl , X̂k−j ;μl in place of Xk−j ;x , X̂k−j ;x ) applies up
to a modification of each

ξ
X̂

k−j ;μl

N−2/3(i−1)
∧X̂

k−j ;μl

N−2/3i√
N

to

ξ
X̂

k−j ;μl

N−2/3(i−1)
∧X̂

k−j ;μl

N−2/3i√
N

(
1 + O

(
N−1 sup

t∈[0,Tk−j ]
X

k−j ;μl
t

))
. (3.35)

At this point, we employ the Taylor expansion log(1 + z) = z + O(z2) about z = 0 to obtain an expression as in the
fourth line of (3.10), with the summands therein modified to

ξ
X̂

k−j ;μl

N−2/3(i−1)
∧X̂

k−j ;μl

N−2/3i√
N

(
1 + O

(
N−1 sup

t∈[0,Tk−j ]
X

k−j ;μl
t

))

+ O

( (ξ
X̂

k−j ;μl

N−2/3(i−1)
∧X̂

k−j ;μl

N−2/3i

)2

N

(
1 + O

(
N−1 sup

t∈[0,Tk−j ]
X

k−j ;μl
t

))2
)

. (3.36)
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The contribution of the first line in (3.36) can be evaluated as in the equality on the fifth line of (3.10), which leads to
the limit in distribution of (3.22) after recalling (3.21). The contribution of the second line in (3.36) is asymptotically
negligible due to the almost sure convergence

lim
N→∞

k−j−H(Xk−j ;μl )∑
i=1

(ξ
X̂

k−j ;μl

N−2/3(i−1)
∧X̂

k−j ;μl

N−2/3i

)2

N
= 0 (3.37)

(simply apply the Borel–Cantelli lemma upon bounding the fourth moment of the latter sum via Assumption 1.2(c))
and (3.21). All in all, we arrive at (3.2).

Putting (3.32) and (3.2) together with the almost sure convergences

�
H(Xk−j ;μl )
N =

(
1 − N1/3(1 − �N)

N1/3

)N1/3·(H(Xk−j ;μl )/N1/3)

→ exp

(
−w

L0
T (Rμl )

2

)
(3.38)

for l = 1,2, . . . , n (see (3.23)), the convergences in distribution

lim
N→∞

1

j !(2√
N)j

(
k−j−H(Xk−j ;μl )∑

i=0

a
X̂

k−j ;μl

N−2/3i

)j

= 1

j !
(

sa

2

∫ ∞

0
La

T

(
Rμl

)
dW a

a

)j

(3.39)

for l = 1,2, . . . , n (see (3.24)) and (3.31) we conclude that the expectation in (3.29) converges to that in (3.2). More-
over, the joint convergence for any finitely many j ’s, T ’s, f ’s and g’s can be shown by the same arguments, the only
difference being that the formulas for moments in (3.29) and (3.2) have to be replaced by the corresponding formulas
for joint moments. �

3.3. Uniform moment bounds

In this subsection, we establish some uniform moment estimates, which will allow us to lift the truncations and the
continuity assumption on the g’s of Proposition 3.3. To this end, we define the functionals

F̃j

(
Xk−j ;x,a, ξ

)
=

k−j−H(Xk−j ;x)∏
i=1

√
N − X̂

k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i√

N

·
k−j−H(Xk−j ;x)∏

i=1

(
1 +

ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N − X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

)
�
H(Xk−j ;x)
N

· 1

j !(2√
N)j

(
k−j−H(Xk−j ;x)∑

i=0

a
X̂

k−j ;x
N−2/3i

)j

, j = 0,1, . . . (3.40)

and, with any f,g ∈ D and random variable ZN (possibly depending on Xk−j ;x , the am’s and the ξm’s), set

S̃c
j

k (f, g;ZN) :=
∫ N2/3

0
f (x)EXk−j ;x

[
F̃j

(
Xk−j ;x,a, ξ

) · N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

g(y)dy · ZN

]
dx (3.41)

for j = 0,1, . . . . We also let

Sc
j

k (f, g,K;ZN) := S̃c
j

k (f, g;ZN) − S̃c
j

k(fK,gK ;ZN), j = 0,1, . . . (3.42)

for K ∈ N∪ {0}.
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Proposition 3.6. For all f,g ∈ D, one can find N0 ∈ N and C(K,n) < ∞ with limK→∞ C(K,n) = 0 such that, for
all N ≥ N0, if ZN satisfies

E
[|ZN |3n

] ≤ �(3n) (3.43)

for some function � :N→ (0,∞), one has

E
[∣∣Sc

j

k (f, g,K;ZN)
∣∣n] ≤ C(K,n)�(3n)1/3

(3/2)jn
, K ∈ N∪ {0}, j = 0,1, . . . . (3.44)

The proof of Proposition 3.6 relies on the following lemma.

Lemma 3.7. For all 1 ≤ p < 3 and θ ≥ 0, there exist constants C = C(p, θ) < ∞, c = c(θ) > 0 and N0 ∈ N such
that

sup
N≥N0

E

[
exp

(
−θN−2/3

k∑
i=1

N−1/3X
k;x
N−2/3i

)]
≤ Ce−cx, x > 0, (3.45)

sup
N≥N0

E
[

exp

(
θN−1/3

∑
a∈N−1/3N

La
(
Xk;x)p)] ≤ C, x > 0, (3.46)

sup
N≥N0

E
[

exp

(
θN−1/3

∑
a∈N−1/3(N−1/2)

La
(
Xk;x)p)] ≤ C, x > 0, (3.47)

sup
N≥N0

E
[
�
θH(Xx;k)
N

] ≤ C, x > 0. (3.48)

Proof. Recall the random walks Y and v(Y ) introduced in (2.19) and the sentence following it. Throughout this proof,
we condition on Y 0 = 	N1/3x
 and assume that Y and Xk;x are coupled as in Remark 2.6. We further write

ρk = max
0≤i≤k

v(Y )i − min
0≤i≤k

v(Y )i (3.49)

for the range of the SSRW v(Y ) after k steps. It is clear that, for i = 0,1, . . . , k,

−X
k;x
N−2/3i

≤ − min
0≤i≤k

Y i ≤ − min
0≤i≤k

v(Y )i ≤ −⌊
N1/3x

⌋+ ρk. (3.50)

According to [10, inequality (6.2.3)] (the case p = 1 therein), one has

E
[(

N−1/3ρk

)n] ≤ √
n!(CT 1/2)n, n ∈ N (3.51)

with some uniform constant C < ∞. Thus, the exponential moment of N−1/3ρk can be bounded by a constant inde-
pendent of N and x, yielding (3.45).

