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Abstract. We prove universality of the Ghirlanda–Guerra identities and spin distributions in the mixed p-spin models. The as-
sumption for the universality of the identities requires exactly that the coupling constants have zero means and finite variances,
and the result applies to the Sherrington–Kirkpatrick model. As an application, we obtain weakly convergent universality of spin
distributions in the generic p-spin models under the condition of two matching moments. In particular, certain identities for 3-
overlaps and 4-overlaps under the Gaussian disorder follow. Under the stronger mode of total variation convergence, we find that
universality of spin distributions in the mixed p-spin models holds if mild dilution of connectivity by the Viana–Bray diluted spin
glass Hamiltonians is present and the first three moments of coupling constants in the mixed p-spin Hamiltonians match. These
universality results are in stark contrast to the characterization of spin distributions in the undiluted mixed p-spin models, which is
known up to now that four matching moments are required in general.

Résumé. Nous prouvons l’universalité des identités de Ghirlanda–Guerra et des distributions de spin dans les mélanges de mo-
dèles à p-spin. L’hypothèse de l’universalité des identités exige précisément que les constantes de couplage aient des moyennes
nulles et des variances finies; le résultat s’applique au modèle de Sherrington–Kirkpatrick. Comme application, nous obtenons
une universalité faiblement convergente des distributions de spin dans les modèles à p-spin génériques à condition d’avoir deux
moments analogues. En particulier, certaines identités pour 3 chevauchements et 4 chevauchements selon le modèle de perturba-
tion gaussienne s’ensuivent. Sous le mode plus fort de la convergence de la variation totale, nous trouvons que l’universalité des
distributions de spin dans les mélanges de modèles à p-spin est maintenue si une légère dilution de la connectivité par les Hamil-
toniens de verre de spin du modèle dilué de Viana–Bray est présente et que les trois premiers moments des constantes de couplage
dans les Hamiltoniens des mélanges de modèles à p-spin mixtes concordent. Ces résultats d’universalité s’opposent fortement à la
caractérisation des distributions de spin dans les mélanges de modèles à p-spin non dilués, qui sont connus jusqu’à présent pour
avoir besoin en général de quatre moments analogues.
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1. Introduction

In this paper, we investigate disorder universality in the mixed p-spin models. This concerns the phenomenon that,
in the thermodynamic limit, probability distributions of the models do not depend on the particular distribution of
the coupling constants. As a way to obtain universality of the Parisi ultrametricity, Auffinger and Chen [1] prove
universality of the Gibbs measures in these models. The condition in [1] requires either enough matching moments
of the coupling constants (when compared to the corresponding moments of a standard Gaussian) or the absence
of pure lower-spin Hamiltonians. Our interests here are mainly motivated by related beliefs in the applicability of
sharper conditions in the physics literature. We consider the Parisi ultrametricity and characterizations of the Gibbs
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measures under the condition of fewer matching moments, for presumably the most important case where the pure
2-spin Hamiltonians, namely the Sherrington–Kirkpatrick Hamiltonians, are present.

We work with the following mixed p-spin models throughout this paper unless otherwise mentioned. Given i.i.d.
real-valued random variables ξi, for i ∈ {1, . . . ,N}p and p ≥ 2, with zero means and unit variances, a mixed p-spin
Hamiltonian is defined by

Hξ(σ ) = HN,ξ (σ ) ≡
∑
p≥2

Hξ,p(σ ) + h

N∑
i=1

σi, (1.1)

where σ = (σ1, . . . , σN) ∈ �N
.= {−1,1}N and h is a fixed real constant. The Hamiltonian in (1.1) is a sum of the

external magnetic field h
∑N

i=1 σi and the following pure p-spin Hamiltonians:

Hξ,p(σ ) = HN,ξ,p(σ ) ≡ βp

N(p−1)/2

∑
i∈{1,...,N}p

ξiσi, (1.2)

with the notation

σi = σi1 · · ·σip

for i = (i1, . . . , ip). Here in (1.2) and throughout this paper, the real constants βp are temperature parameters assumed
to satisfy

∑∞
p=2 β2

p2p < ∞ so that the Hamiltonian Hξ is well-defined almost surely. The above assumption on the
disorder ξ = (ξi) means that the random field Hξ(σ ), σ ∈ �N , is centered and has the same covariance matrix, with
entries typically of order N , as the covariance matrix under the (standard) Gaussian disorder. Nonetheless, useful
symmetry properties which are valid under the Gaussian disorder can be broken. The Gibbs measure on �N induced
by the Hamiltonian in (1.1) is denoted by

GN,ξ

({σ }) ≡ eHN,ξ (σ )

Z(HN,ξ )
, σ ∈ �N, (1.3)

where the partition function Z(HN,ξ ) enters the definition of GN,ξ as a normalizing factor.
Mathematical investigations of disorder universality in the mixed p-spin models have been focused around the

Sherrington–Kirkpatrick model [22] and go back to Talagrand [24] where a comparison principle for expected extrema
of correlated random variables is studied. For the Sherrington–Kirkpatrick model, [24] proves that expected values
of the rescaled ground-state energy N−1 minσ∈�N

HN, · ,2(σ ) under the Gaussian disorder and the Bernoulli disorder
coincide in the thermodynamic limit. The method there considers the analogous universality question for the free-
energy densities,

1

N
logZ(HN, · ,2);

working with these quantities has the advantage that, by a generalized Gaussian integration by parts, the rates of
change of these free-energy densities along an interpolation between the two disorders vanish in the limit of large
system size. Later on, Guerra and Toninelli [12, Section 4.2] show that their method for the existence of limits of
free-energy densities in the Sherrington–Kirkpatrick model extends to those under general disorder. Precisely, the
assumption in [11] states symmetric distributions with finite fourth moments of coupling constants. Carmona and Hu
[4] then extend Talagrand’s method in [24], and obtain a mathematical proof that limiting free-energy densities in
the Sherrington–Kirkpatrick model depend only on the first two moments of coupling constants (cf. Kirkpatrick and
Sherrington [14]), as well as an analogous result for the rescaled ground-state energy. (Generalizations to the mixed
p-spin models are also obtained in [4].) Regarding the additional technical assumption in [4] of finite third moments,
Chatterjee [5, Section 3] observed that it can be circumvented by Lindeberg’s argument for the central limit theorem
(cf. [29]).

The first main result of this paper (Theorem 2.1) proves disorder universality of the Ghirlanda–Guerra identities in
the mixed p-spin models defined by (1.1). Therefore the identities under the Gaussian disorder remain valid when cou-
pling constants satisfying the condition of two matching moments are applied. Since the discovery of these identities
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in [10], they have proven fundamental to understand the main characteristics of the mixed p-spin models regarding
the overlap arrays:

R�,�′ = 1

N

N∑
i=1

σ�
i σ �′

i , � �= �′, (1.4)

where σ 1,σ 2, . . . are replicas as i.i.d. samples from the Gibbs measures over N sites. In particular, the identities
are the driving force for the mathematical proofs of the Parisi formula and the Parisi ultrametricity in the hands of
Panchenko [17,20], where the work [20] extends Talagrand’s ground-breaking proof for the Parisi formula in the even
p-spin models [25]. The major step of the simple proof of Theorem 2.1 shows that a generalization of the Gaussian
integration by parts as in [4] suffices. It is used to obtain certain integration by parts involving the internal energy
densities N−1HN,ξ , which is central to the derivation of the identities. As immediate consequences of the universality
of the identities, we obtain, in the particular case of generic p-spin models (see (3.1) for the definition), universality
of the Gibbs measures of pure states [15] in the sense of Talagrand’s construction [26, Theorem 2.4] and universality
of the Parisi ultrametricity by Panchenko’s theorem [17, Theorem 1].

It is proven in [1], among other things, universality of the Parisi ultrametricity in the mixed p-spin models. The
approach in [1] proceeds with universality of the Gibbs measures in the sense that the Gibbs measures over finitely
many configurations are compared under different disorders by total variation distances. Precisely, the following
convergences are obtained in [1]:

lim
N→∞ sup

F :�n
N→[−1,1]

∣∣E〈F 〉HN,ξ
−E〈F 〉HN,g

∣∣ = 0, ∀n ∈N, (1.5)

where

〈F 〉HN,ξ
= 〈

F
(
σ 1, . . . ,σ n

)〉
HN,ξ

=
∑

σ 1,...,σ n∈�N

F
(
σ 1, . . . ,σ n

)
GN,ξ

({
σ 1}) · · ·GN,ξ

({
σ n

})
.

The methods in [4,5] by interpolations and generalized integration by parts discussed above are applied for the proof
of (1.5) in [1]. See also [7,9] for similar applications to other spin glass models.

In stark contrast to the various universality phenomena discussed before (1.5), at least one of the following condi-
tions is required in [1, Theorem 4.3] to validate (1.5): (1) the first four moments of the coupling constants match those
of a standard Gaussian, or (2) there is absence of both pure 2-spin Hamiltonians and pure 3-spin Hamiltonians. While
Theorem 2.1 improves conditions for universality of the Parisi ultrametricity, [1] still leaves open a natural question
whether Gibbs measures in the Sherrington–Kirkpatrick model can be characterized by fewer matching moments of
the coupling constants. At least it should raise the question whether in the limit, disorder as simple as the Bernoulli
disorder, which is of interest in the study of the Edward-Anderson model (e.g. [16,28]), leads to the same probabilistic
features of the mean-field spin glass models in terms of Gibbs measures.

