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Abstract. Let {Bt }t≥0 be a d-dimensional fractional Brownian motion with Hurst parameter 0 < H < 1, where d ≥ 2. Consider
the approximation of the self-intersection local time of B, defined as

I ε
T =

∫ T

0

∫ t

0
pε(Bt − Bs)ds dt,

where pε(x) is the heat kernel. We prove that the process {I ε
T

−E[I ε
T

]}T ≥0, rescaled by a suitable normalization, converges in law

to a constant multiple of a standard Brownian motion for 3
2d

< H ≤ 3
4 and to a multiple of a sum of independent Hermite processes

for 3
4 < H < 1, in the space C[0,∞), endowed with the topology of uniform convergence on compacts.

Résumé. Soit {Bt }t≥0 un mouvement brownien fractionnaire d-dimensionel avec paramètre de Hurst 0 < H < 1, où d ≥ 2. On
considère l’approximation du temps local d’auto-intersection du processus B, défini comme

I ε
T =

∫ T

0

∫ t

0
pε(Bt − Bs)ds dt,

où pε(x) est le noyau de la chaleur. Nous démontrons que le processus {I ε
T

− E[I ε
T

]}T ≥0, rééchelonné avec une normalisation

convenable, converge en loi vers un mouvement brownien multiplié par une constante si 3
2d

< H ≤ 3
4 et vers une somme de

processus de Hermite indépendants multipliée par une constante si 3
4 < H < 1, dans l’espace C[0,∞), muni de la topologie de la

convergence uniforme sur les compacts.
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1. Introduction

Let B = {Bt }t≥0 be a d-dimensional fractional Brownian motion of Hurst parameter H ∈ (0,1). Fix T > 0. The
self-intersection local time of B in the interval [0, T ] is formally defined by

I :=
∫ T

0

∫ t

0
δ(Bt − Bs)ds dt,

D. Nualart was supported by the NSF grant DMS1512891.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/18-AIHP889
mailto:nualart@ku.edu


Functional CLT for the self-intersection local time of the fBm 481

where δ denotes the Dirac delta function. A rigorous definition of this random variable may be obtained by approxi-
mating the delta function by the heat kernel

pε(x) := (2πε)−
d
2 exp

{
− 1

2ε
‖x‖2

}
, x ∈R

d .

In the case H = 1
2 , B is a classical Brownian motion, and its self-intersection local time has been studied by many

authors (see Albeverio, Hu and Zhou [1], Hu [4], Imkeller, Pérez-Abreu and Vives [6], Varadhan [14], Yor [15] and
the references therein). In the case H �= 1

2 , the self-intersection local time for B was first studied by Rosen in [13] in
the planar case and it was further investigated using techniques from Malliavin calculus by Hu and Nualart in [5]. In
particular, it was proved that the approximation of the self-intersection local time of B in [0, T ], defined by

I ε
T :=

∫ T

0

∫ t

0
pε(Bt − Bs)ds dt, (1.1)

converges in L2(�) when H < 1
d

. Furthermore, it was shown that when 1
d

≤ H < 3
2d

, I ε
T − E[I ε

T ] to converges in
L2(�), and for the case 3

2d
< H < 3

4 , the following limit theorem holds (see [5, Theorem 2]).

Theorem 1.1. If 3
2d

< H < 3
4 , then ε

d
2 − 3

4H (I ε
T − E[I ε

T ]) converges in law to a centered Gaussian distribution with
variance σ 2T , as ε → 0, where the constant σ 2 is given by (3.3).

The case H = 3
2d

was addressed as well in [5], where it was shown that the sequence (log(1/ε))− 1
2 (I ε

T − E[I ε
T ])

converges in law to a centered Gaussian distribution with variance σ 2
log, as ε → 0, where σ 2

log is the constant given by
[5, Equation (42)].

The aim of this paper is to prove a functional version of Theorem 1.1, and extend it to the case 3
4 ≤ H < 1. Our

main results are Theorems 1.2, 1.3 and 1.4.

Theorem 1.2. Let 3
2d

< H < 3
4 , d ≥ 2 be fixed. Then,{

ε
d
2 − 3

4H
(
I ε
T −E

[
I ε
T

])}
T ≥0

Law→ {σWT }T ≥0, (1.2)

in the space C[0,∞), endowed with the topology of uniform convergence on compact sets, where W is a standard
Brownian motion, and the constant σ 2 is given by (3.3).

We briefly outline the proof of (1.2). The proof of the convergence of the finite-dimensional distributions, is based
on the application of a multivariate central limit theorem established by Peccati and Tudor in [12] (see Section 2.3),
and follows ideas similar to those presented in [5]. On the other hand, proving the tightness property for the process

Ĩ ε
T := ε

d
2 − 3

4H
(
I ε
T −E

[
I ε
T

])
,

presents a great technical difficulty. In fact, by the Billingsley criterion (see [2, Theorem 12.3]), the tightness property
can be obtained by showing that there exists p > 2, such that for every 0 ≤ T1 ≤ T2,

E
[∣∣Ĩ ε

T2
− Ĩ ε

T1

∣∣p] ≤ C|T2 − T1| p
2 , (1.3)

for some constant C > 0 independent of T1, T2 and ε. The problem of finding a bound like (1.3) comes from the
fact that the smallest even integer such that p > 2 is p = 4, and a direct computation of the moment of order four
E[|Ĩ ε

T2
− Ĩ ε

T1
|4] is too complicated to be handled. To overcome this difficulty, in this paper we introduce a new approach

to prove tightness based on the techniques of Malliavin calculus. Let us describe the main ingredients of this approach.
First, we write the centered random variable Z := Ĩ ε

T2
− Ĩ ε

T1
as

Z = −δDL−1Z,
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where δ, D and L are the basic operators in Malliavin calculus. Then, taking into consideration that E[DL−1Z] = 0
we apply Meyer’s inequalities to obtain a bound of the type

‖Z‖Lp(�) ≤ cp

∥∥D2L−1Z
∥∥

Lp(�;(Hd )⊗2)
, (1.4)

for any p > 1, where the Hilbert space H is defined in Section 2.1. Notice that

Z = ε
d
2 − 3

4H

∫
0≤s≤t,T1≤t≤T2

(
pε(Bt − Bs) −E

[
pε(Bt − Bs)

])
ds dt.

Applying Minkowski’s inequality and (1.4), we obtain

‖Z‖Lp(�) ≤ cpε
d
2 − 3

4H

∫
0≤s≤t,T1≤t≤T2

∥∥D2L−1pε(Bt − Bs)
∥∥

p
ds dt.

Then, we get the desired estimate by choosing p > 2 close to 2, using the self-similarity of the fractional Brownian
motion, the expression of the operator L−1 in terms of the Ornstein–Uhlenbeck semigroup, Mehler’s formula and
Gaussian computations. In this way, we reduce the problem to showing the finiteness of an integral (see Lemma 5.3),
similar to the integral appearing in the proof of the convergence of the variances. It is worth mentioning that this
approach for proving tightness has not been used before, and has its own interest.

In the case H > 3
4 , the process ε

d
2 − 3

2H
+1(I ε

T − E[I ε
T ]) also converges in law, in the topology of C[0,∞), but the

limit is no longer a multiple of a Brownian motion, but a multiple of a sum of independent Hermite processes of
order two. More precisely, if {Xj

T }T ≥0 denotes the second order Hermite process, with respect to {B(j)
t }t≥0, defined

in Section 2.1, then {Ĩ ε}ε∈(0,1) satisfies the following limit theorem

Theorem 1.3. Let H > 3
4 , and d ≥ 2 be fixed. Then, for every T > 0,

ε
d
2 − 3

2H
+1(I ε

T −E
[
I ε
T

]) L2(�)→ −�

d∑
j=1

X
j
T , (1.5)

where the constant � is defined by

� := (2π)− d
2

2

∫ ∞

0

(
1 + u2H

)− d
2 −1

u2 du. (1.6)

In addition,

{
ε

d
2 − 3

2H
+1(I ε

T −E
[
I ε
T

])}
T ≥0

Law→
{

−�

d∑
j=1

X
j
T

}
T ≥0

, (1.7)

in the space C[0,∞), endowed with the topology of uniform convergence on compact sets.

We briefly outline the proof of Theorem 1.3. The convergence (1.5) is obtained from the chaotic decomposition of

I ε
T . It turns out that the chaos of order two completely determines the asymptotic behavior of ε

d
2 − 3

2H
+1(I ε

T −E[I ε
T ]),

and consequently, (1.5) can be obtained by the characterization of the Hermite processes presented in [8], applied to the

second chaotic component of I ε
T . Similarly to the case 3

2d
< H < 3

4 , we show that the sequence ε
d
2 − 3

2H
+1(I ε

T −E[I ε
T ])

is tight, which proves the convergence in law (1.7).
The technique we use to prove tightness doesn’t work for the case Hd ≤ 3

2 , so the convergence in law of

{log(1/ε)− 1
2 (I ε

T − E[I ε
T ])}T ≥0 to a scalar multiple of a Brownian motion for the case Hd = 3

2 still remains open.
Nevertheless, for the critical case H = 3

4 and d ≥ 3, the technique does work, and we prove the following limit
theorem
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Theorem 1.4. Suppose H = 3
4 and d ≥ 3. Then,

{
ε

d
2 −1√

log(1/ε)

(
I ε
T −E

[
I ε
T

])}
T ≥0

Law→ {ρWT }T ≥0, (1.8)

in the space C[0,∞), endowed with the topology of uniform convergence on compact sets, where W is a standard
Brownian motion, and the constant ρ is defined by (3.51).

Remark. We impose the stronger condition d ≥ 3 instead of d ≥ 2, since the choice H = 3
4 , d = 2 gives Hd = 3

2 ,
and as mentioned before, it is not clear how to prove tightness for this case.

We briefly outline the proof of Theorem 1.4. The proof of the tightness property is analogous to the case 3
2d

< H <
3
4 . On the other hand, the proof of the convergence of the finite dimensional distributions requires a new approach.
First we show that, as in the case H > 3

4 , the chaos of order two determines the asymptotic behavior of {I ε
T }T ≥0. Then

we describe the behavior of the second chaotic component of I ε
T , which is given by

− (2π)− d
2 ε

2
3 − d

2

2

d∑
j=1

∫ T

0

∫ ε
− 2

3 (T −s)

0

u
3
2

(1 + u
3
2 )

d
2 +1

H2

(B
(j)

s+ε
2
3 u

− B
(j)
s

√
εu

3
4

)
duds, (1.9)

where H2 denotes the Hermite polynomial of order 2. Then we show that we can replace the domain of integration of
u by [0,∞), and this integral can be approximated by Riemann sums of the type

− 1

2M

M2M∑
k=2

u(k)
3
2

(1 + u(k)
2
3 )

d
2 +1

∫ T

0
H2

(B
(j)

s+ε2M
u(k)

− B
(j)
s

√
εu(k)

3
4

)
ds, (1.10)

where u(k) = k
2M , and M is some fixed positive number. By [3, Equation (1.4)], we have that, for k fixed, the random

variable

ξε
k (T ) := ε− 1

3√
log(1/ε)

∫ T

0
H2

(B
(j)

s+ε
2
3 u(k)

− B
(j)
s

√
εu(k)

3
4

)
ds

converges in law to a Gaussian distribution as ε → 0. Hence, after a suitable analysis of the covariances of the process
{ξε

k (T ) | 2 ≤ k ≤ M2M, and T ≥ 0} and an application of the Peccati–Tudor criterion (see [12]), we obtain that the

process (1.10) multiplied by the factor (2π)
− d

2 ε
− 1

3

2
√

log(1/ε)
converges to a constant multiple of a Brownian motion ρMW , for

some ρM > 0. The result then follows by proving that the approximations (1.10) to the integral in (1.9), are uniform
over ε ∈ (0,1/e) as M → ∞, and that ρM → ρ as M → ∞.

The paper is organized as follows. In Section 2 we present some preliminary results on the fractional Brownian
motion and the chaotic decomposition of I ε

T . In Section 3, we compute the asymptotic behavior of the variances of the
chaotic components of I ε

T as ε → 0. The proofs of the main results are presented in Section 4. Finally, in Section 5
we prove some technical lemmas.

2. Preliminaries and main results

2.1. Some elements of Malliavin calculus for the fractional Brownian motion

Throughout the paper, B = {(B(1)
t , . . . ,B

(d)
t )}t≥0 will denote a d-dimensional fractional Brownian motion with Hurst

parameter H ∈ (0,1), defined on a probability space (�,F,P). That is, B is a centered, Rd -valued Gaussian process
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with covariance function

E
[
B

(i)
t B

(j)
s

] = δi,j

2

(
t2H + s2H − |t − s|2H

)
.

We will denote by H the Hilbert space obtained by taking the completion of the space of step functions on [0,∞),
endowed with the inner product〈

1[a,b],1[c,d]
〉
H

:= E
[(

B
(1)
b − B(1)

a

)(
B

(1)
d − B(1)

c

)]
, for 0 ≤ a ≤ b, and 0 ≤ c ≤ d.

For every 1 ≤ j ≤ d fixed, the mapping 1[0,t] �→ B
(j)
t can be extended to linear isometry between H and the Gaussian

subspace of L2(�) generated by the process B(j). We will denote this isometry by B(j)(f ), for f ∈ H. If f ∈ Hd

is of the form f = (f1, . . . , fd), with fj ∈ H, we set B(f ) := ∑d
j=1 B(j)(fj ). Then f �→ B(f ) is a linear isometry

between Hd and the Gaussian subspace of L2(�) generated by B .
For any integer q ≥ 1, we denote by (Hd)⊗q and (Hd)�q the qth tensor product of Hd , and the qth symmetric

tensor product of Hd , respectively. The qth Wiener chaos of L2(�), denoted by Hq , is the closed subspace of L2(�)

generated by the variables{
d∏

j=1

Hqj

(
B(j)(fj )

) ∣∣∣ d∑
j=1

qj = q, and f1, . . . , fd ∈H,‖fj‖H = 1

}
,

where Hq is the qth Hermite polynomal, defined by

Hq(x) := (−1)qe
x2
2

dq

dxq
e− x2

2 .

For q ∈ N, with q ≥ 1, and f ∈ Hd of the form f = (f1, . . . , fd), with ‖fj‖H = 1, we can write

f ⊗q =
d∑

i1,...,iq=1

fi1 ⊗ · · · ⊗ fiq .

For such f , we define the mapping

Iq

(
f ⊗q

) :=
d∑

i1,...,iq=1

d∏
j=1

Hqj (i1,...,iq )

(
B(j)(fj )

)
,

where qj (i1, . . . , iq) denotes the number of indices in (i1, . . . , iq) equal to j . The range of Iq is contained in Hq .
Furthermore, this mapping can be extended to a linear isometry between H�q (equipped with the norm

√
q!‖·‖(Hd )⊗q )

and Hq (equipped with the L2(�)-norm).
Denote by G the σ -algebra generated by B . It is well known that every square integrable random variable G-

measurable, has a chaos decomposition of the type

F = E[F ] +
∞∑

q=1

Iq(fq), (2.1)

for some fq ∈ (Hd)�q .
Let S denote the set of all cylindrical random variables of the form

F = g
(
B(h1), . . . ,B(hn)

)
,
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where g : Rn →R is an infinitely differentiable function with compact support, and hj ∈Hd . The Malliavin derivative
of F with respect to B , is the element of L2(�;Hd), defined by

DF =
n∑

i=1

∂g

∂xi

(
B(h1), . . . ,B(hn)

)
hi.

By iteration, one can define the r th derivative Dr for every r ≥ 2, which is an element of L2(�; (Hd)⊗r ).
For p ≥ 1 and r ≥ 1, the space D

r,p denotes the closure of S with respect to the norm ‖·‖Dr,p , defined by

‖F‖Dr,p :=
(
E

[|F |p] +
r∑

i=1

E
[∥∥DiF

∥∥p

(Hd )⊗i

]) 1
p

.