In view of (2.24),

La
(
Xk;x)p ≤ 2p−1(La

N2/3;T
(
v(Y )

)p + L−a

N2/3;T
(
v(Y )

)p)
. (3.52)

Hence, it suffices to show (3.46) with θ replaced by 2p−1θ and
∑

a∈N−1/3N La(Xk;x)p by∑
a∈N−1/3Z\{0} La

N2/3;T (v(Y ))p . Repeating the proof of [16, Proposition 4.3] verbatim we find a constant C = C(p) <

∞ such that

N−1/3
∑

a∈N−1/3Z\{0}
La

N2/3;T
(
v(Y )

)p ≤ C
((

N−1/3ρk

)p−1 + N−(p−1)/3) (3.53)
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(note that even though [16] considers SSRW bridges, all the combinatorial identities therein apply to SSRWs as well).
At this point, (3.46) follows from (3.51). Moreover, (3.47) is a consequence of

La
(
Xk;x) ≤ 2La+N−1/3/2(Xk;x), a ∈ N−1/3(N− 1/2) (3.54)

and (3.46).
From Proposition 2.4 we know that H(Xx;k) = supt∈[0,Tk](−X̃

k;x
t )+ under an appropriate coupling, where we

recall that X̃x,k is the rescaled SSRW introduced in Proposition 2.4. In particular, H(Xx;k) is stochastically dominated
by ρk . Consequently, for N ∈ N large enough, the random variable inside the expectation in (3.48) is stochastically
dominated by

�
θρk

N =
(

1 − N1/3(1 − �N)

N1/3

)N1/3·(θN−1/3ρk)

= e−(w+o(1))·(θN−1/3ρk), (3.55)

where o(1) is non-random, so that (3.48) also follows from (3.51). �

Proof of Proposition 3.6. After observing

Sc
j

k (f, g,K;ZN)

=
∫ N2/3

0

∫ N2/3

0
N1/3f (x)

· Q
x,y
k−j

2k−j
EXk−j ;x

[
F̃j

(
Xk−j ;x,a, ξ

) · ZN | Xk−j ;x
Tk−j

= ⌊
N1/3y

⌋]
g(y)dx dy

−
∫ N2/3

0

∫ N2/3

0
N1/3f (x)hK(x)

· Q
x,y
k−j

2k−j
EXk−j ;x

[
F̃j

(
Xk−j ;x,a, ξ

) · ZN | Xk−j ;x
Tk−j

= ⌊
N1/3y

⌋]
g(y)hK(y)dx dy (3.56)

we estimate |Sc
j

k (f, g,K;ZN)| by moving the absolute value inside the double integral and using

0 ≤ 1 − hK(x)hK(y) ≤ 1[K,∞)(x) + 1[K,∞)(y), x, y ≥ 0. (3.57)

Since the roles of the variables x and y are symmetric, we only focus on the term in E[|Sc
j

k (f, g,K;ZN)|n] originating
from 1[K,∞)(x). We bound the latter by inserting an absolute value into the conditional expectation, applying Fubini’s
theorem and letting f̃K := f 1[K,∞), thereby obtaining∫

[0,N2/3]n
E

[
n∏

l=1

∣∣f̃K(xl)
∣∣EXk−j ;xl

[∣∣F̃j

(
Xk−j ;xl ,a, ξ

)∣∣
· N1/3

∫ N−1/3(X
k−j ;xl
Tk−j

+1)

N−1/3X
k−j ;xl
Tk−j

∣∣g(y)
∣∣dy · |ZN |

]]
dx1 dx2 · · ·dxn. (3.58)

A repeated application of Hölder’s and Jensen’s inequalities shows further that the quantity in (3.58) is at most(∫ N2/3

0

∣∣f̃K(x)
∣∣E[|ZN |3n

]1/(3n)E
[(

N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

∣∣g(y)
∣∣dy

)3n]1/(3n)

· E
[∣∣F̃j

(
Xk−j ;x,a, ξ

)∣∣3n]1/(3n) dx

)n

. (3.59)
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Due to f ∈ D and (3.43), we have∣∣f̃K(x)
∣∣E[|ZN |3n

]1/(3n) ≤ C1e
C2x

1−δ

1[K,∞)(x)�(3n)1/3n. (3.60)

In view of g ∈ D, we can choose C1, C2 and δ such that also

N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

∣∣g(y)
∣∣dy ≤ C1 exp

(
C2

(
N−1/3X

k−j ;x
Tk−j

)1−δ)
. (3.61)

Moreover, by the argument leading to (3.50) and with the same notation as there,

N−1/3X
k;x
Tk−j

≤ x + N−1/3ρk. (3.62)

It then follows from (3.51) that, with some C̃1 = C̃1(C1, n) < ∞,

E
[(

N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

∣∣g(y)
∣∣dy

)3n]1/(3n)

≤ C̃1e
C2x

1−δ

. (3.63)

It remains to control E[|F̃j (X
k−j ;x,a, ξ)|3n]1/(3n). For this purpose, we fix an ε ∈ (0, δ/3) and distinguish

the cases x ∈ (0,N2/3−ε] and x ∈ (N2/3−ε,N2/3]. In the first case, we use Hölder’s inequality to estimate
E[|F̃j (X

k−j ;x,a, ξ)|3n]1/(3n) by the product of the four terms

E

[(
k−j−H(Xk−j ;x)∏

i=1

√
N − X̂

k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i√

N

)12n]1/(12n)

, (3.64)

E

[(
k−j−H(Xk−j ;x)∏

i=1

∣∣∣∣1 +
ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N − X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

∣∣∣∣
)12n]1/(12n)

, (3.65)

E
[
�

12nH(Xk−j ;x)
N

]1/(12n)
, (3.66)

E

[(
1

j !(2√
N)j

∣∣∣∣∣
k−j−H(Xk−j ;x)∑

i=0

a
X̂

k−j ;x
N−2/3i

∣∣∣∣∣
j)12n]1/(12n)