We revisit universality of Gibbs measures in the mixed p-spin models in the next two main results of this paper.
The second main result studies spin distributions, namely finite-dimensional marginals of coordinates of replicas,
and obtains their weakly convergent universality in the particular case of generic p-spin models (Theorem 3.1). The
third main result continues to use the total variation distances as in (1.5) to compare Gibbs measures in the mixed
p-spin models under two different disorders, and now independent Viana–Bray diluted 2-spin glass Hamiltonians
[30] (defined in (5.1)) with small magnitude are present (Theorem 5.1). The rich structural similarities in the Gibbs
measures under different disorders implied by the universality of the Ghirlanda–Guerra identities allows us to work
beyond the scope of earlier methods for universality of spin glass models, and thereby, make possible these two main
results.

The universality of spin distributions in the generic p-spin models holds under precisely the condition of two match-
ing moments. The major step of the proof considers an insightful application of the cavity method in [19], which shows
nontrivial connections between the spin distributions and joint distributions of the overlap arrays, and we obtain its ex-
tension under general disorder. (See also [2, Proposition A.7].) The proof shows that the cavity equation considered in
[19] (cf. (3.10)), which features Gaussian factors from the Hamiltonians over cavity sites, is approximately valid under
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general disorder. This approximate equation allows the key application as in [19] that the spin distributions depend
almost continuously on joint distributions of the overlap arrays defined in (1.4). With this connection, the uniqueness
and universality of the joint distributions under the condition of two matching moments, which are readily satisfied by
the generic p-spin models, extend to the spin distributions. In particular, the universality of spin distributions leads to
certain identities for 3-overlaps and 4-overlaps under the Gaussian disorder whenever pure 2-spin Hamiltonians are
present (Proposition 3.2). These identities seem to be new to the generic p-spin models although they already appear
in the literature of diluted spin glass models.

The third main result considers removal of the abundance of higher-spin Hamiltonians defining the generic p-spin
models and applies to any choice of temperature parameters (Theorem 5.1). We require three matching moments and
existence of fourth moments in the mixed p-spin Hamiltonians. The proof shows that when the interpolation method
between two disorders as in [1,4] is applied, mild dilution of connectivity in the mixed p-spin physical systems by the
Viana–Bray Hamiltonians, as well as the Ghirlanda–Guerra identities, lead to vanishing rates of change of the Gibbs
expectations. The way we dilute the mixed p-spin Hamiltonians is chosen so that the connectivity of the perturbative
systems can range from order 1 to any growing order obeying the limiting behavior o(N) and infinite temperature
limit is taken. In particular, limiting free-energy densities in the diluted mixed p-spin models and the undiluted ones
coincide.

It is arguable whether any of the diluting perturbations may change the nature of Gibbs measures in the mixed
p-spin models. The last main result, however, shows that, even in the absence of the regular overlap structure in the
generic p-spin models, the condition of four matching moments for the universality of Gibbs measures in the mixed
p-spin models is not robust, and can be improved if there are seemingly natural impurities as the diluting spin glass
Hamiltonians.

Organization of the paper. Section 2 presents the first universality result in this paper, which is for the Ghirlanda–
Guerra identities. Our study of the universality of spin distributions is divided into Sections 3 and 5. The former
section considers the universality under weak convergence, whereas the latter section considers the universality under
total variation convergence. Between these two sections, we present in Section 4 some combinatorial connections
between Gibbs measures and multi-overlaps. These connections refine some results in the earlier sections to prepare
for Section 5. For completeness, we close this paper with a generalization of the Gaussian integration by parts in
Section 6.

2. Universality of the Ghirlanda–Guerra identities

In this section, we prove universality of the Ghirlanda–Guerra identities. First, let us introduce some notations to
facilitate the use of the Gaussian integration by parts and its generalizations throughout this paper. For any p ≥ 2 and
i ∈ {1,2, . . . ,N}p , we define a multiplication operator Di, acting on the set of real-valued functions of finitely many
spin configurations over N sites, by

DiF
(
σ 1, . . . ,σ n,σ n+1) .=

(
n∑

�=1

σ�
i − nσn+1

i

)
· F (

σ 1, . . . ,σ n
)
. (2.1)

Also, for a function f = f (x), we write ∂
j
x f for its j th derivative.

The following theorem is the first main result of this paper.

Theorem 2.1. Consider the mixed p-spin model defined by the Hamiltonian in (1.1). Assume that the coupling con-
stants (ξi) are i.i.d. and satisfy

Eξi = 0 and Eξ2
i ∈ (0,∞). (2.2)

Then for all p ≥ 2 and sequences of temperature parameters (βq)q≥2 such that
∑∞

q=2 2qβ2
q < ∞ and βp �= 0, it holds

that, for every n ∈N,

lim
N→∞ sup

F :�n
N→[−1,1]

∣∣∣∣∣E〈
R

p

1,n+1F
〉
HN,ξ

− 1

n
E

〈
R

p

1,2

〉
HN,ξ

E〈F 〉HN,ξ
− 1

n

n∑
�=2

E
〈
R

p

1,�F
〉
HN,ξ

∣∣∣∣∣ = 0. (2.3)
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Proof. The proof uses the self-averaging of internal energy densities as in the case of the Gaussian disorder (cf. [18,
Theorem 3.8]), and now we need to validate the analogous property under the disorder ξ . We suppress subscripts ‘N ’
and ‘ξ ’ in Hamiltonians whenever the context is clear and write 〈 · 〉 = 〈 · 〉HN,ξ

throughout this proof. We may assume
Eξ2

i = 1 by rescaling the temperature parameters.

Step 1. We show that for any function F = F(σ 1, . . . ,σ n) : �n
N → [−1,1], the difference

E

〈
Hp(σ 1)

N
F

〉
−E

〈
Hp

N

〉
E〈F 〉 (2.4)

approximates

β2
p

(
n∑

�=2

E
〈
R

p

1,�F
〉 − nE

〈
R

p

1,n+1F
〉 +E

〈
R

p

1,2

〉
E〈F 〉

)
(2.5)

in the limit N → ∞. This difference is exactly zero under the Gaussian disorder by the Gaussian integration by parts.
We start with the following identities:

∂
j
x 〈F 〉 = β

j
p

Nj(p−1)/2

〈
Dj

i F
〉
ξi=x

, j ∈ N, (2.6)

where we use the definition (2.1) of Di and 〈 · 〉ξi=x is the Gibbs expectation defined by setting ξi in 〈 · 〉 to be x. Then
with γ 2

ξi
defined by (6.2) and the notation fi(x) ≡ E〈σ 1

i F 〉ξi=x , we obtain from Proposition 6.1 for (2.7) below that

E

〈
Hp(σ 1)

N
F

〉
= βp

N(p−1)/2+1

∑
i∈{1,...,N}p

Eξifi(ξi)

= βp

N(p−1)/2+1

∑
i∈{1,...,N}p

E∂xfi(ξi) + βp

N(p−1)/2+1

∑
i∈{1,...,N}p

γ 2
ξi

(
∂2
xfi

)
(2.7)

= β2
pE

〈(
n∑

�=1

R
p

1,� − nR
p

1,n+1

)
F

〉
+ βp

N(p−1)/2+1

∑
i∈{1,...,N}p

γ 2
ξi

(
∂2
xfi

)
, (2.8)

where the last equality follows from (2.6) with j = 1 and the definition (2.1) of Di. For the last term in (2.8), we use
the explicit form (6.2) of γ 2

ξi
and (6.3) to get

lim
N→∞ sup

F :�n
N→[−1,1]

∣∣∣∣ βp

N(p−1)/2+1

∑
i∈{1,...,N}p

γ 2
ξi

(
∂2
xfi

)∣∣∣∣
≤ lim

N→∞
|βp|

N(p−1)/2+1

∑
i∈{1,...,N}p

(
E

[
|ξi|

∫ |ξi|

0
min

{
2‖∂xfi‖∞,

∥∥∂2
xfi

∥∥∞x
}

dx

]
+ Eξ2

i ‖∂3
xfi‖∞
2

)
= 0. (2.9)

Here, the last equality follows from (2.6) and the assumption that the coupling constants are identically distributed
and satisfy Eξ2

i < ∞ so that for any ε > 0, all the summands can be bounded by ε/N(p−1)/2 whenever N ≥ N0 for
some N0 depending on n and βp . The foregoing equality and (2.8) imply that

lim
N→∞ sup

F :�n
N→[−1,1]

∣∣∣∣∣E
〈
Hp(σ 1)

N
F

〉
− β2

pE

〈(
n∑

�=1

R
p

1,� − nR
p

1,n+1

)
F

〉∣∣∣∣∣ = 0. (2.10)

The required approximation of (2.4) by (2.5) under the same mode of uniform convergence in (2.10) then follows. We
remark that if E|ξi|3 < ∞, (2.6) and (2.9) show that the rate of convergence for (2.10) is of the order O(1/N(p−1)/2).
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Step 2. To obtain (2.3), it remains to show that the differences in (2.4) tend to zero uniformly in F : �n
N → [−1,1],

and so a proof of the following equality suffices:

lim
N→∞

1

N
E

〈∣∣Hp −E〈Hp〉∣∣〉 = 0. (2.11)

In the rest of this proof, ZN(x) denotes the partition function defined by HN,ξ with βp = x.
To get (2.11), we need the following three properties of limN→∞ N−1 logZN(x). First, we recall that under the

moment assumption (2.2), the limit in probability of the free-energy densities N−1 logZN(x) is the same as the limit
of the expectations of their counterparts under the Gaussian disorder ([4, Lemma 8] and [5, Section 3]), which is
given by the Parisi formula [18, Theorem 3.1]. Second, a standard martingale difference argument by Burkholder’s
inequality [3, Theorem 3.2] as in the proof of [4, Lemma 8] shows that for each x ∈R,

E

[(
1

N
logZN(x) − 1

N
E logZN(x)

)2]
≤

∞∑
q=2,q �=p

β2
q

Nq+1

∑
i∈{1,...,N}q

E
[(|ξi| +E|ξi|

)2]
+ x2

Np+1

∑
i∈{1,...,N}p

E
[(|ξi| +E|ξi|

)2]
. (2.12)

For fixed x ∈ R, the foregoing inequality and the convergence of N−1
E logZN(x) imply that the sequence

{N−1 logZN(x)} converges in L2(P) to the Parisi formula. Third, the limiting free-energy density is everywhere
differentiable in x since the corresponding Parisi formula is [18, Theorem 3.7]. These three properties are enough to
apply [18, Theorem 3.8] to validate (2.11). The proof of Theorem 2.1 is complete. �

The following corollary will be used in Section 5.