The operator Dr can be consistently extended to the space D
r,p . We denote by δ the adjoint of the operator D, also

called the divergence operator. A random element u ∈ L2(�;Hd) belongs to the domain of δ, denoted by Dom δ, if
and only if satisfies∣∣E[〈DF,u〉Hd

]∣∣ ≤ CuE
[
F 2] 1

2 , for every F ∈D
1,2,

where Cu is a constant only depending on u. If u ∈ Dom δ, then the random variable δ(u) is defined by the duality
relationship

E
[
Fδ(u)

] = E
[〈DF,u〉Hd

]
,

which holds for every F ∈ D
1,2. The operator L is defined on a random variable F of the form (2.1), by

LF :=
∞∑

q=1

−qIq(fq),

provided the series converges in L2(�). Then, L coincides with the infinitesimal generator of the Ornstein–Uhlenbeck
semigroup {Pθ }θ≥0, which is defined, for F of the form (2.1), by

PθF :=
∞∑

q=0

e−qθ Iq(fq).

A random variable F belongs to the domain of L if and only if F ∈ D
1,2, and DF ∈ Dom δ, in which case

δDF = −LF.

We also define the operator L−1, on F of the form (2.1), by

L−1F =
∞∑

q=1

− 1

q
Iq(fq).

Notice that L−1 is a bounded operator and satisfies LL−1F = F − E[F ] for every F ∈ L2(�), so that L−1 acts
as a pseudo-inverse of L. The operator L−1 satisfies the following contraction property for every F ∈ L2(�) with
E[F ] = 0,

E
[∥∥DL−1F

∥∥2
Hd

] ≤ E
[
F 2].
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In addition, by Meyer’s inequalities (see [10, Proposition 1.5.8]), for every p > 1, there exists a constant cp > 0 such
that the following relation holds for every F ∈D

2,p , with E[F ] = 0∥∥δ
(
DL−1F

)∥∥
Lp(�)

≤ cp

(∥∥D2L−1F
∥∥

Lp(�;(Hd )⊗2)
+ ∥∥E[

DL−1F
]∥∥

(H)d

)
. (2.2)

Assume that B̃ is an independent copy of B , and such that B, B̃ are defined in the product space (� × �̃,F ⊗ F̃,P⊗
P̃). Given a random variable F ∈ L2(�), measurable with respect to the σ -algebra generated by B , we can write
F = �F (B), where �F is a measurable mapping from R

Hd
to R, determined P-a.s. Then, for every θ ≥ 0 we have

the Mehler formula

PθF = Ẽ
[
�F

(
e−θB +

√
1 − e−2θ B̃

)]
, (2.3)

where Ẽ denotes the expectation with respect to P̃. The operator L−1 can be expressed in terms of Pθ , as follows

L−1F =
∫ ∞

0
PθF dθ, for F such that E[F ] = 0. (2.4)

2.2. Hermite process

When H > 1
2 , the inner product in the space H can be written, for every step functions ϕ,ϑ on [0,∞), as

〈ϕ,ϑ〉H = H(2H − 1)

∫
R

2+
ϕ(ξ)ϑ(ν)|ξ − ν|2H−2 dξ dν. (2.5)

Following [8], we introduce the Hermite process {Xj
T }T ≥0 of order 2, associated to the j th component of B , {B(j)

t }t≥0,
and describe some of its properties. The family of kernels {ϕε

j,T | T ≥ 0, ε ∈ (0,1)} ⊂ (Hd)⊗2, defined, for every
multi-index i = (i1, i2), 1 ≤ i1, i2 ≤ d , by

ϕε
j,T (i, x1, x2) := ε−2

∫ T

0
δj,i1δj,i21[s,s+ε](x1)1[s,s+ε](x2) ds, (2.6)

satisfies the following relation for every H > 3
4 , and T ≥ 0

lim
ε,η→0

〈
ϕε

j,T , ϕ
η
j,T

〉
(Hd )⊗2 = H 2(2H − 1)2

∫
[0,T ]2

|s1 − s2|4H−4 d�s = cH T 4H−2, (2.7)

where d�s := ds1 ds2 and cH := H 2(2H−1)
4H−3 . This implies that ϕε

j,T converges, as ε → 0, to an element of (Hd)⊗2,

denoted by π
j
T . In particular, for every K > 0, ‖ϕε

j,K‖(Hd )⊗2 is bounded by some constant CK,H , only depending
on K and H . On the other hand, by (2.5) and (2.6), we deduce that for every T ∈ [0,K], it holds ‖ϕε

j,T ‖(Hd )⊗2 ≤
‖ϕε

j,K‖(Hd )⊗2 , and hence

sup
T1,T2∈(0,K]
ε,η∈(0,1)

∣∣〈ϕε
j,T1

, ϕ
η
j,T2

〉
(Hd )⊗2

∣∣ ≤ sup
T1,T2∈(0,K]
ε,η∈(0,1)

∥∥ϕε
j,T1

∥∥
(Hd )⊗2

∥∥ϕ
η
j,T2

∥∥
(Hd )⊗2

≤ sup
ε∈(0,1)

∥∥ϕε
j,K

∥∥2
(Hd )⊗2 ≤ CK,H . (2.8)

The element π
j
T , can be characterized as follows. For any vector of step functions with compact support fi =

(f
(1)
i , . . . , f

(d)
i ) ∈ Hd , i = 1,2, we have

〈
π

j
t , f1 ⊗ f2

〉
(Hd )⊗2 = lim

ε→0
ε−2H 2(2H − 1)2

∫ T

0

∏
i=1,2

∫ s+ε

s

∫ T

0
|ξ − η|2H−2f

(j)
i (η) dη dξ ds,
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and hence

〈
π

j
t , f1 ⊗ f2

〉
(Hd )⊗2 = H 2(2H − 1)2

∫ T

0

∏
i=1,2

∫ T

0
|s − η|2H−2f

(j)
i (η) dη ds. (2.9)

We define the second order Hermite process {Xj
T }T ≥0, with respect to {B(j)

t }t≥0, as X
j
T := I2(π

j
T ).

2.3. A multivariate central limit theorem

In the seminal paper [11], Nualart and Peccati established a central limit theorem for sequences of multiple stochastic
integrals of a fixed order. In this context, assuming that the variances converge, convergence in distribution to a
centered Gaussian law is actually equivalent to convergence of just the fourth moment. Shortly afterwards, in [12],
Peccati and Tudor gave a multidimensional version of this characterization. More recent developments on these type
of results have been addressed by using Stein’s method and Malliavin techniques (see the monograph by Nourdin
and Peccati [9] and the references therein). In the sequel, we will use the following multivariate central limit theorem
obtained by Peccati and Tudor in [12] (see also Theorems 6.2.3 and 6.3.1 in [9]).

Theorem 2.1. For r ∈ N fixed, consider a sequence {Fn}n≥1 of random vectors of the form Fn = (F
(1)
n , . . . ,F

(r)
n ).

Suppose that for i = 1, . . . , r and n ∈ N, the random variables F
(i)
n belong to L2(�), and have chaos decomposition

F (i)
n =

∞∑
q=1

Iq(fq,i,n),

for some fq,i,n ∈ (Hd)⊗q . Suppose, in addition, that for every q ≥ 1, there is a real symmetric non negative definite

matrix Cq = {Ci,j
q | 1 ≤ i, j ≤ r}, such that the following conditions hold:

(i) For every fixed q ≥ 1, and 1 ≤ i, j ≤ r , we have q!〈fq,i,n, fq,j,n〉(Hd )⊗q → C
i,j
q as n → ∞.

(ii) There exists a real symmetric nonnegative definite matrix C = {Ci,j | 1 ≤ i, j ≤ r}, such that Ci,j =
limQ→∞

∑Q
q=1 C

i,j
q .

(iii) For all q ≥ 1 and i = 1, . . . , r , the sequence {Iq(fq,i,n)}n≥1 converges in law to a centered Gaussian distribution
as n → ∞.

(iv) limQ→∞ supn≥1
∑∞

q=Q q!‖fq,i,n‖2
(Hd )⊗q = 0, for all i = 1, . . . , r .

Then, Fn converges in law as n → ∞, to a centered Gaussian vector with covariance matrix C.

2.4. Chaos decomposition for the self-intersection local time

In this section we describe the chaos decomposition of the variable I ε
T defined by (1.1). Let ε ∈ (0,1), and T ≥ 0 be

fixed. Define the set

R := {
(s, t) ∈R

2+ | s ≤ t ≤ 1
}
.

For every γ > 0, we will denote by γR the set γR := {γ v | v ∈ R}. First we write

I ε
T =

∫
R

2+
1TR(s, t)pε(Bt − Bs)ds dt. (2.10)

We can determine the chaos decomposition of the random variable pε(Bt − Bs) appearing in (2.10) as follows. Given
a multi-index in = (i1, . . . , in), n ∈N, 1 ≤ ij ≤ d , we set

α(in) := E[Xi1 · · ·Xin],
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where the Xi are independent standard Gaussian random variables. Notice that

α(i2q) = (2q1)! · · · (2qd)!
(q1)! · · · (qd)!2q

, (2.11)

if n = 2q is even and for each k = 1, . . . , d , the number of components of i2q equal to k, denoted by 2qk , is also even,
and α(in) = 0 otherwise. Proceeding as in [5, Lemma 7], we can prove that

pε(Bt − Bs) = E
[
pε(Bt − Bs)

] +
∞∑

q=1

I2q

(
f ε

2q,s,t

)
, (2.12)

where f ε
2q,s,t is the element of (Hd)⊗2q , given by

f ε
2q,s,t (i2q, x1, . . . , x2q) := (−1)q

(2π)− d
2 α(i2q)

(2q)!
(
ε + (t − s)2H

)− d
2 −q

2q∏
j=1

1[s,t](xj ), (2.13)

and

E
[
pε(Bt − Bs)

] = (2π)−
d
2
(
ε + (t − s)2H

)− d
2 . (2.14)

By (2.10), (2.12) and (2.14), it follows that the random variable I ε
T has the chaos decomposition

I ε
T = E

[
I ε
T

] +
∞∑

q=1

I2q

(
hε

2q,T

)
, (2.15)

where

hε
2q,T (i2q, x1, . . . , x2q) :=

∫
R

2+
1TR(s, t)f ε

2q,s,t (i2q, x1, . . . , x2q) ds dt, (2.16)

and

E
[
I ε
T

] = (2π)−
d
2

∫
R

2+
1TR(s, t)

(
ε + (t − s)2H

)− d
2 ds dt. (2.17)

In Section 3, we will describe the behavior as ε → 0 of the covariance function of the processes {I ε
T }T ≥0 and

{I2q(hε
2q,T )}T ≥0. In order to address this problem, we will first introduce some notation that will help us to describe

the covariance function of the variables pε(Bt − Bs) and its chaotic components, which ultimately will lead to an
expresion for the covariance function of I ε

T .
First we describe the inner product 〈f ε

2q,s1,t1
, f ε

2q,s2,t2
〉(Hd )⊗2q . From (2.13), we can prove that for every 0 ≤ s1 ≤ t1

and 0 ≤ s2 ≤ t2,

〈
f ε

2q,s1,t1
, f ε

2q,s2,t2

〉
(Hd )⊗2q =

∑
q1+···+qd=q

(2q1, . . . ,2qd)! (2π)−dα(i2q)2

((2q)!)2

(
ε + (t1 − s1)

2H
)− d

2 −q

× (
ε + (t2 − s2)

2H
)− d

2 −q 〈
1⊗2q

[s1,t1],1
⊗2q
[s2,t2]

〉
H⊗2q , (2.18)

where (2q1, . . . ,2qd)! denotes the multinomial coefficient (2q1, . . . ,2qd)! = (2q)!
(2q1)!···(2qd )! . To compute the term

〈1⊗2q
[s1,t1],1

⊗2q
[s2,t2]〉H⊗2q appearing in the previous expression, we will introduce the following notation. For every

x,u1, u2 > 0, define

μ(x,u1, u2) := E
[
B(1)

u1

(
B

(1)
x+u2

− B(1)
x

)]
. (2.19)
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Define as well μ(x,u1, u2), for x < 0, by μ(x,u1, u2) := μ(−x,u2, u1). Using the property of stationary increments
of B , we can check that for every s1, s2, t1, t2 ≥ 0, such that s1 ≤ t1 and s2 ≤ t2, it holds

E
[(

B
(1)
t1

− B(1)
s1

)(
B

(1)
t2

− B(1)
s2

)] = μ(s2 − s1, t1 − s1, t2 − s2). (2.20)

As a consequence, by (2.11) and (2.18),

〈
f ε

2q,s1,t1
, f ε

2q,s2,t2

〉
(Hd )⊗2q = αq

(2π)d(2q)!22q

(
ε + (t1 − s1)

2H
)− d

2 −q(
ε + (t2 − s2)

2H
)− d

2 −q

× μ(s2 − s1, t1 − s1, t2 − s2)
2q,

where the constant αq is defined by

αq :=
∑

q1+···+qd=q

(2q1)! · · · (2qd)!
(q1!)2 · · · (qd !)2

. (2.21)

From here we can conclude that〈
f ε

2q,s1,t1
, f ε

2q,s2,t2

〉
(Hd )⊗2q = αq

(2π)d(2q)!22q
G

(q)
ε,s2−s1

(t1 − s1, t2 − s2), (2.22)

where G
(q)
ε,x(u1, u2) is defined by

G
(q)
ε,x(u1, u2) := (

ε + u2H
1

)− d
2 −q(

ε + u2H
2

)− d
2 −q

μ(x,u1, u2)
2q . (2.23)

Now we describe the covariance Cov[pε(Bt1 − Bs1),pε(Bt2 − Bs2)]. Using the chaos expansion (2.12) and (2.22),
we obtain

Cov
[
pε(Bt1 − Bs1),pε(Bt2 − Bs2)

] =
∞∑

q=1

αq

(2π)d22q
G

(q)
ε,s2−s1

(t1 − s1, t2 − s2). (2.24)

On the other hand, using once more the property of stationary increments of B , we can prove that for every s1 ≤ t1,
and s2 ≤ t2,

Cov
[
pε(Bt1 − Bs1),pε(Bt2 − Bs2)

] = Fε,s2−s1(t1 − s1, t2 − s2), (2.25)

where the function Fε,x(u1, u2), for u1, u2 > 0, is defined by

Fε,x(u1, u2) := Cov
[
pε(Bu1),pε(Bx+u2 − Bx)

]
, (2.26)

in the case x > 0, and by Fε,x(u1, u2) := Fε,−x(u2, u1) in the case x < 0. Proceeding as in [5], equations (13)–(14),
we can prove that for every u1, u2 ≥ 0, x ∈R,

Fε,x(u1, u2) = (2π)−d
[((

ε + u2H
1

)(
ε + u2H

2

) − μ(x,u1, u2)
2)− d

2

− (
ε + u2H

1

)− d
2
(
ε + u2H

2

)− d
2
]
, (2.27)

and consequently,

Fε,x(u1, u2) = (2π)−d
(
ε + u2H

1

)− d
2
(
ε + u2H

2

)− d
2

((
1 − μ(x,u1, u2)

2

(ε + u2H
1 )(ε + u2H

2 )

)− d
2 − 1

)
. (2.28)
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From (2.24) and (2.25) it follows that the functions G
(q)
ε,x(u1, u2) and Fε,x(u1, u2) appearing in (2.22) and (2.28) are

related in the following manner:

Fε,x(u1, u2) =
∞∑

q=1

βqG
(q)
ε,x(u1, u2), (2.29)

where βq is defined by

βq := αq

(2π)d22q
. (2.30)

The functions G
(q)

1,x(u1, u2) and F1,x(u1, u2) satisfy the following useful integrability condition, which was proved in
[5, Lemma 13], .

Lemma 2.2. Let 3
2d

< H < 3
4 , and q ∈ N, q ≥ 1 be fixed. Define G

(q)

1,x(u1, u2) by (2.23) and βq by (2.30). Then,

βq

∫
R

3+
G

(q)

1,x(u1, u2)dx d�u ≤
∫
R

3+
F1,x(u1, u2)dx d�u < ∞,

where d�u := du1 du2.