. (3.67)

Thanks to
√

N−z√
N

≤ e−z/(2N), z ∈ [0,N ] and (3.45), the quantity in (3.64) is not greater than Ce−cx+O(jN−ε). Turning
to the term in (3.65), we write the expectation with respect to the ξm’s as a product and note that, due to Assump-
tion 1.2(c), [16, inequality (4.21)] yields for each factor a bound of the form

exp

(
12nLa(Xk−j ;x)|E[ξa]|

N−1/3
√

N − a
+ C′

(
(12nLa(Xk−j ;x))2

N−2/3(N − a)
+ (12nLa(Xk−j ;x))γ ′

N−γ ′/3(N − a)γ
′/2

))
, (3.68)

with some C′ < ∞ and 2 < γ ′ < 3. For N ∈ N large enough, N − a ≥ N/2 when La(Xk−j ;x) �= 0, which with
Assumption 1.2(a) leads to the expectation of

exp

(
C

∑
a∈N−1/3(N−1/2)

12nLa(Xk−j ;x)
N1/2

+ (12nLa(Xk−j ;x))2

N1/3
+ (12nLa(Xk−j ;x))γ ′

Nγ ′/6

)
(3.69)

as an estimate on the expectation in (3.65). In addition, (3.48) reveals that the expression in (3.66) is at most
CeO(jN−1/3). Finally, the expectation with respect to the am’s in (3.67) can be controlled via a combination of
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|z|j
j ! ≤ e|z| ≤ ez + e−z, z ∈ R, [16, inequality (4.20)] and Assumption 1.2(a) by

C

212jn
exp

(
C

∑
a∈N−1/3N

12nLa(Xk−j ;x)
N1/2

+ (12nLa(Xk−j ;x))2

N1/3
+ (12nLa(Xk−j ;x))γ ′

Nγ ′/6

)
, (3.70)

with the same 2 < γ ′ < 3 as before. Putting everything together, applying Hölder’s inequality, and appealing to (3.47),
(3.46) we arrive at

E
[∣∣F̃j

(
Xk−j ;x,a, ξ

)∣∣3n]1/(3n) ≤ Ce−cx+O(jN−ε)

2j
, x ∈ (

0,N2/3−ε
]
. (3.71)

In the case x ∈ (N2/3−ε,N2/3], for all N ∈N large enough, X
k−j ;x
t ≥ N1−ε/2, t ∈ [0, Tk−j ], so that

k−j−H(Xk−j ;x)∏
i=1

∣∣∣∣
√

N − X̂
k−j ;x
N−2/3(i−1)

∧ X̂
k−j ;x
N−2/3i

+ ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i√

N

∣∣∣∣
≤

k−j∏
i=1

(√
N − N1−ε/2 + |ξ

X̂
k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i

|
√

N

)

=
(

1 − 1

2Nε

)(k−j)/2

·
k−j∏
i=1

(
1 +

|ξ
X̂

k−j ;x
N−2/3(i−1)

∧X̂
k−j ;x
N−2/3i

|√
N − N1−ε/2

)

≤ e−kN−ε/4+O(jN−ε) · exp

(
2

∑
a∈N−1/3(N−1/2)

La
(
Xk−j ;x) |ξ	N1/3a
|

N1/6

)
. (3.72)

Using Hölder’s inequality and Lemma 3.7 as above, but changing the am’s and ξm’s to their absolute values and
Assumption 1.2(a) to Assumption 1.2(c), we get

E
[∣∣F̃j

(
Xk−j ;x,a, ξ

)∣∣3n]1/(3n) ≤ Ce−kN−ε/4+O(jN−ε)+CN1/6

2j
, x ∈(N2/3−ε,N2/3]. (3.73)

Lastly, we insert the right-hand sides of (3.60), (3.63), (3.71), (3.73) into (3.59):

CeO(jnN−ε)�(3n)1/3

2jn

·
(∫ N2/3−ε∨K

K

eCx1−δ−cx dx + e−kN−ε/4+CN1/6
∫ N2/3∨K

N2/3−ε∨K

eCx1−δ

dx

)n

. (3.74)

The estimate (3.44) readily follows upon recalling k = 	T N2/3
 and ε ∈ (0, δ/3). �

3.4. Proof of Theorem 1.7

3.4.1. Step 1: Remove functional truncations
In order to establish Theorem 1.7, we first argue that Proposition 3.3 remains true when S = −∞ and S = ∞. We
begin with the convergence of moments. Recall the moment formulas of (3.29) and (3.2). For any n ∈ N, S ∈ [−∞,0],
and S ∈ [0,∞], the same arguments used in the proof of Proposition 3.3 provide a coupling under which

lim
N→∞

n∏
l=1

(
F̃

(S,S)

j

(
Xk−j ;μl ,a, ξ

) · N1/3
∫ N−1/3(X

k−j ;μl
Tk−j

+1)

N−1/3X
k−j ;μl
Tk−j

gK(y)dy

)
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=
n∏

l=1

(
S ∨ exp

(
−
∫ T

0

R
μl
t

2
dt + sξ

∫ ∞

0
La

T

(
Rμl

)
dWξ

a − w
L0

T (Rμl )

2

)

· 1

j !
(

sa

2

∫ ∞

0
La

T

(
Rμl

)
dW a

a

)j

∧ S

)
gK

(
R

μl

T

)
(3.75)

holds almost surely. To prove that the same limit holds in the sense of expectations, we need only show that the
prelimit terms in (3.75) form a uniformly integrable sequence in N ∈N. In the cases where S and S are not both finite,
this follows from (3.44) with K = 0 and ZN = 1. The same argument gives also the joint convergence in the sense of
moments.

