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Abstract. We study some jumping SDE and the corresponding Fokker–Planck (or Kolmogorov forward) equation, which is a non-
local PDE. We assume only some measurability and growth conditions on the coefficients. We prove that for any weak solution
(ft )t∈[0,T ] of the PDE, there exists a weak solution to the SDE of which the time marginals are given by (ft )t∈[0,T ]. As a corollary,
we deduce that for any given initial condition, existence for the PDE is equivalent to weak existence for the SDE and uniqueness
in law for the SDE implies uniqueness for the PDE. This extends some ideas of Figalli (J. Funct. Anal. 254 (2008) 109–153)
concerning continuous SDEs and local PDEs.

Résumé. On étudie certaines EDS à sauts et les équations de Fokker–Planck (ou Kolmogorov progressives) correspondantes, qui
sont des EDP non-locales. On suppose seulement que les coefficients sont mesurables et à croissance au plus linéaire. On montre
que pour toute solution faible (ft )t∈[0,T ] de l’EDP, il existe une solution faible à l’EDS, dont les lois marginales sont données par
(ft )t∈[0,T ]. On en déduit que pour toute donnée initiale, l’existence pour l’EDP est équivalente à l’existence faible pour l’EDS, et
que l’unicité en loi pour l’EDS implique l’unicité pour l’EDP. Nous étendons ainsi des idées de Figalli (J. Funct. Anal. 254 (2008)
109–153) concernant des EDS continues et des EDP locales.
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1. Introduction

We consider the d-dimensional stochastic differential equation posed on some time interval [0, T ]

Xt = X0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dBs +

∫ t

0

∫
E

h(s, z,Xs−)N(ds, dz), (1)

where (Bt )t∈[0,T ] is a d-dimensional Brownian motion and N(ds, dz) is a Poisson measure on [0, T ] × E with
intensity measure dsμ(dz). The coefficients b : [0, T ]×R

d �→ R
d , σ : [0, T ]×R

d �→ S+
d and h : [0, T ]×E ×R

d �→
R

d are supposed to be at least measurable. The space E is endowed with a σ -field E and with a σ -finite measure μ and
S+

d is the set of nonnegative symmetric d × d real matrices. The Fokker–Planck (or Kolmogorov forward) equation
associated to (1) is

∂tft + div
(
b(t, ·)ft

) = 1

2

d∑
i,j=1

∂ij

([
σ(t, ·)σ ∗(t, ·)]

i,j
ft

) +Lt ft , (2)
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where Lt ft :Rd �→R is defined by∫
Rd

(Lt ft )(x)ϕ(x) dx =
∫
Rd

∫
E

[
ϕ
(
x + h(t, z, x)

) − ϕ(x)
]
ft (x)μ(dz) dx

for any reasonable ϕ :Rd �→R. We use the notation ∇ = ∇x , div = divx and ∂ij = ∂2
xixj

.

Let P(Rd) be the set of probability measures on R
d and

P1
(
R

d
) = {

f ∈P
(
R

d
) : m1(f ) < ∞}

with m1(f ) :=
∫
Rd

|x|f (dx).

We define L∞([0, T ],P1(R
d)) as the set of all measurable families (ft )t∈[0,T ] of probability measures on R

d such
that sup[0,T ] m1(ft ) < ∞.

1.1. Main result

We will suppose the following conditions.

Assumption 1.1. The functions σ : [0, T ] × R
d �→ S+

d , b : [0, T ] × R
d �→ R

d and h : [0, T ] × E × R
d �→ R

d are
measurable and there is a constant C such that for all (t, x) ∈ [0, T ] ×R

d ,

∣∣σ(t, x)
∣∣ + ∣∣b(t, x)

∣∣ +
∫

E

∣∣h(t, z, x)
∣∣μ(dz) ≤ C

(
1 + |x|).

We set a(t, x) = σ(t, x)σ ∗(t, x), which satisfies |a(t, x)| ≤ C(1 + |x|2).

Definition 1.2. Suppose Assumption 1.1. A measurable family (ft )t∈[0,T ] of probability measures on R
d is called a

weak solution to (2) if for all ϕ ∈ C2
c (Rd), all t ∈ [0, T ],∫

Rd

ϕ(x)ft (dx) =
∫
Rd

ϕ(x)f0(dx) +
∫ t

0

∫
Rd

[
Asϕ(x) +Bsϕ(x)

]
fs(dx)ds, (3)

with the diffusion operator Asϕ(x) := b(s, x) · ∇ϕ(x) + 1
2

∑d
i,j=1 aij (s, x)∂ij ϕ(x) and the jump operator Bsϕ(x) :=∫

E
[ϕ(x + h(s, z, x)) − ϕ(x)]μ(dz).

We will check the following facts in the Appendix, implying in particular that (3) makes sense.

Remark 1.3. Suppose Assumption 1.1.

(i) For ϕ ∈ C2
c (Rd), sup[0,T ]×Rd (|Asϕ(x)| + |Bsϕ(x)|) < ∞.

(ii) Any weak solution (ft )t∈[0,T ] to (2) starting from f0 ∈ P1(R
d) belongs to L∞([0, T ],P1(R

d)).
(iii) If f0 ∈ P1(R

d), the weak formulation (3) automatically extends to all functions ϕ ∈ C2(Rd) such that (1 +
|x|)[|ϕ(x)| + |∇ϕ(x)| + |D2ϕ(x)|] is bounded.

Point (iii) is far from optimal, but sufficient for our purpose. Our main result reads as follows.

Theorem 1.4. Suppose Assumption 1.1 and consider any weak solution (ft )t∈[0,T ] to (2) such that f0 ∈P1(R
d). There

exist, on some probability space (�,F, (Ft )t∈[0,T ],P), a d-dimensional (Ft )t∈[0,T ]-Brownian motion (Bt )t∈[0,T ],
a (Ft )t∈[0,T ]-Poisson measure N(dt, dz) on [0, T ] × E with intensity measure dtμ(dz), these two objects being
independent, as well as a càdlàg (Ft )t∈[0,T ]-adapted process (Xt )t∈[0,T ] solving (1) and such that L(Xt ) = ft for all
t ∈ [0, T ].

For (Xt )t∈[0,T ] a solution to (1) and for ft = L(Xt ), a simple application of the Itô formula (to compute∫
Rd ϕ(x)ft (dx) = E[ϕ(Xt)] with ϕ ∈ C2

c (Rd)) shows that the family (ft )t∈[0,T ] is a weak solution to (2). The fol-
lowing corollary is thus immediately deduced from Theorem 1.4.
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Corollary 1.5. Suppose Assumption 1.1 and fix f0 ∈ P1(R
d).

(i) The existence of a (weak) solution (Xt )t∈[0,T ] to (1) such that L(X0) = f0 is equivalent to the existence of a weak
solution (ft )t∈[0,T ] to (2) starting from f0.

(ii) The uniqueness (in law) of the solution (Xt )t∈[0,T ] to (1) with L(X0) = f0 implies the uniqueness of the weak
solution (ft )t∈[0,T ] to (2) starting from f0.

In almost all models arising from applied sciences, the jump operator is given under the form Bsϕ(x) =∫
F
[ϕ(x + g(s, y, x)) − ϕ(x)]κ(s, y, x)ν(dy), meaning that when in the position x at time s, the process jumps

to x + g(s, y, x) at rate κ(s, y, x)ν(dy). Here F is a measurable space endowed with a σ -finite measure ν and
we have two measurable functions g : [0, T ] × F × R

d �→ R
d and κ : [0, T ] × F × R

d �→ R+. Introducing
E = F × R+, μ(dy, du) = ν(dy)du and h(s, (y,u), x) = g(s, y, x)1{u≤κ(s,y,x)}, one easily verifies that Bsϕ(x) =∫
E
[ϕ(x + h(s, (y,u), x)) − ϕ(x)]μ(dy, du). Our results thus apply if

∫
F

|g(s, y, x)|κ(s, y, x)ν(dy) ≤ C(1 + |x|).

1.2. Motivation

Stochastic differential equations with jumps are now playing an important role in modeling and applied sciences. We
refer to the book of Situ [11] for all basic results and a lot of possible applications. The book of Jacod [8] contains
many important results about weak and strong existence and uniqueness, relations between SDEs and martingale
problems, etc. See also the survey paper of Bass [2].

Existence for PDEs is often more developed than for SDEs, so Theorem 1.4 might be useful to derive some new
weak existence results for the SDE (1).