Corollary 2.2. Under the conditions of Theorem 2.1 for fixed p ≥ 2, it holds that

lim
N→∞ sup

F :�n
N→[−1,1]

∣∣∣∣∣2 ∑
1≤�<�′≤n

E
〈
R

p

�,�′F
〉
HN,ξ

− 2n

n∑
�=1

E
〈
R

p

�,n+1F
〉
HN,ξ

+ n(n + 1)E
〈
R

p

n+1,n+2F
〉
HN,ξ

∣∣∣∣∣ = 0, ∀n ∈N. (2.13)

Proof. The proof is identical to some argument in the proof of [6, Theorem 2]. We give the details for the convenience
of the reader. For 1 ≤ � ≤ n, set

	�F
(
σ 1, . . . ,σ n,σ n+1) .= F

(
σ 1, . . . ,σ n

) − F
(
σ 1, . . . ,σ �−1,σ �+1, . . . ,σ n+1), (2.14)

and so by (2.3) the following tends to zero uniformly in F : �n
N → [−1,1]:

(n + 1)E
〈
R

p

�,n+2	�F
〉
HN,ξ

−
∑

1≤�′≤n+1
�′ �=�

E
〈
R

p

�,�′	�F
〉
HN,ξ

= nE
〈
R

p

�,n+1F
〉
HN,ξ

− (n + 1)E
〈
R

p

n+1,n+2F
〉
HN,ξ

−
∑

1≤�′≤n
�′ �=�

E
〈
R

p

�,�′F
〉 + n∑

�′=1

E
〈
R

p

�′,n+1F
〉
HN,ξ

. (2.15)

We deduce (2.13) upon summing the right-hand sides of (2.15) over � ∈ {1, . . . , n}. �
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By the use of the functions 	�F , (2.13) depends only the thermal part of the Ghirlanda–Guerra identities. Indeed,
an inspection of Step 1 in the proof of Theorem 2.1 shows that (2.13) only needs the self-averaging of the thermal
fluctuations of Gibbs measures as follows:

lim
N→∞ sup

F :�n
N→[−1,1]

∣∣∣∣E〈
Hp(σ 1)

N
F

〉
HN,ξ

−E

〈
Hp

N

〉
HN,ξ

〈F 〉HN,ξ

∣∣∣∣ = 0. (2.16)

3. Weak convergence of spin distributions

Our main goal in this section is to characterize spin distributions in the mixed p-spin models by the universality of the
Ghirlanda–Guerra identities in Theorem 2.1. Weak convergence of distributions is considered.

At first, we consider the case of generic p-spin models. In these models, the temperature parameters (βp)p≥2

satisfy the following Stone-Weierstrass-type condition:

span
{
x �→ xp;βp �= 0

}
is dense in C

([−1,1]). (3.1)

Here, C ([−1,1]) is the space of real-valued continuous functions on [−1,1] equipped with the supremum norm.

Theorem 3.1. Suppose that (2.2) holds with Eξ2
i = 1 and a sequence of temperature parameters satisfying (3.1) is in

force. Let 
ξ be the weak limit of the sequence of spin distributions((
σ�

i

)
�,i∈N,E〈 · 〉HN,ξ

)
N≥1,

where σ�
i = 0 for all i > N under E〈 · 〉HN,ξ

. Then 
ξ = 
g , where g denotes the standard Gaussian disorder.

Proof. We show universality of joint distributions of the overlap arrays (R�,�′)��=�′ in Step 1, and then prove in the
rest of the proof that this particular universality implies the required universality of spin distributions.

Step 1. The limiting free energy density under ξ is given by the Parisi formula by its disorder universality [4,5],
Also, by the explicit formulas for partial derivatives of the Parisi formula with respect to temperature parameters [18,
Theorem 3.7], the pth annealed moments of R1,2 under ξ and g coincide in the limit whenever βp �= 0. Hence, the
annealed distributions of R1,2 under the two disorders in the limit are equal by (3.1). By the Baffioni-Rosati theorem
(cf. [18, Theorem 2.13] or [27, Section 15.3]) applied to any weak subsequential limit of the sequence of annealed
distributions of (R�,�′)��=�′ under ξ , we obtain the weak convergence of this sequence and the limit 
ξ((R�,�′)��=�′ ∈ · )
is given by 
g((R�,�′)��=�′ ∈ · ).

Step 2. We set up some notations for applications of the cavity method. Fix n′ ≥ 1. We apply the cavity method to
the system over N + n′ sites where the first n′ coordinates play the role of cavity coordinates, and write ρ = (ε,σ ) ∈
�n′ × �N . We decompose the Hamiltonian HN+n′(ρ) defined by (1.1) according to the number of occurrences of
sites 1, . . . , n′ in i ∈ {1, . . . ,N + n′}p and get

HN+n′,ξ (ρ)
(d)= H ′

N,ξ (σ ) +
n′∑

j=1

εjhN,j,ξ (σ ) + rN,ξ (ε,σ ) + h

N+n′∑
i=1

ρi, (3.2)

for ρ = (ε,σ ) ∈ �n′ ×�N , where the qth term on the right-hand side, for q = 1,2, has q − 1 numbers of occurrences
of spins in the first n′ coordinates of ρ, and the third term has ≥ 2 numbers of occurrences of these spins. In detail,
we have

H ′
N,ξ (σ ) =

∑
p≥2

βp

(N + n′)(p−1)/2

∑
k∈{1,...,N}p

ξkσk, (3.3)
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hN,j,ξ (σ ) =
∑
p≥2

βp

(N + n′)(p−1)/2

(p
1)∑

a=1

∑
k∈{1,...,N}p−1

ξj,a,kσk, 1 ≤ j ≤ n′, (3.4)

rN,ξ (ρ) = rN,ξ (ε,σ ) =
∑
p≥2

βp

(N + n′)(p−1)/2

∑
i∈I (p)

ξiρi, (3.5)

where the couplings constants on the right-hand sides are i.i.d. with the same laws as ξi and I (p) ⊂ {1, . . . ,N +n′}p
satisfies |I (p)| = ∑p

�=2

(
p
�

)
(n′)�Np−�.

For the following argument, we also introduce an independent set of standard Gaussian coupling constants and
define analogues of hN,j,ξ as

hN,j,g(σ ) =
∑
p≥2

βp

(N + n′)(p−1)/2

(p
1)∑

a=1

∑
k∈{1,...,N}p−1

gj,a,kσk, 1 ≤ j ≤ n′. (3.6)

Step 3. In this step, we show that the Gibbs measure defined by HN+n′,ξ is not changed in the limit of N → ∞ if we
replace hN,j,ξ by hN,j,g and remove rN,ξ . Specifically, setting

Ht
N+n′,ξ,g(ρ) = H ′

N,ξ (σ ) +
n′∑

j=1

εj

(√
thN,j,ξ (σ ) + √

1 − thN,j,g(σ )
) + trN,ξ (ρ) + h

N+n′∑
i=1

ρi (3.7)

for 0 ≤ t ≤ 1 so that H 1
N+n′,ξ,g

= HN+n′,ξ , we show that

lim
N→∞ sup

F :�n
N→[−1,1]

∣∣E〈F 〉1 −E〈F 〉0
∣∣ = 0, ∀n ∈N, (3.8)

where 〈 · 〉t denotes the Gibbs expectation under Ht
N+n′,ξ,g

.

For any F = F(ρ1, . . . ,ρn) : �n
N+n′ → [−1,1], we have

E〈F 〉1 −E〈F 〉0 =
∫ 1

0
E

d

dt
〈F 〉t dt

=
∫ 1

0

1

2
√

t

n′∑
j=1

E

〈(
n∑

�=1

ε�
jhN,j,ξ

(
σ �

) − nεn+1
j hN,j,ξ

(
σ n+1))F

〉
t

dt

−
∫ 1

0

1

2
√

1 − t

n′∑
j=1

E

〈(
n∑

�=1

ε�
jhN,j,g

(
σ �

) − nεn+1
j hN,j,g

(
σ n+1))F

〉
t

dt

+
∫ 1

0
E

〈(
n∑

�=1

rN,ξ

(
ρ�

) − nrN,ξ

(
ρn+1))F

〉
t

dt. (3.9)

Notice that the two processes hN,j,ξ and hN,j,g have the same covariance function by the assumption of two matching
moments of ξ . Hence, by Proposition 6.1 and the Gaussian integration by parts, the sum of the first and second
integrals in (3.9) can be bounded by n′ · n · supj,�,t |Ej,�(t)|. Here, Ej,�(t) is the remainder term from the application

of (6.1) to E〈ε�
jhN,j,ξ (σ

�)F 〉t . By (2.6),

∣∣Ej,�(t)
∣∣ ≤ C

∑
p≥2

(p
1)∑

a=1

∑
k∈{1,...,N}p−1

β2
p

Np−1

(
E|ξj,a,k|

∫ |ξj,a,k|

0
min

{
1,

|βp|x
N(p−1)/2

}
dx + β2

p

Np−1
Eξ2

j,a,k

)
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for some constant C depending only on n, and the right-hand side tends to zero. (Recall the explanation below (2.9).)
The last integral of (3.9) can be handled similarly. It tends to zero upon applying (6.1) to each E〈rN,ξ (ρ

�)F 〉t . Indeed,
for some constant C′ depending only on (βp) and n, we have

sup
p≥2,N≥1

∣∣I (p)
∣∣N−(p−2) < ∞ =⇒ sup

ρ1,ρ2∈�N+n′

∣∣E[
rN,ξ

(
ρ1)rN,ξ

(
ρ2)]∣∣ ≤ C′

N
,

and the remainder term E�(t) from the application of (6.1) to E〈rN,ξ (ρ
�)F 〉t satisfies

∣∣E�(t)
∣∣ ≤ C′ ∑

p≥2

∑
i∈I (p)

β2
p

Np−1

(
E|ξi|

∫ |ξi|

0
min

{
1,

|βp|x
N(p−1)/2

}
dx + |βp|2

Np−1
Eξ2

i

)
−−−−→
N→∞ 0.

