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Abstract. Let {B;};>( be a d-dimensional fractional Brownian motion with Hurst parameter 0 < H < 1, where d > 2. Consider
the approximation of the self-intersection local time of B, defined as

T ot
1; =/ / pe(Bs — By)ds dt,
0 Jo

where pg(x) is the heat kernel. We prove that the process {1; - E[I;]}Tzo, rescaled by a suitable normalization, converges in law
to a constant multiple of a standard Brownian motion for % <H< % and to a multiple of a sum of independent Hermite processes

for % < H < 1, in the space C[0, o), endowed with the topology of uniform convergence on compacts.

Résumé. Soit {B;};>0 un mouvement brownien fractionnaire d-dimensionel avec parametre de Hurst 0 < H < 1, ou d > 2. On
considere 1’approximation du temps local d’auto-intersection du processus B, défini comme

T rt
15 =/ / pe(Br — By)dsadt,
0 Jo

ol pe(x) est le noyau de la chaleur. Nous démontrons que le processus {/. ; —E[I ;]}Tzo, rééchelonné avec une normalisation
convenable, converge en loi vers un mouvement brownien multiplié par une constante si % < H< % et vers une somme de
processus de Hermite indépendants multipliée par une constante si % < H < 1, dans I’espace C[0, co), muni de la topologie de la
convergence uniforme sur les compacts.
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1. Introduction

Let B = {B;};>0 be a d-dimensional fractional Brownian motion of Hurst parameter H € (0, 1). Fix T > 0. The
self-intersection local time of B in the interval [0, T'] is formally defined by

T t
I ;=/ / 8(B, — By)dsdt,
0 0
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where § denotes the Dirac delta function. A rigorous definition of this random variable may be obtained by approxi-
mating the delta function by the heat kernel

1
pe(x) = (2e)"? exp{—£||x||2}, x eRY.

In the case H = % B is a classical Brownian motion, and its self-intersection local time has been studied by many
authors (see Albeverio, Hu and Zhou [1], Hu [4], Imkeller, Pérez-Abreu and Vives [6], Varadhan [14], Yor [15] and
the references therein). In the case H # %, the self-intersection local time for B was first studied by Rosen in [13] in
the planar case and it was further investigated using techniques from Malliavin calculus by Hu and Nualart in [5]. In
particular, it was proved that the approximation of the self-intersection local time of B in [0, T'], defined by

T pt
I :=/ / pe(B; — By)ds dt, (1.1)
o Jo
converges in Lz(Q) when H < dl. Furthermore, it was shown that when 5 <H< %, I; — E[I;] to converges in
L%(2), and for the case % < H < %, the following limit theorem holds (see [S5, Theorem 2]).

d 3 . . . . .
Theorem 1.1. If % < H < %, then €27 30 (I; — IE[I;]) converges in law to a centered Gaussian distribution with
variance o 2T, as ¢ — 0, where the constant o2 is given by (3.3).

The case H = % was addressed as well in [5], where it was shown that the sequence (log(l/e))’% (1; — E[I;l])
converges in law to a centered Gaussian distribution with variance a]%) o A5 € = 0, where olig is the constant given by
[5, Equation (42)].

The aim of this paper is to prove a functional version of Theorem 1.1, and extend it to the case % <H < 1.Our
main results are Theorems 1.2, 1.3 and 1.4.

Theorem 1.2. Let % < H < %, d > 2 be fixed. Then,

3

{273 (15~ E[13])} 720 = {0 Wrlr=0. (1.2)

in the space C[0, 00), endowed with the topology of uniform convergence on compact sets, where W is a standard
Brownian motion, and the constant o> is given by (3.3).

We briefly outline the proof of (1.2). The proof of the convergence of the finite-dimensional distributions, is based
on the application of a multivariate central limit theorem established by Peccati and Tudor in [12] (see Section 2.3),
and follows ideas similar to those presented in [5]. On the other hand, proving the tightness property for the process

3

(15 E[15])

presents a great technical difficulty. In fact, by the Billingsley criterion (see [2, Theorem 12.3]), the tightness property
can be obtained by showing that there exists p > 2, such that for every 0 < 71 < 7>,

~ d
I7:=¢2

E[|I, —I5, "] < CI — T2, (1.3)

for some constant C > 0 independent of 77, 7> and ¢. The problem of finding a bound like (1.3) comes from the

fact that the smallest even integer such that p > 2 is p =4, and a direct computation of the moment of order four

E[| I ;2 -7 ;1 |4] is too complicated to be handled. To overcome this difficulty, in this paper we introduce a new approach

to prove tightness based on the techniques of Malliavin calculus. Let us describe the main ingredients of this approach.
First, we write the centered random variable Z := ]% —1 ;1 as

Z=-86DL7'Z,
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where §, D and L are the basic operators in Malliavin calculus. Then, taking into consideration that IEI[DL_1 Z]1=0
we apply Meyer’s inequalities to obtain a bound of the type

1Zll Ly <cp|DPL™ (14)

'zZ| LP(Q:(H)82)

for any p > 1, where the Hilbert space $) is defined in Section 2.1. Notice that
Z=ef—4‘—H/ (pe(B; — By) —E[pe(B; — By)]) dsdt.
0<s<t,T1<t<T,
Applying Minkowski’s inequality and (1.4), we obtain

d_ 3 _
1 Zll ey <cpe? 4H/ |p*L lpg(B,—Bs)”pdsdt.

Oss=<t,T1<t<T»

Then, we get the desired estimate by choosing p > 2 close to 2, using the self-similarity of the fractional Brownian
motion, the expression of the operator L™! in terms of the Ornstein—Uhlenbeck semigroup, Mehler’s formula and
Gaussian computations. In this way, we reduce the problem to showing the finiteness of an integral (see Lemma 5.3),
similar to the integral appearing in the proof of the convergence of the variances. It is worth mentioning that this
approach for proving tightness has not been used before, and has its own interest.

In the case H > %, the process 8%_%+1(16 E[I}]) also converges in law, in the topology of C[0, co), but the
limit is no longer a multiple of a Brownian motion, but a multiple of a sum of independent Hermite processes of

order two. More prec1se1y, if {X }7>0 denotes the second order Hermite process, with respect to {B(j )}z>0, defined
in Section 2.1, then {/ ¢ }ee(0,1) satisfies the following limit theorem

Theorem 1.3. Let H > %, and d > 2 be fixed. Then, for every T > 0,

d
2 .
ef o (1p —E[15]) 5 —A Y xi, (1.5)
j=1
where the constant A is defined by
d
2m)"2 [ _d_
A:=( ) / (1 +u2H) 2 qu. (1.6)
2 0
In addition,
d 3 L d .
{27t (15 = B[I5])} oy = {—AZX§} : (1.7)
j=1 T>0

in the space C[0, 00), endowed with the topology of uniform convergence on compact sets.

We briefly outline the proof of Theorem 1.3. The convergence (1.5) is obtained from the chaotic decomposition of

I7. It turns out that the chaos of order two completely determines the asymptotic behavior of 8%_%+1 (I — E[I7]),
and consequently, (1.5) can be obtained by the characterization of the Hermite processes presented in [8], applied to the
second chaotic component of /7. Similarly to the case % <H< %, we show that the sequence g2+ (I% —E[I%])
is tight, which proves the convergence in law (1.7).

The technique we use to prove tightness doesn’t work for the case Hd < %, so the convergence in law of
{log(1 /8)_%(1; — ]E[I;])}Tzo to a scalar multiple of a Brownian motion for the case Hd = % still remains open.
Nevertheless, for the critical case H = % and d > 3, the technique does work, and we prove the following limit
theorem
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Theorem 1.4. Suppose H = 3 3 and d > 3. Then,

o Iy —E[1 S oW 1.8
{W( [T])}T>0 — WWrirzo, (1.8)

in the space C[0, 00), endowed with the topology of uniform convergence on compact sets, where W is a standard
Brownian motion, and the constant p is defined by (3.51).

Remark. We impose the stronger condition d > 3 instead of d > 2, since the choice H = 4, d =2 gives Hd = %
and as mentioned before, it is not clear how to prove tightness for this case.

We briefly outline the proof of Theorem 1.4. The proof of the tightness property is analogous to the case % <H<
%. On the other hand, the proof of the convergence of the finite dimensional distributions requires a new approach.

First we show that, as in the case H > %, the chaos of order two determines the asymptotic behavior of {I7}75¢. Then
we describe the behavior of the second chaotic component of 77, which is given by

) )
k B — B
(27[) ge%__ ¢ 3(T %) u% S+8%M ) dud 1.9
2 (]—|—u%)%+l 2 \/EM% e (- )

where H, denotes the Hermite polynomial of order 2. Then we show that we can replace the domain of integration of
u by [0, 00), and this integral can be approximated by Riemann sums of the type

MM 3 () _pW
N - B OLN /TH2<B“+82MM<'<> = >ds (1.10)
M H A rumhHrt o Jeuk)?
where u(k) = 2M’ and M is some fixed positive number. By [3, Equation (1.4)], we have that, for k fixed, the random
variable
N . BV, _BY
Elf(T) — &3 H2< s+e3uk) )dS
Viog(1/e) Jo Jeuk)i

converges in law to a Gaussian distribution as ¢ — 0. Hence, after a suitable analysis of the covariances of the process

{E,f(T) |2 <k<M2M_ and T > 0} and an application of the Peccati—Tudor criterion (see [12]), we obtain that the
d 1

(277)"

(1/
some py > 0. The result then follows by provmg that the approximations (1.10) to the integral in (1.9), are uniform

over ¢ € (0,1/e) as M — oo, and that pyy — p as M — oo.

The paper is organized as follows. In Section 2 we present some preliminary results on the fractional Brownian
motion and the chaotic decomposition of 7. In Section 3, we compute the asymptotic behavior of the variances of the
chaotic components of /7 as & — 0. The proofs of the main results are presented in Section 4. Finally, in Section 5
we prove some technical lemmas.

process (1.10) multiplied by the factor converges to a constant multiple of a Brownian motion py W, for

2. Preliminaries and main results
2.1. Some elements of Malliavin calculus for the fractional Brownian motion

Throughout the paper, B = { (B(]) ,(d))}tz() will denote a d-dimensional fractional Brownian motion with Hurst
parameter H € (0, 1), defined on a probability space (2, F,P). That is, B is a centered, R9-valued Gaussian process
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with covariance function

8i,

E[B,(i)Bs(j)] _ IT»OZH +g2H It _s|2H)'

We will denote by § the Hilbert space obtained by taking the completion of the space of step functions on [0, 00),
endowed with the inner product

(Lia). Le.ar) = E[(By — BO) (B — BDV)], for0<a<b, and0<c<d.

For every 1 < j <d fixed, the mapping 1o ;] — B,(" ) can be extended to linear isometry between §) and the Gaussian
subspace of L2(£2) generated by the process B/). We will denote this isometry by BY)(f), for f € . If f € $H¢
is of the form f = (f1,..., fa), with f; € §, we set B(f) := Z?:l B(j)(fj). Then f +— B(f) is a linear isometry
between $? and the Gaussian subspace of L2(£2) generated by B.

For any integer ¢ > 1, we denote by ($9)®¢ and (£9)®7 the gth tensor product of £, and the gth symmetric
tensor product of $¢, respectively. The gth Wiener chaos of L2(£2), denoted by Hy, is the closed subspace of L*(Q)
generated by the variables

d d
{HHq_,(B”)(fj)) > aj=q.and fi..... fae$, nfjusa:l},
j=1 j=1

where H, is the gth Hermite polynomal, defined by

2
2

g 2 d? _
Hy(x) :=(=1)Te2 ﬁe

For g € N, with g > l,andfef)d of the form f = (fi,..., fa), with | fjlls = 1, we can write

d
f®q: Z fi1®"'®fiq-

i1yemnrig=1

For such f, we define the mapping

I (r®7) = Z an,m i (BL(),

i1,0ig=1j=1

where q; (i1, ...,i;) denotes the number of indices in (i1, ..., i) equal to j. The range of I, is contained in H,.
Furthermore, this mapping can be extended to a linear isometry between $©9 (equipped with the norm /g!|-|| (57)®4)
and H, (equipped with the Lz(Q)-norm).

Denote by G the o-algebra generated by B. It is well known that every square integrable random variable G-
measurable, has a chaos decomposition of the type

F=E[F1+)_ I,(fy). @2.1)
q=1

for some f, € (H9)9.
Let S denote the set of all cylindrical random variables of the form

F=g(B(hy),..., B(hy)),
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where g : R” — R s an infinitely differentiable function with compact support, and 4 ; € $¢. The Malliavin derivative
of F with respect to B, is the element of L*(2; $%), defined by

29
DF:;a—i(B(hl),...,B(hn))hi~

By iteration, one can define the rth derivative D" for every r > 2, which is an element of L2(2; (HD)®").
For p > 1 and r > 1, the space D">? denotes the closure of S with respect to the norm ||-||pr.», defined by

I Fllprr := (]E[|F|P] + Xr:E[” DiF||fﬁd)®i]> y

i=1

The operator D" can be consistently extended to the space D"»”. We denote by § the adjoint of the operator D, also
called the divergence operator. A random element u € L>(2; $?) belongs to the domain of &, denoted by Dom 8, if
and only if satisfies

|]E[(DF, I/t>f)d:H < CuE[Fz]f, for every F e D'2,

where C,, is a constant only depending on u. If # € Dom§, then the random variable §(u) is defined by the duality
relationship

E[F8u)] =E[(DF, u)ga].
which holds for every F € D2, The operator L is defined on a random variable F of the form (2.1), by
o
LF:=Y " —ql,(fy),
g=1

provided the series converges in LZ(Q). Then, L coincides with the infinitesimal generator of the Ornstein—Uhlenbeck
semigroup { Py }e=>0, which is defined, for F of the form (2.1), by

o0
PyF =Y e " 1,(f,).
q=0
A random variable F belongs to the domain of L if and only if F € D2, and DF € Dom$, in which case

SDF =—LF.