Our main motivation is the uniqueness for some nonlinear PDEs, for which the use of nonlinear (in the sense of
McKean) SDEs has proved to be a powerful tool. For example, the first (partial) uniqueness result concerning the
homogeneous Boltzmann for long range interactions was derived by Tanaka [13]. He was studying the simplest case
of Maxwell molecules. Unfortunately, he was only able to prove the uniqueness in law of the nonlinear SDE associated
to the Boltzmann equation. Horowitz and Karandikar [7] were able to deduce the uniqueness for the (same) Boltzmann
equation proceeding as follows. Let us recall that the original equation writes ∂tft = Q(ft , ft ), for some quadratic
nonlocal operator Q. For f a solution, they consider the linear PDE ∂tgt = Q(gt , ft ), with unknown g satisfying
g0 = f0. They prove uniqueness in law for the (linear) SDE associated to this PDE (for any initial condition). They
deduce, extending some results of Ethier and Kurtz [4, Chapter 4, Propositions 9.18 and 9.19], the uniqueness for
the linear PDE (for any initial condition). So the unique solution (with g0 = f0) to ∂tgt = Q(gt , ft ) is f itself.
Consequently, the time marginals of the solution X to the linear SDE (when X0 ∼ f0), which solve ∂tgt = Q(gt , ft )

are necessarily (ft )t∈[0,T ]. Thus X actually solves the nonlinear SDE. Since uniqueness in law holds for the nonlinear
SDE by Tanaka [13], they deduce that there is at most one solution to the Boltzmann equation ∂tft = Q(ft , ft ), for
some given reasonable initial condition f0.

Let us recall that the above mentioned results of Ethier and Kurtz (extended by Horowitz and Karandikar [7,
Theorem B1] and by Bhatt and Karandikar [3, e.g. Theorems 4.1 and 5.2]) state in spirit that if some SDE has a unique
solution (in law) for any deterministic initial condition, then the corresponding PDE has a unique weak solution for
any reasonable initial condition.

Our result is much stronger, since it does not require at all uniqueness for (1). If, for example, studying the Boltz-
mann equation, it directly implies that, to any solution f to the nonlinear equation (seen here as a solution to the linear
equation ∂tgt = Q(gt , ft )), we can associate a solution X to the corresponding linear SDE with additionally Xt ∼ ft

for all t . In other words, X solves the nonlinear SDE. This might look anodyne, but this was crucial when studying
more singular nonlinear equations, such as the Landau or Boltzmann equations for moderately soft potentials, see [6]
and [14]. Indeed, in such cases, we really need to use some physical symmetries to prove uniqueness: it is absolutely
not clear that uniqueness holds for the linear PDE ∂tgt = Q(gt , ft ), since one really uses that the two arguments of Q

are the same.
We hope the above discussion shows that Theorem 1.4 is an interesting variation of the mentioned results of Ethier

and Kurtz [4]. As already said, the method we use was initiated by Figalli [5] for continuous SDEs (h = 0) with
bounded coefficients. The boundedness assumption was relaxed in [6, Appendix B]. A special jumping SDE (with
a = b = 0 and a special jump operator) was considered in [14] to study a singular homogeneous Boltzmann equation.
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We decided to write down the general case in the present paper. We did not want to assume some boundedness of
the coefficients, although it complicates the proofs without introducing new deep ideas, because it is very useful for
practical purposes.

Finally, as explained in the next subsection, we are not able to prove a general result when the jump part of the
SDE has infinite variations, and this is a rather important limitation.

1.3. Strategy of the proof and plan of the paper

At many places, the situation is technically more involved, but the global strategy is exactly the same as that introduced
by Figalli [5, Theorem 2.6]. Let (ft )t∈[0,T ] be a given weak solution to (2).

I. In Section 2, we introduce f ε
t = ft 	 φε , where φε is the centered Gaussian density with covariance matrix εId .

We compute the PDE satisfied by f ε
t : we find that ∂tf

ε
t + div(bε(t, ·)ft ) = 1

2

∑
i,j ∂i,j (a

ε
i,j (t, ·)ft ) + Lε

t f
ε
t , for

some coefficients aε , bε and some jump operator Lε
t . Let us mention that aε(t, ·), bε(t, ·) and Lε

t of course depend
on ft .

II. Still in Section 2, we prove that aε , bε and the coefficient of the jump operator Lε satisfy
(i) the same linear growth conditions as a, b, L, uniformly in ε ∈ (0,1),

(ii) some (non-uniform) local Lipschitz conditions.
III. In Section 3, we use II to build, for each ε ∈ (0,1), a solution (Xε

t )t∈[0,T ] to some SDE of which the Fokker–
Planck equation is the PDE satisfied by (f ε

t )t∈[0,T ]. Since both the SDE and the PDE (with ε ∈ (0,1) fixed)
are well-posed (because the coefficients are regular enough), we conclude that L(Xε

t ) = f ε
t . Indeed, the time

marginals of (Xε
t )t∈[0,T ] satisfy the same PDE as (f ε

t )t∈[0,T ].
IV. Still in Section 3, we prove that the family {(Xε

t )t∈[0,T ], ε ∈ (0,1)} is tight. This is rather easy from the Aldous
criterion [1], using only II-(ii).

V. In Section 4, we finally consider a limit point (Xt )t∈[0,T ], as ε → 0, of {(Xε
t )t∈[0,T ], ε ∈ (0,1)}. Since L(Xε

t ) = f ε
t

by III, we deduce that L(Xt ) = ft for each t ∈ [0, T ]. It then remains to show that (Xt )t∈[0,T ] is a weak solution
to (1) and we classically make use of martingale problems. Since the coefficients a, b,h are possibly rough, we
have to approximate them by some continuous (in x) coefficients ã, b̃, h̃. We use that we already know the time
marginals of (Xt )t∈[0,T ]: we can take ã(t, ·), b̃(t, ·) and h̃(t, ·, z) close to a(t, ·), b(t, ·) and h(t, ·, z) in L1(ft ).

The proof of Remark 1.3 is written in the Appendix.
To conclude this paragraph, let us mention a few difficulties. The regularized jump operator, in its weak form

writes
∫
Rd Lε

t f
ε
t (y)ϕ(y) dy = ∫

Rd

∫
Rd

∫
E
[ϕ(y +h(t, z, x))−ϕ(y)]φε(x −y)f ε

t (dx) dy. We found no regular Poisson
representation of the associated SDE. We use an indicator function, see (4). This is why we are not able to treat the
case of an infinite variation jump term: we do not know how to prove that a SDE like (4), with a compensated Poisson
measure and some weaker condition on h (something like

∫
E

|h(s, z, x)|2μ(dz) ≤ C(1 + |x|2)), is well-posed.
Although this should be classical since the coefficients are rather regular for ε ∈ (0,1) fixed, we found no reference

about the uniqueness for the PDE satisfied by (f ε
t )t∈[0,T ] (see Lemma 2.1). We have not been able to write down a

deterministic proof. We thus use that the corresponding SDE is well-posed (for any deterministic initial condition)
and we apply a result of Horowitz and Karandikar [7].

1.4. Convention

During the whole paper, we always suppose Assumption 1.1 and that f0 ∈P1(R
d). We use the generic notation C for a

positive finite constant, of which the value may change from line to line. It is allowed to depend only on the dimension
d , on the parameters a, b,h,E,μ,T of our equations, and on the weak solution (ft )t∈[0,T ] to (2) under study. When
a constant depends on another parameter, we indicate it in subscript. For example, Cε is a constant allowed to depend
only on a, b,h,E,μ,T , (ft )t∈[0,T ] and on ε.

2. Regularization

We introduce the following regularization procedure, as Figalli in [5], see also [14].
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Lemma 2.1. For (ft )t∈[0,T ] ∈ L∞([0, T ],P1(R
d)) a weak solution to (2) and ε ∈ (0,1), we set

f ε
t (y) :=

∫
Rd

φε(x − y)ft (dx) = (ft 	 φε)(y) with φε(x) = (2πε)−d/2e−|x|2/(2ε).