Apply the last three displays to (3.9), and then (3.8) follows.

Step 4. From this step on, we draw connections between universality of joint distributions of the overlap arrays
(R�,�′)��=�′ and the required universality of spin distributions.

By Step 3, the argument in [19, Section 3] now applies and gives the following results. First, for any n,n′ ≥ 1 and
C1, . . . ,Cn ⊆ {1, . . . , n′}, the following identity holds:

E

∏
�≤n

〈 ∏
j∈C�

εj

〉
H 0

N+n′,ξ,g

= E

∏
�≤n

〈∏j∈C�
tanh(hN,j,g(σ ) + h)

∏n′
j=1 cosh(hN,j,g(σ ) + h)〉H ′

N,ξ

〈∏n′
j=1 cosh(hN,j,g(σ ) + h)〉H ′

N,ξ

. (3.10)

The key feature of the right-hand side of (3.10) is the presence of the Gaussian Hamiltonians hN,j,g . Second, the key
observation in [19, Section 3] applies to the present case and shows that, through (3.10), for every ε > 0, we can find
a positive integer Mε and a bounded continuous function �ε , both independent of N and the disorder ξ , such that∣∣∣∣E∏

�≤n

〈 ∏
j∈C�

εj

〉
H 0

N+n′,ξ,g

−E

〈
�ε

(
N

N + n′ R�,�′ ;1 ≤ � �= �′ ≤ Mε

)〉
H ′

N,ξ

∣∣∣∣ ≤ ε. (3.11)

Step 5. We complete the proof of Theorem 3.1 in this step. First, notice that the limiting distribution of the overlap
arrays (1.4) under E〈 · 〉H ′

N,ξ
is given by the probability distribution 
ξ defined in Step 1. In more detail, we can work

with free-energy densities under the following interpolating Hamiltonians:

H̃ t
N+n′,ξ,g(ρ) = √

1 − tH ′
N,ξ (σ ) + √

tHN,ξ (σ ) +
n′∑

j=1

εjhN,j,g(σ ), 0 ≤ t ≤ 1, (3.12)

to tune the normalizing factor 1/(N + n′)(p−1)/2 in H ′
N,ξ to 1/N(p−1)/2, where HN,ξ is an independent copy of the

Hamiltonian of the generic p-spin model over N sites. Then it can be shown that the rates of change of the free-energy
densities associated with H̃ t

N+n′,ξ,g
vanish by Proposition 6.1 and the fact that, for p ≥ 2,∣∣∣∣ Np−1

(N + n′)p−1
β2

p − β2
p

∣∣∣∣ =O
(

1

N

)
. (3.13)

We omit the details since they are very similar to the arguments in Step 1 and Step 3.
Now recall that by Step 1, the laws of (R�,�′)��=�′ under 
ξ and 
g are the same. Hence by (3.8) and (3.11),

limN→∞ E
∏

�≤n〈
∏

j∈C�
εj 〉HN+n′,ξ exists and the limits are the same for all disorders where the first two moments

match the corresponding moments of a standard Gaussian. The proof is complete. �

In the next result, we show some identities satisfied by

1

N2

∑
i∈{1,...,N}2

E
〈
Dm

i FN

〉
HN,g

, 3 ≤ m ≤ 4, (3.14)
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in the limit of large N for appropriate functions FN , where the operators Di’s are defined by (2.1). Notice that in (3.14),
our interest is in the use of the standard Gaussian disorder. The proof will show that the universality in Theorem 3.1
can be used to elicit identities which seem to be new to these spin glass models, whereas the models are traditionally
studied under the Gaussian disorder. In Section 4, we will study more systematically Gibbs expectations of the form
〈Dm

i F 〉HN,g
, and then we will explain how the normalized sums in (3.14) can be reformulated in terms of multi-

overlaps which are generalizations of overlaps.

Proposition 3.2. Let a sequence (βp)p≥2 satisfying (3.1) and β2 �= 0 be given. For fixed n,n′ ≥ 1 and subsets
C1, . . . ,Cn of {1, . . . , n′}, define the following functions:

SN

(
σ 1, . . . ,σ n

) =
n∏

�=1

∏
j∈C�

σ �
j , σ 1, . . . ,σ n ∈ �n

N. (3.15)

Then we have

lim
N→∞

1

N2

∑
i∈{1,...,N}2

E
〈
Dm

i SN

〉
HN,g

= 0, 3 ≤ m ≤ 4. (3.16)

Proof. The main inputs of this proof are the following two sets of coupling constants {ξi} and {ηN
i } for the mixed

p-spin model over N sites. They are to be compared with a family of i.i.d. standard Gaussian variables {gi}.
First, take i.i.d. coupling constants ξi such that their first three moments match the corresponding moments of

a standard Gaussian, but their fourth moments are different from E[g4
i ] = 3. Second, we take independent (but not

identically distributed) coupling constants ηN
i such that

(1) ηN
i

(d)= gi for all i /∈ {1, . . . ,N}2, and
(2) the first two moments of ηN

i , for i ∈ {1, . . . ,N}2, match the corresponding moments of a standard Gaussian,
E(ηN

i )3 = 1/N1/2, and |E(ηN
i )4 − 3| ≤ C/N2/3 for a universal constant C.

Here, condition (2) is the key property which we require. To meet this condition, we choose those variables ηN
i by

suitable perturbations of i.i.d. standard Gaussians as follows. Suppose that {ζi}i∈{1,...,N}2 are i.i.d. and independent of

i.i.d. standard Gaussians {g′
i}i∈{1,...,N}2 such that E[ζ 3

i ] = 1, E[ζ 4
i ] < ∞ and the first two moments of ζi match the

corresponding moments of g′
i . See (3.17). Then the first two moments of ηN

i = √
1/N1/3ζi + √

1 − N1/3g′
i has zero

mean and unit variance, and we have

E
[(

ηN
i

)3] = 1

N1/2
E

[
ζ 3

i

] = 1

N1/2
and E

[(
ηN

i

)4] = 1

N2/3

(
E

[
ζ 4

i

] − 3
) + 3.

We assume that the three families {gi}, {ξi} and {ηN
i } are independent.

We first prove (3.16) with m = 4 in Step 1–Step 3 by comparing {gi} and {ξi}. Then we prove (3.16) with m = 3 in
Step 4 by comparing {gi} and {ηN

i }. The assumptions on (βp) are only used in Step 3 and Step 4.

Step 1. We revisit the interpolation method applied in [1, Theorem 4.3] to Gibbs measures in this step and Step 2.
For 0 ≤ t ≤ 1, define disorder ξ t by the following equation:

ξ t
i

.= √
tξi +

√
1 − tgi (3.17)

and write the corresponding Gibbs expectation as 〈 · 〉t . Let 〈 · 〉t,ξi=x be obtained from 〈 · 〉t by replacing ξi with x,
and fi(t, x) ≡ E〈DiF 〉t,ξi=x . Then for any real-valued function F defined on �n

N and T ∈ [0,1], we deduce from
Proposition 6.1 and the Gaussian integration by parts (as in the treatment of the first two terms on the right-hand side
of (3.9)) that

E〈F 〉T −E〈F 〉0 =
∫ T

0
E

d

dt
〈F 〉t dt =

∫ T

0

∞∑
p=2

[
βp

2N(p−1)/2

∑
i∈{1,...,N}p

γ 2
ξi
(∂2

xfi(t, · ))√
t

]
dt. (3.18)
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Step 2. In this step, we show that (3.18) implies

E〈F 〉T −E〈F 〉0 = β4
2

(
Eξ4

k − 3

12

)∫ T

0
t

(
1

N2

∑
i∈{1,...,N}2

E
〈
D4

i F
〉
t

)
dt +

∫ T

0
Et (F )dt (3.19)

for any k ∈ {1, . . . ,N}2, where Et (F ) converges to zero as N → ∞ uniform in t ∈ (0,1] and F : �n
N → [−1,1].