We now prove the convergence (3.19) with S = −∞ and S = ∞ in distribution. The convergence in moments of

S̃c
j

k (fK,gK ;S,∞) for finite S implies that the latter form a tight sequence. Thus, it is enough to prove that every

weakly convergent subsequence of S̃c
j

k (fK,gK ;S,∞) converge to the same limit, namely,∫ ∞

0
fK(x)

(
U (S,∞)

T ;j gK

)
(x)dx. (3.76)

Let S̃c
j

∞(fK,gK ;S,∞) be a limit point obtained by such a subsequence. If we assume that f,g ≥ 0 (as we may do

without loss of generality), then it is easy to see that S̃c
j

k (fK,gK ;S,S) is monotonically increasing in S. Therefore,

the limit point S̃c
j

∞(fK,gK ;S,∞) stochastically dominates the limit in distribution

lim
N→∞ S̃c

j

∞(fK,gK ;S,∞) =
∫ ∞

0
fK(x)

(
U (S,S)

T ;j gK

)
(x)dx (3.77)

for every finite S. According to the monotone convergence theorem, the right-hand side of (3.77) converges as S ↑ ∞
to (3.76). We conclude that the limit point S̃c

j

∞(fK,gK ;S,∞) and (3.76) are two non-negative random variables with
the same moments, and the former stochastically dominates the latter. Any two such random variables must be equal
in distribution, which proves the convergence in distribution of (3.19) when S = ∞.

In order to prove the convergence in distribution when S = −∞, we apply the same stochastic domination argument
by exploiting the monotonicity in S. As for the joint convergence for finite collections of j ’s, T ’s, f ’s and g’s, we
apply the same argument, leading to two random vectors with componentwise inequalities between them and same
joint moments.

3.4.2. Step 2: Continuous functions
Next, we prove Theorem 1.7 under the additional assumption that the g’s therein are continuous. Recall the definitions

of Scj
k , S̃c

j

k , and Sc
j

k from (3.6), (3.3), and (3.41), respectively. Let

�
j
k(f, g) := Scj

k (f, g) − S̃c
j

k (f, g;1), N ∈N, j = 0,1, . . . . (3.78)

In view of (3.7), for all K ∈N, one has

(πNf )�Mβ;w
T ;N(πNg) =

k∑
j=0

S̃c
j

k (fK,gK ;1) +
k∑

j=0

Sc
j

k (f, g,K;1) +
k∑

j=0

�
j
k(f, g). (3.79)

We aim to take the N → ∞ limit of the right-hand side in (3.79) and start with the asymptotics of the first

sum therein. For every finite set of summands S̃c
1
k(fK,gK ;1), S̃c

2
k(fK,gK ;1), . . . , S̃c

J

k (fK,gK ;1), their joint limit
in distribution and in the sense of moments is determined by the right-hand side of (3.19) with S = −∞ and
S = ∞. This and the moment bounds of (3.44) imply that the first sum on the right-hand side of (3.79) converges
to

∫ ∞
0 fK(x)(Uβ;w

T gK)(x)dx in distribution and in the sense of moments. Since the moment bounds of (3.44) for
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Sc
j

k(fK,gK,0;1) are inherited by their N → ∞ limits, we have, in addition,

lim
K→∞ lim

N→∞

k∑
j=0

S̃c
j

k (fK,gK ;1) = lim
K→∞

∫ ∞

0
fK(x)

(
Uβ;w

T gK

)
(x)dx =

∫ ∞

0
f (x)

(
Uβ;w

T g
)
(x)dx (3.80)

in distribution and in the sense of moments.
Moreover, the moment bounds of (3.44) reveal that

lim
K→∞ lim

N→∞

k∑
j=0

Sc
j

k (f, g,K;1) = 0 (3.81)

in Ln, for all n ∈ N. To analyze the third sum on the right-hand side of (3.79) we introduce, for all j = 1,2, . . ., the
notations

hj (N) =
∑

0≤i1≤···≤ij ≤k

j∏
j ′=1

a
X̂

k−j ;x
N−2/3i

j ′
, pj (N) =

k−j−H(Xk−j ;x)∑
i=0

(a
X̂

k−j ;x
N−2/3i

)j , (3.82)

and [zj ]P(z) for the coefficient of zj in a power series P(z). Then, the Newton identities relating the complete
homogeneous symmetric functions to the power sums (see e.g. [26, Chapter 1, Section 2]) yield

hj (N)

(2
√

N)j
= p1(N)j

j !(2√
N)j

+
j−1∑
ι=0

p1(N)ι

ι!(2√
N)ι

([
zj−ι

]
exp

( ∞∑
j ′=2

pj ′(N)

j ′(2
√

N)j
′ z

j ′
))

. (3.83)

Therefore, with

Z
j,ι
N := [

zj−ι
]

exp

( ∞∑
j ′=2

pj ′(N)

j ′(2
√

N)j
′ z

j ′
)

, ι = 0,1, . . . , j − 1, (3.84)

it holds

k∑
j=0

�
j
k(f, g) =

k∑
j=0

j−1∑
ι=0

Sc
ι

k

(
f,g;Zj,ι

N

)
. (3.85)

By [16, Lemma 4.20], one can find bounds E[|Zj,ι
N |n] ≤ �(3n, j − ι,N) such that

lim
N→∞

k∑
j=0

j−1∑
ι=0

�(3n, j − ι,N)1/(3n)

(3/2)j
= 0. (3.86)

A combination of the triangle inequality for the Ln norm, the moment bounds of (3.44) and the property (3.86) gives

lim
N→∞

k∑
j=0

�
j
k(f, g) = 0 (3.87)

in Ln, for all n ∈N. This finishes the proof of Theorem 1.7 under the continuity assumption on the g’s.
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3.4.3. Step 3: General functions
For general f,g ∈ D, the same arguments as above reveal that it suffices to identify, for all K ∈ N, the limit of∑k

j=0 S̃c
j

k (fK,gK ;1) in distribution and in the sense of moments as
∫ ∞

0 fK(x)(Uβ;w
T gK)(x)dx. In fact, it is enough

to establish

lim
N→∞

k∑
j=0

S̃c
j

k (fK,gK ;1) =
∫ ∞

0
fK(x)

(
Uβ;w

T gK

)
(x)dx (3.88)

in distribution, since the moment bounds of (3.44) for Sc
j

k (fK,gK,0;1) then imply the convergence of moments. To
see (3.88) we pick gη,K , η ∈ N in C([0,∞)) so that

υη := ‖gη,KhK − gK‖L2([0,∞)) −→
η→∞ 0. (3.89)

Recalling the symmetry of S̃c
j

k (·, ·;1) (cf. (3.56)), applying the Cauchy–Schwarz inequality, and repeating the proof
of Proposition 3.6 mutatis mutandis we get