Then for any test function ψ ∈ C2
c (Rd), any t ∈ [0, T ],∫

Rd

ψ(y)f ε
t (y) dy =

∫
Rd

ψ(y)f ε
0 (y) dy +

∫ t

0

∫
Rd

[
As,εψ(y) +Bs,εψ(y)

]
f ε

s (y) dy ds,

with

At,εψ(y) = bε(t, y) · ∇ψ(y) + 1

2

d∑
i,j=1

aε
ij (t, y)∂ijψ(y),

Bt,εψ(y) =
∫

E

∫
Rd

[
ψ

(
y + h(t, z, x)

) − ψ(y)
]
Fε

t (x, y)ft (dx)μ(dz),

where

aε(t, y) =
∫
Rd φε(x − y)a(t, x)ft (dx)

f ε
t (y)

, bε(t, y) =
∫
Rd φε(x − y)b(t, x)ft (dx)

f ε
t (y)

,

F ε
t (x, y) := φε(x − y)

f ε
t (y)

.

Proof. It is obvious that f ε
t (y) > 0 for each (t, y) ∈ [0, T ]×R

d . We first apply (3) with the choice ϕ(x) = φε(x − y)

(with some fixed y ∈ R
d ), which is licit by Remark 1.3-(iii). We then integrate the obtained equality against ψ ∈

C2
c (Rd). This gives∫

Rd

ψ(y)f ε
t (y) dy =

∫
Rd

ψ(y)f ε
0 (y) dy +

∫ t

0
(Is + Js) ds,

where

It :=
∫
Rd

∫
Rd

ψ(y)Atφε(x − y)ft (dx) dy and Jt :=
∫
Rd

∫
Rd

ψ(y)Bt φε(x − y)ft (dx) dy.

First,

It =
∫
Rd

∫
Rd

ψ(y)b(t, x) · ∇φε(x − y)ft (dx) dy + 1

2

∫
Rd

∫
Rd

d∑
i,j=1

ψ(y)aij (t, x)∂ijφε(x − y)ft (dx) dy.

But we have
∫
Rd ψ(y)∇φε(x − y)dy = ∫

Rd φε(x − y)∇ψ(y)dy as well as
∫
Rd ψ(y)∂ijφε(x − y)dy = ∫

Rd φε(x −
y)∂ijψ(y)dy, so that

It =
∫
Rd

∫
Rd

φε(x − y)b(t, x) · ∇ψ(y)ft (dx) dy + 1

2

∫
Rd

∫
Rd

d∑
i,j=1

aij (t, x)φε(x − y)∂ijψ(y)ft (dx) dy

=
∫
Rd

bε(t, y) · ∇ψ(y)f ε
t (y) dy + 1

2

∫
Rd

d∑
i,j=1

aε
ij (t, y)∂ijψ(y)f ε

t (y) dy

=
∫
Rd

At,εψ(y)f ε
t (y) dy
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as desired. For the jump term, we use a similar computation as in [14, Proposition 3.1]. Since μ is σ -finite, there exists
a non-decreasing sequence (En)n≥1 ⊂ E such that

⋃∞
n=1 En = E and μ(En) < ∞ for each n ≥ 1. We fix n and write

Jt =
∫
Rd

∫
Rd

∫
En

ψ(y)φε

(
x − y + h(t, z, x)

)
μ(dz)ft (dx) dy −

∫
Rd

∫
Rd

∫
En

ψ(y)φε(x − y)μ(dz)ft (dx) dy

+
∫
Rd

∫
Rd

∫
E\En

ψ(y)
[
φε

(
x − y + h(t, z, x)

) − φε(x − y)
]
μ(dz)ft (dx) dy.

Using the change of variables y − h(t, z, x) �→ y, we see that∫
Rd

ψ(y)φε

(
x − y + h(t, z, x)

)
dy =

∫
Rd

ψ
(
y + h(t, z, x)

)
φε(x − y)dy,

and consequently,

Jt =
∫
Rd

∫
Rd

∫
En

[
ψ

(
y + h(t, z, x)

) − ψ(y)
]
φε(x − y)μ(dz)ft (dx) dy

+
∫
Rd

∫
Rd

∫
E\En

ψ(y)
[
φε

(
x − y + h(t, z, x)

) − φε(x − y)
]
μ(dz)ft (dx) dy.

Observe now that |ψ(y + h(t, z, x)) − ψ(y)|φε(x − y) ≤ C|h(t, z, x)|φε(x − y) ∈ L1(μ(dz)ft (dx) dy) and
|ψ(y)[φε(x − y + h(t, z, x)) − φε(x − y)]| ≤ Cε|ψ(y)||h(t, z, x)| ∈ L1(μ(dz)ft (dx) dy): this uses that ψ ∈ C2

c (Rd),
Assumption 1.1 and that ft ∈ P1(R

d). We thus can let n → ∞:

Jt =
∫
Rd

∫
Rd

∫
E

[
ψ

(
y + h(t, z, x)

) − ψ(y)
]
φε(x − y)μ(dz)ft (dx) dy =

∫
Rd

Bt,εψ(y)f ε
t (y) dy,

which completes the proof. �

Let us now give some growth and regularity estimates on the regularized coefficients.

Lemma 2.2. Let (ft )t∈[0,T ] ∈ L∞([0, T ],P1(R
d)) be a weak solution to (2) and recall that aε, bε,F ε were intro-

duced in Lemma 2.1.

(i) There exists a constant C > 0 such that for all ε ∈ (0,1), all y ∈ R
d , all t ∈ [0, T ],

∣∣bε(t, y)
∣∣ + ∣∣aε(t, y)

∣∣1/2 +
∫
Rd

∫
E

∣∣h(t, z, x)
∣∣Fε

t (x, y)μ(dz)ft (dx) ≤ C
(
1 + |y|).

(ii) For all ε ∈ (0,1) and R > 0, there is CR,ε > 0 such that for all y1, y2 ∈ B(0,R), all t ∈ [0, T ],
∣∣bε(t, y1) − bε(t, y2)

∣∣ + ∣∣aε(t, y1) − aε(t, y2)
∣∣ + ∣∣[aε(t, y1)

]1/2 − [
aε(t, y2)

]1/2∣∣
+

∫
Rd

∫
E

∣∣h(t, z, x)
∣∣∣∣Fε

t (x, y1) − Fε
t (x, y2)

∣∣μ(dz)ft (dx) ≤ CR,ε|y1 − y2|.

Proof. We start with (i). By Assumption 1.1,

∣∣bε(t, y)
∣∣ + ∣∣aε(t, y)

∣∣1/2 +
∫
Rd

∫
E

∣∣h(t, z, x)
∣∣Fε

t (x, y)μ(dz)ft (dx)

≤ C

∫
Rd φε(x − y)(1 + |x|)ft (dx)

f ε
t (y)

+ C

[∫
Rd φε(x − y)(1 + |x|)2ft (dx)

f ε
t (y)

]1/2

=: CIε(t, y) + CJε(t, y).
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Since for y fixed, [f ε
t (y)]−1φε(x − y)ft (dx) is a probability measure, we infer from Cauchy–Schwarz that Iε(t, y) ≤

Jε(t, y). We thus only have to prove that [Jε(t, y)]2 ≤ C(1 + |y|2). Let L := 2 sup[0,T ] m1(ft ) + 2. We use that

1 + |x| ≤ 1 + |y| + |x − y| ≤ 1 + 2|y| + L + |x − y|1{|x−y|>|y|+L}

to write

[
Jε(t, y)

]2 ≤ 2

∫
Rd (1 + 2|y| + L)2φε(x − y)ft (dx)

f ε
t (y)

+ 2

∫
|x−y|≥|y|+L

|x − y|2φε(x − y)ft (dx)

f ε
t (y)

≤ 2
(
1 + 2|y| + L

)2 + 2
(|y| + L)2φε(|y| + L)

f ε
t (y)

.

For the second term, we used that |y| + L ≥ 2 ≥ √
2ε and that z �→ |z|2φε(z) is radially symmetric and decreasing on

{|z| ≥ √
2ε}. To conclude the proof of (i), it suffices to note that

f ε
t (y) ≥

∫
|x−y|≤|y|+L

φε(x − y)ft (dx) ≥ φε

(|y| + L
)
ft

(
B

(
y, |y| + L

)) ≥ φε

(|y| + L
)
/2

because z �→ φε(z) is radially symmetric decreasing and because ft (B(y, |y| + L)) ≥ ft (B(0,L)) ≥ 1/2, since
ft (B(0,L)c) ≤ m1(ft )/L ≤ 1/2.

For point (ii), it suffices to prove that ∇yb
ε(t, y), ∇ya

ε(t, y), D2
ya

ε(t, y) are locally bounded on [0, T ] × R
d , as

well as Gε(t, y) := ∫
Rd

∫
E

|h(t, z, x)||∇yF ε
t (x, y)|μ(dz)ft (dx). No uniformity in ε is required here. By Stroock and

Varadhan [12, Theorem 5.2.3], the local boundedness of D2
ya

ε(t, y) implies that of ∇y([aε(t, y)]1/2).