For any p ≥ 2 and i ∈ {1, . . . ,N}p , set

εi(t) = E
ξi

2

∫ ξi

0
(ξi − x)2(∂3

xfi(t, x) −E∂3
xfi(t, ξi)

)
dx

−E

∫ ξi

0
(ξi − x)

(
∂3
xfi(t, x) −E∂3

xfi(t, ξi)
)

dx. (3.20)

Then it follows from (6.2) that

γ 2
ξi

(
∂2
xfi(t, · )) = Eξi

∫ ξi

0
(ξi − x)∂2

xfi(t, x)dx −E

∫ ξi

0
(ξi − x)∂3

xfi(t, x)dx

=
(
Eξ3

i

2

)
·E∂2

xfi(t,0) +E
ξi

2

∫ ξi

0
(ξi − x)2∂3

xfi(t, x)dx

−E

∫ ξi

0
(ξi − x)∂3

xfi(t, x)dx

=
(
Eξ3

i

2

)
·E∂2

xfi(t,0) +
(
Eξ4

i − 3Eξ2
i

6

)
·E∂3

xfi(t, ξi) + εi(t) (3.21)

=
(
Eξ4

i − 3

6

)
· (

√
tβp)3

N3(p−1)/2
E

〈
D4

i F
〉
t
+ εi(t). (3.22)

Here, the second equality follows from the ordinary integration by parts and the fact that the coupling constants are
independent, and (3.22) uses the assumption Eξ2

i = 1 and Eξ3
i = 0 and the analogue of (2.6) with βp replaced by√

tβp .
To bound εi(t) defined by (3.20), we notice that, by the same analogue of (2.6) again and the mean-value theorem,∣∣∂3

xfi(t, x) −E∂3
xfi(t, ξi)

∣∣ ≤ min
{
2
∥∥∂3

xfi(t, · )∥∥∞,E
[|ξi − x|] · ∥∥∂4

xfi(t, · )∥∥∞
}

≤ C|√tβp|3
N3(p−1)/2

min

{
1,

|√tβp|
N(p−1)/2

E
[|ξi| + |x|]}

for some constant C depending only on n. In addition, for any nonzero ξ ∈R, k ∈N and bounded measurable function
f , we have∣∣∣∣∫ ξ

0
(ξ − x)kf (x)dx

∣∣∣∣ ≤ |ξ |k
∫ |ξ |

0

∣∣f (
sgn(ξ)x

)∣∣dx.

Applying the last two displays to (3.20), we get the following inequality:

∣∣εi(t)
∣∣ ≤ E

( |ξi|3
2

+ |ξi|
)∫ |ξi|

0

C|√tβp|3
N3(p−1)/2

min

{
1,

|√tβp|
N(p−1)/2

E
[|ξi| + |x|]}dx, (3.23)

where the right-hand side is finite since E[ξ4
i ] < ∞.
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Now, since 4(p − 1)/2 − p = p − 2, it follows from (3.22) and (3.23) that the partial sum of (3.18) over p ≥ 3 is
bounded by O(N−1), uniformly in t ∈ (0,1] and F : �n

N → [−1,1]. Also, (3.23) shows

lim
N→∞ sup

t∈(0,1]
sup

F :�n
N→[−1,1]

1

N1/2

∑
i∈{1,...,N}2

∣∣εi(t)
∣∣ = 0.

The required equality (3.19) thus follows from (3.22) since ξi are i.i.d.

Step 3. Recall the functions SN defined by (3.15). By (3.19) and Theorem 3.1, we get, for all T ∈ [0,1] and k ∈
{1, . . . ,N}2,

lim
N→∞β4

2

(
Eξ4

k − 3

12

)∫ T

0
t

(
1

N2

∑
i∈{1,...,N}2

E
〈
D4

i SN

〉
t

)
dt = lim

N→∞E〈SN 〉T −E〈SN 〉0 = 0. (3.24)

On the other hand, for any given sequence of functions FN : �n
N → [−1,1] for fixed n, the functions t �→ E〈FN 〉t

defined on [0,1] are equicontinuous by (3.19). Since β2 �= 0 and Eξ4
k �= 3, (3.24) implies

lim
N→∞

1

N2

∑
i∈{1,...,N}2

E
〈
D4

i SN

〉
t
= 0, ∀0 ≤ t ≤ 1. (3.25)

Setting t = 0 in (3.25) gives (3.16) with m = 4.

Step 4. The proof of (3.16) with m = 3 is similar. Now with the disorder ηN chosen at the beginning of this proof,
we work with the interpolating coupling constants

η
N,t
i = √

tηN
i + √

1 − tgi, 0 ≤ t ≤ 1, (3.26)

and write the corresponding Gibbs expectations as 〈 · 〉N,t . By the choice of ηN
i , the arguments in Step 1 and Step 2 (see

(3.18), (3.21) and (3.23) in particular) can be modified slightly to show that, for all F : �n
N → [−1,1], k ∈ {1, . . . ,N}2

and T ∈ [0,1],

E〈F 〉N,T −E〈F 〉N,0 = β3
2

(
E(ηN

k )3

4

)∫ T

0
t1/2

(
1

N3/2

∑
i∈{1,...,N}2

E
〈
D3

i F
〉
N,t

)
dt

+ β4
2

(
E(ηN

k )4 − 3

12

)∫ T

0
t

(
1

N2

∑
i∈{1,...,N}2

E
〈
D4

i F
〉
N,t

)
dt +

∫ T

0
EN,t (F )dt, (3.27)

where EN,t (F ) converges to zero as N → ∞ uniform in t ∈ (0,1]. See also the explanation below (2.9) and note that∣∣ηN
i

∣∣ ≤ |ζi| +
∣∣g′

i

∣∣ for i ∈ {1, . . . ,N}2 (3.28)

when it comes to obtain analogues of (3.23).
An inspection of the proof of Theorem 2.1 shows that its main result still applies when the coupling constants

in (3.26) for fixed t ∈ [0,1], which may not be identically distributed, are in force. Indeed, in modifying Steps 3
and 5 of that proof, we can use (3.28) to handle the error terms from the generalized Gaussian integration by parts
(Proposition 6.1). Then by the foregoing equality and the particular choice of ηN

i for i ∈ {1, . . . ,N}2, we can argue
as in Step 3 to obtain (3.25) with E〈D4

i SN 〉t replaced by E〈D3
i SN 〉N,t . Taking t = 0 leads to (3.16) with m = 3. The

proof is complete. �
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4. Gibbs measures and multi-overlaps

In the previous sections, derivatives of the Gibbs measures with respect to coupling constants by (2.6) are used to
study their universality and elicit the identities in Proposition 4.2. In any case, Gibbs expectations of the form 〈Dm

i F 〉,
for integers n,N ≥ 1 and F defined on �n

N , are consistently present, where the operators Di are defined in (2.1).
Our goal in this section is to study these particular Gibbs expectations 〈Dm

i F 〉 combinatorially. Here and throughout
the rest of this section, 〈 · 〉 is defined by the sum of a general mixed p-spin Hamiltonian as in (1.1) and an arbitrary
Hamiltonian over N sites. In Proposition 4.2, we will show that these Gibbs expectations 〈Dm

i F 〉 satisfy certain
power-series-like expansions. This result will be applied in Section 5.

Let us introduce the two major sets of ingredients for the series expansion of 〈Dm
i F 〉. First, the series expansion

is a linear combination of Gibbs expectations of the following functions defined on �∞
N : for n ∈ N, m ∈ Z and

i ∈ {1, . . . ,N}p with p ≥ 2,

S
m,n
i

.=
{

m!∑m
k=0(−1)m−k

(
n+m−k−1

n−1

)∑
1≤�1<···<�k≤n σ

�1,...,�k,n+1,...,n+m−k
i , m ≥ 1,

0, m ≤ 0,
(4.1)

where

σ
�1,...,�m

i =
m∏

j=1

σ
�j

i

and the following convention for summation is used:

∑
1≤�1<···<�k≤n

σ
�1,...,�k,n+1,...,n+m−k
i =

{
σ

n+1,...,n+m
i , k = 0,

0, k > n.
(4.2)

Second, the series expansion uses coefficients given by the real constants A(m,a), for m ∈ N and a ∈ Z+, which are
defined as follows:

A(m,0) = 0, m ≥ 1, (4.3)

and A(m,a) for m,a ≥ 1 are recursively defined by the following partial difference equation:{
A(1, a) = 1{1}(a),

A(m + 1, a) = −(m − 2a + 4)(m − 2a + 3)A(m,a − 1) + A(m,a), m,a ≥ 1.
(4.4)

For example, it is readily checked that

A(2,1) = 1, A(2, a) = 0, a ≥ 2;
A(3,1) = 1, A(3,2) = −2, A(3, a) = 0, a ≥ 3;
A(4,1) = 1, A(4,2) = −8, A(4, a) = 0, a ≥ 3.

(4.5)

The recursive definition (4.4) implies that a �→ A(m,a) has a finite support. Precisely, we have the following.

Lemma 4.1. For any m ∈ N,

A(m,a) = 0, ∀a ≥
⌈

m

2

⌉
+ 1, (4.6)

where �x� is the smallest integer ≥ x.
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Proof. We claim that (4.6) holds for all m ∈ {2p − 1,2p} by an induction on p ∈ N. The case p = 1 already follows
from (4.4) and (4.5). Suppose that (4.6) holds for some p ≥ 1. First, we consider m = 2p + 1. For a0 = �m

2 � + 1 =
p + 2, the second line in the definition (4.4) implies that A(m,a0) = 0 since (m − 1) − 2a0 + 4 = 0 and the following
with a replaced by a0 is satisfied:

a ≥
⌈

m − 1

2

⌉
+ 1 = p + 1 (4.7)

so that our hypothesis for the value p applies to obtain A(m − 1, a0) = 0. To see that A(m,a0) = A(2p + 1, a0) = 0
for any a0 > �m

2 � + 1 = p + 2, notice that by (4.4), A(2p + 1, a0) is given by a linear combination of A(2p,a0 − 1)

and A(2p,a0), which are both equal to zero again by our hypothesis for the value p since (4.7) holds for a = a0 − 1
and a0. We have proved that (4.6) holds for m = 2p + 1.