We also define the operator L~ on F of the form (2.1), by
=1
L'F=Y)"——1,(fp.
g=1 1

Notice that L~! is a bounded operator and satisfies LL™YF =F —E[F] for every F € L2(S), so that L~ ! acts
as a pseudo-inverse of L. The operator L~! satisfies the following contraction property for every F € L*(2) with
E[F]=0,

£ oL F|,] <E[F?].
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In addition, by Meyer’s inequalities (see [10, Proposition 1.5.8]), for every p > 1, there exists a constant ¢, > 0 such
that the following relation holds for every F € D27, with E[F]=0

80 F)] ey = en(IDL Fl gy ey + ELDLT F]] ). @2

Assume that Bisan independent copy of B, and such that B, B are defined in the product space (€2 x QFRF,PQ
PP). Given a random variable F € L?(£2), measurable with respect to the o-algebra generated by B, we can write

F = Vp(B), where W is a measurable mapping from R9? to R, determined P-a.s. Then, for every 6 > 0 we have
the Mehler formula

Py F =E[Wr(e B ++1—e2B)], (2.3)
where E denotes the expectation with respect to P. The operator L™! can be expressed in terms of Py, as follows
oo
L7'F =f PygFdO, for F such that E[F]=0. (2.4)
0
2.2. Hermite process

When H > %, the inner product in the space §) can be written, for every step functions ¢, ¥ on [0, 00), as
(9. 0)5 = HQH 1) f LV W)E — v 2 dE dv, 2.5)
R+

Following [8], we introduce the Hermite process { X § }7>0 of order 2, associated to the jth component of B, {B,(j ) }t>0,
and describe some of its properties. The family of kernels {(pj.’T | T >0,ee(0,1)} C (H)®?, defined, for every
multi-index i = (i1, i2), | <iy,i» <d, by

T
¢ (i x1, x2) i= 8—2/ 87.i18,i Ls,s4+e1 (XD L[5 546 (x2) ds, (2.6)
0

satisfies the following relation for every H > %, and T >0

lim (@5 ., ¢" = H*Q2H —1)? s1 — 5|4 ds = ey T2, 2.7
Jim {05 . 0] 7 gaye2 = H( P e H 2.7)
N 2 _ .. .
where ds :=ds1ds> and cy = %. This implies that (p;f o converges, as ¢ — 0, to an element of (S’Jd)®2,

denoted by n%. In particular, for every K > 0, ||g0;:.’  ll(aye2 is bounded by some constant Ck g, only depending

on K and H. On the other hand, by (2.5) and (2.6), we deduce that for every 7' € [0, K], it holds [|¢* 7 [l gaye2 <
9% k ()22, and hence .

sup |<¢j,Tl ’ (07, T2>(f_)d)®2’ =< sup X1 ||(pj',T| || (H9)®2 ||(p7’ T H ($H4)®2

T, T,€(0,K] T,,T,€(0,
&,ne(0,1) £,n€(0,1)
2
< sup |¢] ¢ | 5aye2 = Ck.h- 2.8)
e€(0,1)

The element n%, can be characterized as follows. For any vector of step functions with compact support f; =
A Py end i =1,2, we have

X T s+e T .
(1], i ® fo) gayee = lime2H?QH = 1> | ] & — 0?2 £ () dn dé ds,
®H® = 0% o ALk
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and hence

(1] 1 ® ) gayor = H2QH 1) f I / W22 Dy dn ds. 2.9)

i=1,2
We define the second order Hermite process {XJT'}TEO, with respect to {B,(j) }i>0, as X]f =1 (n%).
2.3. A multivariate central limit theorem

In the seminal paper [11], Nualart and Peccati established a central limit theorem for sequences of multiple stochastic
integrals of a fixed order. In this context, assuming that the variances converge, convergence in distribution to a
centered Gaussian law is actually equivalent to convergence of just the fourth moment. Shortly afterwards, in [12],
Peccati and Tudor gave a multidimensional version of this characterization. More recent developments on these type
of results have been addressed by using Stein’s method and Malliavin techniques (see the monograph by Nourdin
and Peccati [9] and the references therein). In the sequel, we will use the following multivariate central limit theorem
obtained by Peccati and Tudor in [12] (see also Theorems 6.2.3 and 6.3.1 in [9]).

Theorem 2.1. For r € N fixed, consider a sequence {F,},>1 of random vectors of the form F, = (F,fl), e, F,fr)).
Suppose that fori =1, ...,r and n € N, the random variables F,fl) belong to L*>(R2), and have chaos decomposition

o0
FD = "1, (fg.in):

g=1

for some fy i, € HH®4. Suppose, in addition, that for every g > 1, there is a real symmetric non negative definite
matrix Cy = {C ] | 1 <i, j <r}, such that the following conditions hold:

(i) Forevery fixedq > 1,and 1 <i, j <r,we have qX{f4.in, fq,./”n>(§jd)®q — C;’j asn — 0.
(i1) There exists a rea.l symmetric nonnegative definite matrix C = {Ci’j | 1 <i,j <r}, such that Chi =

: Q iJ
th_mo Zq=1 Cq
(iii) Forallg>1landi=1,...,r,the sequence {1;(f4,in)}n>1 converges in law to a centered Gaussian distribution
as n — oQ.

(iv) limg_, o0 SUP,,> | Z;onq!qu,i,anﬁd)@q =0,foralli=1,...,r

Then, F, converges in law as n — 00, to a centered Gaussian vector with covariance matrix C.
2.4. Chaos decomposition for the self-intersection local time

In this section we describe the chaos decomposition of the variable I; defined by (1.1). Let e € (0, 1), and T > 0 be
fixed. Define the set

={Gs.0neR} |s=<t=<1}.

For every y > 0, we will denote by ¥R the set yR := {yv | v € R}. First we write

15 = /]RZ 1rR(s, 1) pe(B; — By)ds dt. (2.10)

+

We can determine the chaos decomposition of the random variable p.(B; — By) appearing in (2.10) as follows. Given
amulti-index i, = (i1, ...,iy),n €N, 1 <i; <d, we set

a(,) =E[X; ---X;,],
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where the X; are independent standard Gaussian random variables. Notice that
(2qD)!--- 2q4)!
(@) (g2’

if n =2q is even and foreach k =1, ..., d, the number of components of i, equal to k, denoted by 2¢y, is also even,
and (i, ) = 0 otherwise. Proceeding as in [5, Lemma 7], we can prove that

a(izg) = 2.11)

pe(Bi — By) =E[pe(B, — B)|+ Y _ g (f5,..1)- (2.12)
g=1

where ffq’x’ , is the element of (H9)®%4 | given by

_d 2q
. @2m) " er(ing) 2y
Jags.i (g, X1, .0 X0g) 1= (—l)qi(zq)! L e+ @ —s5))2 qlli[ljl[s,,](xj), (2.13)
and
_d
E[pe (B, — B)] = @)% (e + (t —)2) 2. (2.14)
By (2.10), (2.12) and (2.14), it follows that the random variable /7 has the chaos decomposition
o
I =E[I§]+ Y hy(hy, 1), (2.15)
g=1
where
hiq)T(izq, X1yenns )Czq) = /R2 Trr(s, t)fzgq,s,x(iZq’ X1yonns xzq)ds dt, (2.16)
+
and
d
E[75] = (271)—% [2 1rr(s, ) (e + (t —)*7) "2 dsat. (2.17)
R+

In Section 3, we will describe the behavior as & — 0 of the covariance function of the processes {/7}7r>0 and
{2 (R q,T)}T >0. In order to address this problem, we will first introduce some notation that will help us to describe
the covariance function of the variables p,(B; — By) and its chaotic components, which ultimately will lead to an
expresion for the covariance function of 77.

First we describe the inner product (fz‘gq,w1 , ffq’SZ’tz)(ﬁd)®2q. From (2.13), we can prove that for every 0 < sy <11
and 0 <sp <1,

(27) “au(ing)?
(Fgsin Brmnlgnen = Do Qan ..., 2qa)!=—
Qi+ Tqa=q (@g)h

d
2H\—5—4 |1 ®2q ®2q
X (8 + (12 = 52) ) ’ (]l[sm]’ ]l[Ssz])ﬁ‘gzq’

(e+ (11 — Sl)zH)_%_q

(2.18)

where (2q1,...,2q4)! denotes the multinomial coefficient (2¢q1,...,2q4)! = %. To compute the term
(]l([}flz‘il], ]l%zzqtz]) e appearing in the previous expression, we will introduce the following notation. For every

x,uy,up >0, define

pu(x,uy up) =E[BL (B, — BW)]. (2.19)
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Define as well p(x, uy, us), for x <0, by u(x, uy, uz) := u(—x, uz,u1). Using the property of stationary increments
of B, we can check that for every s1, 52, t1, 2 > 0, such that 51 <# and s, <1, it holds

E[(Bt(ll) — BS))(B,(ZI) — BA(ZI))] =u(sy —s1,H — S1, 12 — 8§2). (2.20)

As a consequence, by (2.11) and (2.18),

¥ 2H\—%—q 2H\—%—q
<f2£qv3|,f1 ’ ffq,szﬁz)(ﬁ")@’z" - 2m)4(2g)12%4 (8 +(t—s1) ) ’ (8 + (2 —s) ) ’
X W(s2 — 51,11 — S1, 1 — $2)%4,

where the constant o, is defined by

=y %. 2.21)
q1+-+4a=q
From here we can conclude that
(Frgsins Frg.snnlisiyer = W;WG.%_S] (11 — 51,12 — 52), (2.22)
where G (uy, us) is defined by
GO (. u) = (e +u) "7 (e 4 u27) "5 e,y un) M. (2.23)

Now we describe the covariance Cov[pg (B, — By,), pe (B, — By,)]. Using the chaos expansion (2.12) and (2.22),
we obtain

o0

07
Covl[pe(By, = By)). pe(By = Bu)] = 3 = Gl (=510 = 2). (2.24)

On the other hand, using once more the property of stationary increments of B, we can prove that for every s; <11,
and 57 < to,

COV[pS(Bll - le)v pS(Btz - Bsz)] = FS,SQ—S] (tl — S, — S2), (225)
where the function Fy x(u1, u2), for uy, up > 0, is defined by
Fex(ui,uz) = COV[Ps(Bu])y Pe(Bxtu, — Bx)]» (2.26)

in the case x > 0, and by Fy ,(u1, u2) := Fe,_x(u2, u1) in the case x < 0. Proceeding as in [5], equations (13)—(14),
we can prove that for every uj,uy >0, x € R,

et ) = 00~ [((e ) e+ 087) = e, )
~(e+ui) e+ a3y f), 227)
and consequently,
-4 —4 Counu)?  \“2
Fex(ut,uz) = Q)™ (e +ui™) 72 (e +u3™) 2 ((1 e fu%H)(e +u%H)> - 1>' (2.28)
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From (2.24) and (2.25) it follows that the functions Gé?; (u1,u2) and F x(u1, up) appearing in (2.22) and (2.28) are
related in the following manner:

o
Fex(ui,u) =Y paGfl(ur,u), (2.29)
qg=1

where B, is defined by

o
. q
Pq

= Gy (2.30)

The functions Ggq))c (u1,u2) and Fi x(u1, uz) satisfy the following useful integrability condition, which was proved in
[5, Lemma 13], .

Lemma 2.2. Let % < H < %, and g €N, g > 1 be fixed. Define Gﬁ)c (u1,uz) by (2.23) and B, by (2.30). Then,

,B,,/3 Gg‘f;(ul,m)dxdﬁg/} Fix(u1, up)dx dii < 0o,
R+

Ry

where du = du dus.

Proof. By (2.29), it follows that ,Bqqu) (u1,u2) < F1,x(u1, uz). The integrability of the function Fi (u1,u2) over

X
X, uy,up >0, written as in (2.27), is proved in [5, Lemma 13] (see equation (40) for notation reference). O

With the notation previously introduced, we can compute the covariance functions of the increments of the pro-
cesses {I}}7>0 and {I (héq,T)}TzO as follows. Define the set 7, 7, by

Kromi={(s,0) eR3 |s<t, and Ty <1 < T} (2.31)

By (2.10) and (2.16), for every T < T»>, we can write

17512 - ]E[I;z] - (178"1 - E[I;l]) = /]Rz ]lK'Tl-TZ (S, t)(ps(Bt - Bv) - ]E[pg(Bt - Bg)]) dS dt,

+

and
oy 1) = g (05 1) = [, By 1, 0002 (55 ) .
+
By (2.25), we deduce the following identity for every 77 < 7, and Tl < Tg,

COV[];2 — I;l, 1%2 — I%] = /1[@4 ﬂ’CT],Tz (s1, tl)ﬂ’Cfl,Tz (52, 2) Fg 5y—s, (11 — 51,12 — 52) ds dt, (2.32)

+

where ds :=ds| ds, and dr .= dt dtp. Similarly, by (2.22),
E[(Ig (3g.1,) — T2q (W3g.1,)) (lag (3, 3,) — 1ag (5, 7))]

=By /4 Licr, 7y (1, 1Ly, 5 (52, f2)fos)2—sl (t — 1,1 — $2)ds df, (2.33)
R% ‘

where B, is defined by (2.30).
We end this section by introducing some notation, which will be used throughout the paper to describe expectations
of the form E[p, (B;, — By,) pe (B, — By,)]. For every n-dimensional non-negative definite matrix A, we will denote
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by ¢4 the density function of a Gaussian vector with mean zero and covariance A. In addition, we will denote by |A|

the determinant of A, and by I, the identity matrix of dimension 7.

Let X be the covariance matrix of the 2-dimensional random vector (Bt(ll) — Bs(l1 ), Bt(;) — BS(Z1 )). Then, the covariance

matrix of the 2d-dimensional random vector (B, — By, B;, — By,) can be written as
COV(B[I — le . Btz — BSZ) = Id %) 2,

where in the previous identity ® denotes the Kronecker product of matrices. Consider the 2d-dimensional Gaussian
density ¢ep,, (X, y) = pe(x)pe(y), where x, y € R?, and denote by s the convolution operation. Then we have that

E[pe (B, — Bsy)pe(Br, — By,) ] = /R2d Pelry (X, V)P0 (—x, —y)dxdy
1
= ety * $1,05(0,0) = 21) el + 11 @ T| 2.
From the previous equation it follows that

d
E[pe(By, — By))pe(By, — Byy)| = 2n) e + 2. (2.34)

The right-hand side of the previous identity can be rewritten as follows. Define the function

Op(x,ur,u2) i=e* + e (Wi +u3™) +ududf — p(x, ur, un)?. (2.35)
Then, using (2.20), we can easily show that

lelr + X| = Og(s2 — 51,11 — 51,12 — 52),
which, by (2.34), implies that

E[pe(By, — Byy)pe(By, — Byy)] = @) @, (s2 — 51,11 — 51,12 — 52) 2. (236)
Therefore, we can write IE[(I;)Z], as

E[(I;)z] =Q@r)™ f(m)Z Oc(s3 — 81,11 — 51,12 — 52)~ 2 d5 dF. (2.37)

Finally, we prove the following inequality, which estimates the function F; ,(u1, u2), defined in (2.26), in terms of
Op (x, uy, u2)

e (s uy, 1) _d
Fex(ui,uz) < (2m) d<§+l>W®g(x,u1,u2) 2. (2.38)
[

Indeed, using relation (2.28), as well as the binomial theorem, we deduce that

_ _d_q _d_
Fex(ui,uz)=Qun) (e +ui) 27 (e +u3™) 727 pu(x, u1, uz)?