E
[∣∣S̃c

j

k (fK,gK ;1) − S̃c
j

k (fK,gη,KhK ;1)
∣∣2]

≤ υ2
ηE

[∫ N2/3

0
EXk−j ;x

[
F̃j

(
Xk−j ;x,a, ξ

) · N1/3
∫ N−1/3(X

k−j ;x
Tk−j

+1)

N−1/3X
k−j ;x
Tk−j

fK(y)dy

]2

dx

]

≤ υ2
η

CeO(jN−ε)

22j
. (3.90)

To complete the proof of Theorem 1.7 we observe that

∀η ∈N : lim
N→∞

k∑
j=0

S̃c
j

k(fK,gη,KhK ;1) =
∫ ∞

0
fK(x)

(
Uβ;w

T (gη,KhK)
)
(x)dx (3.91)

in distribution and that

lim
η→∞

∫ ∞

0
fK(x)

(
Uβ;w

T (gη,KhK)
)
(x)dx =

∫ ∞

0
fK(x)

(
Uβ;w

T gK

)
(x)dx (3.92)

almost surely, thanks to Proposition 1.10(c).

4. Properties of the limiting operators

The goal of this section is to prove Proposition 1.10. We start by preparing some auxiliary constructions and results.
Recall the spiked Gaussian β-ensemble H

β;w
N defined in (1.7), and let

A
β;w
N := N1/6(2√

N − H
β;w
N

)
, (4.1)

viewed as an operator acting on L2([0,∞)) via Remark 1.6. The next proposition is a direct corollary of [8, Proposi-
tion 2.8, Remark 2.9, Lemma 2.7, Theorem 2.10 and its proof] (note that [8, Assumptions 1–3] are verified for H

β;w
N

in [8, Section 3]).

Proposition 4.1. For all β > 0 and w ∈ R, the operator Hβ;w of (1.9) almost surely possesses a purely discrete
spectrum �1 < �2 < · · · satisfying �q → ∞ as q → ∞. The corresponding eigenspaces are one-dimensional, and
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each is therefore spanned by a normalized eigenfunction fq . Moreover, one can couple Hβ;w with a subsequence of

A
β;w
N , N ∈N along which, almost surely,

lim
N→∞�q,N = �q and lim

N→∞‖vq,N − fq‖L2([0,∞)) = 0, q = 1,2, . . . , (4.2)

where �1,N < �2,N < · · · < �N,N and v1,N , v2,N , . . . , vN,N are eigenvalues and corresponding eigenfunctions of

A
β;w
N . Along the same subsequence, the standard Brownian motion W in the definition of Hβ;w arises in the almost

sure limit (1.19).

Next, we present an alternative formula for the kernel K
β;w
T of (1.15), to be used in the proof of Proposition 1.10.

Lemma 4.2. For all β > 0, w ∈R and T > 0, define the kernels

K
β
T (x, y) = exp(− (x−y)2

2T
)√

2πT

· EW̃ x

[
1{min0≤t≤T W̃ x

t >0} exp

(
−
∫ T

0

W̃ x
t

2
dt +

∫ ∞

0

La
T (W̃ x)√

β
dWa

) ∣∣∣ W̃ x
T = y

]
(4.3)

and

K
β;w
T (x, y) = 2 exp(− (x−y)2

2T
)√

2πT
EW̃ x

[
1{min0≤t≤T W̃ x

t ≤0}

· exp

(
−
∫ T

0

|W̃ x
t |

2
dt +

∫ ∞

0

La
T (|W̃ x |)√

β
dWa − w

L0
T (|W̃ x |)

2

) ∣∣∣ W̃ x
T = y

]
, (4.4)

where W̃ x is a Brownian motion started at x, independent of W . Then,

K
β;w
T (x, y) = K

β
T (x, y) + K

β;w
T (x, y), x, y ≥ 0. (4.5)

Proof. Let Rx := |W̃ x |. For any random variable Z, we note that

EW̃ x

[
Z | ∣∣W̃ x

T

∣∣ = y
] = EW̃ x

[
Z | W̃ x

T = y
]
P
[
W̃ x

T = y | ∣∣W̃ x
T

∣∣ = y
]

+ EW̃ x

[
Z | W̃ x

T = −y
]
P
[
W̃ x

T = −y | ∣∣W̃ x
T

∣∣ = y
]
, (4.6)

where

P
[
W̃ x

T = y | ∣∣W̃ x
T

∣∣ = y
] = exp(− (x−y)2

2T
)

exp(− (x−y)2

2T
) + exp(− (x+y)2

2T
)
. (4.7)

Thus, the formula for K
β;w
T in (1.15) can be rewritten as

exp(− (x−y)2

2T
)√

2πT

· EW̃ x

[
exp

(
−
∫ T

0

|W̃ x
t |

2
dt +

∫ ∞

0

La
T (|W̃ x |)√

β
dWa − w

L0
T (|W̃ x |)

2

) ∣∣∣ W̃ x
T = y

]

+ exp(− (x+y)2

2T
)√

2πT
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· EW̃ x

[
exp

(
−
∫ T

0

|W̃ x
t |

2
dt +

∫ ∞

0

La
T (|W̃ x |)√

β
dWa − w

L0
T (|W̃ x |)

2

) ∣∣∣ W̃ x
T = −y

]
. (4.8)

Next, we decompose the first expectation in (4.8) according to the events{
min

0≤t≤T
W̃ x

t > 0
}

and
{

min
0≤t≤T

W̃ x
t ≤ 0

}
, (4.9)

and note that, on the former event, |W̃ x | = W̃ x and L0
T (|W̃ x |) = 0.

In addition, by the strong Markov property and the symmetry about 0 of Brownian motion, instead of conditioning
on W̃ x

T = −y in the second expectation of (4.8), we can condition on min0≤t≤T W̃ x
t ≤ 0, W̃ x

T = y. This operation,
in turn, is equivalent to inserting 1{min0≤t≤T W̃ x

t ≤0} into the expectation, conditioning on W̃ x
T = y and normalizing the

result by P[min0≤t≤T W̃ x
t ≤ 0 | W̃ x

T = y]. Computing

P
[

min
0≤t≤T

W̃ x
t ≤ 0 | W̃ x

T = y
]

= e−2xy/T (4.10)

from the joint density of the running minimum and the current value of a Brownian motion (see e.g. [33, Chapter III,
Exercise 3.14]) and observing

e2xy/T · exp(− (x+y)2

2T
)√

2πT
= exp(− (x−y)2

2T
)√

2πT
(4.11)

we arrive at the right-hand side of (4.5). �

We are now ready to prove Proposition 1.10.