First, one easily checks that y �→ (f ε
t (y))−1 is of class C∞ for each t ∈ [0, T ] and that it is locally bounded, as

well as its derivatives of order 1 and 2, on [0, T ]×R
d . This uses in particular the lower bound f ε

t (y) ≥ φε(|y|+L)/2
proved a few lines above.

Recall that by definition, we have aε(t, y) = (f ε
t (y))−1

∫
Rd φε(x − y)a(t, x)ft (dx) and bε(t, y) = (f ε

t (y))−1 ×∫
Rd φε(x − y)b(t, x)ft (dx). Recall finally that |a(t, x)| + |b(t, x)| ≤ C(1 + |x|2). So concerning aε and bε , our goal

is only to check that

Kε(t, y) :=
∫
Rd

[∣∣∇yφε(x − y)
∣∣ + ∣∣D2

yφε(x − y)
∣∣](1 + |x|2)ft (dx)

is locally bounded on [0, T ] ×R
d . But using that (1 + |z|2)[|∇φε(z)| + |D2φε(z)|] is bounded on R

d , we deduce that
[|∇yφε(x − y)| + |D2

yφε(x − y)|](1 + |x|2) ≤ Cε(1 + |y|2), whence Kε(t, y) ≤ Cε(1 + |y|2).
Next, one has |∇yF

ε
t (x, y)| ≤ Cε(f

ε
t (y))−2[φε(x − y)|∇f ε

t (y)| + f ε
t (y)|∇φε(x − y)|]. Using again that f ε

t is
smooth and positive, the goal concerning Gε is to verify that

Lε(t, y) :=
∫
Rd

∫
E

∣∣h(t, z, x)
∣∣[φε(x − y) + ∣∣∇φε(x − y)

∣∣]μ(dz)ft (dx)

is locally bounded. By Assumption 1.1,

Lε(t, y) ≤
∫
Rd

[
φε(x − y) + ∣∣∇φε(x − y)

∣∣](1 + |x|)ft (dx) ≤ Cε

(
1 + |y|)

as previously, because (1 + |z|)[φε(z) + |∇φε(z)|] is bounded. �

3. Study of the regularized equations

In this section, we build a realization of the regularized weak solution (f ε
t )t∈[0,T ].
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Proposition 3.1. Let (ft )t∈[0,T ] ∈ L∞([0, T ],P1(R
d)) be a weak solution to (2) and fix ε ∈ (0,1). Consider

(f ε
t )t∈[0,T ] and aε, bε,F ε defined in Lemma 2.1 and put σε(t, y) := (aε(t, y))1/2. Consider a random variable Xε

0, a
d-dimensional Brownian motion (Bs)s∈[0,T ] and a Poisson measure N(ds, dz, dx, du) on [0, T ] × E ×R

d × [0,∞)

with intensity measure dsμ(dz)fs(dx)du, these three objects being independent. We work with the filtration gener-
ated by Xε

0,B,N .

(i) There is a pathwise unique càdlàg adapted solution (Xε
t )t∈[0,T ] to

Xε
t = Xε

0 +
∫ t

0
bε

(
s,Xε

s

)
ds +

∫ t

0
σε

(
s,Xε

s

)
dBs

+
∫ t

0

∫
E

∫
Rd

∫ ∞

0
h(s, z, x)1{u≤Fε

s (x,Xε
s−)}N(ds, dz, dx, du). (4)

(ii) There is a constant C (not depending on ε) such that E[sup[0,T ] |Xε
t |] ≤ C(1 +E[|Xε

0|]).
(iii) If L(Xε

0) = f ε
0 , then L(Xε

t ) = f ε
t for all t ∈ [0, T ].

Proof. (i) The existence of a pathwise unique solution to (4) is more or less standard, because of the linear growth and
local Lipschitz properties of the coefficients proved in Lemma 2.2. We only prove pathwise uniqueness, the existence
being shown similarly, using a localization procedure (to make the coefficients globally Lipschitz continuous) and a
Picard iteration. Consider two solutions (Xε

t )t∈[0,T ] and (X̃ε
t )t∈[0,T ] to (4) with Xε

0 = X̃ε
0 and introduce the stopping

time τR := inf{t ∈ [0, T ] : |Xε
t | ∨ |X̃ε

t | ≥ R}, for R > 0, with the convention that inf∅ = T . Using the Burkholder–
Davis–Gundy inequality for the Brownian part, we find

E

[
sup

[0,t∧τR ]

∣∣Xε
s − X̃ε

s

∣∣] ≤ E

[∫ t∧τR

0

∣∣bε
(
s,Xε

s

) − bε
(
s, X̃ε

s

)∣∣ds + C

(∫ t∧τR

0

∣∣σε
(
s,Xε

s

) − σε
(
s, X̃ε

s

)∣∣2
ds

)1/2

+
∫ t∧τR

0

∫
E

∫
Rd

∣∣h(s, z, x)
∣∣∣∣Fε

s

(
x,Xε

s

) − Fε
s

(
x, X̃ε

s

)∣∣fs(dx)μ(dz) ds

]
.

By Lemma 2.2-(ii), we deduce that

E

[
sup

[0,t∧τR ]
∣∣Xε

s − X̃ε
s

∣∣] ≤ CR,εE

[∫ t∧τR

0

∣∣Xε
s − X̃ε

s

∣∣ds +
(∫ t∧τR

0

∣∣Xε
s − X̃ε

s

∣∣2
ds

)1/2]

≤ CR,ε(t + √
t)E

[
sup

[0,t∧τR ]
∣∣Xε

s − X̃ε
s

∣∣].
We deduce that E[sup[0,tR∧τR] |Xε

s − X̃ε
s |] = 0, where tR > 0 is such that CR,ε(tR + √

tR) = 1/2. But then, the same

computation allows us to prove that E[sup[tR∧τR,(2tR)∧τR ] |Xε
s − X̃ε

s |] = 0, etc, so that we end with E[sup[0,T ∧τR] |Xε
s −

X̃ε
s |] = 0 for each R > 0. Since limR→∞ τR = T a.s. (because (Xε

t )t∈[0,T ] and (X̃ε
t )t∈[0,T ] are assumed to be a.s. càdlàg

and thus locally bounded on [0, T ]), we conclude that E[sup[0,T ] |Xε
s − X̃ε

s |] = 0, which was our goal.
(ii) Using the Burkholder–Davis–Gundy inequality for the Brownian part, we find, for t ∈ [0, T ],

uε
t := E

[
sup
[0,t]

∣∣Xε
s

∣∣] ≤ E
[∣∣Xε

0

∣∣] +E

[∫ t

0

∣∣bε
(
s,Xε

s

)∣∣ds

]
+ CE

[(∫ t

0

∣∣σε
(
s,Xε

s

)∣∣2
ds

)1/2]

+E

[∫ t

0

∫
E

∫
Rd

∣∣h(s, z, x)
∣∣Fε

s

(
x,Xε

s−
)
fs(dx)μ(dz) ds

]
.

Inserting the estimates proved in Lemma 2.2-(i), we find, for some constant C not depending on ε ∈ (0,1) nor on
E[|Xε

0|],

uε
t ≤ E

[∣∣Xε
0

∣∣] + CE

[∫ t

0

(
1 + ∣∣Xε

s

∣∣)ds +
(∫ t

0

(
1 + ∣∣Xε

s

∣∣2)
ds

)1/2]
≤ uε

0 + C(t + √
t)

(
1 + uε

t

)
.
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With t0 > 0 such that C(t0 +√
t0) = 1/2, we conclude that uε

t0
≤ 2uε

0 + 1. One checks similarly that uε
2t0

≤ 2uε
t0

+ 1 ≤
4uε

0 + 3. Repeating the argument, we end with uε
T ≤ 2�T/t0�+1uε

0 + 2�T/t0�+1 − 1.
(iii) We now assume that L(Xε

0) = f ε
0 and we set gε

t := L(Xε
t ). A direct application of the Itô formula shows that

for all t ∈ [0, T ], recalling the notation of Lemma 2.1,

∫
Rd

ψ(y)gε
t (dy) =

∫
Rd

ψ(y)f ε
0 (dy) +

∫ t

0

∫
Rd

[
As,εψ(y) +Bs,εψ(y)

]
gε

s (dy) ds.