°°<%>m( B, un)? )q
X;OWH)! e+ue+3h))

where a” denotes the nth raising factorial of a. Hence, using the fact that

q! "’

O _ G 9T _ <d ><%>q
—\2

= —+1
(g+ 1! qg+1 ¢!
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we deduce that

w(x, uy, uz)?
(e+ ufH)(E + ugH)

d _d _d
Fex(uy, up) < (2”)_d<§ + 1)(1 +ut)72 (14 udf) 2

ST e, un,un)? )"
3 ((s+u%”)(e+u§f') ’

!
g=0 T

which, by the binomial theorem, implies (2.38).

3. Behavior of the covariances of 17 and its chaotic components

In this section we describe the behavior as ¢ — 0 of the covariance of I;l and [ 52, as well as the covariance of
IZ‘I(hiq,Tl) and I, (hgq,Tz)’ for0< Ty <T>.

Theorem 3.1. Let Ty, T> > 0 be fixed. Then, if 5 < H < 3,

lim £4~ 27 E[ Iy, (g 7,) F2q (W 1,)] = 02(T1 A T),

e—0

where

0l :=28, /n@ G\ (uy, uz) dx di, (3.1)

+

By is defined by (2.30) and G(q) (u1, uz) by (2.23). Moreover, we have

1,x

o
Z o) =0, (3.2)
g=1
where o2 is a finite constant given by

o= 2/% Fi o (uy, up)dx dii, (3.3)

T

and Fi x(u1, uz) is defined in (2.26).

Proof. To prove the result, it suffices to show that for eacha < b < o < 8,

. _3
812% Ed 2H E[(IZLI (hgq,b) - 12q (hiq,a))(bq (hgq,ﬂ) - 12‘1 (hgq,a))] = O’ (3'4)
and
lim o/~ E[ (Iag (b, ) — baq (15,.0))"] = 03 b — @). (35)

First we prove (3.4). Set

P = E[(I2q (hiq,b) — Iy (hiq,a))(hq (hiq,ﬁ) — Iy (hiq,a))]‘

Define the set K7, 1, by (2.31), and y := “T*b > 0. We can easily check that for every (s1, t1) € Ky p, and (s2,12) €
Kq,p, it holds that either #; — 52 > y, or s2 — 51 > v, and hence, by taking Ty =a, T, =b, T} = a, T» = B in (2.33),
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we get
|<1>8| < ,Bq/ 4(Jl<y,oo)(t2 —82) + Ly, 00) (52 — Sl))Gg 5)2 s (1 — 81,10 — s2)dsdt.
[0,8]

Changing the coordinates (s1, 52, 1, £2) by (s := 81, X 1=y — 81, U] :=1 — 81, Up ;=1 —s») for s > 51, and by (s :=

$2,X =8| — 8§, U1 1=1] — 81, U =1y — 53) for s5 < 51, in (3.6), using the fact that Géf’lx(ul, u) = Gi@(uz, up),

and integrating the s variable, we can prove that

|| < By /{0 009D + L0 ) + Ly () Gl ur, ) dx i

. . _L _ L _ L . 1
Next, changing the coordinates (x, u1,u2) by (¢"2Ax, &  2Huy, & 2H uy), and using the fact that G(q) . (g2 uy

e,e2H x

’

1
g2H Uy) = s_ngq))C (u1,uz), we get

1 1 1

|| <8ﬁ_d,3 /3/ ]1()/ 00) (827 u1) + L(y,00) (62 2) + Ly 00) (627 ))Gg‘,]i(“h“Z)dXd’?-

Since y > 0, the arguments in the previous integrals converge to zero pointwise and are dominated by the function

3By ﬁG(q)(ul, u3), which is integrable by Lemma 2.2 due to the condition i_d < H < —. Hence, by the dominated
convergence theorem,

lim 99 | ¢ =0

e—0

as required. Next we prove (3.5). By taking 77 = Tl =a,and T, = fz =b in (2.33), we deduce that

E[(ng (h;q,h) — Iy (hiq,a))z] =284 /[0 byt Il{51§S2}]1’Ca,b (s1, tl)]l/Ca,b (s2,12)

Ggqs)z sl(tl — 51,1 —$)dsdrt.

Changing the coordinates (s1, 2, t1, 2) by (s1, X :=82 — s, U] =1 — 51, U =1 — 52), we get

B[ (129 (15, 5) = T2 (5,.0))"]

= Zﬁq/ Ixc,, (1,81 +uli, , (s +x, 51 +x +u2)G(q)(u1,u2)ds1dxdu
b1

(b—uy) A(b—x—uz)+
= / dslG ) (uy, un) dx dii. (3.6)
[0,b13

(@a—up)+Via—x—uz)+

Notice that G(C’)L (sﬁ ui, eﬁuz) = s’dGl,x (u1, uz). Therefore, integrating the variable 51, and changing the co-
e,e2H x

. _ _ 1 _ 1 .
ordinates (x, uy,up) by (6" 2Hx, e 2Hu1, ¢ 2Huy) in (3.6), we conclude that

B 12y (05,5) = a5y )] =28 [, G
[0, 2H b)3

m|~

x[(b—e2 1)+/\(b—8#(x+u2))+
—(a—eMuy), v (a— e (x+u),]drdi. (3.7)

The integrand in (3.7) converges increasingly to 2(b — a)G (lq))r (u1,uz) as € — 0, which is integrable by Lemma 2.2.
Identity (3.5) then follows by applying the dominated convergence theorem in (3.7).
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Relation (3.2) is obtained by integrating both sides of relation (2.29) over the variables x, u1, u> > 0, for ¢ = 1, and
then using the monotone convergence theorem. The constant o2 is finite by Lemma 2.2. The proof is now complete. (]
_3
=1
chaotic component Iz(hg ) characterizes the asymptotic behavior of I; — IE[I;] as ¢ — oo, for every H > %.

In order to determine the behavior of the covariances of 17 for the case H we will first prove that the second

We start by showing that, after a suitable rescaling, the sequence Iz(h;T) approximates /7. — E[I7] in L?(Q) for
H > %. This result will be latter used in the proof of Theorem 1.3.

Lemma 3.2. Let % < H <1 be fixed. Then,

VY
lim 275 17 — B[ 1] = B(h5 1) | 2q) =0

Proof. For T > 0 fixed, define the quantity

Q.= |If —E[I5] - 12(h§,T)”iz(Q)'

From the chaos decomposition (2.15), we get

2
2 2
Q. =E[(17)"] - E[/7] —ZH / fradsdt (3.8)
TR (H9)®2
By (2.17) and (2.37), the first two terms in the right-hand side of the previous identity can be written as
E[(If)z] = (Zﬂ)_d/ ., O (s2 — s1,t1 —S1, 12 — Sz)_% ds dr, (3.9
(T'R)
and
e12 —d ) 2 g7
E[7£] = 2n) / . Gey, s, (11 — 51,12 — $2) ds di, (3.10)
(TR)

where Géf’;(ul, up) and O, (x, u1, up) are given by (2.23) and (2.35), respectively. To handle the third term in (3.8),
recall that the constants o, are given by (2.21), and notice that oy = 2d. Hence, from (2.22), we deduce that

H/ frs, dsdt
TR

From equations (3.8)—(3.11), we conclude that

0. = 2n) /

(TR)?

2 —d
d2m) - 2

4\&2 - T/ Rngs)zfsl(tl —Su,h—s)dsdt. (3-11)
(H® TR

_d
(95(52 —S1,t =S|, —852) 2

d .
— GOt —s1,0—50)— =GV _ () —s1, 10— s2)> ds dr. (3.12)

£,52—51 9 eSS
The integrand appearing in the right-hand side is positive. Indeed, if we define
~1 -1
Pe(x, ur, uz) i= p(x, ur, u2)*(e +ui®) " (e +u3®) ",
then, applying relations (2.23), (2.35) we obtain

d
2

d
2

G =204 ) i)

_d (0) 4
O (x,u1,u2)”2 — Gy (uy,uz) — 2

_d
2

d
x((l—pg(x,ul,m) —1—5pg(x,u1,uz>> (3.13)
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and the right-hand side of the previous identity is positive by the binomial theorem. As a consequence, by changing
the coordinates (s1, 52, f1, £2) by (s1, X 1= 82 — 1, U1 :=t] — 1, U := tp — 52), and integrating the variable s; in (3.12),
we get

d -

Q: < 2<2n>*‘1T/ (@g(x, uruz) " = GO (ur,uz) — SGe uz)) dx di.
0,773 ' '
In addition, by the binomial theorem, we have that for every 0 < y < 1,

)q+2

d d > —d
)T 11— 2y — _1\4 2 )4 — 42 ¥4
1=y —1-2y ;( 1)(q) yZ(q+2), :

where (x)? denotes the raising factorial (x)? := x(x + 1)--- (x + ¢ — 1). Hence, by (3.13),

_ _d (4yi+?
0. <2Q2m) dT/[O’T]S(E—i-u%H) 2(8+M%H) pg(x Ui, uy) ‘IZ(:)(CI-FZ)"%(X Jul, u2)?dxdu. (3.14)
Since
$ @TE+DG+a+1D) (g 1)2%’_)
(@+2! q! (g+D@+2 ~\2 q! "’

then, by (3.14),

_d _d
0. <2Q2m)” dT( ) 8+M1 ) 2(8+M%H) 2
o (4?
X pe(x,u1,uz) 22— e(x,u1,u2)? dxdu,
— q!

which, by the binomial theorem, implies that there exists a constant C > 0 only depending on 7" and d, such that

Q- =C weu )’ g (v, u1,u2) "% dx dii (3.15)
o [0,713 (8—|—u1H)2(8+u2H)2 elX,uy, U2 . |

Hence, to prove the lemma it suffices to show that

. d—3 42 >
SIE)I})S H /[OT]3\I—’8(x,u1,u2)dxdu=O, (3.16)
where
4
W utup) = — P g 0y ) (3.17)

(e +uif)2(e +u3f)?

In order to prove (3.16), we proceed as follows. First we decompose the domain of integration of (3.16) as [0, TP =
SIT USZT US3T, where Sl.T =S8N[0, TT?, and

S ={(x ul,uz)eR |x+u2—u120,u1—x20},
S ::{(x,ul,u2)€R+|u1 —x —up >0}, (.18)
S;3 ={(x ul,uz)eR |x—u120}.
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Then, it suffices to show that fori =1, 2, 3,

lirr(l)ad_%+2[T\I'g(x,ul,ug)dxdﬁzo. (3.19)
£— y

First prove (3.19) in the cases i = 1, 2. Changing the coordinates (x, u1, uz) by (e’ﬁx, e’ﬁ ui, e’ﬁ u3), and using

1 1 1
the fact that W, (e2A x,e2H uy, €20 up) = s_d\lll(x, uy, uy), we get

d—3+2 S 2 =
g™ H Wo(x,ui,up)dxdu <e“ 28 Wi(x,ur,ur)dxdu,
ST )

i i

where the sets S; are defined by (3.18). Therefore, using w(x, u1, uy)? < (uluz)ZH, we obtain
2
8d7%+2/ \Ilg(x,ul,uz)dxdﬁge%% %@ﬂx,ul,uz)*%dxdﬁ. (3.20)
ST s, (uiuz)

The integral appearing in the right-hand side of the previous inequality is finite by Lemma 5.3 (see equation (5.7) for
p=2andi=1,2). Relation (3.19) for i = 1, 2 is then obtained by taking ¢ — 0 in (3.20).

It then remains to prove (3.19) for i = 3. Changing the coordinates (x, uy,u2) by (a :=u1,b:=x —uy,c:=up),
we get

/ \Dg(x,ul,uz)dxdﬁff W.(a+b,a,c)dadbdc. (3.21)
ST (0.7

We bound the right-hand side of the previous inequality as follows. First we write
1
ua+b,a,c)= 5((a+b+c)2H +* — b+ o) — (a+ b))

=HQH — 1)ac/ b+ avi + cv2)* 72 dv, dv,. (3.22)
[0,1]2

Notice that if a > ¢, then b +av) +cvy 2 vi(b+a) 2 vi(b+ 5+ 5), and if ¢ > a, then b+ avy +cva > v2(b+¢) >
v (b + % + %). Therefore, since H > %, by (3.22) we deduce that there exists a constant K > 0, such that

wla+b,a,c) <Kacla+b+c)*2. (3.23)
On the other hand, if ¥ denotes the covariance matrix of (B, Byyp+c — Ba+tp), We can write
Oy la+b,a,c)= &2+ 5(a2H +c2H) + | 2.

As a consequence, by part (3) of Lemma 5.1, we deduce that ®,(a + b, a,c) > &2 + 8(ac)*H for some constant
8 € (0, 1). Hence, by (3.17) and (3.23), that there exists a constant C > 0, such that

_d
2

We(a+b,a,c)<Ca)™@a+b+c)¥8 (2 + (ac)*™) (3.24)
Next we bound the right-hand side of (3.24) by using Young’s inequality. Since H > % and Hd > %, then
3—2H 3
0< < — <. (3.25)
Hd 2Hd

Using the relation (3.25), as well as the fact that % < H < 1, we deduce that there exists a constant y > 0, such that
4H —4+44Hdy <0, (3.26)
4H —3—4Hdy > 0, (3.27)
(Hd)"'G3—-2H)+y<1. (3.28)
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By (3.28), the constant y := % + y belongs to (0, 1), and hence, by Young’s inequality, we have
(1 —y)e? +y(ac)y*™ > 217 (ac)? 7. (3.29)
In addition, by (3.26), we have

(Cl +b+ C)SH_S = (Cl +b+ c)4H—4_4Hd}’(a +b+ C)4H—4+4de

S b4H—4—4de (a + C)4H—4+4de S b4H—4—4de (2\/&)4H—4+4de , (330)

where the last inequality follows from the arithmetic mean-geometric mean inequality. Hence, by (3.24), (3.29) and
(3.30), we obtain

sd—%+2/ Ve(a+b,a,c)dadbdc < sd«"C/ pH =AY ()~ IHHAY qg b de. (3.31)
[0,T]3 [O,T]3

The integral in the right-hand side is finite by (3.27). Relation (3.19) for i = 3 then follows from (3.21) and (3.31). O

The next result extends Lemma 3.2 to the case H = %.