For the other case that m = 2p + 2, the argument above still applies to obtain (4.6), except that now we use the
equation (m−1)−2a1 +3 = 0, when a1 = �m

2 �+1 = p+2, and the condition in (4.7) with the lower bound replaced
by �m−1

2 � + 1 = p + 2. In summary, we have proved (4.6) for m ∈ {2p + 1,2p + 2}. By induction, (4.6) holds for all
m ≥ 1. �

We are ready to state the series expansion for 〈Dm
i F 〉.

Proposition 4.2. Assume that the underlying Hamiltonian HN,ξ (σ ) defining the Gibbs measure in (1.3) is replaced
by the sum of a general mixed p-spin Hamiltonian as in (1.1) and an arbitrary Hamiltonian over N sites. With the
functions S

m,n
i defined in (4.1) and the constants A(m,a) defined above in (4.3) and (4.4), it holds that

〈
Dm

i F
〉 = ∞∑

a=1

A(m,a)
〈
S

m−2a+2,n
i F

〉
(4.8)

for all n,m ≥ 1, p ≥ 2, i ∈ {1, . . . ,N}p , and F : �n
N → [−1,1].

Proof. By continuity, we may assume that βp �= 0. We follow the convention for summation as in (4.2) in this proof.
As the first step to prove (4.8), we derive an ordinary differential equation satisfied by 〈Sm,n

i F 〉 for any m ≥ 1. We
use (2.6) and calculate the following:

N(p−1)/2

βp

∂ξi

〈
S

m,n
i F

〉
= m!

m∑
k=0

(−1)m−k

(
n + m − k − 1

n − 1

) ∑
1≤�1<···<�k≤n

N(p−1)/2

βp

∂ξi

〈
σ

�1,...,�k,n+1,...,n+m−k
i F

〉

= m!
m∑

k=0

(−1)m−k

(
n + m − k − 1

n − 1

)

×
∑

1≤�1<···<�k≤n

(
n+m−k∑

�=1

〈
σ

�1,...,�k,n+1,...,n+m−k,�
i F

〉 − (n + m − k)
〈
σ

�1,...,�k,n+1,...,n+m−k+1
i F

〉)

= m!
m∑

k=0

(−1)m−k

(
n + m − k − 1

n − 1

)( ∑
1≤�1<···<�k≤n

∑
�/∈{�1,...,�k}

1≤�≤n

〈
σ

�1,...,�k,n+1,...,n+m−k,�
i F

〉

− (n + m − k)
∑

1≤�1<···<�k≤n

〈
σ

�1,...,�k,n+1,...,n+m−k+1
i F

〉)
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+ m!
m∑

k=0

(−1)m−k

(
n + m − k − 1

n − 1

) ∑
1≤�1<···<�k≤n

∑
�∈{�1,...,�k}

〈
σ

�1,...,�k,n+1,...,n+m−k,�
i F

〉

+ m!
m∑

k=0

(−1)m−k

(
n + m − k − 1

n − 1

) ∑
1≤�1<···<�k≤n

n+m−k∑
�=n+1

〈
σ

�1,...,�k,n+1,...,n+m−k,�
i F

〉
= Im + IIm, (4.9)

where Im is defined by the first sum in the next to the last equality and IIm is defined by the sum of the second and
third sums there. Notice that each of the Gibbs expectations in Im contains a product of σ�

i for (n + m + 1) many
distinct �’s. But for the Gibbs expectations in IIm, there are only products of σ�

i for (n+m− 1) many distinct �’s due

to the ‘killing effect’ that σ
�,�
i = 1.

We can simplify the term Im as follows. If m − k ≥ 1, then(
n + m − k − 1

n − 1

)
(k + 1) +

(
n + m − k − 2

n − 1

)
(n + m − k − 1) =

(
n + m − k − 1

n − 1

)
(m + 1). (4.10)

Thus, keeping in mind the convention for summation as in (4.2), we obtain

Im = m!
m∑

k=0

(−1)m−k

(
n + m − k − 1

n − 1

)
(k + 1)

∑
1≤�1<···<�k+1≤n

〈
σ

�1,...,�k+1,n+1,...,n+m−k

i F
〉

+ m!
m−1∑
k=−1

(−1)m−k

(
n + m − k − 2

n − 1

)
(n + m − k − 1)

×
∑

1≤�1<···<�k+1≤n

〈
σ

�1,...,�k+1,n+1,...,n+m−k

i F
〉

= m!
(

n − 1

n − 1

)
(m + 1)

∑
1≤�1<···<�m+1≤n

〈
σ

�1,...,�m+1
i F

〉

+ m!
m−1∑
k=0

(−1)m−k

[(
n + m − k − 1

n − 1

)
(k + 1) +

(
n + m − k − 2

n − 1

)
(n + m − k − 1)

]
×

∑
1≤�1<···<�k+1≤n

〈
σ

�1,...,�k+1,n+1,...,n+m−k

i F
〉

+ m!(−1)m+1
(

n + m − 1

n − 1

)
(n + m)

〈
σ

n+1,...,n+m+1
i F

〉
= (m + 1)!

m+1∑
k=0

(−1)m+1−k

(
n + (m + 1) − k − 1

n − 1

) ∑
1≤�1<···<�k≤n

〈
σ

�1,...,�k,n+1,...,n+(m+1)−k
i F

〉
= 〈

S
m+1,n
i F

〉
, (4.11)

where the next to the last equality uses (4.10) and the last equality follows from the definition of the function S
m+1,n
i .

For the term IIm, we use the following identities for binomial coefficients: for m − k ≥ 1,(
n + m − k − 2

n − 1

)
(n − k) −

(
n + m − k − 1

n − 1

)
(m − k) = −

(
n + m − k − 2

n − 1

)
(m − 1).
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Then we get

IIm = m!
m∑

k=1

(−1)m−k

(
n + m − k − 1

n − 1

)
(n − k + 1)

∑
1≤�1<···<�k−1≤n

〈
σ

�1,...,�k−1,n+1,...,n+m−k

i F
〉

+ m!
m−1∑
k=0

(−1)m−k

(
n + m − k − 1

n − 1

)
(m − k)

∑
1≤�1<···<�k≤n

〈
σ

�1,...,�k,n+1,...,n+m−k−1
i F

〉

= −(m − 1)m!
m−1∑
k=0

(−1)(m−1)−k

(
n + (m − 1) − k − 1

n − 1

) ∑
1≤�1<···<�k≤n

〈
σ

�1,...,�k,n+1,...,n+(m−1)−k
i F

〉
= −m(m − 1)

〈
S

m−1,n
i F

〉
(4.12)

by the definition of S
m−1,n
i . In summary, by (4.9), (4.11) and (4.12), the following differential equations hold for all

m ≥ 1:

N(p−1)/2

βp

∂ξi

〈
S

m,n
i F

〉 = −m(m − 1)
〈
S

m−1,n
i F

〉 + 〈
S

m+1,n
i F

〉
. (4.13)

Notice that the same differential equations are trivially satisfied for all m ≤ −1 by (4.1).
Now we prove (4.8) by an induction on m ≥ 1. For m = 1, the required formula (4.8) holds by writing out the

summands of S
1,n
i with k in the increasing order and recalling the definition (2.1) of Di. Next, suppose that (4.8) holds

up to some m ≥ 1. Since βp �= 0, we can generate 〈Dm+1
i F 〉 from 〈Dm

i F 〉 by (2.6) as follows:

〈
Dm+1

i F
〉 = N(p−1)/2

βp

∂ξi

〈
Dm

i F
〉 = ∞∑

a=1

A(m,a)

(
N(p−1)/2

βp

∂ξi

〈
S

m−2a+2,n
i F

〉)
, (4.14)

where the second equality is justified by the fact that the sum in (4.8) for 〈Dm
i F 〉 is a finite sum. By the differential

equations in (4.1), which are valid for all nonzero m ∈ Z, and the fact that A(m,a) = 0 if m − 2a + 2 = 0 by (4.6),
we see that (4.14) gives

〈
Dm+1

i F
〉 = ∞∑

a=1

A(m,a)
[−(m − 2a + 2)(m − 2a + 1)

〈
S

m−2a+1,n
i F

〉 + 〈
S

m−2a+3,n
i F

〉]
=

∞∑
a=1

[−(m − 2a + 4)(m − 2a + 3)A(m,a − 1) + A(m,a)
]〈
S

(m+1)−2a+2,n
i F

〉
=

∞∑
a=1

A(m + 1, a)
〈
S

(m+1)−2a+2,n
i F

〉
,

where the second equality uses (4.3) and the last equality follows from (4.4). We have proved that (4.8) with m

replaced by m + 1 holds. By mathematical induction, (4.8) holds for all m ≥ 1. The proof is complete. �

For p ≥ 2 and i ∈ {1, . . . ,N}p , we write

R�1,...,�m

.= 1

N

N∑
i=1

σ
�1,...,�m

i (4.15)
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for the multi-overlaps of the spin configurations σ �1 , . . . ,σ �m ∈ �N so that

1

N2

∑
i∈{1,...,N}2

〈
σ

�1,...,�m

i F
〉 = 〈

R2
�1,...,�m

F
〉
. (4.16)

Therefore, the formula in (4.8) can be expressed in terms of a formula in multi-overlaps whenever we sum over
i ∈ {1, . . . ,N}p . The latter formula can be applied with Proposition 3.2 to obtain identities of multi-overlaps.