Proof. By (2.29), it follows that βqG
(q)

1,x(u1, u2) ≤ F1,x(u1, u2). The integrability of the function F1,x(u1, u2) over
x,u1, u2 ≥ 0, written as in (2.27), is proved in [5, Lemma 13] (see equation (40) for notation reference). �

With the notation previously introduced, we can compute the covariance functions of the increments of the pro-
cesses {I ε

T }T ≥0 and {I2q(hε
2q,T )}T ≥0 as follows. Define the set KT1,T2 by

KT1,T2 := {
(s, t) ∈ R

2+ | s ≤ t, and T1 ≤ t ≤ T2
}
. (2.31)

By (2.10) and (2.16), for every T1 < T2, we can write

I ε
T2

−E
[
I ε
T2

] − (
I ε
T1

−E
[
I ε
T1

]) =
∫
R

2+
1KT1,T2

(s, t)
(
pε(Bt − Bs) −E

[
pε(Bt − Bs)

])
ds dt,

and

I2q

(
hε

2q,T2

) − I2q

(
hε

2q,T1

) =
∫
R

2+
1KT1,T2

(s, t)I2q

(
f ε

2q,s,t

)
ds dt.

By (2.25), we deduce the following identity for every T1 ≤ T2 and T̃1 ≤ T̃2,

Cov
[
I ε
T2

− I ε
T1

, I ε

T̃2
− I ε

T̃1

] =
∫
R

4+
1KT1,T2

(s1, t1)1KT̃1,T̃2
(s2, t2)Fε,s2−s1(t1 − s1, t2 − s2) d�s d�t, (2.32)

where d�s := ds1 ds2 and d�t := dt1 dt2. Similarly, by (2.22),

E
[(

I2q

(
hε

2q,T2

) − I2q

(
hε

2q,T1

))(
I2q

(
hε

2q,T̃2

) − I2q

(
hε

2q,T̃1

))]
= βq

∫
R

4+
1KT1,T2

(s1, t1)1KT̃1,T̃2
(s2, t2)G

(q)
ε,s2−s1

(t1 − s1, t2 − s2) d�s d�t, (2.33)

where βq is defined by (2.30).
We end this section by introducing some notation, which will be used throughout the paper to describe expectations

of the form E[pε(Bt1 − Bs1)pε(Bt2 − Bs2)]. For every n-dimensional non-negative definite matrix A, we will denote
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by φA the density function of a Gaussian vector with mean zero and covariance A. In addition, we will denote by |A|
the determinant of A, and by In the identity matrix of dimension n.

Let � be the covariance matrix of the 2-dimensional random vector (B
(1)
t1

−B
(1)
s1 ,B

(1)
t2

−B
(1)
s2 ). Then, the covariance

matrix of the 2d-dimensional random vector (Bt1 − Bs1,Bt2 − Bs2) can be written as

Cov(Bt1 − Bs1,Bt2 − Bs2) = Id ⊗ �,

where in the previous identity ⊗ denotes the Kronecker product of matrices. Consider the 2d-dimensional Gaussian
density φεI2d

(x, y) = pε(x)pε(y), where x, y ∈ R
d , and denote by ∗ the convolution operation. Then we have that

E
[
pε(Bt1 − Bs1)pε(Bt2 − Bs2)

] =
∫
R2d

φεI2d
(x, y)φId⊗�(−x,−y)dx dy

= φεI2d
∗ φId⊗�(0,0) = (2π)−d |εI2d + Id ⊗ �|− 1

2 .

From the previous equation it follows that

E
[
pε(Bt1 − Bs1)pε(Bt2 − Bs2)

] = (2π)−d |εI2 + �|− d
2 . (2.34)

The right-hand side of the previous identity can be rewritten as follows. Define the function

�ε(x,u1, u2) := ε2 + ε
(
u2H

1 + u2H
2

) + u2H
1 u2H

2 − μ(x,u1, u2)
2. (2.35)

Then, using (2.20), we can easily show that

|εI2 + �| = �ε(s2 − s1, t1 − s1, t2 − s2),

which, by (2.34), implies that

E
[
pε(Bt1 − Bs1)pε(Bt2 − Bs2)

] = (2π)−d�ε(s2 − s1, t1 − s1, t2 − s2)
− d

2 . (2.36)

Therefore, we can write E[(I ε
T )2], as

E
[(

I ε
T

)2] = (2π)−d

∫
(TR)2

�ε(s2 − s1, t1 − s1, t2 − s2)
− d

2 d�s d�t . (2.37)

Finally, we prove the following inequality, which estimates the function Fε,x(u1, u2), defined in (2.26), in terms of
�ε(x,u1, u2)

Fε,x(u1, u2) ≤ (2π)−d

(
d

2
+ 1

)
μ(x,u1, u2)

2

u2H
1 u2H

2

�ε(x,u1, u2)
− d

2 . (2.38)

Indeed, using relation (2.28), as well as the binomial theorem, we deduce that

Fε,x(u1, u2) = (2π)−d
(
ε + u2H

1

)− d
2 −1(

ε + u2H
2

)− d
2 −1

μ(x,u1, u2)
2

×
∞∑

q=0

( d
2 )q+1

(q + 1)!
(

μ(x,u1, u2)
2

(ε + u2H
1 )(ε + u2H

2 )

)q

,

where an denotes the nth raising factorial of a. Hence, using the fact that

( d
2 )q+1

(q + 1)! = ( d
2 + q)

q + 1

( d
2 )q

q! ≤
(

d

2
+ 1

)
( d

2 )q

q! ,
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we deduce that

Fε,x(u1, u2) ≤ (2π)−d

(
d

2
+ 1

)(
1 + u2H

1

)− d
2
(
1 + u2H

2

)− d
2

μ(x,u1, u2)
2

(ε + u2H
1 )(ε + u2H

2 )

×
∞∑

q=0

( d
2 )q

q!
(

μ(x,u1, u2)
2

(ε + u2H
1 )(ε + u2H

2 )

)q

,

which, by the binomial theorem, implies (2.38).

3. Behavior of the covariances of Iε
T and its chaotic components

In this section we describe the behavior as ε → 0 of the covariance of I ε
T1

and I ε
T2

, as well as the covariance of
I2q(hε

2q,T1
) and I2q(hε

2q,T2
), for 0 ≤ T1 ≤ T2.

Theorem 3.1. Let T1, T2 ≥ 0 be fixed. Then, if 3
2d

< H < 3
4 ,

lim
ε→0

εd− 3
2H E

[
I2q

(
hε

2q,T1

)
I2q

(
hε

2q,T2

)] = σ 2
q (T1 ∧ T2),

where

σ 2
q := 2βq

∫
R

3+
G

(q)

1,x(u1, u2) dx d �u, (3.1)

βq is defined by (2.30) and G
(q)

1,x(u1, u2) by (2.23). Moreover, we have

∞∑
q=1

σ 2
q = σ 2, (3.2)

where σ 2 is a finite constant given by

σ 2 := 2
∫
R

3+
F1,x(u1, u2) dx d �u, (3.3)

and F1,x(u1, u2) is defined in (2.26).

Proof. To prove the result, it suffices to show that for each a < b < α < β ,

lim
ε→0

εd− 3
2H E

[(
I2q

(
hε

2q,b

) − I2q

(
hε

2q,a

))(
I2q

(
hε

2q,β

) − I2q

(
hε

2q,α

))] = 0, (3.4)

and

lim
ε→0

εd− 3
2H E

[(
I2q

(
hε

2q,b

) − I2q

(
hε

2q,a

))2] = σ 2
q (b − a). (3.5)

First we prove (3.4). Set

�ε = E
[(

I2q

(
hε

2q,b

) − I2q

(
hε

2q,a

))(
I2q

(
hε

2q,β

) − I2q

(
hε

2q,α

))]
.

Define the set KT1,T2 by (2.31), and γ := α−b
2 > 0. We can easily check that for every (s1, t1) ∈ Ka,b , and (s2, t2) ∈

Kα,β , it holds that either t2 − s2 > γ , or s2 − s1 ≥ γ , and hence, by taking T1 = a, T2 = b, T̃1 = α, T̃2 = β in (2.33),
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we get∣∣�ε
∣∣ ≤ βq

∫
[0,β]4

(
1(γ,∞)(t2 − s2) + 1(γ,∞)(s2 − s1)

)
G

(q)
ε,s2−s1

(t1 − s1, t2 − s2) d�s d�t .

Changing the coordinates (s1, s2, t1, t2) by (s := s1, x := s2 − s1, u1 := t1 − s1, u2 := t2 − s2) for s2 ≥ s1, and by (s :=
s2, x := s1 − s2, u1 := t1 − s1, u2 := t2 − s2) for s2 ≤ s1, in (3.6), using the fact that G

(q)
ε,−x(u1, u2) = G

(q)
ε,x(u2, u1),

and integrating the s1 variable, we can prove that∣∣�ε
∣∣ ≤ βqβ

∫
[0,β]3

(
1(γ,∞)(u1) + 1(γ,∞)(u2) + 1(γ,∞)(x)

)
G

(q)
ε,x(u1, u2) dx d �u.

Next, changing the coordinates (x,u1, u2) by (ε− 1
2H x, ε− 1

2H u1, ε
− 1

2H u2), and using the fact that G
(q)

ε,ε
1

2H x

(ε
1

2H u1,

ε
1

2H u2) = ε−dG
(q)

1,x(u1, u2), we get

∣∣�ε
∣∣ ≤ε

3
2H

−dβqβ

∫
[0,ε

− 1
2H β]3

(
1(γ,∞)

(
ε

1
2H u1

) + 1(γ,∞)

(
ε

1
2H u2

) + 1(γ,∞)

(
ε

1
2H x

))
G

(q)

1,x(u1, u2) dx d �u.

Since γ > 0, the arguments in the previous integrals converge to zero pointwise, and are dominated by the function
3βqβG

(q)

1,x(u1, u2), which is integrable by Lemma 2.2 due to the condition 3
2d

< H < 3
4 . Hence, by the dominated

convergence theorem,

lim
ε→0

εd− 3
2H

∣∣�ε
∣∣ = 0,

as required. Next we prove (3.5). By taking T1 = T̃1 = a, and T2 = T̃2 = b in (2.33), we deduce that

E
[(

I2q

(
hε

2q,b

) − I2q

(
hε

2q,a

))2] = 2βq

∫
[0,b]4

1{s1≤s2}1Ka,b
(s1, t1)1Ka,b

(s2, t2)

× G
(q)
ε,s2−s1

(t1 − s1, t2 − s2) d�s d�t .
Changing the coordinates (s1, s2, t1, t2) by (s1, x := s2 − s1, u1 := t1 − s1, u2 := t2 − s2), we get

E
[(

I2q

(
hε

2q,b

) − I2q

(
hε

2q,a

))2]
= 2βq

∫
[0,b]4

1Ka,b
(s1, s1 + u1)1Ka,b

(s1 + x, s1 + x + u2)G
(q)
ε,x(u1, u2) ds1 dx d �u

= 2βq

∫
[0,b]3

∫ (b−u1)+∧(b−x−u2)+

(a−u1)+∨(a−x−u2)+
ds1G

(q)
ε,x(u1, u2) dx d �u. (3.6)

Notice that G
(q)

ε,ε
1

2H x

(ε
1

2H u1, ε
1

2H u2) = ε−dG1,x(u1, u2). Therefore, integrating the variable s1, and changing the co-

ordinates (x,u1, u2) by (ε− 1
2H x, ε− 1

2H u1, ε
− 1

2H u2) in (3.6), we conclude that

εd− 3
2H E

[(
I2q

(
hε

2q,b

) − I2q

(
hε

2q,a

))2] = 2βq

∫
[0,ε

− 1
2H b]3

G
(q)

1,x(u1, u2)

× [(
b − ε

1
2H u1

)
+ ∧ (

b − ε
1

2H (x + u2)
)
+

− (
a − ε

1
2H u1

)
+ ∨ (

a − ε
1

2H (x + u2)
)
+
]
dx d �u. (3.7)

The integrand in (3.7) converges increasingly to 2(b − a)G
(q)

1,x(u1, u2) as ε → 0, which is integrable by Lemma 2.2.
Identity (3.5) then follows by applying the dominated convergence theorem in (3.7).
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Relation (3.2) is obtained by integrating both sides of relation (2.29) over the variables x,u1, u2 ≥ 0, for ε = 1, and
then using the monotone convergence theorem. The constant σ 2 is finite by Lemma 2.2. The proof is now complete. �

In order to determine the behavior of the covariances of I ε
T for the case H = 3

4 , we will first prove that the second
chaotic component I2(h

ε
2,T ) characterizes the asymptotic behavior of I ε

T −E[I ε
T ] as ε → ∞, for every H ≥ 3

4 .

We start by showing that, after a suitable rescaling, the sequence I2(h
ε
2,T ) approximates I ε

T − E[I ε
T ] in L2(�) for

H > 3
4 . This result will be latter used in the proof of Theorem 1.3.

Lemma 3.2. Let 3
4 < H < 1 be fixed. Then,

lim
ε→0

ε
d
2 − 3

2H
+1

∥∥I ε
T −E

[
I ε
T

] − I2
(
hε

2,T

)∥∥
L2(�)

= 0.

Proof. For T > 0 fixed, define the quantity

Qε := ∥∥I ε
T −E

[
I ε
T

] − I2
(
hε

2,T

)∥∥2
L2(�)

.

From the chaos decomposition (2.15), we get

Qε = E
[(

I ε
T

)2] −E
[
I ε
T

]2 − 2

∥∥∥∥∫
TR

f ε
2,s,t ds dt

∥∥∥∥2

(Hd )⊗2
. (3.8)

By (2.17) and (2.37), the first two terms in the right-hand side of the previous identity can be written as

E
[(

I ε
T

)2] = (2π)−d

∫
(TR)2

�ε(s2 − s1, t1 − s1, t2 − s2)
− d

2 d�s d�t, (3.9)

and

E
[
I ε
T

]2 = (2π)−d

∫
(TR)2

G
(0)
ε,s2−s1

(t1 − s1, t2 − s2) d�s d�t, (3.10)

where G
(q)
ε,x(u1, u2) and �ε(x,u1, u2) are given by (2.23) and (2.35), respectively. To handle the third term in (3.8),

recall that the constants αq are given by (2.21), and notice that α1 = 2d . Hence, from (2.22), we deduce that∥∥∥∥∫
TR

f ε
2,s,t ds dt

∥∥∥∥2

(Hd )⊗2
= d(2π)−d

4

∫
(TR)2

G
(1)
ε,s2−s1

(t1 − s1, t2 − s2) d�s d�t . (3.11)

From equations (3.8)–(3.11), we conclude that

Qε = (2π)−d

∫
(TR)2

(
�ε(s2 − s1, t1 − s1, t2 − s2)

− d
2

− G
(0)
ε,s2−s1

(t1 − s1, t2 − s2) − d

2
G

(1)
ε,s2−s1

(t1 − s1, t2 − s2)

)
d�s d�t . (3.12)

The integrand appearing in the right-hand side is positive. Indeed, if we define

ρε(x,u1, u2) := μ(x,u1, u2)
2(ε + u2H

1

)−1(
ε + u2H

2

)−1
,

then, applying relations (2.23), (2.35) we obtain

�ε(x,u1, u2)
− d

2 − G(0)
ε,x(u1, u2) − d

2
G(1)

ε,x(u1, u1) = 2(2π)−d
(
ε + u2H

1

)− d
2
(
ε + u2H

2

)− d
2

×
((

1 − ρε(x,u1, u2)
)− d

2 − 1 − d

2
ρε(x,u1, u2)

)
(3.13)
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and the right-hand side of the previous identity is positive by the binomial theorem. As a consequence, by changing
the coordinates (s1, s2, t1, t2) by (s1, x := s2 − s1, u1 := t1 − s1, u2 := t2 − s2), and integrating the variable s1 in (3.12),
we get

Qε ≤ 2(2π)−dT

∫
[0,T ]3

(
�ε(x,u1, u2)

− d
2 − G(0)

ε,x(u1, u2) − d

2
G(1)

ε,x(u1, u2)

)
dx d �u.