Recalling Lemma 2.1 again, (f ε
t )t∈[0,T ] solves the same equation. The following uniqueness result will thus complete

the proof of (iii): for any ν0 ∈ P(Rd), there exists at most one measurable family (νt )t∈[0,T ] of probability measures
such that for all ψ ∈ C2

c (Rd) and all t ∈ [0, T ],
∫
Rd

ψ(y)νt (dy) =
∫
Rd

ψ(y)ν0(dy) +
∫ t

0
ds

∫
Rd

νs(dy)
[
As,εψ(y) +Bs,εψ(y)

]
. (5)

This must be classical (because the coefficients are rather regular), but we found no reference and thus make
use of martingale problems. A càdlàg adapted R

d -valued process (Yt )t∈[0,T ] on some filtered probability space
(�,F, (Ft )t∈[0,T ],P) is said to solve MPε(ν0) if L(Y0) = ν0 and if

ψ(Yt ) −
∫ t

0

[
As,εψ(Ys) +Bs,εψ(Ys)

]
ds

is a martingale for all ψ ∈ C2
c (Rd). Due to Horowitz and Karandikar [7, Theorem B1], the following points imply

uniqueness for (5). Here C0(R
d) is the set of continuous functions from R

d to R vanishing at infinity.

(a) C2
c (Rd) is dense is C0(R

d) for the uniform convergence topology,
(b) (t, y) �→ At,εψ(y) +Bt,εψ(y) is measurable for all ψ ∈ C2

c (Rd),
(c) for each t ∈ [0, T ], At,ε +Bt,ε satisfies the maximum principle,
(d) there exists a countable family (ψk)k≥1 ⊂ C2

c (Rd) such that for all t ∈ [0, T ],
{
(ψk,At,εψk +Bt,εψk), k ≥ 1

} ⊃ {
(ψ,At,εψ +Bt,εψ),ψ ∈ C2

c

(
R

d
)}

,

where the closure in the left-hand side is under the bounded pointwise convergence,
(e) for each y0 ∈R

d , there exists a unique (in law) solution to MPε(δy0).

Points (a) and (b) are obvious. The SDE associated to MPε is precisely (4): (Yt )t∈[0,T ] solves MPε(ν0) if and only if
it is a weak solution to (4) and L(Y0) = ν0, see Jacod [8, Theorem 13.55], see also [7, Theorem A1]. Thus (e) follows
from (i). For (c), assume that ψ ∈ C2

c (Rd) attains its maximum at y0. Then Bt,εψ(y0) ≤ 0 (this is immediate) and
At,εψ(y0) ≤ 0 (because ∇ψ(y0) = 0 and, since a(t, y0) is symmetry and nonnegative,

∑
i,j aij (t, y0)∂ijψ(y0) ≤ 0).

It only remains to prove (d). Consider any countable subset (ψk)k≥1 ⊂ C2
c (Rd) dense in C2

c (Rd): for ψ ∈ C2
c (Rd)

with Supp ψ ⊂ B(0,M), there exists (ψkn)n≥1 with Supp ψkn ⊂ B(0,2M) such that

lim
n→∞

(‖ψ − ψkn‖∞ + ∥∥∇(ψ − ψkn)
∥∥∞ + ∥∥D2(ψ − ψkn)

∥∥∞
) = 0.

We will prove that (i) limn→∞ sup[0,T ] ‖At,εψkn −At,εψ‖∞ = 0, and (ii) limn→∞ sup[0,T ] ‖Bt,εψkn −Bt,εψ‖∞ = 0,
which are more than needed.

By Lemma 2.2,

∣∣At,ε(ψkn − ψ)(y)
∣∣ ≤ ∥∥∇(ψkn − ψ)

∥∥∞
∣∣bε(t, y)

∣∣1{|y|≤2M} + 1

2

∥∥D2(ψkn − ψ)
∥∥∞

∥∥aε(t, y)
∥∥1{|y|≤2M}

≤ C
∥∥∇(ψkn − ψ)

∥∥∞ + C
∥∥D2(ψkn − ψ)

∥∥∞,
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which tends to 0, implying (i). We next write, using that Supp (ψkn − ψ) ⊂ B(0,2M),∣∣(ψkn − ψ)
(
y + h(t, z, x)

) − (ψkn − ψ)(y)
∣∣ ≤ 1{|y|≤4M}

∥∥∇(ψkn − ψ)
∥∥∞

∣∣h(t, z, x)
∣∣

+ 1{|y|≥4M}‖ψkn − ψ‖∞1{|y+h(t,x,z)|≤2M}.

Observing that

1{|y|≥4M,|y+h(t,z,x)|≤2M} ≤ 1{|y|≥4M,|h(t,z,x)|≥|y|/2} ≤ 1{|y|≥4M}
2|h(t, z, x)|

|y| ,

we deduce that

∣∣Bt,ε(ψkn − ψ)(y)
∣∣ ≤ 1{|y|≤4M}

∥∥∇(ψkn − ψ)
∥∥∞

∫
E

∫
Rd

∣∣h(t, z, x)
∣∣Fε

t (x, y)ft (dx)μ(dz)

+ 1{|y|≥4M}‖ψkn − ψ‖∞
∫

E

∫
Rd

2|h(t, z, x)|
|y| Fε

t (x, y)ft (dx)μ(dz).

Recalling that
∫
E

∫
Rd |h(t, z, x)|Fε

t (x, y)ft (dx)μ(dz) ≤ C(1 + |y|) by Lemma 2.2, we find

∣∣Bt,ε(ψkn − ψ)(y)
∣∣ ≤ 1{|y|≤4M}C

(
1 + |y|)∥∥∇(ψkn − ψ)

∥∥∞ + 1{|y|≥4M}C
1 + |y|

|y| ‖ψkn − ψ‖∞

≤ C
∥∥∇(ψkn − ψ)

∥∥∞ + C‖ψkn − ψ‖∞

and the conclusion follows. �

Lemma 3.2. For (ft )t∈[0,T ] ∈ L∞([0, T ],P1(R
d)) a weak solution to (2) and ε ∈ (0,1), consider the process

(Xε
t )t∈[0,T ], with Xε

0 ∼ f ε
0 , introduced in Lemma 3.1. The family {(Xε

t )t∈[0,T ], ε > 0} is tight in D([0, T ],Rd) and
any limit point (Xt )t∈[0,T ] satisfies P(�Xt �= 0) = 0 for all t ∈ [0, T ].

Proof. We use the Aldous criterion [1], see also Jacod and Shiryaev [9, p. 356], which implies tightness and that any
limit point (Xt )t∈[0,T ] is quasi-left-continuous and thus has no deterministic jump time. It suffices to check that

(i) supε∈(0,1) E[sup[0,T ] |Xε
t |] < ∞,

(ii) limβ→0 supε∈(0,1) sup(S,S′)∈ST (β) E[|Xε
S′ − Xε

S |] = 0, where ST (β) is the set of all pairs of stopping times (S,S′)
satisfying 0 ≤ S ≤ S′ ≤ S + β ≤ T a.s.

Point (i) has already been checked in Lemma 3.1-(ii), since E[|Xε
0|] = m1(f

ε
0 ) ≤ m1(f0) + √

dε. Next, for S,S′ ∈
ST (β) and ε ∈ (0,1), we have

E
[∣∣Xε

S′ − Xε
S

∣∣] ≤ E

[∫ S+β

S

∣∣bε
(
s,Xε

s

)∣∣ds

]
+E

[∣∣∣∣
∫ S′

S

σ ε
(
s,Xε

s

)
dBs

∣∣∣∣
]

+E

[∫ S+β

S

∫
E

∫
Rd

∣∣h(s, z, x)
∣∣Fε

s

(
x,Xε

s

)
fs(dx)μ(dz) ds

]

≤ CE

[∫ S+β

S

(
1 + ∣∣Xε

s

∣∣)ds

]
+ CE

[(∫ S′

S

∣∣σε
(
s,Xε

s

)∣∣2
ds

)1/2]
,

where the last inequality follows from Lemma 2.2-(i) and the Burkholder–Davis–Gundy inequality. But |σε(s, x)|2 ≤
C|aε(s, x)| ≤ C(1 + |x|2) by Lemma 2.2-(i) again, whence

E
[∣∣Xε

S′ − Xε
S

∣∣] ≤ CE

[∫ S+β

S

(
1 + ∣∣Xε

s

∣∣)ds +
(∫ S+β

S

(
1 + ∣∣Xε

s

∣∣2)
ds

)1/2]
.