Example 4.3. By Proposition 4.2 and (4.5), the following equation holds for any n ∈ N and any function F defined
�n

N :

1

N2

∑
i∈{1,...,N}2

E
〈
D4

i F
〉

= 4!
∑

1≤�1<�2<�3<�4≤n

E
〈
R2

�1,�2,�3,�4
F

〉 − 4!n
∑

1≤�1<�2<�3≤n

E
〈
R2

�1,�2,�3,n+1F
〉

+ 12(n + 1)n
∑

1≤�1<�2≤n

E
〈
R2

�1,�2,n+1,n+2F
〉 − 4(n + 2)(n + 1)n

n∑
�=1

E
〈
R2

�,n+1,n+2,n+3F
〉

+ (n + 3)(n + 2)(n + 1)nE
〈
R2

n+1,n+2,n+3,n+4F
〉

− 16
∑

1≤�1<�2≤n

E
〈
R2

�1,�2
F

〉 + 16n

n∑
�=1

E
〈
R2

�,n+1F
〉 − 8(n + 1)nE

〈
R2

n+1,n+2F
〉
.

Notice that the right-hand side only involves overlaps and 4-overlaps.

5. Total variation convergence of spin distributions

In this section, we consider the mixed p-spin models subject to any choice of temperature parameters. Now we
perturb their Hamiltonians by independent Viana–Bray diluted 2-spin glass Hamiltonians defined as follows. Let
{ui ,vi; i ≥ 1} be a family of i.i.d. variables uniformly distributed over {1, . . . ,N}, {Ji; i ≥ 1} be a family of i.i.d.
nonzero real-valued variables, and XαN be a Poisson variable with mean αN . All these variables are independent, and
we assume that Ji ’s are bounded and their first and third moments match the corresponding moments of a standard
Gaussian. Then the Viana–Bray diluted spin glass Hamiltonian is defined by, for β ′ ∈ R,

H ′
α,β ′(σ ) = H ′

N,α,β ′(σ ) ≡ β ′
XαN∑
i=1

Jiσui ,vi
, σ ∈ �N, (5.1)

where σui ,vi
= σ(ui ,vi ) = σui

σvi
.

Theorem 5.1. Consider a mixed p-spin Hamiltonian defined by (1.1) and the Viana–Bray diluted spin glass Hamil-
tonian as in (5.1). Assume that ξi have finite fourth moments and their first three moments match the corresponding
moments of a standard Gaussian. The random variables ξi and Ji may be distributed differently.

Let αk,j ∈ (0,∞) and Nk,j ∈ N be such that

lim
k→∞αk,j = 0, lim

k→∞Nk,j = ∞, lim
j→∞ lim

k→∞αk,jNk,j = ∞, (5.2)

and

β ′ �→ lim
j→∞ lim

k→∞

∫ 1

0

t

αk,jNk,j

E log
Z(HNk,j ,ξ t + H ′

Nk,j ,αk,j ,β ′)

Z(HNk,j ,ξ t )
dt exists everywhere, (5.3)
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where the disorder ξ t is defined by (3.17). Then for all n ∈N, it holds that

lim
D�β ′→0

lim
j→∞ lim

k→∞ sup
F :�n

Nk,j
→[−1,1]

∣∣E〈F 〉HNk,j ,ξ +H ′
Nk,j ,αk,j ,β′ −E〈F 〉HNk,j ,g+H ′

Nk,j ,αk,j ,β′
∣∣ = 0, (5.4)

where D is the set of β ′ ∈ R at which the convex function defined by (5.3) is differentiable.

Let us explain (5.2). First, since EXαN = αN and EJi = 0, the proof of [27, Theorem 12.2.1] shows that

qN,ξ,α

(
β ′) .= 1

αN
E log

Z(HN,ξ + H ′
N,α,β ′)

Z(HN,ξ )
(5.5)

satisfies

0 ≤ qN,ξ,α

(
β ′) ≤ β ′. (5.6)

Hence, if αN,M ∈ (0,∞) are constants such that the following analogues of the first and third assumed limits in (5.2)
hold:

lim
N→∞αN,M = 0 and lim

M→∞ lim
N→∞αN,MN = ∞, (5.7)

then the convex functions

β ′ �−→
∫ 1

0

t

αN,MN
E log

Z(HN,ξ t + H ′
N,αN,M,β ′)

Z(HN,ξ t )
dt; N,M ∈N,

are uniformly bounded on compacts by (5.6). Examples of (5.7) include the following two cases:

(1) limN→∞ αN,MN = αM ∈ (0,∞) and limM→∞ αM = ∞;
(2) limN→∞ αNN = ∞ and limN→∞ αN = 0.

We impose the somewhat tedious assumption (5.3), and hence, the limiting scheme in (5.4), since we do not know
whether the standard subadditivity argument applies in this case. Nonetheless, by a standard result of convexity (cf.
[21, Theorem 10.8]), one can choose subsequences αk,j and Nk,j from αN,M and N so that (5.3) is satisfied.

Proof of Theorem 5.1. We write 〈 · 〉t,α,β ′ for 〈 · 〉Hξt +H ′
α,β′ in this proof.

Plainly, Step 1–Step 2 in the proof of Proposition 3.2 still apply even if we add the present perturbative Viana–Bray
Hamiltonians to the interpolating Hamiltonians considered there. Then an analogue of (3.19) for the present setup
follows, and it is enough to consider the case β2 �= 0 and show, for any fixed n ∈N,

lim
D�β ′→0

lim
j→∞ lim

k→∞ sup
F :�n

Nk,j
→[−1,1]

∣∣∣∣∫ 1

0
t

(
1

N2

∑
i∈{1,...,N}2

E
〈
D4

i F
〉
t,αk,j ,β ′

)
dt

∣∣∣∣ = 0. (5.8)

The plan below for (5.8) may be compared to the derivation of the Ghirlanda–Guerra identities. See [8, Section 4].

Step 1. We show that

lim
j→∞ lim

k→∞ sup
F :�n

Nk,j
→[−1,1]

∫ 1

0
t

∣∣∣∣E〈H ′
Nk,j ,αk,j ,β ′(σ 1)

αk,jNk,jβ ′ 	1F

〉
t,αk,j ,β ′

∣∣∣∣dt = 0, β ′ ∈ D \ {0}, (5.9)

where D is defined in the statement of Theorem 5.1 and 	1F is defined by (2.14).
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We recall an inequality due to Panchenko which, adapted to the present setup, takes the following form when
applied to the test functions 	1F : for any β ′′ > β ′ �= 0,

sup
F :�n

N→[−1,1]

∣∣∣∣E〈
H ′

N,α,β ′(σ 1)

αNβ ′ 	1F

〉
t,α,β ′

∣∣∣∣ ≤ 2

√
εN
t,α(β ′, β ′′)

αN(β ′′ − β ′)
+ 8εN

t,α

(
β ′, β ′′) (5.10)

(see the proof of [18, (3.102) in Theorem 3.8]). Here, we set

εN
t,α

(
β ′, β ′′) .= 1

αN

∫ β ′′

β ′
E

〈(
XαN∑
i=1

Jiσui ,vi
−

〈
XαN∑
i=1

Jiσui ,vi

〉
t,α,x

)2〉
t,α,x

dx

≤ qN,ξ t ,α(β ′′ + y) − qN,ξ t ,α(β ′′)
y

− qN,ξ t ,α(β ′) − qN,ξ t ,α(β ′ − y)

y
, ∀y ∈ (0,∞),

and the function qN,ξ t ,α(β ′) is defined by (5.5). Since EXαN = αN , it follows from the mean-value theorem that the
foregoing bound for εN

t,α(β ′, β ′′) is uniformly bounded by 2.
The required limit (5.9) thus follows from (5.10) and the third assumed limit in (5.2) if we pass the following limits

in order: k → ∞, j → ∞, β ′′ → β ′ and finally y → 0 (cf. the proof of [18, Theorem 3.8]).

Step 2. By the Poisson integration by parts, we get, for β ′ �= 0 and F : �n
N → [−1,1],

E

〈H ′
Nk,j ,αk,j ,β ′(σ 1)

αk,jNk,jβ ′ 	1F

〉
t,αk,j ,β ′

= E

〈
J

∏n+1
i=1 (1 + tanh(β ′J )σ i

u,v)σ
1
u,v	1F

(1 + tanh(β ′J )〈σu,v〉t,αk,j ,β ′)n+1

〉
t,αk,j ,β ′

, (5.11)

where J , u, v are independent of the Hamiltonian defining 〈 · 〉t,αk,j ,β ′ and are distributed as J1, u1,v1, respectively
(cf. [8,13]). Consider the Taylor series of the E〈 · 〉t,αk,j ,β ′ -integrand on the right-hand side of (5.11) in tanh(β ′J ). We
study explicit forms of the Taylor coefficients in this step and then pass suitable limits for the terms in the remaining
steps. The reader will see particular forms of the Ghirlanda–Guerra identities in the first-order coefficients and the
normalized sums in the required equality (5.8) in the third-order coefficients.

To obtain explicit forms of the Taylor coefficients, we use the following identity:∑n+1
m=0 Amxm

(1 − Bx)n+1
=

∞∑
m=0

(min{m,n+1}∑
a=0

(
n + m − a

n

)
AaB

m−a

)
xm, (5.12)

where the binomial coefficients follow by counting the number of solutions (m1, . . . ,mn+1) ∈ Z
n+1+ to m1 +m2 +· · ·+

mn+1 = m for every m ∈ Z+ (cf. [23, page 18]). The series on the right-hand side of (5.12) converges absolutely for
|x| < 1/|B|. By (5.12), the E〈 · 〉t,αk,j ,β ′ -expectation of the mth term, m ∈ Z+, in the Taylor series under consideration
is given by the product of EJ tanhm(β ′J ) and the following term:

Am

(
t, αk,j , β

′) .=
min{m,n+1}∑

a=0

(−1)m−a

(
n + m − a

n

)
×

∑
1≤�1<�2<···<�a≤n+1

E
〈
σ�1,...,�a,1

u,v 	1F
〉
t,αk,j ,β ′ 〈σu,v〉m−a

t,αk,j ,β ′ (5.13)

= 1

m!E
〈
Sm,n+1

u,v σ 1
u,v	1F

〉
t,αk,j ,β ′ , (5.14)

where the notation (4.1) is used in (5.14). With the convention as in (4.2), we can replace min{m,n + 1} with m in the
definition (5.13) of Am(t,αk,j , β

′), and the sum is not changed. Notice that Am(t,αk,j , β
′) is bounded by a constant

depending only on m and n, and we can write

E
〈
σ�1,...,�a,1

u,v 	1F
〉
t,αk,j ,β ′ 〈σu,v〉m−a

t,αk,j ,β ′ = E
〈
R2

�1,...,�a,1,n+2,...,n+1+m−a	1F
〉
t,αk,j ,β ′ (5.15)



Universality in mixed p-spin models 547

by (4.16) so that the multi-overlaps defined by (4.15) come into play through Am(t,αk,j , β
′)’s according to

(5.13).