Lemma 3.3. Let d > 3 be fixed. Then, if H = 3,

d_1
o eT
‘}%WHI; —E[17] = L(h5 )] 120 =0 (3.32)

Proof. For T > 0 fixed, define the quantity
2
Q.= |17 —E[I7] - IZ(hE,T)”LZ(sz)'
As in the proof of equation (3.15) in Lemma 3.2, we can show that there exists a constant C > 0 such that

0, < C/ W, (x, uy, uz) dx dii, (3.33)
(0,773

where

4
w(x,ug,uz)
3

3 3
(e+up)(e+u;)?

W (x, up, ) = O (x, 1, 12) " 2. (3.34)

Hence, by splitting the domain of integration in (3.33) as [0, T]3 = U?:] Sl.T, we deduce that relation (3.32) holds,
provided that

d—2

& -
lim —— | W.(x,uy,u»)dii =0, 3.35
gi%log(l/g) /S,T (v, ut, uz) du (3.35)

2 2 2
fori =1, 2, 3. To prove (3.35) for i = 1, 2, we change the coordinates (x, u1,u2) by (¢ 3x,& 3uy,& 3up) and use
2 2 2
the fact that W, (e3x,e3uy,3ur) = 8’d\111(x, uz, u2), in order to get

8d72

0 _
_ W, (x,uq, dxdu < ——— Wi(x,up, dxdu. 3.36
) sy e i o /S \Cr, ut, ) dx di (3.36)
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As a consequence, by applying the inequality s (x, u1, u2)?> < (u1u2) 3 , we get

d-2 R 1 , , 2 R
57/ Wo(x,up,upy)dxdu < / P, uy L?) @1(x,u],u2)_%dxdu. (3.37)
log(1/¢) Jst log(1/e) Js;  (ujup)?

The integral appearing the right-hand side of the previous inequality is finite for i = 1, 2 by Lemma 5.3 (see equation
(5.7) for p =2). Relation (3.35) for i = 1, 2 is then obtained by taking ¢ — 0 in (3.37).
It then suffices to handle the case i = 3. Define the function K (x, u1, u3) by

Koy i P G iyt (3.38)
(uruz)3
Notice that
b W (x,uy, up)dxdi < L K(x,uy,u)dxdi. (3.39)
log(1/¢) Js, log(1/¢) Js;

From (3.22), it easily follows that u(a + b, a, c) < 3ac (a+b+ c)_%, and thus,

34
K(a+b,a,c) < ?ac(a +b+ c)_2®1 (a+b,a, c)_%.

Notice that ®1(a + b,a,c) =1+ a% + c% + | 2|, where ¥ denotes the covariance matrix of (B, By+b+c — Ba+b)-
Therefore, by part (3) of Lemma 5.1, we deduce that

@1(a+b,a,c)zl+a%+c% —|—8(ac)%,

for some constant § € (0, 1). From here it follows that there exists a constant C > 0, such that

3 d

K(a+b,a,c)<Cac(a +b+c)72(1 —l—a% +c% +a%05)77.

Therefore, using the fact that 1 +m +n +mn > (1 vm)(1 v n) for all m, n > 0, and defining o1 :=a Vc, 02 :=aAc,
we get

_d
2

K(@+b,a,c)<Co100)(b Vo) ((1Veni(lve)?)

Using the previous inequality, as well as the condition d > 3, we can easily check that K (a 4 b, a, ¢) is integrable
in Ri, which in turn implies that K (x, u1, us) is integrable in S3. Using this observation, as well as relations (3.36)
and (3.39), we obtain

gd—2
lim ——— W, (x,uy, ur)dxdu =0,
e—01log(1l/¢) ST
as required. The proof is now complete. (I

The next result provides a useful approximation for I, (hi’T).

Lemma 3.4. Assume that H = % andd > 3. Let hg’T be defined as in (2.16) and consider the following approximation
of I (hj 1)

BY | _ Y

_d _d d 3
~ 2 1g—2+! T poo 2 2
J;- ::—(7[)48 E / — H2< s+e3u - )duds (340)
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Then we have that

41
. 62 T
1 Joscarm | 2) = e =0

Proof. Using (2.13), we can easily check that

_d d T ,pT—u 3 )] )

Q)% u BY — B!
12( i,T)z_ 2 Z/ / 3 4+1 H2 AL 3 dsdu
=1 0 Jo (e4+u2)2 7

W ol

[l

Making the change of variables v := e3 u, we can easily deduce that

d d 2
(Qm)"2e7 275

~ i T © U% 4¢3 o
Jr—h(hy ) =———F—— / / Hz( sto-u )duds.
’ 2 oo e 3 (Ts) (1 4 v3)5+! Jeud

Set
oy 2
o° =g 2” Jr — 12(h§,r)”L2(Q)'
Using (3.41), as well as the fact that
E[Ha (v (Bsy vy — Bsy)) Ha (v ™ (Bsyg, — Bsy))] = 2(w1v2) " pu(s2 — 51, v1, v2)%,

for all 51, 52, v1, v2 > 0, we can easily check that
. d@m) 2 2 -
P = —rv 1i7,00) (Sl + &3 ul)]l[r,oo) (Sz + &3 uz) Ve sa—s; (U1, u2) duds,
2 (0,712 JR2

where
s 2 2
Vex(ui,uz) ==& 39y, uz)pu(x, e3uy, e3uz)",

and

3 _d_ 3 _d_q
Vu,up) = (1+ui) > (14+u) .

Hence, using the fact that p(x, vy, v2) = w(—x, va2, v1), We can write

. (T 2 2 -
P° =dQ2n) , ]1[T,oo)(s1 —|—83u1)1|T,oo)(sz+83u2)Vg,xZ,sl(u1,uz)duds.
o Jo JrZ
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(3.41)

(3.42)

(3.43)

(3.44)

Changing the coordinates (s, 52, 11, u2) by (s := s1, x := 52 —s1, U1, u2) in the expression (3.44), and then integrating

the variable s, we obtain
d T 2 2 N
0| = d(2m)" / / (T = (T —£3ur), v (T = x — e3ua) ) VeaCur, un) dii dx,
0 JRZ
and consequently, there exists a constant C > 0 such that

T
|q)8| SC/ f r Z(ul)vs,x(’/ll, uz)dﬁdx,
0o JrZ €3

(3.45)
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where rs(u1) ;== T — (T — Su1)4+. Making the change of variable v := 8_%)( in (3.45) and using the fact that

2
Vo2 (u,u2) =8_3G(1]3,(M1,M2), we get
E,E5V ’

2
e 3T
|@°| SC/ / r 2 )G (), up) dii dv.
0 RZ e3 )
2

2 .
-3, 3 log N , we obtain

Therefore, defining N := ¢~ 3, so that log(1/¢e) =

foll NT
log(1/e) — 3logN/ /rl(M])G (uy,uz)dudx.

To bound the right-hand side of the previous relation we split the domain of integration as follows. Define the sets S;,
fori =1,2,3, by (3.18). Then

Pf 2C
lim sup # Z lim sup
e log(l/e) — i1 N—oo log N

NT
/ / s, O, ur, u2)r s )G (uy, uz) dii dx. (3.46)
0 R% N '

By relations (2.29) and (2.38), there exists a constant C > 0, such that

G (i uz) < Clurun) ™3 P (x, ur, u2) O (x, up, )~ 2. (3.47)

Hence, by Lemma 5.3, the terms with i = 1 and i = 2 in the sum in the right-hand side of (3.46) converge to zero.
From this observation, we conclude that there exists a constant C > 0, such that

|°

lim sup

NT
' <limsu / / 1s. (e, up, ua)r s (u)GY (uy, un) dii dx. (3.48)
e—0 log(l/) N—o00 10gN 0 R%_ ? N Lx

Using Lemma 5.2, we can easily show that there exists a constant C > 0, such for every (x, u1, u2) € S3, the following
inequality holds

G\ (ur,uz) = Yy, up) (e, uy, uz)? < Crur, up) (x + uy +uz) ™" (uyu2)?, (3.49)

where v (11, up) is defined in (3.43). From (3.48) and (3.49), it follows that
|D°|

NT
limsup ———— < limsu —/ / ri(ul)(x—i—ul—}—uz)_l(uluz)zlﬂ(ul,uz)diidx.
0 10g(1/6) ~ nowe logN Jo  Jp2 '

In addition, we have that

lim sup // rl(ul)(x+u1+uz) Yurua)®y (uy, up) dii dx
N—oo OgN
< lim sup /f(u1+u2) (uluz) YUy, up)dii =0,
N—o0 logN

and consequently,

||

lim sup

NT
< limsu / / ri )x " uiu)? Yy, ur) diidx.
e—0 log(l/e) N—oo l0gN Ji R%_ N
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For § > 0 fixed, let M > 1 be such that

/Oo /m(uluz)zw(ul,uz)dﬁ <38. (3.50)
M 0

Using (3.50), as well as the fact that r 1 (1) is increasing on u, we obtain
N

1 NT 00 o0 R 1 T
/ / / N ur un) divdx < 5( 14+ 22D
logN Ji m Jo log N

and

1 NT M 00
lim sup / / / r%(ul)x_l(uluz)zw(ul,uz)dﬁdx
1 0 0

N—o0 IOgN
log(T R
slimsup(1+&>/ F 1 (M) u2)> (1, u2) dii = 0.
N—oo log N Ri N

As a consequence,
. Rl
lim sup <
e—0 log(l/e)
Hence, taking § — 0, we get
(1)8
lim ——— =0,
e—0 log(l/s)

as required. ([

Finally, we describe the behavior of the covariance function of I (h; ) for the case H = %.

Theorem 3.5. Let T1, Tp > 0 be fixed. Then, if d >3 and H = %,
8d_2 e e 2
lim ———E|L(h L (h = Ty AT
€l_>0 10g(1/8) [ 2( 2,T|) 2( Z,Tz)] o ( 1 2)’

where p is a finite constant defined by

_ V3d o

p= d+5 d

_d_
(14u3) "2 uPdu. (3.51)
272 ;12

Proof. Consider the approximation 7; of I(h§ 1), introduced in (3.40). By Lemma 3.4,

lim Toe(1/5) |75 - 12(h§,r)||iz(sz) — 0.
Therefore, it suffices to show that
lim iIE[JN; T2 1= p*(T1 A ). (3.52)
e—0log(1/¢) 1
As in Lemma 3, to prove (3.52), it suffices to show that for eacha <b <o < 8,

: g!? Te _ TEV(TE _ TE\] —
lim mE[(‘Ib = Ja)Js = Ja)] =0, (3.53)
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and
lim ﬁ]E[(f,f — )= p b —a). (3.54)
e—0log(1/e)

First we prove (3.53). Set
o = 0 25[(7t - )T - 7)1

Using (3.42) and (3.40), we can easily check that
dQm)=d [P b -
Pt = T/ / /2 Ve so—s (U1, u2) duds, (3.55)
a Ja JRL

where
_38 2 2 2
Vex(ur,uz) ==& 39 (uy, up)p(x, e3ur, e3uz)”,
and ¥ (u1, up) is defined by (3.38). Changing the coordinates (s, s2, u1, u2) by (s := 51, x := 852 — 81, U1, u2) in (3.55),
and then integrating the variable s, we can show that

p
| ¢ | 5d(2n)_d,3/ A; Vex(u1, un)dii dx, (3.56)
14 T

where the constant y is defined by y := o — b. Making the change of variable v := ¢~3x and using the fact that

2 D
Vo3 (u,un) =& 3G (u1,u2),

e,e3v

we get

2
e 38
|<I>8|§d(271)_dﬂf72 f G\ (ur, up) dii dv.

e 3y

2
-3, 310gN

Therefore, defining N := ¢~ 3, so that log(1/¢e) = , we obtain

@7 _2dQm)~B
log(1/e) = 3logN

NB I
/ G()(ul ur)dudx.

To bound the right-hand side of the previous relation we split the domain of integration as follows. Define the sets S;,
fori =1, 2,3, by (3.18). Then, there exists C > 0, such that

limsup ———— ) _Z msup / 1s,(x,uy, uz)G( )(ul ur)dudx. (3.57)

e—0 log(l/g N—o0 IOgN Ny

Taking into account (3.47), by Lemma 5.3, the terms with i = 1 and i = 2 in the sum in the right-hand side of (3.57)
converge to zero. From this observation, we conclude that

|D°| . / -
limsup ———— < limsu 1s,(x,u ,uz)G (u ,up)dudx. (3.58)
eo! Tog(1/6) ~ Nomt logN logN Ny Jre SN !

By Lemma 5.2, there exists C > 0, such for every (x, ug, uz) € Ss,

G\ (ur,u2) = ¥ ur, un)p(x, uy, u2)® < Cr(ur, up)x ™" (uguz)®. (3.59)
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From (3.58) and (3.59), we obtain

(ol log(NB) — log(N
hmsupi| | < Climsu 0g(Np) — log(NVy)

e—0 1og(l/e) = Nooo log N

/2 Wy, un) (uyuz)* dii,
R+

for some constant C > 0. The function (1 + u 2) 512 is integrable for u in Ry due to the condition d > 3, and
hence, from the previous inequality we conclude that

limsup(log(1/¢)) ' |®¢| =0. (3.60)
e—0

Relation (3.53) then follows from (3.60).
Next we prove (3.54). By taking ¢ = a and B = b in relation (3.55), we obtain

2R [(TF — TF)Y] = d@m) / / / Visss, (a1, 102) di 5.

. . _2 . . .
Changing the coordinates (sy, 52, t1, £2) by (s1, x ;=& 3(sp —s1), U1 ‘=1t — 1, Up := tr — 57), integrating the variable
s1 and using the fact that V % (ui,up) =¢73 G( ) (ul, uz), we get

e 3(b—a)
e E[(Tf - T¢)"] =d@n) d/O A (b — x — a) Gy, wp) i di.
¥

- . -2 310gN .
Therefore, defining N := ¢73, so that log(1/¢) = . we obtain
d—2
) ~ ~.0
]E J€ _ Jé‘
log(l/s) [( b a) ]
3
2d(27‘[)_d N(b—a) X 0 .
~ 3logN ;/0 /]R2+ b_ﬁ—a Ls,(x,ur, u2)Gy  (uy, uz)dudx. (3.61)

By inequality (3.47) and Lemma 5.3, the terms with i = 1 and i = 2 in the sum in the right-hand side of (3.61)
converge to zero. From this observation, it follows that
. -2 T 7e\2
Jim WE[(JE ~Ja)]
2d(2m)~¢

N(b—a)
Ninmm A / (b—a)1153(x uly“Z)G (Ml,uz)dudx

2d(2m)~4

N(b—a)
N_)OO 3N10gN/ / 1s,(x,u, uz)xG (ul,uz)dudx, (3.62)

provided that the limits in the right-hand side exist. By (3.59), there exists a constant C > 0 such that

N(b—a) "
NlongO /R%r Lsy(x,ut, u2)xGy \ (uy, uz)dudx

N(b—a) . Cch—
fo /R Wy, u2)unug)® dit dx = ( “)f ¥, ug)uyuz)? dii.