In addition, by the binomial theorem, we have that for every 0 < y < 1,

(1 − y)−
d
2 − 1 − d

2
y =

∞∑
q=2

(−1)q
(− d

2
q

)
yq = y2

∞∑
q=0

( d
2 )q+2

(q + 2)!y
q,

where (x)q denotes the raising factorial (x)q := x(x + 1) · · · (x + q − 1). Hence, by (3.13),

Qε ≤ 2(2π)−dT

∫
[0,T ]3

(
ε + u2H

1

)− d
2
(
ε + u2H

2

)− d
2 ρε(x,u1, u2)

2
∞∑

q=0

( d
2 )q+2

(q + 2)!ρε(x,u1, u2)
q dx d �u. (3.14)

Since

( d
2 )q+2

(q + 2)! = ( d
2 )q

q!
( d

2 + q)( d
2 + q + 1)

(q + 1)(q + 2)
≤

(
d

2
+ 1

)2 ( d
2 )q

q! ,

then, by (3.14),

Qε ≤ 2(2π)−dT

(
d

2
+ 1

)2 ∫
[0,T ]3

(
ε + u2H

1

)− d
2
(
ε + u2H

2

)− d
2

× ρε(x,u1, u2)
2

∞∑
q=0

( d
2 )q

q! ρε(x,u1, u2)
q dx d �u,

which, by the binomial theorem, implies that there exists a constant C > 0 only depending on T and d , such that

Qε ≤ C

∫
[0,T ]3

μ(x,u1, u2)
4

(ε + u2H
1 )2(ε + u2H

2 )2
�ε(x,u1, u2)

− d
2 dx d �u. (3.15)

Hence, to prove the lemma it suffices to show that

lim
ε→0

εd− 3
H

+2
∫

[0,T ]3
�ε(x,u1, u2) dx d �u = 0, (3.16)

where

�ε(x,u1, u2) := μ(x,u1, u2)
4

(ε + u2H
1 )2(ε + u2H

2 )2
�ε(x,u1, u2)

− d
2 . (3.17)

In order to prove (3.16), we proceed as follows. First we decompose the domain of integration of (3.16) as [0, T ]3 =
ST

1 ∪ ST
2 ∪ ST

3 , where ST
i := Si ∩ [0, T ]3, and

S1 := {
(x,u1, u2) ∈ R

3+ | x + u2 − u1 ≥ 0, u1 − x ≥ 0
}
,

S2 := {
(x,u1, u2) ∈ R

3+ | u1 − x − u2 ≥ 0
}
, (3.18)

S3 := {
(x,u1, u2) ∈ R

3+ | x − u1 ≥ 0
}
.
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Then, it suffices to show that for i = 1,2,3,

lim
ε→0

εd− 3
H

+2
∫
ST

i

�ε(x,u1, u2) dx d �u = 0. (3.19)

First prove (3.19) in the cases i = 1,2. Changing the coordinates (x,u1, u2) by (ε− 1
2H x, ε− 1

2H u1, ε
− 1

2H u2), and using

the fact that �ε(ε
1

2H x, ε
1

2H u1, ε
1

2H u2) = ε−d�1(x,u1, u2), we get

εd− 3
H

+2
∫
ST

i

�ε(x,u1, u2) dx d �u ≤ ε2− 3
2H

∫
Si

�1(x,u1, u2) dx d �u,

where the sets Si are defined by (3.18). Therefore, using μ(x,u1, u2)
2 ≤ (u1u2)

2H , we obtain

εd− 3
H

+2
∫
ST

i

�ε(x,u1, u2) dx d �u ≤ ε2− 3
2H

∫
Si

μ(x,u1, u2)
2

(u1u2)2H
�1(x,u1, u2)

− d
2 dx d �u. (3.20)

The integral appearing in the right-hand side of the previous inequality is finite by Lemma 5.3 (see equation (5.7) for
p = 2 and i = 1,2). Relation (3.19) for i = 1,2 is then obtained by taking ε → 0 in (3.20).

It then remains to prove (3.19) for i = 3. Changing the coordinates (x,u1, u2) by (a := u1, b := x − u1, c := u2),
we get∫

ST
3

�ε(x,u1, u2) dx d �u ≤
∫

[0,T ]3
�ε(a + b, a, c) da db dc. (3.21)

We bound the right-hand side of the previous inequality as follows. First we write

μ(a + b, a, c) = 1

2

(
(a + b + c)2H + b2H − (b + c)2H − (a + b)2H

)
= H(2H − 1)ac

∫
[0,1]2

(b + av1 + cv2)
2H−2 dv1 dv2. (3.22)

Notice that if a > c, then b + av1 + cv2 ≥ v1(b + a) ≥ v1(b + a
2 + c

2 ), and if c > a, then b + av1 + cv2 ≥ v2(b + c) ≥
v2(b + a

2 + c
2 ). Therefore, since H > 3

4 , by (3.22) we deduce that there exists a constant K > 0, such that

μ(a + b, a, c) ≤ Kac(a + b + c)2H−2. (3.23)

On the other hand, if � denotes the covariance matrix of (Ba,Ba+b+c − Ba+b), we can write

�ε(a + b, a, c) = ε2 + ε
(
a2H + c2H

) + |�|.
As a consequence, by part (3) of Lemma 5.1, we deduce that �ε(a + b, a, c) ≥ ε2 + δ(ac)2H for some constant
δ ∈ (0,1). Hence, by (3.17) and (3.23), that there exists a constant C > 0, such that

�ε(a + b, a, c) ≤ C(ac)4−4H (a + b + c)8H−8(ε2 + (ac)2H
)− d

2 . (3.24)

Next we bound the right-hand side of (3.24) by using Young’s inequality. Since H > 3
4 and Hd > 3

2 , then

0 <
3 − 2H

Hd
<

3

2Hd
< 1. (3.25)

Using the relation (3.25), as well as the fact that 3
4 < H < 1, we deduce that there exists a constant y > 0, such that

4H − 4 + 4Hdy < 0, (3.26)

4H − 3 − 4Hdy > 0, (3.27)

(Hd)−1(3 − 2H) + y < 1. (3.28)
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By (3.28), the constant γ := 3−2H
Hd

+ y belongs to (0,1), and hence, by Young’s inequality, we have

(1 − γ )ε2 + γ (ac)2H ≥ ε2(1−γ )(ac)2Hγ . (3.29)

In addition, by (3.26), we have

(a + b + c)8H−8 = (a + b + c)4H−4−4Hdy(a + b + c)4H−4+4Hdy

≤ b4H−4−4Hdy(a + c)4H−4+4Hdy ≤ b4H−4−4Hdy(2
√

ac)4H−4+4Hdy, (3.30)

where the last inequality follows from the arithmetic mean-geometric mean inequality. Hence, by (3.24), (3.29) and
(3.30), we obtain

εd− 3
H

+2
∫

[0,T ]3
�ε(a + b, a, c) da db dc ≤ εdyC

∫
[0,T ]3

b4H−4−4Hdy(ac)−1+Hdy da db dc. (3.31)

The integral in the right-hand side is finite by (3.27). Relation (3.19) for i = 3 then follows from (3.21) and (3.31). �

The next result extends Lemma 3.2 to the case H = 3
4 .

Lemma 3.3. Let d ≥ 3 be fixed. Then, if H = 3
4 ,

lim
ε→0

ε
d
2 −1√

log(1/ε)

∥∥I ε
T −E

[
I ε
T

] − I2
(
hε

2,T

)∥∥
L2(�)

= 0. (3.32)

Proof. For T > 0 fixed, define the quantity

Qε := ∥∥I ε
T −E

[
I ε
T

] − I2
(
hε

2,T

)∥∥2
L2(�)

.

As in the proof of equation (3.15) in Lemma 3.2, we can show that there exists a constant C > 0 such that

Qε ≤ C

∫
[0,T ]3

�ε(x,u1, u2) dx d �u, (3.33)

where

�ε(x,u1, u2) := μ(x,u1, u2)
4

(ε + u
3
2
1 )2(ε + u

3
2
2 )2

�ε(x,u1, u2)
− d

2 . (3.34)

Hence, by splitting the domain of integration in (3.33) as [0, T ]3 = ⋃3
i=1 ST

i , we deduce that relation (3.32) holds,
provided that

lim
ε→0

εd−2

log(1/ε)

∫
ST

i

�ε(x,u1, u2) d �u = 0, (3.35)

for i = 1,2,3. To prove (3.35) for i = 1,2, we change the coordinates (x,u1, u2) by (ε− 2
3 x, ε− 2

3 u1, ε
− 2

3 u2) and use

the fact that �ε(ε
2
3 x, ε

2
3 u1, ε

2
3 u2) = ε−d�1(x,u2, u2), in order to get

εd−2

log(1/ε)

∫
ST

i

�ε(x,u1, u2) dx d �u ≤ 1

log(1/ε)

∫
Si

�1(x,u1, u2) dx d �u. (3.36)
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As a consequence, by applying the inequality μ(x,u1, u2)
2 ≤ (u1u2)

3
2 , we get

εd−2

log(1/ε)

∫
ST

i

�ε(x,u1, u2) dx d �u ≤ 1

log(1/ε)

∫
Si

μ(x,u1, u2)
2

(u1u2)
3
2

�1(x,u1, u2)
− d

2 dx d �u. (3.37)

The integral appearing the right-hand side of the previous inequality is finite for i = 1,2 by Lemma 5.3 (see equation
(5.7) for p = 2). Relation (3.35) for i = 1,2 is then obtained by taking ε → 0 in (3.37).

It then suffices to handle the case i = 3. Define the function K(x,u1, u2) by

K(x,u1, u2) := μ(x,u1, u2)
4

(u1u2)3
�1(x,u1, u2)

− d
2 . (3.38)

Notice that

1

log(1/ε)

∫
S3

�1(x,u1, u2) dx d �u ≤ 1

log(1/ε)

∫
S3

K(x,u1, u2) dx d �u. (3.39)

From (3.22), it easily follows that μ(a + b, a, c) ≤ 3ac
2 (a + b + c)− 1

2 , and thus,

K(a + b, a, c) ≤ 34

24
ac(a + b + c)−2�1(a + b, a, c)−

d
2 .

Notice that �1(a + b, a, c) = 1 + a
3
2 + c

3
2 + |�|, where � denotes the covariance matrix of (Ba,Ba+b+c − Ba+b).

Therefore, by part (3) of Lemma 5.1, we deduce that

�1(a + b, a, c) ≥ 1 + a
3
2 + c

3
2 + δ(ac)

3
2 ,

for some constant δ ∈ (0,1). From here it follows that there exists a constant C > 0, such that

K(a + b, a, c) ≤ Cac(a + b + c)−2(1 + a
3
2 + c

3
2 + a

3
2 c

3
2
)− d

2 .

Therefore, using the fact that 1 +m+n+mn ≥ (1 ∨m)(1 ∨n) for all m,n ≥ 0, and defining �1 := a ∨ c, �2 := a ∧ c,
we get

K(a + b, a, c) ≤ C(�1�2)(b ∨ �1)
−2((1 ∨ �1)

3
2 (1 ∨ �2)

3
2
)− d

2 .

Using the previous inequality, as well as the condition d ≥ 3, we can easily check that K(a + b, a, c) is integrable
in R

3+, which in turn implies that K(x,u1, u2) is integrable in S3. Using this observation, as well as relations (3.36)
and (3.39), we obtain

lim
ε→0

εd−2

log(1/ε)

∫
ST

3

�ε(x,u1, u2) dx d �u = 0,

as required. The proof is now complete. �

The next result provides a useful approximation for I2(h
ε
2,T ).

Lemma 3.4. Assume that H = 3
4 and d ≥ 3. Let hε

2,T be defined as in (2.16) and consider the following approximation
of I2(h

ε
2,T )

J̃ ε
T := − (2π)− d

2 ε− d
2 +1

2

d∑
j=1

∫ T

0

∫ ∞

0

u
3
2

ε
1
3 (1 + u

3
2 )

d
2 +1

H2

(B
(j)

s+ε
2
3 u

− B
(j)
s

√
εu

3
2

)
duds. (3.40)
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Then we have that

lim
ε→0

ε
d
2 −1√

log(1/ε)

∥∥I2
(
hε

2,T

) − J̃ ε
T

∥∥
L2(�)

= 0.

Proof. Using (2.13), we can easily check that

I2
(
hε

2,T

) = − (2π)− d
2

2

d∑
j=1

∫ T

0

∫ T −u

0

u
3
2

(ε + u
3
2 )

d
2 +1

H2

(
B

(j)
s+u − B

(j)
s

u
3
4

)
ds du.

Making the change of variables v := ε− 2
3 u, we can easily deduce that

J̃ ε
T − I2

(
hε

2,T

) = − (2π)− d
2 ε− d

2 + 2
3

2

d∑
j=1

∫ T

0

∫ ∞

ε
− 2

3 (T −s)

v
3
2

(1 + v
3
2 )

d
2 +1

H2

(B
(j)

s+ε
2
3 u

− B
(j)
s

√
εu

3
4

)
duds. (3.41)

Set

�ε = εd−2
∥∥J̃ ε

T − I2
(
hε

2,T

)∥∥2
L2(�)

.

Using (3.41), as well as the fact that

E
[
H2

(
v−H

1 (Bs1+v1 − Bs1)
)
H2

(
v−H

2 (Bs2+v2 − Bs2)
)] = 2(v1v2)

−2H μ(s2 − s1, v1, v2)
2, (3.42)

for all s1, s2, v1, v2 ≥ 0, we can easily check that

�ε = d(2π)−d

2

∫
[0,T ]2

∫
R

2+
1[T ,∞)

(
s1 + ε

2
3 u1

)
1[T ,∞)

(
s2 + ε

2
3 u2

)
Vε,s2−s1(u1, u2) d �ud�s,

where

Vε,x(u1, u2) := ε− 8
3 ψ(u1, u2)μ

(
x, ε

2
3 u1, ε

2
3 u2

)2
,

and

ψ(u1, u2) := (
1 + u

3
2
1

)− d
2 −1(1 + u

3
2
2

)− d
2 −1

. (3.43)

Hence, using the fact that μ(x, v1, v2) = μ(−x, v2, v1), we can write

�ε = d(2π)−d

∫ T

0

∫ s2

0

∫
R

2+
1[T ,∞)

(
s1 + ε

2
3 u1

)
1[T ,∞)

(
s2 + ε

2
3 u2

)
Vε,s2−s1(u1, u2) d �ud�s. (3.44)

Changing the coordinates (s1, s2, u1, u2) by (s := s1, x := s2 −s1, u1, u2) in the expression (3.44), and then integrating
the variable s, we obtain

∣∣�ε
∣∣ = d(2π)−d

∫ T

0

∫
R

2+

(
T − (

T − ε
2
3 u1

)
+ ∨ (

T − x − ε
2
3 u2

)
+
)
Vε,x(u1, u2) d �udx,

and consequently, there exists a constant C > 0 such that

∣∣�ε
∣∣ ≤ C

∫ T

0

∫
R

2+
r
ε

2
3
(u1)Vε,x(u1, u2) d �udx, (3.45)
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where rδ(u1) := T − (T − δu1)+. Making the change of variable v := ε− 2
3 x in (3.45) and using the fact that

V
ε,ε

2
3 v

(u1, u2) = ε− 2
3 G

(1)
1,v(u1, u2), we get

∣∣�ε
∣∣ ≤ C

∫ ε
− 2

3 T

0

∫
R

2+
r
ε

2
3
(u1)G

(1)
1,v(u1, u2) d �udv.

Therefore, defining N := ε− 2
3 , so that log(1/ε) = 3 logN

2 , we obtain

|�ε|
log(1/ε)

≤ 2C

3 logN

∫ NT

0

∫
R

2+
r 1

N
(u1)G

(1)
1,x(u1, u2) d �udx.