Step 3. Now by the discussion in Step 2, we get, for β ′ �= 0,

E

〈H ′
Nk,j ,αk,j ,β ′(σ 1)

αk,jNk,jβ ′ 	1F

〉
t,αk,j ,β ′

=
3∑

m=1

EJ tanhm
(
β ′J

) · Am

(
t, αk,j , β

′) +O
((

β ′)4) (5.16)

= EJ tanh
(
β ′J

) · A1
(
t, αk,j , β

′) +EJ tanh3(β ′J
) · A3

(
t, αk,j , β

′) + o
((

β ′)3)
, β ′ → 0, (5.17)

where (5.16) starts with EJ tanh(β ′J ) since EJ = 0 and the term O((β ′)4) in (5.16) follows since J is bounded. Also,
we get the term o((β ′)3) in (5.17) because the summand in (5.16) indexed by m = 2 can be handled as follows:

lim
β ′→0

EJ
tanh2(β ′J )

(β ′)3
= lim

β ′→0
EJ

(
tanh2(β ′J ) − (β ′J )2

(β ′)3

)
= E lim

β ′→0
J

(
tanh2(β ′J ) − (β ′J )2

(β ′)3

)
= 0.

Here, the first equality uses the assumption that EJ 3 = 0 and the last equality follows from the Taylor series of the
even function x �→ tanh2(x), the boundedness of J and dominated convergence.

Notice that the limiting behaviors of the terms O((β ′)4) and o((β ′)3) in (5.16) and (5.17) are uniform in k, j ∈ N,
t ∈ [0,1] and F : �n

Nk,j
→ [−1,1].

Step 4. In this step, we show that

lim
D�β ′→0

lim
j→∞ lim

k→∞ sup
F :�n

Nk,j
→[−1,1]

∣∣∣∣∫ 1

0
tA3

(
t, αk,j , β

′)dt

∣∣∣∣ = 0. (5.18)

By dominated convergence, the elementary inequality | tanh(x)| ≤ |x| and EJ 4 ∈ (0,∞), it holds that

lim
β ′→0

o((β ′)3)

EJ tanh3(β ′J )
= 0.

Hence, we obtain from (5.17) that

lim
D�β ′→0

lim
j→∞ lim

k→∞ sup
F :�n

Nk,j
→[−1,1]

∣∣∣∣∫ 1

0
tA3

(
t, αk,j , β

′)dt

∣∣∣∣
≤ lim

D�β ′→0
lim

j→∞ lim
k→∞ sup

F :�n
Nk,j

→[−1,1]

∣∣∣∣ 1

EJ tanh3(β ′J )

∫ 1

0
tE

〈H ′
Nk,j ,αk,j ,β ′(σ 1)

αk,jNk,jβ ′ 	1F

〉
t,αk,j ,β ′

dt

∣∣∣∣
+ lim

D�β ′→0
lim

j→∞ lim
k→∞ sup

F :�n
Nk,j

→[−1,1]

∣∣∣∣ EJ tanh(β ′J )

EJ tanh3(β ′J )

∫ 1

0
tA1

(
t, αk,j , β

′)dt

∣∣∣∣
= lim

D�β ′→0
lim

j→∞ lim
k→∞ sup

F :�n
Nk,j

→[−1,1]

∣∣∣∣ EJ tanh(β ′J )

EJ tanh3(β ′J )

∫ 1

0
tA1

(
t, αk,j , β

′)dt

∣∣∣∣, (5.19)

where the last equality follows from (5.9).
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By the proof of [27, Theorem 12.2.1] and the first and second assumed limits in (5.2), we have

lim
k→∞

1

Nk,j

E log
Z(HNk,j ,ξ t + H ′

Nk,j ,αk,j ,β ′)

Z(HNk,j ,ξ t )
= 0, ∀j, t, β ′, (5.20)

so that Theorem 2.1 and Corollary 2.2 also apply under the Gibbs expectations defined by HNk,j ,ξ t + H ′
Nk,j ,αk,j ,β ′ in

the limit k → ∞. Hence, by the explicit form (5.13) of A1(t, αk,j , β
′) and the assumption β2 �= 0, we have

lim
k→∞ sup

F :�n
Nk,j

→[−1,1]

∣∣A1
(
t, αk,j , β

′)∣∣ = 0, ∀j, t, β ′. (5.21)

The required equality (5.18) thus follows from the foregoing equality and (5.19).

Step 5. We complete the proof in this step by showing that (5.18) implies (5.8).
Let 〈 · 〉 be the Gibbs expectation where the Hamiltonian is the sum of a general Hamiltonian over N sites and a

mixed p-spin Hamiltonian as in (1.1). Observe that

〈DiF 〉 =
n∑

�=1

〈
σ�

i 	�F
〉
. (5.22)

Hence, applying (2.6) and the continuity of the Gibbs expectations in temperature parameters in the first and last
equalities below and Proposition 4.2 and (4.5) in the second and third equalities, we obtain

〈
D4

i F
〉 = n∑

�=1

〈
D3

i σ
�
i 	�F

〉 = n∑
�=1

〈
S

3,n+1
i σ�

i 	�F
〉 − 2

n∑
�=1

〈
S

1,n+1
i σ�

i 	�F
〉

=
n∑

�=1

〈
S

3,n+1
i σ�

i 	�F
〉 − 2

n∑
�=1

〈
D1

i σ
�
i 	�F

〉
=

n∑
�=1

〈
S

3,n+1
i σ�

i 	�F
〉 − 2

〈
D2

i F
〉
.

Then from the last equality, we get∣∣∣∣∫ 1

0
t

(
1

N2

∑
i∈{1,...,N}2

E
〈
D4

i F
〉
t,αk,j ,β ′

)
dt

∣∣∣∣
≤

n∑
�=1

∣∣∣∣∫ 1

0
t
(
E

〈
S3,n+1

u,v σ�
u,v	�F

〉
t,αk,j ,β ′

)
dt

∣∣∣∣ + 2

∣∣∣∣∫ 1

0
t

(
1

N2

∑
i∈{1,...,N}2

E
〈
D2

i F
〉
t,αk,j ,β ′

)
dt

∣∣∣∣. (5.23)

The first term in (5.23) tends to zero in the same mode of uniform convergence in (5.8), if we apply (5.14), (5.18) and
the analogues of (5.18) where σ 1

u,v	1F are replaced by σ�
u,v	�F for 2 ≤ � ≤ n. As in the proof of (5.21), we have the

same mode of uniform convergence to zero of the second term in (5.23) by Corollary 2.2, Proposition 4.2 and (4.5).
This proves (5.8). The proof is complete. �

6. Approximate integration by parts with cutoffs

In this section we prove the following result, which is used throughout this paper. See also [5, Section 3].



Universality in mixed p-spin models 549

Proposition 6.1. Let ξ be a real-valued random variable with zero mean and unit variance. Then for any f : R → R

with a bounded continuous third-order derivative, we have

Eξf (ξ) = E∂xf (ξ) + γ 2
ξ

(
∂2
xf

)
, (6.1)

where

γ 2
ξ

(
∂2
xf

) .= Eξ

∫ ξ

0
(ξ − x)∂2

xf (x)dx −E

∫ ξ

0
(ξ − x)∂3

xf (x)dx. (6.2)

The first expectation on the right-hand side of (6.2) is well-defined since∣∣∣∣ξ ∫ ξ

0
(ξ − x)∂2

xf (x)dx

∣∣∣∣ ≤ |ξ |
∫ |ξ |

0
min

{
2‖∂xf ‖∞,

∥∥∂2
xf

∥∥∞x
}

dx. (6.3)

Proof. By Taylor’s theorem, the following equation holds:

ξf (ξ) = ξf (0) + ξ2∂xf (0) +
∫ ξ

0
∂2
xf (x)dx

+
∫ ξ

0

(
−∂2

xf (ξ) +
∫ ξ

x

∂3
xf (y)dy

)
dx + ξ

∫ ξ

0
(ξ − x)∂2

xf (x)dx. (6.4)

The assumption Eξ = 0 and Eξ2 = 1 implies that the sum of expectations of the first three terms on the right-hand
side of (6.4) reduces to E∂xf (ξ). Also, expectations of the last two terms in (6.4) sum to the last term in (6.1) since∫ ξ

0
−∂2

xf (ξ)dx = −ξ∂2
xf (0) − ξ

∫ ξ

0
∂3
xf (x)dx

and Eξ = 0. We have proved (6.1). To see (6.3), one may use the identity:

ξ

∫ ξ

0
(ξ − x)∂2

xf (x)dx = ξ

∫ ξ

0

(
∂xf (x) − ∂xf (0)

)
dx

and the mean-value theorem. �
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