<
~ NlogN
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Since d > 3, the integral in the right-hand side is finite, and hence

1
lim
N—oo Nlo

N(b—a) |
/ / ]133(x,u1,u2)xG§i(ul,uz)diidxzo.
gN Jo R2 ’

Therefore, by equation (3.62) and L"Hopital rule,

Sd_2 = ~2
lim —E|(J;, — J,
) log(1/e) [y = Ja)]
2d(27'[)7d N(b—a) (1) N
=Ngnoom ) /l;i(b—0)183(X,M1,M2)G1,X(M1,Mz)dudx
o 2d@n)7 > M _
= lim —— Nb —a) HSS(N(b—a),ul,uz)Gle_ (uy,ur)dudx. (3.63)
N—oo 3 R2 N(b—a)

+

By (3.59), the integrand in the right-hand side is bounded by Cr(u1, u2)(u1u2)?, for some constant C > 0. On the
other hand, using (2.5), we can easily check that

/J,(x’ vy, vz) = <]]-[O,U|]v ]]-[)C,X-l-l)z])ﬁ = H(ZH — 1)U1U2 \/[O 1]2 |.x + Vw2 — VW] |2H—2 dﬁ)

3 -
= UIUZ/ |x+v2w2—v1w1|7%dw, (3.64)
8 [0’1]2
so that
2 2
) 2 3%(uiu2)
and hence,

32
: (1) 2
Nll_I)réoN(b—a)]ls;;(N(b—a),ul,uz)Gl,N(b_a)(Ml,uz):—26¢(M1,u2)(u1142) :

Therefore, by applying the dominated convergence theorem to (3.63), we get

d—=2 2
s e 3d 14,
lim ——E[(J, - V) |=0b—-a)=—— 1 7) 2 du | .
T e A AR b (/R+( tur) ”) 0
Relation (3.54) follows from the previous inequality. The proof is now complete.

4. Proof of Theorems 1.2, 1.3 and 1.4

In the sequel, W = {W;},;>0 will denote a standard one-dimensional Brownian motion independent of B, and X J=
{X]}:>0 will denote the second order Hermite process introduced in Section 2.

Proof of Theorem 1.2. We start with the proof of Theorem 1.2, which will be done in two steps.

Step 1. First we prove the convergence of the finite dimensional distributions, namely, we will show that for every
reN,and Ty, ..., T, > 0 fixed, it holds

Law

37 (18, .. 15) —E[(I5, - 15)]) 2 o (Wry, ..., Wi, @.1)

as ¢ — 0, where o is the finite constant defined by (3.3). To this end, define the kernels hgq T by (2.16), and the

constants qu by (3.1), for g € N. Notice that the constants qu are well defined due to the condition % < H < %.
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Define as well the matrices Cg = {Cy” | 1 <i,j <r}and C = {C"/ |1 <i,j <r}, by Cq/ := 62(T; A T)), and
Cid:=c%(T; A T;). Since I ¢ has chaos decomposition (2.15), by Theorem 2.1, we deduce that in order to prove the
convergence (4. 1) it sufﬁces to show the following properties:

(1) Forevery fixedg > 1,and 1 <i, j <r, we have
3
8d7m(2q)!<h§q,Ti’hiq,T]‘)(f)d)@Z‘l — oqz(T,- ATj), ase—0.

(ii) The constants aqz satisfy ZZO:I aqz = o2, In particular, C""/ =limg_ oo Z(?:] Cy’.

. . d_ 3 . .
(iii) Forallg > 1 and i =1,...,r, the random variables £27 37 I, (h; 0T ) converge in law to a centered Gaussian
distribution as € — O

(iv) limg_ o0 SUP,¢(0.1) &* — Y 0=029)! 175, 1, 12 (aye =0, forevery i =1,....r.

Part (i) follows from Theorem 3.1. Condition (ii) follows from equation (3.2). In [5, Theorem 2], it was proved that
for T > 0 fixed, 8%_% Iy (hg q r) converges in law to a centered Gaussian random variable when & — 0, and

o0
3
ngno%sgpl)gd Y Q|5 1 [ fsyayes =0-

which proves conditions (iii) and (iv). This finishes the proof of (4.1).

Step 2. We are going to show the tightness of the sequence of processes {8%_% (I% —E[I7]D}1>0. To this end, we
will prove that there exists a sufficiently small p > 2, depending only on d and H, such that for every 0 < T1 < 7>, it
holds

syopl)mne" W (15, — E[15,] - (15, — E[15,]))|"] = €17 - 711 %, (42)
& s

for some constant C > 0 only depending on d, p and H. The tightness property for {8%_% (If —E[I7]D}r>0 then
follows from the Billingsley criterion (see [2, Theorem 12.3]).
In order to prove (4.2) we proceed as follows. Define, for 0 < 77 < T fixed, the random variable Z, = Z. (T}, T»),

by
Ze =17, — E[I;z] - (1;1 - ]E[I;l]). 4.3)

From the chaos decomposition (2.15), we can easily check that E[DL~!Z,.] coincides with the derivative of the first
chaotic component of L~!Z,, which is identically zero 0. Hence, by (2.2), there exists a constant ¢p > 0 such that

I Ze Loy < cp| DL Z, (4.4)

H LP(:(H9)®2)"

The right-hand side of the previous inequality can be estimated as follows. From (2.4), we can easily check that
(0.¢]
D’L7 'z, =/ / D*Py[ps(B; — By)]ds dt do, 4.5)
Kr.m

where K7, 1, is defined by (2.31). Let B bean independent copy of B. Using Mehler’s formula (2.3) and the semigroup
property of the heat kernel, we obtain

Py[pe(B: — B)| =E[ps(e (B — By) + V1 —e=20 (B, — By))]
= pr@.s.(e”? (B — By)), (4.6)
where the function A, = A, (0, s, t) is defined by

Ae(0,5,1) =+ (1 —e )t —5)*". 4.7)
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This implies that for every multi-index i = (i1, i), with 1 <iy,i, <d, we have
D?Py[pe (B — Bo)] (A, x1, x2) = ¢ s 1y (x1) L 11 (x2)
X 3 (0,5, i (€ (B = BY)ginosn (¢ (B = BY),  (48)
where the function gj ;, for A > 0, is defined by

-1 2_1

( I
8i A\ X1, ..., Xd) = _ in. .
A lxilxiz if i1 #i>.

ifi; =iy,

From (4.5) and (4.8), we deduce that

— 2 20—

HDZL IZ‘Q”(ﬁJ)W:/ / e zﬂu(sz—sl,tl—sl,tz—sz)z

R JK3
+ YT,

—1 _
X ()\'S(Qaslytl))"s(ﬂvSZaIZ)) pkg(G,sl,tl)(e Q(Bt] - BS|))

X Dis(Busain) (€ P (By, — Byy)) Zgi,xg(e,s],t.)(€79(3z1 — By))
i

X i (o) (€ P (B, — Byy)) ds di do dp, (4.9)

where the sum runs over all the possible multi-indices i = (i1, i), with 1 <y, i» < d. Using Minkowski inequality,
as well as (4.4) and (4.9), we deduce that

1Zelin@) < 1 D°L7 Ze L qugnren, = I PPLT Ze [ G|

< C?,/ / e sy — st —s1. 0 — 52)°
R} JKZ

Ty.T,

p
L7 (Q)

-1 _
X (he(0, 51, 11)Ae (B, 52, 12)) ‘Pkg(e,sl,tl)(e (B, — By))

X PreBsni) (€7F (B = B)) Y g1 (¢ (By — Byy)
i

X giske(ﬂxszvlz)(e_ﬂ (B, — BSZ)) dsdido dp. (4.10)

P
L2(Q)

Next we bound the L7 (£2)-norm in the right-hand side of the previous inequality. Let y € (0, 1) be fixed. We can
easily check that there exists a constant C > 0 only depending on y, such that for every A1, A, > 0 and 7, £ € R?, and
every multi-index i = (i1, i), with 1 <iy,ip <d,

— — Y-l 2 —1 2
8100 (M 8ina G| < (1427 1l (1425 1 1€11%) < Cex i 1m0, @.11)
From (4.10) and (4.11), it follows that there exists a constant C > 0, not depending on ¢, 77, T», such that
FATIEE C/ / e sy —s1. 0 — 51,1 — )
RZ JK2
+ 7T,
—1
X ()“8(93 81, tl))"é‘(ﬁ’ 52, tz))

x | Presp (e7%(B,, — By)) Pret (e F(B,, — By,)) o dsdido dp. (4.12)
-y -y

.5,
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Proceeding as in the proof of (2.34), we can easily check that the quantity

P P
2 2

S = E[p}»g((?.sl,tl) (e_G(Bt] - BS|)) pks(ﬁ?-é'zvtz) (e_ﬁ (Btz - Bsz)) ]7
-y -y

satisfies
~L+9 5d
S:(Z]’[)d(gz)<}\’8(97 slstl))"é‘(ﬁsSz’tZ)) 2_ed(9+ﬁ)
(I-y)? p?
_d
‘ 2 (ka(e, s1,11)e? 0 ) :
p(1—1y) 0 Ae (B, 52, )e*P ’
where ¥ = {%; j}1<;, j<2, denotes the covariance matrix of (Bt(ll) — Bv(l1 ), B,(zl) — BY(Z1 )), whose components are given

by 11 =( — S1)2H, Y12 =221 =uls2 —s1,t1 —S1,t0 —s2), and Xp 2 = (fr — S2)2H. Therefore, there exists a
constant C > 0 only depending on p and d, such that

_dpd
S <C(he(®, 51, 1A (B, 52, 12)) * 2
d
2 re(0, 51, 11)e% 0 T2
de+p) e\Y, 51,1 )
e 'p(l—y)( 0 heBosnye?t ) T

Shooslilngl;1 y<l1-— %, so that @E > ¥, we deduce that there exists a constant C > 0 only depending on p, y and
, such that

_dp

d
S < C(he(®. 51, 1) (Brs2 1)) 4 12

[SEW

o dO+P) '(%(9, st t)e?? + (= s u(s—s1,t — st — 52) )
w2 — st — 82,00 —52)  Ae(B. 52, 0)e*P + (1 — s2)*H

Hence, by the multilinearity of the determinant function,

dp | d
)*TJFE

S < C(Ae(O, 51, 11)Ae (B, 52, 12)

[T

4.13)

<)»s(9, sit) +e X —s)?H e Pusy —si,t — 52,0 — Sz)) ‘_
e W (s —s1,t1 — 52,00 —$2)  Ae(B, 52, 12) + e 2Pty — 52)°H

By relation (4.7), we have that 1.(0, s, t) + e (t — s)2H =e+(t— s)2H for every 0, s,t > 0. As a consequence,
relation (4.13) can be written as

_dp 4
§ < C(he(@, 51, 1R (B, 52,12)) + 2

_d
x (e +e((t1 — s + (2 — 2)*) + (11 — 51)* (1 — 52)*H — 72720 u%) 72

_dp ,d _d
< C(he(®, 51, 1)Ae(B.52.12)) * 20,050 = s1, 11— 51,10 — 52) 72, (4.14)
where O (x, u1, up) is defined by (2.35). From (4.7), (4.12) and (4.14), it follows that
A= C/2 /2 e 072 L(sy — 51,11 — 51,12 — $2)°
R+ STI,Tz
— _ —1—d44d
X ((8 + (1 —e 29)([1 — S])zH)(S + (1 —e zﬂ)(lz — SQ)ZH)) 2t
d

X Oy (50 — 51,11 — S1,1p —83) P dEd;d@ d,3. 4.15)
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Changing the coordinates (s1, f1, 52, t2) by (s1, X 1= 82 — 51, U1 ;=1 — 81, U2 ‘=1t — s3) in (4.15), we get

(Ty—up) 4+ A(Tp—x—u2)+
1Ze2 0 < 2C / ~20-2f / / ds:
0.7, —u)+V(T1—x—u2)+

x w(x,ur,u2)*((e+ (1= e 2)uf?) (e + (1 - 6—25)M%H))—1—%+

d
X Og(x,uy,u2)” ? dx dud6 dp.

e

Integrating the variable s, and making the change of variables 7 := 1 —e™2Y, and £ := 1 — ¢~>#, we deduce that there
exists a constant C > 0, such that

_d
1Zel7p (@) < C(T2 = Th) . PM(X,Ml,uz)z@s(x,ul,Mz) v
)

x/ ((e+nu%H)(s+su§H))‘l‘%+% dndé dx dii. (4.16)
[0,11%

Changing the coordinates (x, u1, u2) by (s_ﬁx,s_ﬁul,s_ﬁuz) in (4.16), and using the fact that @As‘ﬁx,

1 1
ETHU, e 2HUY) = 82®1(x, uy, uy), we get

& iz, HLP(Q)<C(T2_T])/ e, uy, u2)* 01 (x,uy, uz) z

x f (1 +nui™)(1+ sugH))“‘7+F dndg dx dii.
0,12

Integrating the variables 1 and &, we obtain

d 3

a3 d d\? oy 5 _d
&2~ Ze |7, < C 7= ) =T | ) e, u2)*O1(x u, u2) "
p R}

_d, d _d d o
x (1= (1+u3®)"250) (1= (1 +u3t)) 7270 dx dii.
Hence, choosing p > 2, we deduce that there exists a constant C only depending on H, d and p, such that

2
|e2=m 7, HLP(Q)<C(T2—T1)/ M@m wy,u) "7 dx dii. 4.17)

2

Since Hd > 2 , we can choose p sothat2 < p < =3= 4H 4Hd Eor this choice of P, the integral in the right-hand side of (4.17)
is finite by Lemma 5.3. Therefore, from (4.17), it follows that there exists a constant C > 0, independent of 77, 7> and

&, such that ||52 a7 Zg||L,,(Q) < C(T» — T1), which in turn implies that

E[|es~ % Z.|"] < C(Th — T1) 5. (4.18)
Relation (4.2) then follows from (4.18). This finishes the proof of Theorem 1.2. O

Proof of Theorem 1.3. Now we proceed with the proof of Theorem 1.3, in which we will prove (1.5) and (1.7) in the
case H > %. In order to prove (1.5), it suffices to show that for every 7' > 0,

2
g L7()

g2t (15 —E[15] — h(hs 1) = 0, 4.19)
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and
2 .
8%_%+112(h§f) RN z X7, (4.20)

as ¢ — 0. Relation (4.19) follows from Lemma 3.2. In order to prove the convergence (4.20) we proceed as follows.
Using (2.13), we can easily check that

(R ) = @)t & T T 2H\—4-1 2H —H () )
Z(hz,r)—— ) ZO A (e +u™) u Hy(u=" (B, — By")) ds du.