To bound the right-hand side of the previous relation we split the domain of integration as follows. Define the sets Si ,
for i = 1,2,3, by (3.18). Then

lim sup
ε→0

|�ε|
log(1/ε)

≤ 2C

3

3∑
i=1

lim sup
N→∞

1

logN

∫ NT

0

∫
R

2+
1Si

(x, u1, u2)r 1
N

(u1)G
(1)
1,x(u1, u2) d �udx. (3.46)

By relations (2.29) and (2.38), there exists a constant C > 0, such that

G
(1)
1,x(u1, u2) ≤ C(u1u2)

− 3
2 μ2(x,u1, u2)�1(x,u1, u2)

− d
2 . (3.47)

Hence, by Lemma 5.3, the terms with i = 1 and i = 2 in the sum in the right-hand side of (3.46) converge to zero.
From this observation, we conclude that there exists a constant C > 0, such that

lim sup
ε→0

|�ε|
log(1/ε)

≤ lim sup
N→∞

C

logN

∫ NT

0

∫
R

2+
1S3(x,u1, u2)r 1

N
(u1)G

(1)
1,x(u1, u2) d �udx. (3.48)

Using Lemma 5.2, we can easily show that there exists a constant C > 0, such for every (x,u1, u2) ∈ S3, the following
inequality holds

G
(1)
1,x(u1, u2) = ψ(u1, u2)μ(x,u1, u2)

2 ≤ Cψ(u1, u2)(x + u1 + u2)
−1(u1u2)

2, (3.49)

where ψ(u1, u2) is defined in (3.43). From (3.48) and (3.49), it follows that

lim sup
ε→0

|�ε|
log(1/ε)

≤ lim sup
N→∞

C

logN

∫ NT

0

∫
R

2+
r 1

N
(u1)(x + u1 + u2)

−1(u1u2)
2ψ(u1, u2) d �udx.

In addition, we have that

lim sup
N→∞

1

logN

∫ 1

0

∫
R

2+
r 1

N
(u1)(x + u1 + u2)

−1(u1u2)
2ψ(u1, u2) d �udx

≤ lim sup
N→∞

T

logN

∫ 1

0

∫
R

2+
(u1 + u2)

−1(u1u2)
2ψ(u1, u2) d �u = 0,

and consequently,

lim sup
ε→0

|�ε|
log(1/ε)

≤ lim sup
N→∞

C

logN

∫ NT

1

∫
R

2+
r 1

N
(u1)x

−1(u1u2)
2ψ(u1, u2) d �udx.
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For δ > 0 fixed, let M > 1 be such that∫ ∞

M

∫ ∞

0
(u1u2)

2ψ(u1, u2) d �u < δ. (3.50)

Using (3.50), as well as the fact that r 1
N

(u) is increasing on u, we obtain

1

logN

∫ NT

1

∫ ∞

M

∫ ∞

0
x−1(u1u2)

2ψ(u1, u2) d �udx ≤ δ

(
1 + log(T )

logN

)
,

and

lim sup
N→∞

1

logN

∫ NT

1

∫ M

0

∫ ∞

0
r 1

N
(u1)x

−1(u1u2)
2ψ(u1, u2) d �udx

≤ lim sup
N→∞

(
1 + log(T )

logN

)∫
R

2+
r 1

N
(M)(u1u2)

2ψ(u1, u2) d �u = 0.

As a consequence,

lim sup
ε→0

|�ε|
log(1/ε)

≤ Cδ.

Hence, taking δ → 0, we get

lim
ε→0

�ε

log(1/ε)
= 0,

as required. �

Finally, we describe the behavior of the covariance function of I2(h
ε
2,T ) for the case H = 3

4 .

Theorem 3.5. Let T1, T2 ≥ 0 be fixed. Then, if d ≥ 3 and H = 3
4 ,

lim
ε→0

εd−2

log(1/ε)
E

[
I2

(
hε

2,T1

)
I2

(
hε

2,T2

)] = ρ2(T1 ∧ T2),

where ρ is a finite constant defined by

ρ :=
√

3d

2
d+5

2 π
d
2

∫ ∞

0

(
1 + u

3
2
)− d

2 −1
u2 du. (3.51)

Proof. Consider the approximation J̃ ε
T of I2(h

ε
2,T ), introduced in (3.40). By Lemma 3.4,

lim
ε→0

εd−2

log(1/ε)

∥∥J̃ ε
T − I2

(
hε

2,T

)∥∥2
L2(�)

→ 0.

Therefore, it suffices to show that

lim
ε→0

εd−2

log(1/ε)
E

[
J̃ ε

T1
J̃ ε

T2

] = ρ2(T1 ∧ T2). (3.52)

As in Lemma 3, to prove (3.52), it suffices to show that for each a < b < α < β ,

lim
ε→0

εd−2

log(1/ε)
E

[(
J̃ ε

b − J̃ ε
a

)(
J̃ ε

β − J̃ ε
α

)] = 0, (3.53)
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and

lim
ε→0

εd−2

log(1/ε)
E

[(
J̃ ε

b − J̃ ε
a

)2] = ρ2(b − a). (3.54)

First we prove (3.53). Set

�ε = εd−2
E

[(
J̃ ε

b − J̃ ε
a

)(
J̃ ε

β − J̃ ε
α

)]
.

Using (3.42) and (3.40), we can easily check that

�ε = d(2π)−d

2

∫ β

α

∫ b

a

∫
R

2+
Vε,s2−s1(u1, u2) d �ud�s, (3.55)

where

Vε,x(u1, u2) := ε− 8
3 ψ(u1, u2)μ

(
x, ε

2
3 u1, ε

2
3 u2

)2
,

and ψ(u1, u2) is defined by (3.38). Changing the coordinates (s1, s2, u1, u2) by (s := s1, x := s2 −s1, u1, u2) in (3.55),
and then integrating the variable s, we can show that

∣∣�ε
∣∣ ≤ d(2π)−dβ

∫ β

γ

∫
R

2+
Vε,x(u1, u2) d �udx, (3.56)

where the constant γ is defined by γ := α − b. Making the change of variable v := ε− 2
3 x and using the fact that

V
ε,ε

2
3 v

(u1, u2) = ε− 2
3 G

(1)
1,v(u1, u2),

we get

∣∣�ε
∣∣ ≤ d(2π)−dβ

∫ ε
− 2

3 β

ε
− 2

3 γ

∫
R

2+
G

(1)
1,v(u1, u2) d �udv.

Therefore, defining N := ε− 2
3 , so that log(1/ε) = 3 logN

2 , we obtain

|�ε|
log(1/ε)

≤ 2d(2π)−dβ

3 logN

∫ Nβ

Nγ

∫
R

2+
G

(1)
1,x(u1, u2) d �udx.

To bound the right-hand side of the previous relation we split the domain of integration as follows. Define the sets Si ,
for i = 1,2,3, by (3.18). Then, there exists C > 0, such that

lim sup
ε→0

|�ε|
log(1/ε)

≤
3∑

i=1

lim sup
N→∞

C

logN

∫ Nβ

Nγ

∫
R

2+
1Si

(x, u1, u2)G
(1)
1,x(u1, u2) d �udx. (3.57)

Taking into account (3.47), by Lemma 5.3, the terms with i = 1 and i = 2 in the sum in the right-hand side of (3.57)
converge to zero. From this observation, we conclude that

lim sup
ε→0

|�ε|
log(1/ε)

≤ lim sup
N→∞

C

logN

∫ Nβ

Nγ

∫
R

2+
1S3(x,u1, u2)G

(1)
1,x(u1, u2) d �udx. (3.58)

By Lemma 5.2, there exists C > 0, such for every (x,u1, u2) ∈ S3,

G
(1)
1,x(u1, u2) = ψ(u1, u2)μ(x,u1, u2)

2 ≤ Cψ(u1, u2)x
−1(u1u2)

2. (3.59)
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From (3.58) and (3.59), we obtain

lim sup
ε→0

|�ε|
log(1/ε)

≤ C lim sup
N→∞

log(Nβ) − log(Nγ )

logN

∫
R

2+
ψ(u1, u2)(u1u2)

2 d �u,

for some constant C > 0. The function (1 + u
3
2 )− d

2 −1u2 is integrable for u in R+ due to the condition d ≥ 3, and
hence, from the previous inequality we conclude that

lim sup
ε→0

(
log(1/ε)

)−1∣∣�ε
∣∣ = 0. (3.60)

Relation (3.53) then follows from (3.60).
Next we prove (3.54). By taking α = a and β = b in relation (3.55), we obtain

εd−2
E

[(
J̃ ε

b − J̃ ε
a

)2] = d(2π)−d

∫ b

a

∫ s2

a

∫
R

2+
Vε,s2−s1(u1, u2) d �ud�s.

Changing the coordinates (s1, s2, t1, t2) by (s1, x := ε− 2
3 (s2 − s1), u1 := t1 − s1, u2 := t2 − s2), integrating the variable

s1 and using the fact that V
ε,ε

2
3 x̂

(u1, u2) = ε− 2
3 G

(1)

1,x̂
(u1, u2), we get

εd−2
E

[(
J̃ ε

b − J̃ ε
a

)2] = d(2π)−d

∫ ε
− 2

3 (b−a)

0

∫
R

2+

(
b − ε

2
3 x − a

)
G

(1)
1,x(u1, u2) d �udx.

Therefore, defining N := ε− 2
3 , so that log(1/ε) = 3 logN

2 , we obtain

εd−2

log(1/ε)
E

[(
J̃ ε

b − J̃ ε
a

)2]
= 2d(2π)−d

3 logN

3∑
i=1

∫ N(b−a)

0

∫
R

2+

(
b − x

N
− a

)
1Si

(x, u1, u2)G
(1)
1,x(u1, u2) d �udx. (3.61)

By inequality (3.47) and Lemma 5.3, the terms with i = 1 and i = 2 in the sum in the right-hand side of (3.61)
converge to zero. From this observation, it follows that

lim
ε→0

εd−2

log(1/ε)
E

[(
J̃ ε

b − J̃ ε
a

)2]
= lim

N→∞
2d(2π)−d

3 logN

∫ N(b−a)

0

∫
R

2+
(b − a)1S3(x,u1, u2)G

(1)
1,x(u1, u2) d �udx

− lim
N→∞

2d(2π)−d

3N logN

∫ N(b−a)

0

∫
R

2+
1S3(x,u1, u2)xG

(1)
1,x(u1, u2) d �udx, (3.62)

provided that the limits in the right-hand side exist. By (3.59), there exists a constant C > 0 such that

1

N logN

∫ N(b−a)

0

∫
R

2+
1S3(x,u1, u2)xG

(1)
1,x(u1, u2) d �udx

≤ C

N logN

∫ N(b−a)

0

∫
R

2+
ψ(u1, u2)(u1u2)

2 d �udx = C(b − a)

logN

∫
R

2+
ψ(u1, u2)(u1u2)

2 d �u.
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Since d ≥ 3, the integral in the right-hand side is finite, and hence

lim
N→∞

1

N logN

∫ N(b−a)

0

∫
R

2+
1S3(x,u1, u2)xG

(1)
1,x(u1, u2) d �udx = 0.

Therefore, by equation (3.62) and L’Hôpital rule,

lim
ε→0

εd−2

log(1/ε)
E

[(
J̃ ε

b − J̃ ε
a

)2]
= lim

N→∞
2d(2π)−d

3 logN

∫ N(b−a)

0

∫
R

2+
(b − a)1S3(x,u1, u2)G

(1)
1,x(u1, u2) d �udx

= lim
N→∞

2d(2π)−d

3

∫
R

2+
N(b − a)21S3

(
N(b − a),u1, u2

)
G

(1)
1,N(b−a)(u1, u2) d �udx. (3.63)

By (3.59), the integrand in the right-hand side is bounded by Cψ(u1, u2)(u1u2)
2, for some constant C > 0. On the

other hand, using (2.5), we can easily check that

μ(x, v1, v2) = 〈
1[0,v1],1[x,x+v2]

〉
H

= H(2H − 1)v1v2

∫
[0,1]2

|x + v2w2 − v1w1|2H−2 d �w

= 3v1v2

8

∫
[0,1]2

|x + v2w2 − v1w1|− 1
2 d �w, (3.64)

so that

lim
N→∞N(b − a)μ

(
N(b − a),u1, u2

)2 = 32(u1u2)
2

26
, (3.65)

and hence,

lim
N→∞N(b − a)1S3

(
N(b − a),u1, u2

)
G

(1)
1,N(b−a)(u1, u2) = 32

26
ψ(u1, u2)(u1u2)

2.

Therefore, by applying the dominated convergence theorem to (3.63), we get

lim
ε→0

εd−2

log(1/ε)
E

[(
J̃ ε

b − J̃ ε
a

)2] = (b − a)
3d

2d+5πd

(∫
R+

(
1 + u

3
2
)− d

2 −1
u2 du

)2

. �

Relation (3.54) follows from the previous inequality. The proof is now complete.

4. Proof of Theorems 1.2, 1.3 and 1.4

In the sequel, W = {Wt }t≥0 will denote a standard one-dimensional Brownian motion independent of B , and Xj =
{Xj

t }t≥0 will denote the second order Hermite process introduced in Section 2.

Proof of Theorem 1.2. We start with the proof of Theorem 1.2, which will be done in two steps.
Step 1. First we prove the convergence of the finite dimensional distributions, namely, we will show that for every

r ∈N, and T1, . . . , Tr ≥ 0 fixed, it holds

ε
d
2 − 3

4H
((

I ε
T1

, . . . , I ε
Tr

) −E
[(

I ε
T1

, . . . , I ε
Tr

)]) Law→ σ(WT1, . . . ,WTr ), (4.1)

as ε → 0, where σ is the finite constant defined by (3.3). To this end, define the kernels hε
2q,Ti

by (2.16), and the

constants σ 2
q by (3.1), for q ∈ N. Notice that the constants σ 2

q are well defined due to the condition 3
2d

< H < 3
4 .
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Define as well the matrices Cq = {Ci,j
q | 1 ≤ i, j ≤ r} and C = {Ci,j | 1 ≤ i, j ≤ r}, by C

i,j
q := σ 2

q (Ti ∧ Tj ), and

Ci,j := σ 2(Ti ∧ Tj ). Since I ε
Ti

has chaos decomposition (2.15), by Theorem 2.1, we deduce that in order to prove the
convergence (4.1), it suffices to show the following properties:

(i) For every fixed q ≥ 1, and 1 ≤ i, j ≤ r , we have

εd− 3
2H (2q)!〈hε

2q,Ti
, hε

2q,Tj

〉
(Hd )⊗2q → σ 2

q (Ti ∧ Tj ), as ε → 0.

(ii) The constants σ 2
q satisfy

∑∞
q=1 σ 2

q = σ 2. In particular, Ci,j = limQ→∞
∑Q

q=1 C
i,j
q ,

(iii) For all q ≥ 1 and i = 1, . . . , r , the random variables ε
d
2 − 3

4H I2q(hε
2q,Ti

) converge in law to a centered Gaussian
distribution as ε → 0,

(iv) limQ→∞ supε∈(0,1) ε
d− 3

2H
∑∞

q=Q(2q)!‖hε
2q,Ti

‖2
(Hd )⊗2q = 0, for every i = 1, . . . , r .

Part (i) follows from Theorem 3.1. Condition (ii) follows from equation (3.2). In [5, Theorem 2], it was proved that

for T > 0 fixed, ε
d
2 − 3

4H I2q(hε
2q,T ) converges in law to a centered Gaussian random variable when ε → 0, and

lim
Q→∞ sup

ε∈(0,1)

εd− 3
2H

∞∑
q=Q

(2q)!∥∥hε
2q,T

∥∥2
(Hd )⊗2q = 0,

which proves conditions (iii) and (iv). This finishes the proof of (4.1).

Step 2. We are going to show the tightness of the sequence of processes {ε d
2 − 3

4H (I ε
T −E[I ε

T ])}T ≥0. To this end, we
will prove that there exists a sufficiently small p > 2, depending only on d and H , such that for every 0 ≤ T1 ≤ T2, it
holds

sup
ε∈(0,1)

E
[∣∣ε d

2 − 3
4H

(
I ε
T2

−E
[
I ε
T2

] − (
I ε
T1

−E
[
I ε
T1

]))∣∣p] ≤ C|T2 − T1| p
2 , (4.2)

for some constant C > 0 only depending on d , p and H . The tightness property for {ε d
2 − 3

4H (I ε
T − E[I ε

T ])}T ≥0 then
follows from the Billingsley criterion (see [2, Theorem 12.3]).