Proof of Proposition 1.10. (a) The identity (1.20) follows from Theorem 1.7 by the same arguments as were used to
obtain [16, Corollary 2.12] from Theorem 2.8 therein. To summarize the argument:

1. Let Mβ;w
N = (A

β;w
N /2

√
N)	T N2/3
, with A

β;w
N as in (4.1). According to Proposition 4.1 and a computation similar

to (1.5), we see that Mβ;w
N ’s eigenfunctions and eigenvalues converge in the sense of Proposition 4.1 to those of

e−THβ;w/2.
2. Combining the above with Theorem 1.7 and Remark 1.8, we conclude that Uβ;w

T and e−THβ;w/2 must share the

same eigenvalues and eigenfunctions, and we note that the Brownian motions W in Hβ;w and Uβ;w
T arise as the

same limit of matrix entries.

We refer to the proof of [16, Corollary 2.12] for the details; for this argument to apply to the present case, one
only needs to replace every reference to the main result of [32] by a reference to Proposition 4.1, the pointer to [16,
Lemma 6.1] by a pointer to (1.5), and the assertion that the eigenvalues of − 1

2Hβ tend to −∞ by the same statement
for − 1

2Hβ;w (cf. Proposition 4.1).

(b), (c) We proceed to the almost sure Hilbert–Schmidt property of Uβ;w
T , for each T > 0. In view of Lemma 4.2,

it is enough to show that

E
[∫ ∞

0

∫ ∞

0

(
K

β
T (x, y) + K

β;w
T (x, y)

)2 dx dy

]
< ∞. (4.12)

Since

E
[∫ ∞

0

∫ ∞

0
K

β
T (x, y)2 dx dy

]
< ∞ (4.13)

is established in [16, proof of Lemma 5.1], it suffices to check∫ ∞

0

∫ ∞

0
E
[
K

β;w
T (x, y)2]dx dy < ∞. (4.14)
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Next, we estimate E[Kβ;w
T (x, y)2] by moving the square function into the expectation EW̃ x [· | W̃ x

T = y], dropping
the indicator random variable, employing

La
T

(∣∣W̃ x
∣∣)2 = (

La
T

(
W̃ x

)+ L−a
T

(
W̃ x

))2 ≤ 2La
T

(
W̃ x

)2 + 2L−a
T

(
W̃ x

)2
, a ≥ 0, (4.15)

and evaluating the expectation with respect to W :

E
[
K

β;w
T (x, y)2]

≤ 2 exp(− (x−y)2

T
)

πT
E
[

exp

(
−
∫ T

0

∣∣W̃ x
t

∣∣dt +
∫ ∞

−∞
4La

T (W̃ x)2

β
da − 2wL0

T

(
W̃ x

)) ∣∣∣ W̃ x
T = y

]
. (4.16)

According to Hölder’s inequality, the latter expectation is at most

E
[

exp

(
−
∫ T

0
3
∣∣W̃ x

t

∣∣dt

) ∣∣∣ W̃ x
T = y

]1/3

E
[

exp

(∫ ∞

−∞
12La

T (W̃ x)2

β
da

) ∣∣∣ W̃ x
T = y

]1/3

· E
[
e−6wL0

T (W̃ x) | W̃ x
T = y

]1/3
. (4.17)

Thanks to |W̃ x
t | ≥ W̃ x

t , the identity in distribution

(
W̃ x

t : t ∈ [0, T ] | W̃ x
T = y

) d=
(

W̃ 0
t +

(
1 − t

T

)
x + t

T
y : t ∈ [0, T ]

∣∣∣ W̃ 0
T = 0

)
, (4.18)

and (1 − t
T

)x + t
T

y ≥ x ∧ y, the first factor in (4.17) is bounded above by

e−T (x∧y)E
[

exp

(
−
∫ T

0
3W̃ 0

t dt

) ∣∣∣ W̃ 0
T = 0

]1/3

. (4.19)

In addition, the coupling of [16, Proposition 4.1] reveals the random variable
∫ ∞
−∞ La

T (W̃ x)2 da, conditioned on W̃ x
T =

y, as the almost sure N → ∞ limit of the left-hand side in [16, inequality (4.15)]. Thus, the second expectation in
(4.17) can be controlled by the limit inferior of the corresponding exponential moment of the right-hand side in [16,
inequality (4.15)]. Proceeding as therein we arrive at

E
[

exp

(∫ ∞

−∞
12La

T (W̃ x)2

β
da

) ∣∣∣ W̃ x
T = y

]1/3

≤ CeC|x−y|, (4.20)

with a constant C = C(β,T ) < ∞. Also, we see from [28, equation (3)] that the density of the local time at 0 of a
Brownian bridge from x′ to y′ on [0,1] is

(
z + x′ + y′) exp

(
1

2

((
x′ − y′)2 − (

z + x′ + y′)2))
, z > 0 (4.21)

and from (4.10) that this local time vanishes with probability 1 − e−2x′y′
. Hence,

E
[
exp

(
θL0

1

(
W̃ x′)) | W̃ x′

1 = y′]
= 1 +

√
π

2
θe−2x′y′

exp

(
(x′ + y′ − θ)2

2

)(
2 − erfc

(−x′ − y′ + θ√
2

))
≤ C(θ) < ∞ (4.22)

due to standard estimates for the complementary error function. All in all, it follows that the left-hand side in (4.14)
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is less or equal to∫ ∞

0

∫ ∞

0
C exp

(
− (x − y)2

C
− x ∧ y

C
+ C|x − y|

)
dx dy < ∞, (4.23)

where C = C(β,w,T ) is a finite positive constant.
We turn to the proof of the semigroup property in Proposition 1.10(b) and assume without loss of generality

T1, T2 > 0. By the just established Hilbert–Schmidt property, it suffices to verify that, almost surely,

Uβ;w
T1

Uβ;w
T2

f = Uβ;w
T1+T2

f (4.24)

on a countable dense set of functions f ∈ L2([0,∞)). Fixing such a function f , writing it as the difference of its
positive and negative parts, and applying Fubini’s theorem we reduce the statement of Proposition 1.10(b) further to∫ ∞