Making the change of variable v := g7 u, we get

) )
a L € B | — By

e 2HT pT—e2Hy e
/ / (14 0) 22 el g (L>dsdv
0 0

e AT 2H\=4-1 2 e2M
/O (1+ ) 7272 (pf i ) du, 4.21)
Js

~1 m\~

2 is defined by (2.6). From (4.21), it follows that for every ¢, n > 0,

o TH T -
X (Lt]l/tz) < MIL s ‘Pn MZL )(yjd)®2 du. (422)
JsT—e2Huy  j,T—n2Hu,
By (2.7),
1 1
. A 20 4 -
lim{g® ", Q") e = HPQH — 1)? / Is1 — s2* =4 ds
e—>0 j T—¢2H uj ./»T_ﬂ 2H uy [0,T]2

_ H?QH — D ran—2

423
4H -3 (4.23)

On the other hand, by (2.8), there exists a constant Cy, 7 > 0, only depending on H and T, such that

Hence, using the pointwise convergence (4.23), we can apply the dominated convergence theorem to (4.22), in order
to obtain

. d d dQm) YAZH?(2H — )T*H-2
lim Blef = o0 ) a0 7)] = 2@H —3)

bl
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where the constant A is defined by (1.6). From the previous identity, it follows that 2 =27 ~! [, (h§ ) converges to
L(ht) as &€ — 0, for some hr € (59)®2.

2,
Recall that the element 7. € (.?)d )®d is defined as the limit in (.sﬁd )®2, as ¢ — 0, of ¢ ;, and is characterized by
relation (2.9). In order to prove (4.20), it suffices to show that ET =AY j=17T7> Or equivalently, that

d
(hr, fi ®f2)(ﬁd)®2 AZ(TF%, fi ®f2>(f)d)®27
=1

for vectors of step functions with compact support f; = (f; M

FDyend i=1,2.By@2l)
4 L
. Qm)~2
Slg% hr, f1 ® f2)(gdye2 = lim —

e 2HT d
5 /0 (1 +u2H) 2u2<(p

Proceeding as in the proof of (4.23), we can easily check that

e2Hu 0 i® f2>(f)d)®2 du 4.24)
j T—e2H

© o S1® il gayen = —H2QH 17 Z f I / W29 gy dnds.
i=1,2
Moreover, by (2.8),
[

Js

T E

%u fl ®f2> 57311)®2| — H(p82Hu

syl f1llgdllf2llge = Curllfillgall f21 g,
(4.24), we get ’

for some constant Cy, 7 > 0 only depending on 7" and H. Therefore, applying the dominated convergence theorem in

hm(hT A1 ® f2)giyer = —AH*(2H — 1) Z/ H/

|2H_2fi(/)(77) d’) ds
i=1,2
and from the characterization (2.9), we conclude that h = —A Zd L

(4.25)
(4.20), which, by (4.19), implies that the convergence (1.5)

%, as required. This finishes the proof of

It only remains to prove (1.7). By (1.5), it suffices to show the tightness property for ¢ 227 T1(J%
as in the proof of (1.2), can be reduced to proving that there exists p > 2, such that forevery 0 <71 < T, < K
d_ 3
E

(e~ Z,["] < C(1y — 1)

[15]), which,

(4.26)
where Z, is defined by (4.3), and C is some constant only depending on d, H, K and p. Changing the coordinates
(x,urp,up) by (x,e"20uy, ¢ ﬁuz) in (4.16), and using the fact that

1

1
O (x 82Hu1,eﬁu2)=82®1(efﬁx uy, uz)
we can easily check that

T
Jo = 2 gy == [ [ e

x@l(e—#x,ul,uz)‘%/ (1 + ™Y (1 + £3)) ™' =25 dy dg dx di,
0.1
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and hence, if p > 2, we obtain

T
Hgg =+l Ze ”LP(Q) <C(T2_T1)f f x,s#ul,sﬁuz)z(muz)_%i

1

X @1(8_Wx,u1,u2)_7 dx dii. 4.27)

By Lemma 5.4, if 71, T, € [0, K], for some K > 0, the integral in the right-hand side of the previous inequality is
bounded by a constant only depending on H,d, p and K. Relation (4.26) then follows from (4.27). This finishes the

proof of the tightness property for g2+l (I7 —E[I7]) in the case H > 3 (]

Proof of Theorem 1.4. Finally we prove Theorem 1.4. First we show the convergence of the finite dimensional
distributions, namely, that for every r € N and 771, ..., T, > 0 fixed, it holds

d
4

£ I5) = E[(15 .. 1)) o (Wry, o W), (4.28)

—((I%, ...,
/log(l/g) (( T’ T,

where p is defined by (3.51). Consider the random variable .7; introduced in (3.40). By Lemma 3.3, we have

\ By

g2

0 Jrog(1/e) —=—=—=| 11 —E[l7] - L(h5.1)| 2 = 0. (4.29)

and by Lemma 3.4

41
() —TE _
a_%\/mﬂh(hzj) Jr “LZ(Q) =0. (4.30)
Consequently,
d
|~ B[13] - Tl gy = O
S%W r —E[17] = Jr| 120 =0
and hence, relation (4.28) is equivalent to
8%_1 L
(T s T3 ) = 0(Wry, ., W), 4.31)

1og(l/¢)

By the Peccati—Tudor criterion, the convergence (4.31) holds provided that j;*’" satisfies the following conditions:

(1) Forevery 1 <i,j<r,

d-2
S—E[J;Jf]—m (T, AT)), ase— 0.
log(1/¢)
d ~
(i) For all i =1, ..., r, the random variables 2—(1/.]% converge in law to a centered Gaussian distribution as
e— 0.

Relation (i) follows from relation (4.30), as well as Theorem 3.5. Hence, it suffices to check (ii). To this end, consider
the following Riemann sum approximation for J7

BW _ Bg(j)

M
e Cloggi__ e M(k)2 s+a%u(k) )
RSy i=— Z Z - H, - ds, (4.32)

o um? Veuk)
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d d
Pp— (2 77 M . 7* ~
where clog := ” and u(k) := 2M, for k =2,..., M2". We will prove that W( %M — J;) converges
d_
to zero, uniformly in ¢ € (0, 1/¢), and E - STM L—a;V TN (0, ,oM) as ¢ — 0 for some constant ,oM satisfying

log(1/¢)
,5%,1 — p? as M — oo. The result will then follow by a standard approximation argument. We will separate the
argument in the following steps

Step 1. We prove that W( %M — 7;) — 0in L3(Q) as M — 00 uniformly in ¢ € (0, 1/e), namely,

\ x

g2

m,, e W IRT.31 = I7 ] 120 = ©- (4.33)
For ¢ € (0, 1/e) fixed, we decompose the term .7; as

Tp=Tr + T5y (434)
where

o ()
‘T;IIVI —_Clogggg/T/M i M% T H <BS+ESM ;BS )duds
0 J2mMiT (1 +u2)2t! Jeui

and

_— s 4 (T d W Bs(i)s%u — BS(J)

Iy = —Clog€? 2/0 /0 T2~ M)U(MOO)(M)ZI(I—i—u%)%“ Hz( \/Eu% )duds.
From (4.34), we deduce that the relation (4.33) is equivalent to

g2

A S TS | RS2t = T71 | 120 =0 (4.35)

provided that
lim (4.36)

é‘ M
=0.
M—)OOge(O ]/g) log(l/s ” T,2 ||L2(Q)

To prove (4.36) we proceed as follows. First we use the relation (3.42) to write

2dc?
€ T log
i . N
log(1/e) Fro e = log(1/¢) /[o TP /[05 51 11_1[2 02730 00) (41)

_ 2 2 2 N
X YUy, uz)e 8/3,u(52—s1,£3u1,£3u]) dsydsdu,

2
where V¥ (11, uy) is defined by (3.38). Changing the coordinates (s1, s2, u1, u2) by (s :=s1,x :=¢& 3 (s — 1), U1, U2)
when s1 < 57, and by (s :=s2,x := ¢ 3(s] — 52), U1, 42) When sy > so, integrating the variable s, and using the
. . 2 2 2
identity pu(e3x, e3uq, 5§u2)2 = ez,u(x, uy, uy), we get

_ 2
e 4Tdeyy,

IOg(l/S) ” T2 ||L2(Q) = IOg(l/{;‘) 0.5 3T]1 l_[ ]1(02 MyuM, Oo)(M )Gl x(ul’ MZ)dXdM (437)
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where the function Ggli (11, uz) is defined by (2.23). Define the regions S; by (3.18). Splitting the domain of integra-
tion of the right-hand side of (4.37) into [0, 8_% T]3 = U?:l ([0, 8_% T]3 N S;), we obtain

3
(log(1/e)) &2 | Te5 32,0, < AT (log(1/e)) ™ ded,, Z/[O g s )
i=1710¢

1 -
< [T L2000 @) Gy u2) dx dii,
i=1,2

and hence, dropping the normalization term m in the regions Si, Sz, we obtain

(log(l/t’?))_lgd_2 [ J?,g/[ ”iZ(Q) = 4Td6120g /[o .

sy (6ur, u2) o
L (x, uy,
——————+ ) 1g,(x,u1,u2)
%T]3( log(l/s) ;
1 -
< ] L0.2-My0(.00) U )G 4 (1, u2) dx i
j=1.2

The integrands corresponding to i = 1, 2 converge pointwise to zero as M — oo, and are bounded by the functions
1s, (x, ur, u2)G\") (u1, u2), which, by relations (2.29) and (2.38), are in turn bounded by

s X

w(x, uy, uz)?

_d
L O1(x,ur,u2)"2, (4.38)

1s, (x,uy,u2)C

for some constant C > 0. In addition, by Lemma 5.3, the function (4.38) is integrable for i = 1, 2, and hence, by the
dominated convergence theorem,

d—2 ATdc?
. 3 M2 . log
limsup sup —|J; <limsup sup ——— s, (x,uy, uz)
Moo s€(0,1/¢) 10g(1/€) ” T2 ”LZ(Q) Moo £c(0.1/e) 10g(1/€) Jio e~ 37
1
X 1_[ ]].(O’z—M)U(M’OO)(Ml‘)Gg’))C(I/tl,uz)dxdu]du2. (439)
i=1,2

On the other hand, by equation (5.5) in Lemma 5.2, we deduce that there exists a constant C > 0, such that for every
(x,ur,uz) €S,

G\ (w1, u2) < C(x +ut +u2) ™ yun)®r (uy, u2). (4.40)

X

Therefore, from (4.39) we deduce that

d—2
. & ~e M 112
limsup sup ——|J7
M—o00 £e(0,1/e) 10g(1/€) & HLZ(Q)

2
4Cdct T e 3T

<limsup sup & / L0.0-MyU(M .00y (Ui)

M—o0 ee(0,1/e) 10g(1/€) Jo Rzﬂglz (0277 U(M.00)

X (x4 uy +u2) " wiu) Y (uy, un) dii dx,
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so that there exists a constant C > 0 such that

limsup sup —H T'g/I”iZ(Q)
M—o00 £€(0,1/e) log(1/¢) ’

<limsup sup CT/ [T 2024000 @)Y (1, u2)
M—c0 g€(0,1/e) Ril 12

5 <log(e‘%T +up + uz) — log(uy + uz)

2 =
Tog(1/2) )(M1u2) du =0,

where the last equality easily follows from the dominated convergence theorem This finishes the proof of (4. 36)
To prove (4.35) we proceed as follows. Define the intervals [j := (5t 2M , 2M] Then, we can write R%, 7.m and JT 1> 8s
) _ g

3 B, s
3_d u(k)? 1o
R%Mz—ZCmgsi 7/ / Zﬂ[ (u) ()3 7 Hz( srelul) 3 )duds,
R+ j=1

(I+u(k)z)st! Veu(k)s

and

’*]m

v a (T & u(k)? 3,
E Clog€? 7/ / 1y, (u) — H2( sthe u )duds.
0 JR T 2)2
J_

P I (1 +u(k)z)2*!

Notice that by (3.42),

Bs +5%v _le Bs +s%v _Bsz 3 2 2
E[Hz( — >H2< — >}=2(v1v2)2#(83(S2—S1),v1,v2),
Ve NG

and hence,

d=2 2dc?

e ~ M ’ 2dejgy
— || T — RS Z 1 .
lOg(l/s) ” T,1 T,MHLZ(Q) 10g(1/8) /[0 - /]RZ I, (uy) I, (u2)

+ ki, kp=2

2 o e
X e_§A£’f’k2(8_§(sz —51), U1, uz) dsdu,
where the function A,’{VII ko (x, uy,up) is defined by

A Gur ) = (G (i u2) — G (ulky). uz)

— G (1, uk) + G (u k), u(ka))).