In order to prove (4.2) we proceed as follows. Define, for 0 ≤ T1 ≤ T2 fixed, the random variable Zε = Zε(T1, T2),
by

Zε := I ε
T2

−E
[
I ε
T2

] − (
I ε
T1

−E
[
I ε
T1

])
. (4.3)

From the chaos decomposition (2.15), we can easily check that E[DL−1Zε] coincides with the derivative of the first
chaotic component of L−1Zε , which is identically zero 0. Hence, by (2.2), there exists a constant cp > 0 such that

‖Zε‖Lp(�) ≤ cp

∥∥D2L−1Zε

∥∥
Lp(�;(Hd )⊗2)

. (4.4)

The right-hand side of the previous inequality can be estimated as follows. From (2.4), we can easily check that

D2L−1Zε =
∫ ∞

0

∫
KT1,T2

D2Pθ

[
pε(Bt − Bs)

]
ds dt dθ, (4.5)

where KT1,T2 is defined by (2.31). Let B̃ be an independent copy of B . Using Mehler’s formula (2.3) and the semigroup
property of the heat kernel, we obtain

Pθ

[
pε(Bt − Bs)

] = Ẽ
[
pε

(
e−θ (Bt − Bs) +

√
1 − e−2θ (B̃t − B̃s)

)]
= pλε(θ,s,t)

(
e−θ (Bt − Bs)

)
, (4.6)

where the function λε = λε(θ, s, t) is defined by

λε(θ, s, t) := ε + (
1 − e−2θ

)
(t − s)2H . (4.7)
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This implies that for every multi-index i = (i1, i2), with 1 ≤ i1, i2 ≤ d , we have

D2Pθ

[
pε(Bt − Bs)

]
(i, x1, x2) = e−2θ1[s,t](x1)1[s,t](x2)

× λε(θ, s, t)−1pλε(θ,s,t)

(
e−θ (Bt − Bs)

)
gi,λε(θ,s,t)

(
e−θ (Bt − Bs)

)
, (4.8)

where the function gi,λ, for λ > 0, is defined by

gi,λ(x1, . . . , xd) =
{

λ−1x2
i1

− 1 if i1 = i2,

λ−1xi1xi2 if i1 �= i2.

From (4.5) and (4.8), we deduce that∥∥D2L−1Zε

∥∥2
(Hd )⊗2 =

∫
R

2+

∫
K2

T1,T2

e−2θ−2βμ(s2 − s1, t1 − s1, t2 − s2)
2

× (
λε(θ, s1, t1)λε(β, s2, t2)

)−1
pλε(θ,s1,t1)

(
e−θ (Bt1 − Bs1)

)
× pλε(β,s2,t2)

(
e−β(Bt2 − Bs2)

)∑
i

gi,λε(θ,s1,t1)

(
e−θ (Bt1 − Bs1)

)
× gi,λε(β,s2,t2)

(
e−β(Bt2 − Bs2)

)
d�s d�t dθ dβ, (4.9)

where the sum runs over all the possible multi-indices i = (i1, i2), with 1 ≤ i1, i2 ≤ d . Using Minkowski inequality,
as well as (4.4) and (4.9), we deduce that

‖Zε‖2
Lp(�) ≤ c2

p

∥∥D2L−1Zε

∥∥2
Lp(�;(Hd )⊗2)

= c2
p

∥∥∥∥D2L−1Zε

∥∥2
(Hd )⊗2

∥∥
L

p
2 (�)

≤ c2
p

∫
R

2+

∫
K2

T1,T2

e−2θ−2βμ(s2 − s1, t1 − s1, t2 − s2)
2

× (
λε(θ, s1, t1)λε(β, s2, t2)

)−1
∥∥∥∥pλε(θ,s1,t1)

(
e−θ (Bt1 − Bs1)

)
× pλε(β,s2,t2)

(
e−β(Bt2 − Bs2)

)∑
i

gi,λε(θ,s1,t1)

(
e−θ (Bt1 − Bs1)

)
× gi,λε(β,s2,t2)

(
e−β(Bt2 − Bs2)

)∥∥∥∥
L

p
2 (�)

d�s d�t dθ dβ. (4.10)

Next we bound the L
p
2 (�)-norm in the right-hand side of the previous inequality. Let y ∈ (0,1) be fixed. We can

easily check that there exists a constant C > 0 only depending on y, such that for every λ1, λ2 > 0 and η, ξ ∈R
d , and

every multi-index i = (i1, i2), with 1 ≤ i1, i2 ≤ d ,∣∣gi,λ1(η)gi,λ2(ξ)
∣∣ ≤ (

1 + λ−1
1 ‖η‖2)(1 + λ−1

2 ‖ξ‖2) ≤ Ce
y
2 (λ−1

1 ‖η‖2+λ−1
2 ‖ξ‖2). (4.11)

From (4.10) and (4.11), it follows that there exists a constant C > 0, not depending on ε,T1, T2, such that

‖Zε‖2
Lp(�) ≤ C

∫
R

2+

∫
K2

T1,T2

e−2θ−2βμ(s2 − s1, t1 − s1, t2 − s2)
2

× (
λε(θ, s1, t1)λε(β, s2, t2)

)−1

× ∥∥pλε(θ,s1,t1)

1−y

(
e−θ (Bt1 − Bs1)

)
pλε(β,s2,t2)

1−y

(
e−β(Bt2 − Bs2)

)∥∥
L

p
2 (�)

d�s d�t dθ dβ. (4.12)
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Proceeding as in the proof of (2.34), we can easily check that the quantity

S := E
[
pλε(θ,s1,t1)

1−y

(
e−θ (Bt1 − Bs1)

) p
2 pλε(β,s2,t2)

1−y

(
e−β(Bt2 − Bs2)

) p
2
]
,

satisfies

S = (2π)−
d(p−2)

2

(
λε(θ, s1, t1)λε(β, s2, t2)

(1 − y)2

)− dp
4 + d

2 2d

pd
ed(θ+β)

×
∣∣∣∣ 2

p(1 − y)

(
λε(θ, s1, t1)e

2θ 0
0 λε(β, s2, t2)e

2β

)
+ �

∣∣∣∣− d
2

,

where � = {�i,j }1≤i,j≤2, denotes the covariance matrix of (B
(1)
t1

− B
(1)
s1 ,B

(1)
t2

− B
(1)
s2 ), whose components are given

by �1,1 = (t1 − s1)
2H , �1,2 = �2,1 = μ(s2 − s1, t1 − s1, t2 − s2), and �2,2 = (t2 − s2)

2H . Therefore, there exists a
constant C > 0 only depending on p and d , such that

S ≤ C
(
λε(θ, s1, t1)λε(β, s2, t2)

)− dp
4 + d

2

× ed(θ+β)

∣∣∣∣ 2

p(1 − y)

(
λε(θ, s1, t1)e

2θ 0
0 λε(β, s2, t2)e

2β

)
+ �

∣∣∣∣− d
2

.

Choosing y < 1 − 2
p

, so that p(1−y)
2 � ≥ �, we deduce that there exists a constant C > 0 only depending on p,y and

d , such that

S ≤ C
(
λε(θ, s1, t1)λε(β, s2, t2)

)− dp
4 + d

2

× ed(θ+β)

∣∣∣∣(λε(θ, s1, t1)e
2θ + (t1 − s1)

2H μ(s2 − s1, t1 − s2, t2 − s2)

μ(s2 − s1, t1 − s2, t2 − s2) λε(β, s2, t2)e
2β + (t2 − s2)

2H

)∣∣∣∣− d
2

.

Hence, by the multilinearity of the determinant function,

S ≤ C
(
λε(θ, s1, t1)λε(β, s2, t2)

)− dp
4 + d

2

×
∣∣∣∣(λε(θ, s1, t1) + e−2θ (t1 − s1)

2H e−2βμ(s2 − s1, t1 − s2, t2 − s2)

e−2θμ(s2 − s1, t1 − s2, t2 − s2) λε(β, s2, t2) + e−2β(t2 − s2)
2H

)∣∣∣∣− d
2

. (4.13)

By relation (4.7), we have that λε(θ, s, t) + e−2θ (t − s)2H = ε + (t − s)2H for every θ, s, t > 0. As a consequence,
relation (4.13) can be written as

S ≤ C
(
λε(θ, s1, t1)λε(β, s2, t2)

)− dp
4 + d

2

× (
ε2 + ε

(
(t1 − s1)

2H + (t2 − s2)
2H

) + (t1 − s1)
2H (t2 − s2)

2H − e−2β−2θμ2)− d
2

≤ C
(
λε(θ, s1, t1)λε(β, s2, t2)

)− dp
4 + d

2 �ε(s2 − s1, t1 − s1, t2 − s2)
− d

2 , (4.14)

where �ε(x,u1, u2) is defined by (2.35). From (4.7), (4.12) and (4.14), it follows that

‖Zε‖2
Lp(�) ≤ C

∫
R

2+

∫
S2

T1,T2

e−2θ−2βμ(s2 − s1, t1 − s1, t2 − s2)
2

× ((
ε + (

1 − e−2θ
)
(t1 − s1)

2H
)(

ε + (
1 − e−2β

)
(t2 − s2)

2H
))−1− d

2 + d
p

× �ε(s2 − s1, t1 − s1, t2 − s2)
− d

p d�s d�t dθ dβ. (4.15)
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Changing the coordinates (s1, t1, s2, t2) by (s1, x := s2 − s1, u1 := t1 − s1, u2 := t2 − s2) in (4.15), we get

‖Zε‖2
Lp(�) ≤ 2C

∫
R

2+
e−2θ−2β

∫
[0,T2]3

∫ (T2−u1)+∧(T2−x−u2)+

(T1−u1)+∨(T1−x−u2)+
ds1

× μ(x,u1, u2)
2((ε + (

1 − e−2θ
)
u2H

1

)(
ε + (

1 − e−2β
)
u2H

2

))−1− d
2 + d

p

× �ε(x,u1, u2)
− d

p dx d �udθ dβ.

Integrating the variable s1, and making the change of variables η := 1− e−2θ , and ξ := 1− e−2β , we deduce that there
exists a constant C > 0, such that

‖Zε‖2
Lp(�) ≤ C(T2 − T1)

∫
[0,T2]3

μ(x,u1, u2)
2�ε(x,u1, u2)

− d
p

×
∫

[0,1]2

((
ε + ηu2H

1

)(
ε + ξu2H

2

))−1− d
2 + d

p dη dξ dx d �u. (4.16)

Changing the coordinates (x,u1, u2) by (ε− 1
2H x, ε− 1

2H u1, ε
− 1

2H u2) in (4.16), and using the fact that �ε(ε
− 1

2H x,

ε− 1
2H u1, ε

− 1
2H u2) = ε2�1(x,u1, u2), we get

∥∥ε
d
2 − 3

4H Zε

∥∥2
Lp(�)

≤ C(T2 − T1)

∫
R

3+
μ(x,u1, u2)

2�1(x,u1, u2)
− d

p

×
∫

[0,1]2

((
1 + ηu2H

1

)(
1 + ξu2H

2

))−1− d
2 + d

p dη dξ dx d �u.

Integrating the variables η and ξ , we obtain

∥∥ε
d
2 − 3

4H Zε

∥∥2
Lp(�)

≤ C

(
d

2
− d

p

)−2

(T2 − T1)

∫
R

3+
(u1u2)

−2H μ(x,u1, u2)
2�1(x,u1, u2)

− d
p

× (
1 − (

1 + u2H
1

)− d
2 + d

p
)(

1 − (
1 + u2H

2

))− d
2 + d

p dx d �u.

Hence, choosing p > 2, we deduce that there exists a constant C only depending on H,d and p, such that

∥∥ε
d
2 − 3

4H Zε

∥∥2
Lp(�)

≤ C(T2 − T1)

∫
R

3+

μ(x,u1, u2)
2

u2H
1 u2H

2

�1(x,u1, u2)
− d

p dx d �u. (4.17)

Since Hd > 3
2 , we can choose p so that 2 < p < 4Hd

3 . For this choice of p, the integral in the right-hand side of (4.17)
is finite by Lemma 5.3. Therefore, from (4.17), it follows that there exists a constant C > 0, independent of T1, T2 and

ε, such that ‖ε d
2 − 3

4H Zε‖2
Lp(�) ≤ C(T2 − T1), which in turn implies that

E
[∣∣ε d

2 − 3
4H Zε

∣∣p] ≤ C(T2 − T1)
p
2 . (4.18)

Relation (4.2) then follows from (4.18). This finishes the proof of Theorem 1.2. �

Proof of Theorem 1.3. Now we proceed with the proof of Theorem 1.3, in which we will prove (1.5) and (1.7) in the
case H > 3

4 . In order to prove (1.5), it suffices to show that for every T > 0,

ε
d
2 − 3

2H
+1(I ε

T −E
[
I ε
T

] − I2
(
hε

2,T

)) L2(�)→ 0, (4.19)
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and

ε
d
2 − 3

2H
+1I2

(
hε

2,T

) L2(�)→ −�

d∑
j=1

X
j
T , (4.20)

as ε → 0. Relation (4.19) follows from Lemma 3.2. In order to prove the convergence (4.20) we proceed as follows.
Using (2.13), we can easily check that

I2
(
hε

2,T

) = − (2π)− d
2

2

d∑
j=1

∫ T

0

∫ T −u

0

(
ε + u2H

)− d
2 −1

u2H H2
(
u−H

(
B

(j)
s+u − B

(j)
s

))
ds du.

Making the change of variable v := ε− 1
2H u, we get

ε
d
2 − 3

2H
+1I2

(
hε

2,T

)
= − (2π)− d

2

2

d∑
j=1

∫ ε
− 1

2H T

0

∫ T −ε
1

2H v

0

(
1 + v2H

)− d
2 −1

v2H ε1− 1
H H2

(B
(j)

s+ε
1

2H v

− B
(j)
s

√
εvH

)
ds dv

= − (2π)− d
2

2

d∑
j=1

∫ ε
− 1

2H T

0

(
1 + u2H

)− d
2 −1

u2I2
(
ϕε

1
2H u

j,T −ε
1

2H u

)
du, (4.21)

where the kernel ϕε
1

2H u

j,T −ε
1

2H u

is defined by (2.6). From (4.21), it follows that for every ε, η > 0,

E
[
ε

d
2 − 3

2H
+1I2

(
hε

2,T

)
η

d
2 − 3

2H
+1I2

(
h

η
2,T

)]
= (2π)−d

2

d∑
j=1

∫ ε
− 1

2H T

0

∫ η
− 1

2H T

0

(
1 + u2H

1

)− d
2 −1(1 + u2H

2

)− d
2 −1

× (u1u2)
2〈ϕε

1
2H u1

j,T −ε
1

2H u1

, ϕ
η

1
2H u2

j,T −η
1

2H u1

〉
(Hd )⊗2 d �u. (4.22)

By (2.7),

lim
ε→0

〈
ϕ

ε
1

2H u1

j,T −ε
1

2H u1

, ϕ
η

1
2H u2

j,T −η
1

2H u1

〉
(Hd )⊗2 = H 2(2H − 1)2

∫
[0,T ]2

|s1 − s2|4H−4 d�s

= H 2(2H − 1)

4H − 3
T 4H−2. (4.23)

On the other hand, by (2.8), there exists a constant CH,T > 0, only depending on H and T , such that

0 ≤ 〈
ϕ

ε
1

2H u1

j,T −ε
1

2H u1

, ϕ
η

1
2H u2

j,T −η
1

2H u1

〉
(Hd )⊗2 ≤ CH,K.

Hence, using the pointwise convergence (4.23), we can apply the dominated convergence theorem to (4.22), in order
to obtain

lim
ε,ν→0

E
[
ε

d
2 − 3

2H
+1I2

(
hε

2,T

)
η

d
2 − 3

2H
+1I2

(
h

η
2,T

)] = d(2π)−d�2H 2(2H − 1)T 4H−2

2(4H − 3)
,
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where the constant � is defined by (1.6). From the previous identity, it follows that ε
d
2 − 3

2H
−1I2(h

ε
2,T ) converges to

I2(̃hT ) as ε → 0, for some h̃T ∈ (Hd)⊗2.