0
K

β;w
T1

(x, z)K
β;w
T2

(z, y)dz = K
β;w
T1+T2

(x, y), x, y ≥ 0. (4.25)

Let us introduce the transition kernels

γT (x, y) := exp(− (x−y)2

2T
) + exp(− (x+y)2

2T
)√

2πT
, x, y ≥ 0, T > 0 (4.26)

and the additive functionals

FT

(
Rx

) := −
∫ T

0

Rx
t

2
dt +

∫ ∞

0

La
T (Rx)√

β
dWa − w

L0
T (Rx)

2
, T > 0. (4.27)

Then,∫ ∞

0
K

β;w
T1

(x, z)K
β;w
T2

(z, y)dz

= γT1+T2(x, y)

·
∫ ∞

0

γT1(x, z)γT2(z, y)

γT1+T2(x, y)
ERx

[
eFT1 (Rx) | Rx

T1
= z

]
ERz

[
eFT2 (Rz) | Rz

T2
= y

]
dz. (4.28)

To identify the right-hand side of (4) with K
β;w
T1+T2

(x, y) it remains to notice that the process (Rx
t : t ∈ [0, T1 + T2] |

Rx
T1+T2

= y) therein can be sampled by

(a) picking a random point Z according to the density
γT1 (x,z)γT2 (z,y)

γT1+T2 (x,y)
, z > 0,

(b) conditional Z = z, sampling processes R(1), R(2) independently such that(
R

(1)
t : t ∈ [0, T1]

) d= (
Rx

t : t ∈ [0, T1] | Rx
T1

= z
)
, (4.29)(

R
(2)
t : t ∈ [0, T2]

) d= (
Rz

t : t ∈ [0, T2] | Rz
T1

= y
)
, (4.30)

(c) concatenating the paths of R(1) and R(2).

As with the semigroup property, for each T > 0, the symmetry property of the operator UT can be reduced to an
assertion about its kernel:

K
β;w
T (x, y) = K

β;w
T (y, x), x, y ≥ 0. (4.31)
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Since the transition kernels γT ′ , T ′ > 0 of the reflected Brownian motion R are symmetric, we have

(
Rx

t : t ∈ [0, T ] | Rx
T = y

) d= (
R

y
T −t : t ∈ [0, T ] | Ry

T = x
)
, (4.32)

and therefore (4.31). Finally, the non-negativity of Uβ;w
T follows by extending∫ ∞

0

(
Uβ;w

T f
)
(x)f (x)dx =

∫ ∞

0

(
Uβ;w

T/2

(
Uβ;w

T/2 f
))

(x)f (x)dx

=
∫ ∞

0

((
Uw;β

T/2 f
)
(x)

)2
dx ≥ 0, (4.33)

for a fixed f ∈ L2([0,∞)), to the same almost sure property for all f ∈ L2([0,∞)) simultaneously, by means of the
almost sure Hilbert–Schmidt property of Uβ;w

T .

(d) To obtain the almost sure trace class property of Uβ;w
T and the trace formula (1.21) we combine the spectral

theorem for symmetric compact operators with the definition of the trace to find

Tr
(
Uβ;w

T

) =
∞∑

q=1

e−T �q/2. (4.34)

The latter sum is the square of the Hilbert–Schmidt norm of the symmetric Hilbert–Schmidt operator Uβ;w
T/2 (see e.g.

[25, Section 28, Exercise 11]) and, thus, equals to∫ ∞

0

∫ ∞

0
K

β;w
T/2 (x, y)K

β;w
T/2 (y, x)dy dx =

∫ ∞

0
K

β;w
T (x, x)dx. (4.35)

(e) For the L2-strong continuity in expectation of (1.22), without loss of generality we fix an integer p ≥ 2, an f

with ‖f ‖L2([0,∞)) = 1, and a sequence (tη)η∈N in [0, T + 1] converging to T such that tη > 0 for at least one η. Then,

by applying [25, Section 28, Theorem 7] to the commuting symmetric operators Uβ;w
tη

, η ∈ N and Uβ;w
T , with at least

one Uβ;w
tη

being compact, we can write f as
∑∞

q=1 cqfq , where fq , q ∈ N form an orthonormal basis of common

eigenfunctions for Uβ;w
tη

, η ∈ N and Uβ;w
T , and cq , q ∈ N are the corresponding coefficients. By Jensen’s inequality,

E
[∥∥Uβ;w

T f − Uβ;w
tη

f
∥∥p

L2([0,∞))

] = E

[( ∞∑
q=1

c2
q

(
e−T �q/2 − e−tη�q/2)2

)p/2]

≤ E

[ ∞∑
q=1

c2
q

(
e−T �q/2 − e−tη�q/2)p]. (4.36)

The random variable (ω, q) �→ (e−T �q(ω)/2 − e−tη�q(ω)/2)p tends to 0 in the η → ∞ limit P × ∑∞
q=1 δc2

q
almost

surely. Its uniform integrability is due to

E

[ ∞∑
q=1

c2
q

(
e−T �q/2 − e−tη�q/2)2p

]
≤ 22p−1E

[
2
(
e−p(T +1)�1 + 1

)]
(4.37)

and a bound on e−p(T +1)�1 by the squared Hilbert–Schmidt norm of Uβ;w
p(T +1)

, whose expectation has been controlled
in the proof of part (c). �
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5. Functionals of the reflected Brownian bridge

In this section, we prove Theorem 1.13, Proposition 1.12 and Corollary 1.15, in the order stated. The key ingredient
in the proof of Theorem 1.13 is the next lemma, which extends an argument of Hariya [17].