2
Changing the coordinates (s, 2, u1,u2) by (s :=s1,x :=¢& 3(s2 — §1), U1, u1) in the case s, > 51 and by (s :=

2 . . . . .
S2,x :=¢& 3(s1—s2),ur,ur) in the case s1 > s, and integrating the variable s, we deduce that there exists a constant
C > 0, such that

8d—2 ~ M . e 3T MM
——|J;7 — R 1 1
log(1/e) ” T,1 T, MHL2(Q) = log(l/s) /+ . kz I, (u1) Ik, (u2)
1,K2

x |AY  Ge oy, up)| dii dx. (4.41)
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In order to bound the term |A Lk (x,u1,us)| we proceed as follows. Consider the function

DY uy,uz) =y (ur — 27" up — 27M) p(x, uy —+-2*M)2

— Y (ur + 27M uy —|—2_M)u(x, up— 2_M)2,

where ¥ (11, uz) is defined by (3.43). By relation (2.5), we have that

) ~  3uju .
B s z) = / / o1 — val~F a5 = 22! 2/ %+ vauz — v |~ d, 4.42)
[0,1]2

and consequently, w(x, uy, u2) < u(x, vy, vy) for every u; < vy and up < vy. Using this observation, we can easily
show that for every vy € [u] — 27M i+ 2 Ml and vy € [up — 27M  uy +27M], the following inequality holds

_d
1/’(141 +27M y, +2_M) 2,u(x,u1 —Z_M)2
d
G( )(vl 1) < w(ul 2~M Uy — 2_M)_2u(x, Ui +2_M)2.
Hence, for every u; € Iy, and uj € Iy,,
|AY  (ur u)| <2DY (uy, uz). (4.43)

Using relations (4.41) and (4.43), as well as the fact that

M2M
Z Ly, )y, (u2) = Lp-m ppp2 (U1, u2),
ki k=2
we obtain
2 cT £ 3T/ M -
— RS <— 1pr- , D , dudx. 4.44
log(l/e) “ TqM“LZ(Q)— log(1/¢) Jo R 2w, 1) D G, 2) i dx R

To bound the integral in the right-hand side we proceed as follows. Define N := ¢~ %, so that log(1/¢) = ngN. Then,
applying L'Hopital’s rule in (4.44), we deduce that there is a constant C > 0, such that

2
11{3n_§(1)1p1 oe(1/) H RET,M”Lz(Q)

NT
<limsu / / Try-mt 2 e, u2) DM (uy, un) dii dx
N—)ooplOgN 0 ]R2+ (2= M] *
=limsupCT/2 Lpp-m ygpur, un) NT DN (uy, u) dii. (4.45)
N—o0 +

On the other hand, using equation (5.5) in Lemma 5.2, we have that for every (x, u1, us) € S3,

(e, ur, un)? < x(x 4 uyp +u2) " uiun)® < (uyun)?
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Hence, using (3.65) and the dominated convergence theorem in (4.45), we deduce that there is a constant C > 0, such
that

M 2
hf;nfélpl e(1/2) Y = F
<CT /1;2 :ﬂ_[z—M’M]Z(Ml, uz)(‘(ﬂ(ul — 2_M’ Uy — 2_M)((u1 +2_M)(u1 +2_M))2
+
— (e + 27 un +27M) (g —27M) (g —27M))?) did (4.46)

Let My € N and § > 0 be fixed. Using the fact that integrands in (4.46) are decreasing on M and

Mo2Mo

D i )Ly (¥2) = Tpostg gy D)L p-itg gy (x2) < 1
ki,kr=2

we can easily check from the definition of the convergence (4.46), that there exists y = y(My, §) > 0 such that for
every M > M, the following inequality holds

e 2
se(O y) 10g(1/e) ” RT:MHLZ(Q)

<8+CT /2 (W (1 =270 1y = 27M0) ((uy +27M0) (u) 427 M0))?
R+
— (1 4270, uy 4+ 27M0) (g — 27M0) () — 27 M0))?) g (4.47)
To handle the term sup,¢,,1/e) log(l/s) I Js M M ||i2(§2)’ we use (4.44) to get
T R =€ fy_w/ (w1, u2) DY (1, w2) diid (448)
—R <CT Lpy- U, u)D (u1,u udx. .
se(y 1/e) log(l/s) TMIL2(Q) — 0 Ri [2—M p2\U1, U2) Ly 1, U2

From (4.47) and (4.48), we conclude that there exists a constant C > 0, only depending on 7', such that for every
M > My,

sup | TN Ry 2
£e(0,1/¢) log(l/e) * * :
Mg2Mo

<ot [0l =2 =2 ) 2 ) 427’
+k1 ko=

—w(ul+2_M0,M2+2_MO)((M1 —2_M0)(M1 _Z_MO))Z)dﬁ

y 3T
+CT/0 /};{2 Lpp-m pp2 (1, u2) DY (uy, uz) dii dx. (4.49)
+

Taking first the limit as M — oo and then as My — oo in (4.49), and applying the dominated convergence theorem,
we get

limsup sup H TE M - Rs MHiz(Q) =4

M0 £€(0,1) 10g(1/8)

Relation (4.35) is then obtained by taking § — 0 in the previous inequality.
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Step 11. Next we prove that
ed—2 .

lim ———E|(R Tpy, 4.50
SE;% lOg(l/S) [( T,M) ] IOM ( )

where 0y is given by

- a4 M= 4
PM=MLdM 3 (1+u?) . @.51)

272 w22 k=2
and u(k) = ;7. Notice that in particular, P2 3 satisfies
lim 5%, = p?,
M—o0 Pm P

where p? is defined by (3.51). To prove (4.51) we proceed as follows. Recall that the constant Clog 18 defined by

&.

n)t

Clog = . Then, from the definition of R"3T  (see equation (4.32)), it easily follows that

ed—2 5 2d6120g m2M —r
—E[(R7 =7f £3G u(ky), u(ky))ds.
fogtt/ey L7 )= fogtize o J k%ﬁ b’ )

Changing the coordinates (s, s2) by (s1, x := 52 — s1), and then integrating the variable s, we get

gd—2 E[(R; )2] 4dC]20g f % %G(l) ( dutky), e3utk )d
log(1/¢) T 1ao(]/02M & g3u ,E3uU X
log(1/e) 1M log(1/e)22M W =y I >

4dc]20 M2M , ,
£ M 2 2
T Too(1/2)22M £73G e3u(ky), e3u(ky)) dx
log(l/e)zzM/ | kzz l,afgx( (k1) 83 u(k2)

. . . . 3 .
Using relation (3.59) as well as the Cauchy—Schwarz inequality e (x, u1,u2) < (u1u2)4, we can easily deduce that
there exists a constant C > 0, depending on uy, ..., uy2m, but not on x or ¢, such that

GV, (ulkn).u(k)) < Ceix!,

l,e 3x
and hence,
M2M
Y]
3G k1), u(kr))dx =0,
s—>0 log(l/g)/ Z € % (”( 1), u( 2)) X
ky,ky=2
which implies that
-2 4dc? r M2
. e » -
lim ———E[(R7 lim G . .
sLnlolog(l/g) [(R7.m)"]= 5%010g(1/8)22M/0 k;; Le-3x (u(kr), u(ka)) dx
4dc? 37 MM
: log
= lim G (u(ky), ukn))d
e—0 10g(1/8)22M/ Z 1ax(”( 1) u( 2)) X

ki,kp=2
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~2
3

where the last equality follows by making the change of variables X := s_%x. Hence, writing N := ¢~ 3, so that
log(1/¢e) = 21°gN , and using L’ Hopital’s rule, we get
d—2 8dc2 NT M2M

. £ 2 log Y]

lim ——E[(RS lim G, k k

+20 Tog(1/¢) [(Re.) 1= N—>oo3lOgN22M/ A (1D, ulho)) dx

2=
8dck T M2Y
g (1 ~
= lim ——% ) j NTG )y (k). utko)) = 73y (4.52)

k1,ky=
where the last identity follows from (2.23) and (3.65). This finishes the proof of (4.50).
=1 ~€ . . . . 2
Step 111. Next we prove the convergence in law of TWJ to a Gaussian random variable with variance p~.
From Steps I and 11, it suffices to show that
RS b SN(0,5%), ase—0, (4.53)

In order to prove (4.53) we proceed as follows. Define the random vector

D' = (D

k=2 >
where
) )
3 d B 2 — B;
Clostt (k)2 1 o3
Df i - Clost®? > / Hz(—”“”(") . )ds,
2M (1 +u(k)2)2 75 63 /log(1/e) Jo Jeuk)s
%
and cjog = @Qm) 2 ) . Notice that
d_q M2M
2

——R§ = > D
J1og(e) —

We will prove that D? converges to a centered Gaussian vector. By the Peccati—Tudor criterion (see [12]), it suffices
to prove that the components of the vector Df converge to a Gaussian distribution, and the covariance matrix of D? is
convergent. To prove the former statement, define

vl e ::EU H2< atetul) )dslf H2< tetule) )dsz:|.
0 Veu(ky)* 0 Veu(kr)?

Proceeding as in the proof of (4.52), we can show that for 2 <ky, ko <M oM

_3
Wil,k2(8>=wfo 2u(sz—sl,e%u(kl),e%u(kz))zds
[0,T]

s% log(1/¢)

_3 B §T T— s?x
M[ / p(x. uki), u(ky))® ds dx.
3log(e™3)

As in the proof of (4.52), we can use L’Hopital’s rule, (3.65) and the previous identity, to get

_2
- 3T
tim W}/ = lim ) 2T /0 (. ukn). uky)’ dx = % Ty uku(j).

e—0 e—>0 310g(8 3)
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From here, it follows that

3dT
lim E[ D, Df,] = B4, 1= sy ¥ (), (ko)) (ulknu (k).

e—0

namely, the covariance matrix of D® converges to the matrix £ = (2, j),<, j<p2m - In addition, by [3, Equation(1.4)],

for 2 < k < M2M fixed, the sequence of random variables D,ﬁ converges to a Gaussian random variable as ¢ — 0.

M2M

Therefore, by the Peccati-Tudor criterion, the random vector D converges to a jointly Gaussian vector Z = (Zy),5 »

with mean zero and covariance X. In particular, we have

¢ 4y M2M L M2M
= DE SN 0, Y. ase — 0.
= 2 (0.3 5
k=2
Relation (4.53) easily follows from the previous identity.
Since (4.28) holds, in order to finish the proof of Theorem 1.4 it suffices to prove tightness. As before, we define, for
T1 < T belonging to a compact interval [0, K], the random variable Z, by the formula (4.3). Then, by the Billingsley
criterion, it suffices to prove that there exist constants C > 0 and p > 2, only depending on K, such that

p D
Ze } <C(hL,-T):. (4.54)

Sl
log(1/¢)
Using relation (4.27) with H = 43_1’ we can easily check that

gd=2 C(h—-T) n
7 2 3 &3 —2H
—10g(l/8) ” e”LP(Q) log(l/e) [I;Z f x e3Uuy, € uz) (uluz)

X @1(8_§x, ui, uz)_F dxdu

C(T,-T n
= sup 2 1)/ / 8%M1,8~%u2)2(uluz)_2H
ec(0.1/e) log(l/e) Jgr2

x ©1(e=3x, uy, uz) "7 dx dii, (4.55)

The right-hand side in the previous identity is finite for p > 2 sufficiently small by Lemma 5.5, and hence, there exists
a constant p > 2 such that
gd—2

s p _ Tk
log(l/s)EUzEl |=cm-1).

This finishes the proof of the tightness property for «/(—1/( r—E[I ;1 1). The proof of Theorem 1.4 is now com-
plete. O

5. Technical lemmas

In this section we prove some technical lemmas, which where used in the proof of Theorems 1.2, 1.3 and 1.4.

Lemma 5.1. Let s1, 52,11, 12 € Ry be such that s1 < s3, and s; <t; fori = 1,2. Denote by ¥ the covariance matrix
of (B, — By, , By, — By,). Then, there exists a constants 0 < § < 1 and k > 0, such that the following inequalities hold

(D) Ifs1 <so <t <ty
121> 8((a+b)*H A + (b + o) a?H), (5.1)

wherea =52 —s1, b=t —spandc:=t) — 1.
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Q) Ifs1<sy <t <t,
|| > 807 (a*H + 1), (5.2)

wherea =5y —s1,b:=th —spandc: =t — tr.
3) IfS] <l <$ <,

|Z| > 8aH P (5.3)
where a :==1t] — s and ¢ :==1) — 5.

Proof. Relations (5.1)-(5.3) follow from Lemma B.1 in [7]. The inequalities (5.1) and (5.3) where also proved in [5,
Lemma 9], but the lower bound given in this lemma for the case 51 < s2 < > < #1 is not correct. O

Lemma 5.2. There exists a constant k > 0, such that for every s1 <t] < s3 <1,
wla+b,a,c) <kb*2ac, (5.4)
where a ==t — 51, b:=sy —t] and ¢ :=t) — s2. In addition, if H > %

p(x, uy, up) < k(x4 uy +u2)*2ujuy, (5.5)

where x ;=53 — s1, U1 ;=1 — sy and up :=1t) — 3.

Proof. We can easily check that

1
watb,a,0)=2(@+b+e*+2 = b+ — @+,
and hence,

wla+b,a,c)=HQRH — l)ac/ b+ avi + cva |22 dv,
[0,11%

Relation (5.4) follows by dropping the term av; + cv; in the previous integral, while (5.5) follows from the following
computation, which is valid for every H > %,

M(a+b,a,c)=H(2H—1)ac/ |b+av1+cv2|2H72dv1dv2
[0.11

|2H72

1
§H(2H—1)ac/ [(avbvew dv
0

=Haclavbv cle_2 < H42H_2ac|2a +b+ C|2H_2

=42H72H(x +ug +u2)2H72u1u2. 5.6)

|

Lemma 5.3. Define the functions pu and ©1 by (2.19) and (2.35) respectively. Let % <H<1l,and0 < p < # be
fixed. Then, the following integral is convergent

2 d
/%@m,ul,uz)ﬁdxdkoo, 5.7)
Si Uy Uy
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fori=1,2, where the sets S; are defined by (3.18). Moreover, if H < %, then

2H,2H

2 d
/ RO U U2)" o w2y S dx dii < oo, (5.8)
R l/tl I/l2

3
3
Proof. Denote the integrand in (5.8) and (5.7) by W (x, uy, u»), namely,
2 —2H -4
Wx,up,uz) = pu(x,up, up) (uiuz) " O1(x, ur, uz) 7. (5.9

We can decompose the domain of integration of (5.8), as R3 =8, US, USs, where S, Sa, Sz are defined by (3.18).
Then, it suffices to show that

/ W (x, u1, u2)dx diu < 0o, (5.10)
Si
fori =1,2 provided that 0 < p < %, and for i = 3, provided that 0 < p < % and H < %. First consider the case

i = 1. Changing the coordinates (x, u1,u2) by (a :=x,b:=u; —x,c:=x +uy —uyp) in (5.10) fori =1, we get
/ \I/(x,ul,uz)dxdﬁzf V(a,a+b,b+c)dadbdc.
Si R}

To bound the integral in the right-hand side we proceed as follows. First we notice that the term w(a,a + b, b +c) is
given by

1
ula,a+b,b+c)= 5((a+b+6‘)2H —‘rb2H _C2H _a2H).