Recall that the element π
j
T ∈ (Hd)⊗d , is defined as the limit in (Hd)⊗2, as ε → 0, of ϕε

j,T , and is characterized by

relation (2.9). In order to prove (4.20), it suffices to show that h̃T = �
∑d

j=1 π
j
T , or equivalently, that

〈̃hT ,f1 ⊗ f2〉(Hd )⊗2 = −�

d∑
j=1

〈
π

j
T , f1 ⊗ f2

〉
(Hd )⊗2,

for vectors of step functions with compact support fi = (f
(1)
i , . . . , f

(d)
i ) ∈ Hd , i = 1,2. By (4.21),

lim
ε→0

〈̃hT ,f1 ⊗ f2〉(Hd )⊗2 = lim
ε→0

− (2π)− d
2

2

∫ ε
− 1

2H T

0

(
1 + u2H

)− d
2 u2〈ϕε

1
2H u

j,T −ε
1

2H
u
, f1 ⊗ f2

〉
(Hd )⊗2 du. (4.24)

Proceeding as in the proof of (4.23), we can easily check that

lim
ε→0

〈
ϕε

1
2H u

j,T −ε
1

2H
u
, f1 ⊗ f2

〉
(Hd )⊗2 = −H 2(2H − 1)2

d∑
j=1

∫ T

0

∏
i=1,2

∫ T

0
|s − η|2H−2f

(j)
i (η) dη ds.

Moreover, by (2.8),

∣∣〈ϕε
1

2H u

j,T −ε
1

2H
u
, f1 ⊗ f2

〉
(Hd )⊗2

∣∣ ≤ ∥∥ϕε
1

2H u

j,T −ε
1

2H
u

∥∥
(Hd )⊗2‖f1‖Hd ‖f2‖Hd ≤ CH,T ‖f1‖Hd ‖f2‖Hd ,

for some constant CH,T > 0 only depending on T and H . Therefore, applying the dominated convergence theorem in
(4.24), we get

lim
ε→0

〈̃hT ,f1 ⊗ f2〉(Hd )⊗2 = −�H 2(2H − 1)2
d∑

j=1

∫ T

0

∏
i=1,2

∫ T

0
|s − η|2H−2f

(j)
i (η) dη ds, (4.25)

and from the characterization (2.9), we conclude that h̃T = −�
∑d

j=1 π
j
T , as required. This finishes the proof of

(4.20), which, by (4.19), implies that the convergence (1.5).

It only remains to prove (1.7). By (1.5), it suffices to show the tightness property for ε
d
2 − 3

2H
+1(I ε

T −E[I ε
T ]), which,

as in the proof of (1.2), can be reduced to proving that there exists p > 2, such that for every 0 ≤ T1 ≤ T2 ≤ K ,

E
[∣∣ε d

2 − 3
2H

+1Zε

∣∣p] ≤ C(T2 − T1)
p
2 , (4.26)

where Zε is defined by (4.3), and C is some constant only depending on d,H,K and p. Changing the coordinates

(x,u1, u2) by (x, ε− 1
2H u1, ε

− 1
2H u2) in (4.16), and using the fact that

�ε

(
x, ε

1
2H u1, ε

1
2H u2

) = ε2�1
(
ε− 1

2H x,u1, u2
)
,

we can easily check that

∥∥ε
d
2 − 3

2H
+1Zε

∥∥2
Lp(�)

≤ C(T2 − T1)

∫
R

2+

∫ T2

0
ε− 2

H μ
(
x, ε

1
2H u1, ε

1
2H u2

)2

× �1
(
ε− 1

2H x,u1, u2
)− d

p

∫
[0,1]2

((
1 + ηu2H

1

)(
1 + ξu2H

2

))−1− d
2 + d

p dη dξ dx d �u,
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and hence, if p > 2, we obtain

∥∥ε
d
2 − 3

2H
+1Zε

∥∥2
Lp(�)

≤ C(T2 − T1)

∫
R

2+

∫ T2

0
ε− 2

H μ
(
x, ε

1
2H u1, ε

1
2H u2

)2
(u1u2)

−2H

× �1
(
ε− 1

2H x,u1, u2
)− d

p dx d �u. (4.27)

By Lemma 5.4, if T1, T2 ∈ [0,K], for some K > 0, the integral in the right-hand side of the previous inequality is
bounded by a constant only depending on H,d,p and K . Relation (4.26) then follows from (4.27). This finishes the

proof of the tightness property for ε
d
2 − 3

2H
+1(I ε

T −E[I ε
T ]) in the case H > 3

4 . �

Proof of Theorem 1.4. Finally we prove Theorem 1.4. First we show the convergence of the finite dimensional
distributions, namely, that for every r ∈ N and T1, . . . , Tr ≥ 0 fixed, it holds

ε
d
2 −1√

log(1/ε)

((
I ε
T1

, . . . , I ε
Tr

) −E
[(

I ε
T1

, . . . , I ε
Tr

)]) Law→ ρ(WT1, . . . ,WTr ), (4.28)

where ρ is defined by (3.51). Consider the random variable J̃ ε
T introduced in (3.40). By Lemma 3.3, we have

lim
ε→0

ε
d
2 −1√

log(1/ε)

∥∥I ε
T −E

[
I ε
T

] − I2
(
hε

2,T

)∥∥
L2(�)

= 0, (4.29)

and by Lemma 3.4

lim
ε→0

ε
d
2 −1√

log(1/ε)

∥∥I2
(
hε

2,T

) − J̃ ε
T

∥∥
L2(�)

= 0. (4.30)

Consequently,

lim
ε→0

ε
d
2 −1√

log(1/ε)

∥∥I ε
T −E

[
I ε
T

] − J̃ ε
T

∥∥
L2(�)

= 0,

and hence, relation (4.28) is equivalent to

ε
d
2 −1√

log(1/ε)

(
J̃ ε

T1
, . . . , J̃ ε

Tr

) Law→ ρ(WT1, . . . ,WTr ). (4.31)

By the Peccati–Tudor criterion, the convergence (4.31) holds provided that J̃ ε
t satisfies the following conditions:

(i) For every 1 ≤ i, j ≤ r ,

εd−2

log(1/ε)
E

[
J̃ ε

Ti
J̃ ε

Tj

] → ρ2(Ti ∧ Tj ), as ε → 0.

(ii) For all i = 1, . . . , r , the random variables ε
d
2 −1√

log(1/ε)
J̃ ε

Ti
converge in law to a centered Gaussian distribution as

ε → 0.

Relation (i) follows from relation (4.30), as well as Theorem 3.5. Hence, it suffices to check (ii). To this end, consider
the following Riemann sum approximation for J̃ ε

T

Rε
T ,M := −clogε

2
3 − d

2

2M

M2M∑
k=2

∫ T

0

d∑
j=1

u(k)
3
2

(1 + u(k)
3
2

H2

(B
(j)

s+ε
2
3 u(k)

− B
(j)
s

√
εu(k)

3
4

)
ds, (4.32)
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where clog := (2π)
− d

2

2 and u(k) := k
2M , for k = 2, . . . ,M2M . We will prove that ε

d
2 −1√

log(1/ε)
(Rε

T ,M − J̃ ε
T ) converges

to zero, uniformly in ε ∈ (0,1/e), and ε
d
2 −1√

log(1/ε)
Rε

T ,M

Law→ TN (0, ρ̃2
M) as ε → 0 for some constant ρ̃2

M satisfying

ρ̃2
M → ρ2 as M → ∞. The result will then follow by a standard approximation argument. We will separate the

argument in the following steps.

Step I. We prove that ε
d
2 −1√

log(1/ε)
(Rε

T ,M − J̃ ε
T ) → 0 in L2(�) as M → ∞ uniformly in ε ∈ (0,1/e), namely,

lim
M→∞ sup

ε∈(0,1/e)

ε
d
2 −1√

log(1/ε)

∥∥Rε
T,M − J̃ ε

T

∥∥
L2(�)

= 0. (4.33)

For ε ∈ (0,1/e) fixed, we decompose the term J̃ ε
T as

J̃ ε
T = J̃

ε,M
T,1 + J̃

ε,M
T,2 , (4.34)

where

J̃
ε,M
T,1 := −clogε

3
2 − d

2

∫ T

0

∫ M

2−M

d∑
j=1

u
3
2

(1 + u
3
2 )

d
2 +1

H2

(B
(j)

s+ε
2
3 u

− B
(j)
s

√
εu

3
4

)
duds

and

J̃
ε,M
T,2 := −clogε

3
2 − d

2

∫ T

0

∫ ∞

0
1(0,2−M)∪(M,∞)(u)

d∑
j=1

u
3
2

(1 + u
3
2 )

d
2 +1

H2

(B
(j)

s+ε
2
3 u

− B
(j)
s

√
εu

3
4

)
duds.

From (4.34), we deduce that the relation (4.33) is equivalent to

lim
M→∞ sup

ε∈(0,1/e)

ε
d
2 −1√

log(1/ε)

∥∥Rε
T,M − J̃

ε,M
T,1

∥∥
L2(�)

= 0, (4.35)

provided that

lim
M→∞ sup

ε∈(0,1/e)

ε
d
2 −1√

log(1/ε)

∥∥J̃
ε,M
T,2

∥∥
L2(�)

= 0. (4.36)

To prove (4.36) we proceed as follows. First we use the relation (3.42) to write

εd−2

log(1/ε)

∥∥J̃
ε,M
T,2

∥∥2
L2(�)

= 2dc2
log

log(1/ε)

∫
[0,T ]2

∫
[0,ε

− 2
3 T ]

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)

× ψ(u1, u2)ε
−8/3μ

(
s2 − s1, ε

2
3 u1, ε

2
3 u1

)2
ds1 d�s d �u,

where ψ(u1, u2) is defined by (3.38). Changing the coordinates (s1, s2, u1, u2) by (s := s1, x := ε− 2
3 (s2 − s1), u1, u2)

when s1 ≤ s2, and by (s := s2, x := ε− 2
3 (s1 − s2), u1, u2) when s1 ≥ s2, integrating the variable s, and using the

identity μ(ε
2
3 x, ε

2
3 u1, ε

2
3 u2)

2 = ε2μ(x,u1, u2), we get

εd−2

log(1/ε)

∥∥J̃
ε,M
T,2

∥∥2
L2(�)

≤ 4T dc2
log

log(1/ε)

∫
[0,ε

− 2
3 T ]3

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1, u2) dx d �u, (4.37)
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where the function G
(1)
1,x(u1, u2) is defined by (2.23). Define the regions Si by (3.18). Splitting the domain of integra-

tion of the right-hand side of (4.37) into [0, ε− 2
3 T ]3 = ⋃3

i=1([0, ε− 2
3 T ]3 ∩ Si ), we obtain

(
log(1/ε)

)−1
εd−2

∥∥J̃
ε,M
T,2

∥∥2
L2(�)

≤ 4T
(
log(1/ε)

)−1
dc2

log

3∑
i=1

∫
[0,ε

− 2
3 T ]3

1Si
(x, u1, u2)

×
∏

i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1, u2) dx d �u,

and hence, dropping the normalization term 1
log(1/ε)

in the regions S1,S2, we obtain

(
log(1/ε)

)−1
εd−2

∥∥J̃
ε,M
T,2

∥∥2
L2(�)

≤ 4T dc2
log

∫
[0,ε

− 2
3 T ]3

(
1S3(x,u1, u2)

log(1/ε)
+

2∑
i=1

1Si
(x, u1, u2)

)

×
∏

j=1,2

1(0,2−M)∪(M,∞)(uj )G
(1)
1,x(u1, u2) dx d �u.

The integrands corresponding to i = 1,2 converge pointwise to zero as M → ∞, and are bounded by the functions
1Si

(x, u1, u2)G
(1)
1,x(u1, u2), which, by relations (2.29) and (2.38), are in turn bounded by

1Si
(x, u1, u2)C

μ(x,u1, u2)
2

(u1u2)2H
�1(x,u1, u2)

− d
2 , (4.38)

for some constant C > 0. In addition, by Lemma 5.3, the function (4.38) is integrable for i = 1,2, and hence, by the
dominated convergence theorem,

lim sup
M→∞

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥J̃
ε,M
T,2

∥∥2
L2(�)

≤ lim sup
M→∞

sup
ε∈(0,1/e)

4T dc2
log

log(1/ε)

∫
[0,ε

− 2
3 T ]3

1S3(x,u1, u2)

×
∏

i=1,2

1(0,2−M)∪(M,∞)(ui)G
(1)
1,x(u1, u2) dx du1 du2. (4.39)

On the other hand, by equation (5.5) in Lemma 5.2, we deduce that there exists a constant C > 0, such that for every
(x,u1, u2) ∈ S3,

G
(1)
1,x(u1, u2) ≤ C(x + u1 + u2)

−1(u1u2)
2ψ(u1, u2). (4.40)

Therefore, from (4.39) we deduce that

lim sup
M→∞

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥J̃
ε,M
T,2

∥∥2
L2(�)

≤ lim sup
M→∞

sup
ε∈(0,1/e)

4Cdc2
logT

log(1/ε)

∫ ε
− 2

3 T

0

∫
R

2+

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)

× (x + u1 + u2)
−1(u1u2)

2ψ(u1, u2) d �udx,
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so that there exists a constant C > 0 such that

lim sup
M→∞

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥J̃
ε,M
T,2

∥∥2
L2(�)

≤ lim sup
M→∞

sup
ε∈(0,1/e)

CT

∫
R

2+

∏
i=1,2

1(0,2−M)∪(M,∞)(ui)ψ(u1, u2)

×
(

log(ε− 2
3 T + u1 + u2) − log(u1 + u2)

log(1/ε)

)
(u1u2)

2 d �u = 0,

where the last equality easily follows from the dominated convergence theorem. This finishes the proof of (4.36).
To prove (4.35) we proceed as follows. Define the intervals Ik := ( k−1

2M , k
2M ]. Then, we can write Rε

T,M and J̃M
T,1, as

Rε
T,M = −

M2M∑
k=2

clogε
3
2 − d

2

∫ T

0

∫
R+

d∑
j=1

1Ik
(u)

u(k)
3
2

(1 + u(k)
3
2 )

d
2 +1

H2

(B
(j)

s+ε
2
3 u(k)

− B
(j)
s

√
εu(k)

3
4

)
duds,

and

J̃
ε,M
T,1 = −

M2M∑
k=2

clogε
3
2 − d

2

∫ T

0

∫
R+

d∑
j=1

1Ik
(u)

u(k)
3
2

(1 + u(k)
3
2 )

d
2 +1

H2

(B
(j)

s+ε
2
3 u

− B
(j)
s

√
εu

3
4

)
duds.

Notice that by (3.42),

E

[
H2

(B
s1+ε

2
3 v1

− Bs1

√
εv

3
4
1

)
H2

(B
s1+ε

2
3 v2

− Bs2

√
εv

3
4
2

)]
= 2(v1v2)

− 3
2 μ

(
ε− 2

3 (s2 − s1), v1, v2
)2

,

and hence,

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

= 2dc2
log

log(1/ε)

∫
[0,T ]2

∫
R

2+

M2M∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)

× ε− 2
3 AM

k1,k2

(
ε− 2

3 (s2 − s1), u1, u2
)
d�s d �u,

where the function AM
k1,k2

(x,u1, u2) is defined by

AM
k1,k2

(x,u1, u2) := (
G

(1)
1,x(u1, u2) − G

(1)
1,x

(
u(k1), u2

)
− G

(1)
1,x

(
u1, u(k2)

) + G
(1)
1,x

(
u(k1), u(k2)

))
.