Lemma 5.1. Let rt , t ∈ [0,1] be a reflected Brownian bridge, α > 0 and ψα be the joint moment-generating function
of (∫ 1

0
rt dt,

∫ ∞

0
La

1(r)2 da | L0
1(r) = α

)
. (5.1)

Then, with the three-dimensional Bessel bridge

db
α/2
t = 1

b
α/2
t

dt − b
α/2
t

1 − t
dt + dW̃t , b

α/2
0 = α/2 (5.2)

and the joint moment-generating function ψ̃α of (
∫ 1

0 b
α/2
t dt,

∫ 1
0 W̃t dt), it holds

ψα(θ1, θ2) = e−αθ1/4ψ̃α(θ1 + 2θ2,−θ1/2), θ1, θ2 ∈R. (5.3)

Proof. Define the function

h(a) :=
∫ 1

0
1{rt≤a} dt =

∫ a

0
La′

1 (r)da′, (5.4)

as well as the corresponding quantile function h−1(t) := inf{a ≥ 0 : h(a) ≥ t}. In [29, Corollary 16(iii)] (see also [30,
equation (8.20)]), Pitman shows that(

1

2
L

h−1(t)
1 (r) : t ∈ [0,1] | L0

1(r) = α

)
d= (

b
α/2
t : t ∈ [0,1]), (5.5)

which extends Jeulin’s theorem beyond the α = 0 case. Relying on (5.5) we find(
1

2

∫ 1

0

1 − t

b
α/2
t

dt,

∫ 1

0
b

α/2
t dt

)
d=
(∫ 1

0

1 − t

L
h−1(t)
1 (r)

dt,
1

2

∫ 1

0
L

h−1(t)
1 (r)dt

∣∣∣ L0
1(r) = α

)

=
(∫ ∞

0

1 − h(a)

La
1(r)

h′(a)da,
1

2

∫ ∞

0
La

1(r)h′(a)da

∣∣∣ L0
1(r) = α

)
=

(∫ ∞

0
1 − h(a)da,

1

2

∫ ∞

0
La

1(r)2 da

∣∣∣ L0
1(r) = α

)
=

(∫ ∞

0

∫ 1

0
1{rt>a} dt da,

1

2

∫ ∞

0
La

1(r)2 da

∣∣∣ L0
1(r) = α

)
=

(∫ 1

0
rt dt,

1

2

∫ ∞

0
La

1(r)2 da

∣∣∣ L0
1(r) = α

)
. (5.6)

On the other hand, (5.2) implies∫ 1

0
(1 − t)db

α/2
t =

∫ 1

0

1 − t

b
α/2
t

dt −
∫ 1

0
b

α/2
t dt +

∫ 1

0
(1 − t)dW̃t . (5.7)
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Using integration by parts for the two stochastic integrals and rearranging we get∫ 1

0

1 − t

b
α/2
t

dt = −α

2
+ 2

∫ 1

0
b

α/2
t dt −

∫ 1

0
W̃t dt. (5.8)

Finally, a sequential application of (5.6) and (5.8) yields

E
[

exp

(
θ1

∫ 1

0
rt dt + θ2

∫ ∞

0
La

1(r)2 da

) ∣∣∣ L0
1(r) = α

]
= E

[
exp

(
θ1

2

∫ 1

0

1 − t

b
α/2
t

dt + 2θ2

∫ 1

0
b

α/2
t dt

)]

= e−αθ1/4E
[

exp

(
(θ1 + 2θ2)

∫ 1

0
b

α/2
t dt − θ1

2

∫ 1

0
W̃t dt

)]
, (5.9)

that is, (5.3). �

Theorem 1.13 can be now obtained from Lemma 5.1 as follows.

Proof of Theorem 1.13. The case α = 0 is the subject of [16, Corollary 2.15], [17, Theorem 1.1], so we focus on the
α > 0 case. By Lemma 5.1, for every θ ∈R,

E
[

exp

(
θ

∫ 1

0
rt dt − θ

2

∫ ∞

0
La

1(r)
2 da

)
| L0

1(r) = α

]
= e−αθ/4ψ̃α(0,−θ/2). (5.10)

Since
∫ 1

0 W̃t dt is Gaussian with mean 0 and variance 1
3 , the right-hand side of (5.10) equals to e−αθ/4+θ2/24, the

moment-generating function of a Gaussian random variable with mean −α/4 and variance 1/12. �

We conclude the paper with the proofs of Proposition 1.12 and Corollary 1.15.

Proof of Proposition 1.12. Let r̃t , t ∈ [0, T ] be a reflected Brownian bridge from 0 to 0 on [0, T ]. By the definition
of K

β;w
T in (1.15),

K
β;w
T (0,0) =

√
2

πT
Er̃

[
exp

(
−
∫ T

0

r̃t

2
dt +

∫ ∞

0

La
T (̃r)√

β
dWa − w

L0
T (̃r)

2

)]
. (5.11)

Conditional on r̃ , the integral
∫ ∞

0
La

T (̃r)√
β

dWa is Gaussian with mean 0 and variance
∫ ∞

0
La

T (̃r)2

β
da. Hence, by taking

the expectation with respect to W first, we find

E
[
K

β;w
T (0,0)

] =
√

2

πT
E
[

exp

(
−
∫ T

0

r̃t

2
dt +

∫ ∞

0

La
T (̃r)2

2β
da − w

L0
T (̃r)

2

)]
. (5.12)

At this point, the proposition is a consequence of(∫ T

0
r̃t dt,

∫ ∞

0
La

T (̃r)2 da,L0
T (̃r)

)
d=
(

T 3/2
∫ 1

0
rt dt, T 3/2

∫ ∞

0
La

1(r)2 da,T 1/2L0
1(r)

)
, (5.13)

which, in turn, is due to the scaling property of (reflected) Brownian bridges. �
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Proof of Corollary 1.15. In view of (4.21), the local time L0
1(r) is a continuous random variable with the density

α
4 e−α2/8 on (0,∞). Using this and Theorem 1.13 for the right-hand side of (1.12) we compute

E
[
K

2;w
T (0,0)

] =
√

2

πT

∫ ∞

0

α

4
e−α2/8 exp

(
−T 1/2w

α

2

)
· E

[
exp

(
−T 3/2

2

(∫ T

0
rt dt − 1

2

∫ ∞

0
La

1(r)da

)) ∣∣∣ L0
1(r) = α

]
dα

=
√

2

πT

∫ ∞

0

α

4
e−α2/8 exp

(
−T 1/2w

α

2
+ T 3/2α

8
+ T 3

96

)
dα

=
e

T 3
96 (8 + √

2πeT (T −4w)2/32
√

T (T − 4w)(erf(
√

T (T −4w)

4
√

2
) + 1))

4
√

2πT
, (5.14)

which simplifies to the right-hand side of (1.15). �
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