Hence E[|Xε
S′ − Xε

S |] ≤ C(β + √
β)E[sup[0,T ](1 + |Xε

s |)] ≤ C(β + √
β), which ends the proof. �
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4. Conclusion

As Figalli [5], we will need some continuous (in x) approximations of a, b and h.

Lemma 4.1. Let (ft )t∈[0,T ] ∈ L∞([0, T ],P1(R
d)) be a weak solution to (2). For all ρ > 0, we can find ã : [0, T ] ×

R
d �→ S+

d and b̃ : [0, T ]×R
d �→ R

d , both continuous and compactly supported, a set A ∈ E such that μ(A) < ∞, and
a measurable function h̃ : [0, T ] × E ×R

d �→ R
d , continuous on [0, T ] ×R

d for each z ∈ E, such that h̃(t, z, x) = 0
for all (t, z, x) ∈ [0, T ] × Ac ×R

d and∫ T

0

∫
Rd

[ |a(t, x) − ã(t, x)|
1 + |x| + ∣∣b(t, x) − b̃(t, x)

∣∣ +
∫

E

∣∣h(t, z, x) − h̃(t, z, x)
∣∣μ(dz)

]
ft (dx) dt < ρ.

Proof. For a and b, this follows from the fact, see Rudin [10, Theorem 3.14], that continuous functions with compact
support are dense in L1([0, T ] × R

d, dtft (dx)), and that both a(t, x)/(1 + |x|) and b(t, x) belong to this space by
Assumption 1.1.

Since h ∈ L1([0, T ]×E ×R
d, dtμ(dz)ft (dx)) by Assumption 1.1 and since μ is σ -finite, we can find A ∈ E such

that μ(A) < ∞ and
∫ T

0

∫
Ac

∫
Rd |h(t, z, x)|ft (dx)μ(dz) dt < ρ/3.

Next, can find a simple function g = ∑N
n=1 αn1Sn , with αn ∈ R∗, Sn ∈ B([0, T ] × R

d) ⊗ E , such that∫ T

0

∫
A

∫
Rd |g(t, z, x) − h(t, z, x)|ft (dx)μ(dz) dt < ρ/3.

But for S ∈ B([0, T ] × R
d) ⊗ E and ε > 0, there is ϕS,ε : [0, T ] × R

d × E �→ R, measurable, continuous on
[0, T ] × R

d for each z ∈ E and such that
∫ T

0

∫
A

∫
Rd |1{(t,z,x)∈S} − ϕS,ε(t, z, x)|ft (dx)μ(dz) dt < ε. Indeed, when

S = C × D with C ∈ B([0, T ] × R
d) and D ∈ E , it suffices to consider ψ continuous on [0, T ] × R

d such that∫ T

0

∫
Rd |1{(t,x)∈C} − ψ(t, x)|ft (dx) dt < ε/μ(A) and to set ϕS,ε(t, z, x) = ψ(t, x)1{z∈D}. The general case follows

from the monotone class theorem.
Finally, h̃(t, z, x) = ∑N

n=1 αnϕSn,ρ/(3|αn|2n)(t, z, x)1{z∈A} is measurable and continuous in (t, x) for each z ∈ E.
Writing∣∣h(t, z, x) − h̃(t, z, x)

∣∣ ≤ ∣∣h(t, z, x)
∣∣1{z∈Ac} + ∣∣g(t, z, x) − h(t, z, x)

∣∣1{z∈A}

+
N∑

n=1

|αn|
∣∣ϕSn,ρ/(3|αn|2n)(t, z, x) − 1{(t,z,x)∈Sn}

∣∣1{z∈A},

we conclude that
∫ T

0

∫
E

∫
Rd |h(t, z, x) − h̃(t, z, x)|ft (dx)μ(dz) dt < ρ as desired. �

We now can give the

Proof of Theorem 1.4. Let (ft )t∈[0,T ] ∈ L∞([0, T ],P1(R
d)) be a weak solution to (2). For each ε ∈ (0,1), consider

(f ε
t )t∈[0,T ] introduced in Lemma 2.1 and the process (Xε

t )t∈[0,T ] introduced in Lemma 3.1-(iii). By Lemma 3.2, we
can find a sequence (X

εn
t )t∈[0,T ] converging in law to some process (Xt )t∈[0,T ]. Since we know from Lemma 3.1 that

L(X
εn
t ) = f

εn
t for each t ∈ [0, T ], each n ≥ 1 and since f

εn
t goes weakly to ft as n → ∞ by construction, we deduce

that for all t ∈ [0, T ], L(Xt ) = ft . It thus only remains to verify that X := (Xt )t∈[0,T ] is a (weak) solution to (1).
According to the theory of martingale problems, see Jacod [8, Theorem 13.55], it classically suffices to prove that for
any ψ ∈ C2

c (Rd), the process

ψ(Xt) − ψ(X0) −
∫ t

0

[
Asψ(Xs) +Bsψ(Xs)

]
ds

is a martingale in the filtration Ft = σ(Xs, s ≤ t). Our goal is thus to check that for any 0 ≤ s1 ≤ · · · ≤ sk ≤ s ≤ t ≤ T ,
any ψ1, . . . ,ψk ∈ Cb(R

d) and any ψ ∈ C2
c (Rd), we have E[K(X)] = 0, where K :D([0, T ],Rd) �→ R is defined by

K(λ) :=
(

k∏
i=1

ψi(λsi )

)(
ψ(λt ) − ψ(λs) −

∫ t

s

[
Arψ(λr) +Brψ(λr)

]
dr

)
.
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We fix ρ > 0 and consider ã, b̃ and h̃ introduced in Lemma 4.1. We introduce Ãs and B̃s exactly as in Definition 1.2
with ã, b̃ and h̃ instead of a, b and h. We define ãε , b̃ε , Ãs,ε and B̃s,ε exactly as in Lemma 2.1, with everywhere ã,
b̃ and h̃ instead of a, b and h. Finally, we define K̃ (resp. K̃ε , resp. Kε) exactly as K with Ar and Br replaced by Ãr

and B̃r (resp. by Ãr,ε and B̃r,ε , resp. by Ar,ε and Br,ε).
First, E[Kεn(X

εn)] = 0. Indeed, since Xε = (Xε
t )t∈[0,T ] solves (4), by the Itô formula,

ψ
(
Xε

t

) −
∫ t

0

[
Ar,ε

(
Xε

r

) +Br,ε

(
Xε

r

)]
dr

= ψ
(
Xε

t

) −
∫ t

0
bε

(
r,Xε

r

) · ∇ψ
(
Xε

r

)
dr − 1

2

d∑
i,j=1

∫ t

0
aε
ij

(
r,Xε

r

)
∂ijψ

(
Xε

r

)
dr

−
∫ t

0

∫
E

∫
Rd

[
ψ

(
Xε

r + h(s, z, x)
) − ψ

(
Xε

r

)]
Fε

s

(
x,Xε

r

)
fr(dx)μ(dz) dr

is a martingale, which implies the claim. We thus may write, for each n ≥ 1,

∣∣E[
K(X)

]∣∣ ≤ ∣∣E[
K(X)

] −E
[
K̃(X)

]∣∣ + ∣∣E[
K̃(X)

] −E
[
K̃

(
Xεn

)]∣∣
+ ∣∣E[

K̃
(
Xεn

)] −E
[
K̃εn

(
Xεn

)]∣∣ + ∣∣E[
K̃εn

(
Xεn

)] −E
[
Kεn

(
Xεn

)]∣∣.
We now study the four terms. We denote by M a constant such that Supp ψ ⊂ B(0,M). We also define φ(z) =

(2π)−d/2e−|z|2/2, so that φε(z) = ε−d/2φ(ε−1/2z).
Step 1. Here we prove that limn→∞ E[K̃(Xεn)] = E[K̃(X)]|. Since Xεn goes in law to X by construction, it suffices

to verify that K̃ is bounded and a.s. continuous at X.
Since ã, b̃ and h̃ are continuous in space and time, we easily deduce that (r, x) �→ Ãrψ(x) and (r, x) �→ B̃rψ(x)

are continuous and bounded on [0, T ]×R
d . For Ãrψ(x) = b̃(r, x) · ∇ψ(x)+ 1

2

∑
i,j ãij (r, x)∂ijψ(x) this is obvious,

and for B̃rψ(x) = ∫
E
[ψ(x + h̃(r, z, x)) − ψ(x)]μ(dz) = ∫

A
[ψ(x + h̃(r, z, x)) − ψ(x)]μ(dz), this follows from the

Lebesgue theorem, because ψ is bounded and μ(A) < ∞.
We easily deduce that K̃ is bounded, and that it is continuous at each λ ∈ D([0, T ],Rd) which does not jump at

s1, . . . , sk, s, t . This is a.s. the case of X, see Lemma 3.2.
Step 2. Here we check that �1 := |E[K(X)] − E[K̃(X)]| ≤ Cρ for some constant C. We have, since Supp ψ ⊂

B(0,M),

∣∣K(λ) − K̃(λ)
∣∣ ≤ C

∫ t

0

[∣∣Arψ(λr) − Ãrψ(λr)
∣∣ + ∣∣Brψ(λr) − B̃rψ(λr)

∣∣]dr

≤ C

∫ t

0

(∣∣a(r, λr ) − ã(r, λr )
∣∣ + ∣∣b(r, λr) − b̃(r, λr )

∣∣)1{|λr |<M} dr

+ C

∫ t

0

∫
E

∣∣h(r, z, λr ) − h̃(r, z, λr )
∣∣μ(dz)dr.