By the Cauchy—Schwarz inequality, |u(a,a + b, b + ¢)| < (a + b)? (b + ¢)". In addition, by (5.1) there exists a
constant § > 0 such that

@+ b+ — @, a+b.b+0)* =8((a+b*" + (b +c)*a?). (5.11)

Asa consequence,

_d
P

W(a.a+b.b+c)<(1+ @+ + b+ +5((a+b)*" M + b+ ) M)

Define o1 = 01(a, b, ¢) and 02 = 02(a, b, ¢) as the first and second largest element of {a, b, c}. Hence, we deduce that
there exists a constant K > 0 such that

H

_2Hd _2Hd
<K(ve) ? (lve) 7. (5.12)

_d
P

V(@.a+b.b+eo)<K(1+oi" +oi"03")

Using the condition p < #, as well as the previous inequality, we can easily check that W(a,a + b,b + ¢) is

integrable in R3 , which in turn implies that W (x, u{, u2) is integrable in S, as required.
Next we consider the case i = 2. Changing the coordinates (x, uy,us) by (@ :=x,b:=uz,c:=u; —x —up) in
(5.10) for i =2, we get
/ W(x,u,uy)dxdu;duy = /3 V(a,a+b+c,b)dadbdc.
S, :5]

To bound the integral in the right-hand side we proceed as follows. First notice that the term p(a,a + b + ¢, b) is
given by

1
wa,a+b+eb)=(b+ )+ (a+b*" — 2 —a*H). (5.13)
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By the Cauchy—Schwarz inequality, | (a, a+b+c, b)| < b (a+b+c)f . In addition, by (5.2), there exists a constant
& > 0 such that

b a+b+o)* — @, a+b+c, b)? =8 (a* +2H).

As a consequence,

_d
p.

W(a,a+b+c,b) <1+ + (a+b+ ) + 80> (a*H 4 1))

From here it follows that there exists a constant K > 0 such that (5.12) holds. Using the condition p < %, as well

as the previous inequalities, we can easily check that W(a,a + b + ¢, b) is integrable in the region {(a, b, c) € Rj_ |
b>aAc}.

Next we check the integrability of W(a,a + b + ¢, b) in {(a, b, c) € Ri | b <a A c}. Applying the mean value
theorem in (5.13), we can easily check that

wla,a+b+c,b)= %(ZH(a +&D b+ 2H (e +6)* D), (5.14)

for some &1, & between 0 and b. Therefore, if H < % we obtain
na,a+b+c,b) < H(@H '+ 2 1)p, (5.15)
which in turn implies that
W(a,a+b+cb)<H (a + 21022 (g 4 b4 o)~
x (14+ 6™ + (a+b+c)*7 + 6p*H (a*H +c2”))’%. (5.16)
For the case H > %, we use (5.14), in order to obtain
ua,a+b+e,b)<H(@+b*""+(c+0)* )b,

which in turn implies that

W(a,a+b+e,b) < H @+ + (e + 5> 16> (@ + b+ o)~

x (1+b2H+(a+b+c)2H+8b2H(a2H+c2H))_%. (5.17)
From (5.16), we deduce that, if H < %, there exists a constant K > 0 such that
W(a,a+b+c,b)<K@ne* 202 2H@ave)y?(1+@ve)* +b@av c)ZH)_%. (5.18)
In turn, from (5.17), it follows that if H > %, there exists a constant K > 0, such that
Y@@,a+b+ce,b)<K@vo* 2022 (14 @ve + b @av c)ZH)‘%. (5.19)

Using the conditions H < % and p < #, we can easily check that 2H < g’—g, which, by (5.18) and (5.19), implies

that W(a,a + b + ¢, b) is integrable in {(a, b, c) € Ri | b < a A c}. From here it follows that W(a,a + b + ¢, b) is
integrable in R3 , and hence W (x, u1, up) is integrable in Sy, as required.

Finally we consider the case i =3 for H < %. Changing the coordinates (x, u1,u2) by (@ :=u;,b:=x —uj,c:=
up) in (5.10) for i = 3, we get

/\Il(x,m,uz)dxdﬁ:/ W(a+b,a,c)dadbdc.
S;3 R3
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To bound the integral in the right-hand side we proceed as follows. First we notice that the term w(a + b, a, c¢) is given
by

1
wa+b.a,0)=5(@+b+ )+ — b+ 0)*! — (a+b)*"). (5.20)
By the Cauchy—Schwarz inequality, u(a + b, a,c) < af¢f | In addition, by (5.3), there exist constants k, § > 0 such

that

a* P — ya+b,a,c)* > 8a*H A, (5.21)

and
ula+b,a,c) < kb*12qc. (5.22)

From (5.21) and (5.22), we deduce the following bounds for W

_d
V(a+b,a,c)< (1 +a?t  2H +8a2H62H) P, (5.23)

_d
P

W(a+b,a,c) <2Hb* 4 ac)H12(1 4 o 4 21 4 5a%H ) (5.24)

Using (5.23), as well as the condition p < #, we can easily check that W(a + b, a, ¢) is integrable in the region

{(a,b,c)eR3 |b<anch
Next we check the integrability of W(a + b, a, ¢) in the region {(a, b, c) € Ri | b>aVc} Since H < 43_1’ from
(5.24) it follows that there exists a constant C > 0 such that

o0 _d
/ \I-'(a+b,a,c)db§C(ac)_2H+2(a\/c)4H_3(1+a2H+02H—I—a2H62H) r
(

avce)

d
< Clat (4@ 4 1 )

The integrability of W(a + b, a, ¢) in the region {(a, b, c¢) € Ri | b > aV c} then follows from condition the p < %.

Finally, we prove the integrability of W(a + b, a, ¢) in the regions {(a, b, ¢) € ]R%r |la<b<c}and{(a,b,c) € Ri |
c<b<a}. Leta,b,c >0 be such that a < b < c. Applying the mean value theorem to (5.20), we can easily show
that

1 _ _
wa+ba,0)=5(E""\a—8""a),
for some & between ¢ + b and a + b + ¢, and &, between b and a + b. Hence, if H < %, it follows that

1 1
@ +b,a,0 <5617 a+ &P a) < S(e+ ) e+ b7 a).
From here it follows that there exists a constant C > 0, only depending on H such that
|,u(a+b,a,c)| <cp*t-lg. (5.25)

Using inequalities (5.21) and (5.25), we deduce that there exists a constant K > 0 such that

d
\I"(a +b,a,C) S Kb4H—2a2—2HC—2H(1 +Cl2H +C2H +L12HC2H)_;

From here, it follows that

_d
P

W(a+b,a,c) < Kb 2> 21 (1 4 g 4 2 4 g2 1) (5.26)
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Using the condition H < §, we can easily show that 2H — % < % — % < 0. Hence, from (5.26), we deduce

that W(a + b, a, c¢) is integrable in {(a, b, c) € R | a < b < c}. The integrability of W(a + b, a, ¢) over the region
{(a,b,c) € Ri | c <b <a}in the case H < i’ follows from a similar argument. To handle the case H > 5, we
proceed as follows. From (5.20), we can easily show that for every a, b, ¢ > 0 such thata < b <,

ula+b,a,c)=HQRH — l)ac/

1
2(b +at+en)?2dedy <HQH — l)ac/ (en)*H 2 an,
[0,1] 0

and hence

ula+b,a,c)< Hac*—1,

From here it follows that

_d
\I’(G +b,a,c) §a272HC2H72(1 +Cl2H +C2H +Cl2HC2H) I3

Using the condition p < %, we deduce that W(a + b, a, ¢) is integrable in {(a, b,c) € Ri | a <b <c}. The in-
tegrability of W(a + b, a, c¢) over the region {(a, b, c) € Ri_ | ¢ <b <a} in the case H > % follows from a similar
argument. From the previous analysis it follows that W(a + b, a, ¢) is integrable in R3, and hence W(x,uy,up) is

integrable in 53, as required. The proof is now complete. ]
Following similar arguments to those presented in the proof of Lemma 5.3, we can prove the following result

Lemma 5.4. Let the functions u and ©1 be defined by (2.19) and (2.35) respectively. Then, for every % < H < 1and

0<p<4d,

1 1
.. SN2
_2 p(x, €M uy, 7 U 1 _d .
/ / e, €31, )" ) (o=, uy, )P dx di < oo (5.27)
se(O 1 JRE uyuy

Proof. Denote by «,(x, u1, up) the function

d
Ke(x,ui, un) ::8_%/1,()(,eﬁul,eﬁuz)z(uluz)_ﬂl@l(e_ﬁx,ul,uz)_ﬁ.
To prove (5.27), it suffices to show that
/ f L, (x, £ 77y, €77 03 )icp (x, 11, ) dx dii < 00, (5.28)
56(0 1 JRL

fori =1, 2, 3. To prove (5.28) in the case i = 1, 2, we make the change of variable X := s’ﬁx, in order to get

T
1 1 N
/Rz/o Ilgi(x,ezHul,82Hu2)/<s(x,u1,u2)dxdu
Z

3 e 2HT
:8—m+2[ f Ls, (%, u1, u)V (X, uy, ) d< dii,
Rr% Jo
where W is defined by (5.9). Hence,

/2/ €2y, €20 y )Kg(x ul,uz)dxdu</ W(x,uy,ur)dxdi. (5.29)
R

i
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In Lemma 5.3, we proved that fSI W(x,uy,uz)dxdi < oo, provided that p < #. To handle the case i = 2, we
change the coordinates (x, u1, up) by (a :=x,b:=u3,c:=u; —x —u3), in order to get

/\Il(x,ul,uz)dxdﬁ:/ V(a,a+b+c,b)dadbdc.
S R}

By (5.12), W(a,a + b + c, b) is integrable in {(a, b, c) € Ri | b > a A c}. In addition, since 2H — % < % < Hd, by
(5.19), W(a,a + b + c, b) is integrable in {(a, b, c) € Ri | b <a Ac}, and hence, W (x, uy, up) is integrable in Sy, as
required. It then remains to prove (5.28) in the case i = 3. By (5.6), for every (x, vy, v2) € S3,

|, v1, v2)] < Coopx =2, (5.30)

On the other hand, for every (x, g2 ui, sLﬂuz) € 83, it holds (s_ﬁx, ui, u) € 83, and hence, by (5.21),

@1(87ﬁx,u1, uz) > 8u2H %H. (5.31)
By (5.30) and (5.31), we obtain

)2_2HX4H_4( 2H 2H)

Ke(x,ur,u) < C(uiun 1+u +u2 +uiuy , (5.32)

for some constant C > 0, and hence,

T
1 1 N
/2/ ]].33()6,8211%1,82HM2)K8(X,M1,M2)dde
R2 Jo
T
5/2/ (1) 2H M =4 (1 4 3 43 337y , dxdu.
R JO
+

Since H > ,then3 —2H < 2 < Hd, and hence, the integral in the right-hand side of the previous identity is finite,
which nnphes that (5.28) holds for i = 3, as required. The proof is now complete. ]

Lemma 5.5. Let d > 3, and T > 0 be fixed. Let the functions u and O, be defined by (2.19) and (2.35) respectively
and and assume that H = %. Then, for every 0 < p < d,

g8 _3 2 2 \2 _2 _d .
sup  ———— (uruz) " 2p(x, e3ur,63u2) 01 (e 3x,u1, u2)” ? dx dii < o0,
e€(0,1/¢) log(1/€) Jr2 Jo

Proof. Denote by «,(x, u1, uy) the function
o—8/3
ke (X, Uy, uz) := log(l/s) w(x,

As in Lemma 5.4, it suffices to show that

2 2 2 _3 _2 _d
e3uy, e3u2) (uiu2) 201 (e 3x, up, uz) 7.

/2/ x mul,smz)/(g(x ui, up)dx du < oo, (5.33)
86(0 1) JR

fori =1, 2, 3, where the regions S; are defined by (3.18). The cases i = 1, 2 are handled similarly to Lemma 5.4, so it

suffices to prove (5.28) in the case i = 3. Suppose (x, 8%141, 8%142) € 83. Then, by Lemma 5.2, there exists a constant
C > 0, such that

\,u(x,s.%ul,a%uz)! <Ce*P(x +8%u1 +8%u2)_%u1uz = Ce(s_%x +uy —i—uz)_%uluz.
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.. 33 2 3
In addition, by Lemma 5.1 we have that ulzuz2 —u(e 3x,uy, us2)? > 8(ujun) 2, for some 8 > 0. Therefore, we con-

clude that there exists a constant C > 0, such that

2
e73C2 _ 33 _d
Ke(x, ul,uz)_l g(l/e)( 3x—|—u1 —l—ug) la/ulu (l—l—u1 +u2 +ug u22 ,u(x,ul,uz)z) P
e3C2%7 _ 303 _d
< (8_%x+u1 +u2) 1«/u1u (1+”1 +u2 +uju 22) P

— log(1/e)

Consequently, there exists a constant C > 0, such that

T
//]ls,-(X,ul,uz)Kg(x,ul,uz)dxdﬁ
Rr% Jo
2
Ce™3 T _2 —1 334
Silog(l/g) Ri(s Sx4up+uz) Jujuz (1+u +u2+u u3)”7 diidx.

. . ~ _2 .
Hence, making the change of variable X := ¢~ 3 x, we obtain

T
//Jlsi(x,ul,uz)fcg(x,ul,uz)dxdﬁ
Rr2 Jo

3

34
1 2.2\ p =
log(l/e) /Rz / (x4ur+u))” Juiup (l—i—ul +u2 +ug 2) ?dxdu

3

g / /g_gT -1 3 3 3\-4 . -
+ — c+up+ur)  Juiuzr(l + 2+u +ujuy) ?dxdu. (5.34)
log(1/¢) Jr2 Jy (1+uf fug +uju)

Applying the inequalities (x 4 w1 +u2) ™' < (u; +uz)~! < %(uluz)—% for x € [0, 1], and (x +u; +uz)~' <x~! for
x > 1, in the first and second terms in the right-hand side of (5.34), and then integrating the variable x, we can show

that

T =% + 2log(1/¢) + log(T
/ / Jls,-(x,ul,uz)xg@,ul,uz)dxdﬁsC/ (“”“2) 3 log(l/e)  log( ))
r2 Jo R2 log(1/¢)

3034
X JuiUn (1+ul +u2 +uju 22) P dxdu,

and consequently, for every ¢ < 1/e,

T
/2/ 1s, (x, ur, up)ke(x, ur, uz)dx di
r2 Jo

3 3 _4d
§C/2 ((uluz)_% —i—log(T))«/ulu (1 —i—ul +u2 +uj 22) P dxdu.

R+
The right-hand side of the previous inequality is finite due to the condition 0 < p < d. This finishes the proof of
(5.33). ]
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