Using now that 1{|x|<M} ≤ C(1 + |x|)−1 and that L(Xr) = fr for each r ∈ [0, T ], we conclude that

�1 ≤ C

∫ t

0

∫
Rd

( |a(r, x) − ã(r, x)|
1 + |x| + ∣∣b(r, x) − b̃(r, x)

∣∣)fr(dx)dr

+ C

∫ t

0

∫
E

∫
Rd

∣∣h(r, z, x) − h̃(r, z, x)
∣∣fr(dx)μ(dz) dr.

This is smaller than Cρ by Lemma 4.1.
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Step 3. Now we verify that for all n ≥ 1, �n
2 = |E[K̃εn(X

εn)] −E[Kεn(X
εn)]| ≤ Cρ. As in Step 2,

�n
2 ≤ C

∫ t

0

∫
Rd

( |aεn(r, y) − ãεn(r, y)|
1 + |y| + ∣∣bεn(r, y) − b̃εn(r, y)

∣∣)f εn
r (y) dy dr

+ C

∫ t

0

∫
E

∫
Rd

∫
Rd

∣∣h(r, z, x) − h̃(r, z, x)
∣∣φεn(x − y)

f
εn
r (y)

fr(dx)f εn
r (y) dyμ(dz) dr.

Recalling (see Lemma 2.1) that aεn(r, y)f
εn
r (y) = ∫

Rd φεn(x − y)a(r, x)fr(dx), that ãεn(r, y)f
εn
r (y) = ∫

Rd φεn(x −
y)ã(r, x)fr (dx) and similar formulas for bεn(r, y)f

εn
r (y) and b̃εn(r, y)f

εn
r (y), we find

�n
2 ≤ C

∫ t

0

∫
Rd

∫
Rd

( |a(r, x) − ã(r, x)|
1 + |y| + ∣∣b(r, x) − b̃(r, x)

∣∣)φεn(x − y)fr(dx)dy dr

+ C

∫ t

0

∫
E

∫
Rd

∫
Rd

∣∣h(r, z, x) − h̃(r, z, x)
∣∣φεn(x − y)fr(dx)dyμ(dz) dr.

But
∫
Rd φεn(x − y)dy = 1 and, since 1+|x|

1+|y| = 1 + |x|−|y|
1+|y| ≤ 1 + |x − y| ≤ 2 + |x − y|2,

∫
Rd

(1 + |x|)φεn(x − y)dy

1 + |y| ≤
∫
Rd

(
2 + |x − y|2)φεn(x − y)dy = 2 + dεn ≤ 2 + d.

Consequently,

�n
2 ≤ C

∫ t

0

∫
Rd

( |a(r, x) − ã(r, x)|
1 + |x| + ∣∣b(r, x) − b̃(r, x)

∣∣)fr(dx)dr

+ C

∫ t

0

∫
E

∫
Rd

∣∣h(r, z, x) − h̃(r, z, x)
∣∣fr(dx)μ(dz) dr,

which is smaller than Cρ by Lemma 4.1.
Step 4. Finally, we check that limn→∞ |E[K̃(Xεn)] − E[K̃εn(X

εn)]| = 0. We first observe that |E[K̃(Xεn)] −
E[K̃εn(X

εn)]| ≤ C(In + Jn), where

In := E

[∫ t

0

∣∣Ãr,εnψ
(
Xεn

r

) − Ãrψ
(
Xεn

r

)∣∣dr

]
and Jn := E

[∫ t

0

∣∣B̃r,εnψ
(
Xεn

r

) − B̃rψ
(
Xεn

r

)∣∣dr

]
.

Since ψ ∈ C2
c (Rd) and since L(X

εn
r ) = f

εn
r , we have

In ≤ C

∫ t

0

∫
Rd

(∣∣b̃εn(r, y) − b̃(r, y)
∣∣ + ∣∣ãεn(r, y) − ã(r, y)

∣∣)f εn
r (y) dy dr

≤ C

∫ t

0

∫
Rd

∫
Rd

(∣∣b̃(r, x) − b̃(r, y)
∣∣ + ∣∣ã(r, x) − ã(r, y)

∣∣)φεn(x − y)fr(dx)dy dr,

because [b̃εn(r, y) − b̃(r, y)]f εn
r (y) = ∫

Rd φεn(x − y)b̃(r, x)fr(dx) − ∫
Rd φεn(x − y)b̃(r, y)fr (dx), with a similar

formula concerning ã. Using finally the substitution y = x + √
εnu, we find

In ≤ C

∫ t

0

∫
Rd

∫
Rd

(∣∣b̃(r, x) − b̃(r, x + √
εnu)

∣∣ + ∣∣ã(r, x) − ã(r, x + √
εnu)

∣∣)φ(u)fr(dx) dudr.

Hence limn In = 0 by dominated convergence, since ã and b̃ are continuous and bounded.
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By the same way, since f
εn
r (y) = ∫

Rd φεn(x − y)fr(dx),

Jn = E

[∫ t

0

∣∣∣∣
∫

E

∫
Rd

[
ψ

(
Xεn

r + h̃(r, z, x)
) − ψ

(
Xεn

r

)]φεn(x − X
εn
r )

f
εn
r (X

εn
r )

fr(dx)μ(dz)

−
∫

E

[
ψ

(
Xεn

r + h̃
(
r, z,Xεn

r

)) − ψ
(
Xεn

r

)]
μ(dz)

∣∣∣∣dr

]

= E

[∫ t

0

∣∣∣∣
∫

E

∫
Rd

[
ψ

(
Xεn

r + h̃(r, z, x)
) − ψ

(
Xεn

r + h̃
(
r, z,Xεn

r

))]φεn(x − X
εn
r )

f
εn
r (X

εn
r )

fr(dx)μ(dz)

∣∣∣∣dr

]

≤ CE

[∫ t

0

∫
E

∫
Rd

[
1 ∧ ∣∣h̃(r, z, x) − h̃

(
r, z,Xεn

r

)∣∣]φεn(x − X
εn
r )

f
εn
r (X

εn
r )

fr(dx)μ(dz) dr

]

because ψ and ∇ψ are bounded. Using that L(X
εn
r ) = f

εn
r , the substitution y = x +√

εnu and the fact that h̃(r, z, x) =
0 if z /∈ A,

Jn ≤ C

∫ t

0

∫
A

∫
Rd

∫
Rd

[
1 ∧ ∣∣h̃(r, z, x) − h̃(r, z, y)

∣∣]φεn(x − y)fr(dx)dyμ(dz) dr

= C

∫ t

0

∫
A

∫
Rd

∫
Rd

[
1 ∧ ∣∣h̃(r, z, x) − h̃(r, z, x + √

εnu)
∣∣]φ(u)fr(dx)dyμ(dz) dr.

Hence limn Jn = 0 by dominated convergence, since h is continuous in x and since μ(A) < ∞.
Conclusion. Gathering Steps 1, 2, 3 and 4, we find that |E[K(X)]| ≤ Cρ. Since ρ can be chosen arbitrarily small,

we conclude that E[K(X)] = 0, which completes the proof. �

Appendix

Proof of Remark 1.3. First, it is very easy, using only that a and b are locally bounded on [0, T ] ×R
d , to show that

At ϕ(x) is uniformly bounded as soon as ϕ ∈ C2
c (Rd). The case of Bt ϕ is more complicated. We consider ϕ ∈ C2

c (Rd)

and M > 0 such that Supp ϕ ⊂ B(0,M) and we write

∣∣Bt ϕ(x)
∣∣ ≤1{|x|≤2M}‖∇ϕ‖∞

∫
E

∣∣h(t, z, x)
∣∣μ(dz) + 1{|x|≥2M}

∫
E

∣∣ϕ(
x + h(t, z, x)

)∣∣μ(dz).

We observe that |ϕ(x + h(t, z, x))| ≤ ‖ϕ‖∞1{|x+h(t,z,x)|≤M} and that

1{|x|≥2M,|x+h(t,z,x)|≤M} ≤ 1{|x|≥2M,|h(t,z,x)|≥|x|/2} ≤ 1{|x|≥2M}
2|h(t, z, x)|

|x| .

Since
∫
E

|h(t, z, x)|μ(dz) ≤ C(1 + |x|) by assumption, we conclude that

∣∣Bt ϕ(x)
∣∣ ≤ 1{|x|≤2M}C‖∇ϕ‖∞

(
1 + |x|) + 1{|x|≥2M}

C‖ϕ‖∞(1 + |x|)
|x| ,

which is bounded. We have proved point (i).
We next prove (ii). We put ϕ(x) = (1 + |x|2)1/2, which satisfies

1 + |x|
2

≤ ϕ(x) ≤ 1 + |x|, |∇ϕ| ≤ 1 and
∣∣D2ϕ

∣∣ ≤ C

ϕ
.

We also introduce an increasing C2 function χ : R+ �→ R+ such that χ(r) = r for r ∈ [0,1] and χ(r) = 2 for r ≥ 2.
We thus have

r ∧ 1 ≤ χ(r) ≤ 2(r ∧ 1),
∣∣χ ′(r)

∣∣ ≤ C1{r≤2} and
∣∣χ ′′(r)

∣∣ ≤ C1{1≤r≤2}.
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We then set, for n ≥ 1 and x ∈R
d , ψn(x) = nχ(ϕ(x)/n), which satisfies

ϕ ∧ n ≤ ψn ≤ 2(ϕ ∧ n), |∇ψn| ≤ C1{ϕ≤2n} and
∣∣D2ψn

∣∣ ≤ C

ϕ
1{ϕ≤2n}.

Consequently, for all s ∈ [0, T ], since |b(s, ·)| ≤ Cϕ and |a(s, ·)| ≤ Cϕ2 by Assumption 1.1,

|Asψn| ≤
∣∣b(s, ·)∣∣|∇ψn| +

∣∣a(s, ·)∣∣∣∣D2ψn

∣∣ ≤ Cϕ1{ϕ≤2n} ≤ C
[
ϕ ∧ (2n)

] ≤ Cψn.

We next claim that

�n(s, z, x) = ∣∣ψn

(
x + h(s, z, x)

) − ψn(x)
∣∣ ≤ C

∣∣h(s, z, x)
∣∣ψn(x)

ϕ(x)
. (A.1)

First, if ϕ(x) ≤ 4n, then we only use that ∇ψn is uniformly bounded to write �n(s, z, x) ≤ C|h(s, z, x)|, whence
the result because ψn(x) ≥ ϕ(x) ∧ n ≥ ϕ(x)/4. Second, if ϕ(x) ≥ 4n (whence |x| ≥ 4n − 1 ≥ 3n), since ψn is
constant (with value 2n) on B(0,2n)c and bounded on R

d by 2n, we can write �n(s, z, x) ≤ 4n1{|x+h(s,z,x)|≤2n} ≤
4n1{|h(s,z,x)|≥|x|/3} ≤ 12n|h(s, z, x)|/|x|. But 12n = 6ψn(x) and |x| ≥ ϕ(x) − 1 ≥ ϕ(x)/2, whence the result.

We deduce from (A.1), using Assumption 1.1, that

∣∣Bsψn(x)
∣∣ ≤ C

ψn(x)

ϕ(x)

∫
E

∣∣h(s, z, x)
∣∣μ(dz) ≤ C

ψn(x)

ϕ(x)

(
1 + |x|) ≤ Cψn(x).

Applying (3) with the test function ψn − 2n ∈ C2
c (Rd), for which of course (As +Bs)(ψn − 2n) = (As +Bs)ψn, and

using that f0 and ft are probability measures, we find

∫
Rd

ψn(x)ft (dx) =
∫
Rd

ψn(x)f0(dx) +
∫ t

0

∫
Rd

(
Asψn(x) +Bsψn(x)

)
fs(dx)ds

≤
∫
Rd

ψn(x)f0(dx) + C

∫ t

0

∫
Rd

ψn(x)fs(dx)ds.

Since f0 ∈ P1(R
d) by assumption and since 0 ≤ ψn(x) ≤ 2|x| + 2, supn≥1

∫
Rd ψn(x)f0(dx) < ∞. We thus con-

clude, by the Gronwall Lemma, that supn≥1 supt∈[0,T ]
∫
Rd ψn(x)ft (dx) < ∞, which clearly implies that (ft )t∈[0,T ] ∈

L∞([0, T ],P1(R
d)), because limn→0 ψn(x) = ϕ(x) ≥ |x|.

For point (iii), we introduce a family of functions χn ∈ C2
c (Rd), for n ≥ 1, such that 1{|x|≤n} ≤ χn(x) ≤ 1{|x|≤n+1}

and such that |Dχn(x)| + |D2χn(x)| ≤ C1{|x|∈[n,n+1]}. We then consider ϕ ∈ C2(Rd) as in the statement, i.e. such
that (1 + |x|)[|ϕ(x)| + |∇ϕ(x)| + |D2ϕ(x)|] is bounded. Of course, ϕχn ∈ C2

c (Rd) for each n ≥ 1, so that we can
apply (3). We then let n → ∞. Since ϕ is bounded, we obviously have limn

∫
Rd ϕ(x)χn(x)ft (dx) = ∫

Rd ϕ(x)ft (dx).
Next, we want to prove that limn

∫ t

0

∫
Rd [As(ϕχn)(x)+Bs(ϕχn)(x)]fs(dx)ds = ∫ t

0

∫
Rd [Asϕ(x)+Bsϕ(x)]fs(dx)ds.

By dominated convergence and since (ft )t∈[0,T ] ∈ L∞([0, T ],P1(R
d)) by (ii), it suffices to prove that for all s ∈

[0, T ], x ∈R
d ,

(a) supn |As(ϕχn)(x)| ≤ C(1 + |x|), (b) limn As(ϕχn)(x) =Asϕ(x),
(c) supn |Bs(ϕχn)(x)| ≤ C(1 + |x|), (d) limn Bs(ϕχn)(x) = Bsϕ(x).

Point (a) is easy: since |a(s, x)| + |b(s, x)| ≤ C(1 + |x|2) by Assumption 1.1 and since χn,Dχn,D
2χn are uni-

formly bounded,

∣∣As(ϕχn)(x)
∣∣ ≤ C

(
1 + |x|2)(∣∣D(ϕχn)(x)

∣∣ + ∣∣D2(ϕχn)(x)
∣∣) ≤ C

(
1 + |x|2)(∣∣ϕ(x)

∣∣ + ∣∣Dϕ(x)
∣∣ + ∣∣D2ϕ(x)

∣∣),
which is bounded by C(1 + |x|) by assumption. Point (b) is not hard, using that limn ∇(ϕχn)(x) = ∇ϕ(x) and
limn ∂ij (ϕχn)(x) = ∂ijϕ(x) for each x ∈R

d .



1178 N. Fournier and L. Xu

Next, ∇(ϕχn) is uniformly bounded, so that |(ϕχn)(x + h(s, z, x)) − (ϕχn)(x)| ≤ C|h(s, z, x)| and thus
|Bs(ϕχn)(x)| ≤ C

∫
E

|h(s, z, x)|μ(dz) ≤ C(1 + |x|) by Assumption 1.1, whence (c). Also, by dominated conver-
gence, since limn χn(y) = 1 for all y ∈ R

d ,

lim
n

Bs(ϕχn)(x) = lim
n

∫
E

[
(ϕχn)

(
x + h(s, z, x)

) − (ϕχn)(x)
]
μ(dz) =

∫
E

[
ϕ
(
x + h(s, z, x)

) − ϕ(x)
]
μ(dz),

which is nothing but Bsϕ(x) as desired. �
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