Changing the coordinates (s1, s2, u1, u2) by (s := s1, x := ε− 2
3 (s2 − s1), u1, u1) in the case s2 ≥ s1 and by (s :=

s2, x := ε− 2
3 (s1 − s2), u1, u1) in the case s1 ≥ s2, and integrating the variable s, we deduce that there exists a constant

C > 0, such that

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ CT

log(1/ε)

∫ ε
− 2

3 T

0

∫
R

2+

M2M∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2)

× ∣∣AM
k1,k2

(x,u1, u2)
∣∣d �udx. (4.41)
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In order to bound the term |AM
k1,k2

(x,u1, u2)| we proceed as follows. Consider the function

DM
x (u1, u2) := ψ

(
u1 − 2−M,u2 − 2−M

)
μ

(
x,u1 + 2−M

)2

− ψ
(
u1 + 2−M,u2 + 2−M

)
μ

(
x,u1 − 2−M

)2
,

where ψ(u1, u2) is defined by (3.43). By relation (2.5), we have that

μ(x,u1, u2) = 3

8

∫ u1

0

∫ x+u2

x

|v1 − v2|− 1
2 d �v = 3u1u2

8

∫
[0,1]2

|x + v2u2 − v1u1|− 1
2 d �v, (4.42)

and consequently, μ(x,u1, u2) ≤ μ(x, v1, v2) for every u1 ≤ v1 and u2 ≤ v2. Using this observation, we can easily
show that for every v1 ∈ [u1 − 2−M,u1 + 2−M ] and v2 ∈ [u2 − 2−M,u2 + 2−M ], the following inequality holds

ψ
(
u1 + 2−M,u2 + 2−M

)− d
2 μ

(
x,u1 − 2−M

)2

≤ G
(1)
1,x(v1, v2) ≤ ψ

(
u1 − 2−M,u2 − 2−M

)− d
2 μ

(
x,u1 + 2−M

)2
.

Hence, for every u1 ∈ Ik1 and u2 ∈ Ik2 ,∣∣AM
k1,k2

(u1, u2)
∣∣ ≤ 2DM

x (u1, u2). (4.43)

Using relations (4.41) and (4.43), as well as the fact that

M2M∑
k1,k2=2

1Ik1
(u1)1Ik2

(u2) = 1[2−M,M]2(u1, u2),

we obtain

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ CT

log(1/ε)

∫ ε
− 2

3 T

0

∫
R

2+
1[2−M,M]2(u1, u2)D

M
x (u1, u2) d �udx. (4.44)

To bound the integral in the right-hand side we proceed as follows. Define N := ε− 2
3 , so that log(1/ε) = 3 logN

2 . Then,
applying L’Hôpital’s rule in (4.44), we deduce that there is a constant C > 0, such that

lim sup
ε→0

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ lim sup
N→∞

CT

logN

∫ NT

0

∫
R

2+
1[2−M,M]2(u1, u2)D

M
x (u1, u2) d �udx

= lim sup
N→∞

CT

∫
R

2+
1[2−M,M]2(u1, u2)NT DM

NT (u1, u2) d �u. (4.45)

On the other hand, using equation (5.5) in Lemma 5.2, we have that for every (x,u1, u2) ∈ S3,

xμ(x,u1, u2)
2 ≤ x(x + u1 + u2)

−1(u1u2)
2 ≤ (u1u2)

2.
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Hence, using (3.65) and the dominated convergence theorem in (4.45), we deduce that there is a constant C > 0, such
that

lim sup
ε→0

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ CT

∫
R

2+
1[2−M,M]2(u1, u2)

(
ψ

(
u1 − 2−M,u2 − 2−M

)((
u1 + 2−M

)(
u1 + 2−M

))2

− ψ
(
u1 + 2−M,u2 + 2−M

)((
u1 − 2−M

)(
u1 − 2−M

))2)
d �u (4.46)

Let M0 ∈N and δ > 0 be fixed. Using the fact that integrands in (4.46) are decreasing on M and

M02M0∑
k1,k2=2

1Ik1
(x1)1Ik2

(x2) = 1[2−M0 ,M0](x1)1[2−M0 ,M0](x2) ≤ 1,

we can easily check from the definition of the convergence (4.46), that there exists γ = γ (M0, δ) > 0 such that for
every M > M0, the following inequality holds

sup
ε∈(0,γ )

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ δ + CT

∫
R

2+

(
ψ

(
u1 − 2−M0, u2 − 2−M0

)((
u1 + 2−M0

)(
u1 + 2−M0

))2

− ψ
(
u1 + 2−M0, u2 + 2−M0

)((
u1 − 2−M0

)(
u1 − 2−M0

))2)
d �u. (4.47)

To handle the term supε∈(γ,1/e)
εd−2

log(1/ε)
‖J̃ ε,M

T,1 − Rε
T,M‖2

L2(�)
, we use (4.44) to get

sup
ε∈(γ,1/e)

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ CT

∫ γ
− 2

3 T

0

∫
R

2+
1[2−M,M]2(u1, u2)D

M
x (u1, u2) d �udx. (4.48)

From (4.47) and (4.48), we conclude that there exists a constant C > 0, only depending on T , such that for every
M > M0,

sup
ε∈(0,1/e)

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ δ + CT

∫
R

2+

M02M0∑
k1,k2=2

(
ψ

(
u1 − 2−M0, u2 − 2−M0

)((
u1 + 2−M0

)(
u1 + 2−M0

))2

− ψ
(
u1 + 2−M0, u2 + 2−M0

)((
u1 − 2−M0

)(
u1 − 2−M0

))2)
d �u

+ CT

∫ γ
− 2

3 T

0

∫
R

2+
1[2−M,M]2(u1, u2)D

M
x (u1, u2) d �udx. (4.49)

Taking first the limit as M → ∞ and then as M0 → ∞ in (4.49), and applying the dominated convergence theorem,
we get

lim sup
M→∞

sup
ε∈(0,1)

εd−2

log(1/ε)

∥∥J̃
ε,M
T,1 − Rε

T,M

∥∥2
L2(�)

≤ δ.

Relation (4.35) is then obtained by taking δ → 0 in the previous inequality.
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Step II. Next we prove that

lim
ε→0

εd−2

log(1/ε)
E

[(
Rε

T,M

)2] = T ρ̃2
M, (4.50)

where ρ̃M is given by

ρ̃M =
√

3d

2
d+5

2 π
d
2 2M

M2M∑
k=2

(
1 + u(k)

3
2
)− d

2 −1
u(k)2, (4.51)

and u(k) = k
2M . Notice that in particular, ρ̃2

M satisfies

lim
M→∞ ρ̃2

M = ρ2,

where ρ2 is defined by (3.51). To prove (4.51) we proceed as follows. Recall that the constant clog is defined by

clog = (2π)
− d

2

2 . Then, from the definition of Rε
T,M (see equation (4.32)), it easily follows that

εd−2

log(1/ε)
E

[(
Rε

T,M

)2] = 2dc2
log

log(1/ε)22M

∫
[0,T ]2

M2M∑
k1,k2=2

ε− 2
3 G

(1)

1,ε
− 2

3 (s2−s1)

(
u(k1), u(k2)

)
d�s.

Changing the coordinates (s1, s2) by (s1, x := s2 − s1), and then integrating the variable s1, we get

εd−2

log(1/ε)
E

[(
Rε

T,M

)2] = 4dc2
log

log(1/ε)22M

∫ T

0
T

M2M∑
k1,k2=2

ε− 2
3 G

(1)

1,ε
− 2

3 x

(
ε

2
3 u(k1), ε

2
3 u(k2)

)
dx

− 4dc2
log

log(1/ε)22M

∫ T

0
x

M2M∑
k1,k2=2

ε− 2
3 G

(1)

1,ε
− 2

3 x

(
ε

2
3 u(k1), ε

2
3 u(k2)

)
dx.

Using relation (3.59) as well as the Cauchy–Schwarz inequality μ(x,u1, u2) ≤ (u1u2)
3
4 , we can easily deduce that

there exists a constant C > 0, depending on u1, . . . , uM2M , but not on x or ε, such that

G
(1)

1,ε
− 2

3 x

(
u(k1), u(k2)

) ≤ Cε
2
3 x−1,

and hence,

lim
ε→0

1

log(1/ε)

∫ T

0
x

M2M∑
k1,k2=2

ε− 2
3 G

(1)

1,ε
− 2

3 x

(
u(k1), u(k2)

)
dx = 0,

which implies that

lim
ε→0

εd−2

log(1/ε)
E

[(
Rε

T,M

)2] = lim
ε→0

4dc2
logT

log(1/ε)22M

∫ T

0

M2M∑
k1,k2=2

ε− 2
3 G

1,ε
− 2

3 x

(
u(k1), u(k2)

)
dx

= lim
ε→0

4dc2
logT

log(1/ε)22M

∫ ε
− 2

3 T

0

M2M∑
k1,k2=2

G1,x

(
u(k1), u(k2)

)
dx,
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where the last equality follows by making the change of variables x̃ := ε− 2
3 x. Hence, writing N := ε− 2

3 , so that

log(1/ε) = 2 logN
3 , and using L’Hôpital’s rule, we get

lim
ε→0

εd−2

log(1/ε)
E

[(
Rε

T,M

)2] = lim
N→∞

8dc2
logT

3 logN22M

∫ NT

0

M2M∑
k1,k2=2

G
(1)
1,x

(
u(k1), u(k2)

)
dx

= lim
N→∞

8dc2
logT

3 · 22M

M2M∑
k1,k2=2

NT G
(1)
1,NT

(
u(k1), u(k2)

) = ρ̃2
M, (4.52)

where the last identity follows from (2.23) and (3.65). This finishes the proof of (4.50).

Step III. Next we prove the convergence in law of ε
d
2 −1√

log(1/ε)
J̃ ε

T to a Gaussian random variable with variance ρ2.

From Steps I and II, it suffices to show that

Rε
T,M

Law→ N
(
0, ρ̃2

M

)
, as ε → 0, (4.53)

In order to prove (4.53) we proceed as follows. Define the random vector

Dε = (
Dε

k

)M2M

k=2 ,

where

Dε
k := − clogu(k)

3
2

2M(1 + u(k)
3
2 )

d
2 +1

d∑
j=1

1

ε
1
3
√

log(1/ε)

∫ T

0
H2

(B
(j)

s+ε
2
3 u(k)

− B
(j)
s

√
εu(k)

3
4

)
ds,

and clog = (2π)
− d

2

2 . Notice that

ε
d
2 −1√

log(ε)
Rε

T ,M =
M2M∑
k=2

Dε
k.

We will prove that Dε converges to a centered Gaussian vector. By the Peccati–Tudor criterion (see [12]), it suffices
to prove that the components of the vector Dε converge to a Gaussian distribution, and the covariance matrix of Dε is
convergent. To prove the former statement, define

�
j
k1,k2

(ε) := E

[∫ T

0
H2

(B
(j)

s1+ε
2
3 u(k1)

− B
(j)
s1

√
εu(k1)

3
4

)
ds1

∫ T

0
H2

(B
(j)

s2+ε
2
3 u(k2)

− B
(j)
s2

√
εu(k2)

3
4

)
ds2

]
.

Proceeding as in the proof of (4.52), we can show that for 2 ≤ k1, k2 ≤ M2M ,

�
j
k1,k2

(ε) = 2(u(k1)u(k2))
− 3

2

ε
8
3 log(1/ε)

∫
[0,T ]2

μ
(
s2 − s1, ε

2
3 u(k1), ε

2
3 u(k2)

)2
d�s

= 8(u(k1)u(k2))
− 3

2

3 log(ε− 2
3 )

∫ ε
− 2

3 T

0

∫ T −ε
2
3 x

0
μ

(
x,u(k1), u(k2)

)2
ds dx.

As in the proof of (4.52), we can use L’Hôpital’s rule, (3.65) and the previous identity, to get

lim
ε→0

�
i,j
n = lim

ε→0

8(u(k1)u(k2))
− 3

2 T

3 log(ε− 2
3 )

∫ ε
− 2

3 T

0
μ

(
x,u(k1), u(k2)

)2
dx = 3

23
T

√
u(k)u(j).
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From here, it follows that

lim
ε→0

E
[
Dε

k1
Dε

k2

] = �i,j := 3dT

2d+5πd22M
ψ

(
u(k1), u(k2)

)(
u(k1)u(k2)

)2
,

namely, the covariance matrix of Dε converges to the matrix � = (�k,j )2≤k,j≤M2M . In addition, by [3, Equation(1.4)],
for 2 ≤ k ≤ M2M fixed, the sequence of random variables Dε

k converges to a Gaussian random variable as ε → 0.

Therefore, by the Peccati–Tudor criterion, the random vector D converges to a jointly Gaussian vector Z = (Zk)
M2M

k=2 ,
with mean zero and covariance �. In particular, we have

ε
d
2 −1√

log(ε)
Rε

T ,M =
M2M∑
k=2

Dε
k

Law→ N
(

0,

M2M∑
j,k=2

�k,j

)
as ε → 0.

Relation (4.53) easily follows from the previous identity.
Since (4.28) holds, in order to finish the proof of Theorem 1.4 it suffices to prove tightness. As before, we define, for

T1 ≤ T2 belonging to a compact interval [0,K], the random variable Zε by the formula (4.3). Then, by the Billingsley
criterion, it suffices to prove that there exist constants C > 0 and p > 2, only depending on K , such that

E

[∣∣∣∣ ε
d
2 −1√

log(1/ε)
Zε

∣∣∣∣p]
≤ C(T2 − T1)

p
2 . (4.54)

Using relation (4.27) with H = 3
4 , we can easily check that

εd−2

log(1/ε)
‖Zε‖2

Lp(�) ≤ C(T2 − T1)

log(1/ε)

∫
R

2+

∫ T2

0
ε− 8

3 μ
(
x, ε

2
3 u1, ε

2
3 u2

)2
(u1u2)

−2H

× �1
(
ε− 2

3 x,u1, u2
)− d

p dx d �u

≤ sup
ε∈(0,1/e)

C(T2 − T1)

log(1/ε)

∫
R

2+

∫ T2

0
ε− 8

3 μ
(
x, ε

2
3 u1, ε

2
3 u2

)2
(u1u2)

−2H

× �1
(
ε− 2

3 x,u1, u2
)− d

p dx d �u. (4.55)

The right-hand side in the previous identity is finite for p > 2 sufficiently small by Lemma 5.5, and hence, there exists
a constant p > 2 such that

εd−2

log(1/ε)
E

[|Zε|p
] ≤ C(T2 − T1)

p
2 .

This finishes the proof of the tightness property for ε
d
2 −1√

log(1/ε)
(I ε

T − E[I ε
T1

]). The proof of Theorem 1.4 is now com-

plete. �

5. Technical lemmas

In this section we prove some technical lemmas, which where used in the proof of Theorems 1.2, 1.3 and 1.4.

Lemma 5.1. Let s1, s2, t1, t2 ∈ R+ be such that s1 ≤ s2, and si ≤ ti for i = 1,2. Denote by � the covariance matrix
of (Bt1 −Bs1,Bt2 −Bs2). Then, there exists a constants 0 < δ < 1 and k > 0, such that the following inequalities hold

(1) If s1 < s2 < t1 < t2,

|�| ≥ δ
(
(a + b)2H c2H + (b + c)2H a2H

)
, (5.1)

where a := s2 − s1, b := t1 − s2 and c := t2 − t1.
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(2) If s1 < s2 < t2 < t1,

|�| ≥ δb2H
(
a2H + c2H

)
, (5.2)

where a := s2 − s1, b := t2 − s2 and c := t1 − t2.
(3) If s1 < t1 < s2 < t2,

|�| ≥ δa2H c2H , (5.3)

where a := t1 − s1 and c := t2 − s2.

Proof. Relations (5.1)–(5.3) follow from Lemma B.1 in [7]. The inequalities (5.1) and (5.3) where also proved in [5,
Lemma 9], but the lower bound given in this lemma for the case s1 < s2 < t2 < t1 is not correct. �

Lemma 5.2. There exists a constant k > 0, such that for every s1 < t1 < s2 < t2,

μ(a + b, a, c) ≤ kb2H−2ac, (5.4)

where a := t1 − s1, b := s2 − t1 and c := t2 − s2. In addition, if H > 1
2 ,

μ(x,u1, u2) ≤ k(x + u1 + u2)
2H−2u1u2, (5.5)

where x := s2 − s1, u1 := t1 − s1 and u2 := t2 − s2.

Proof. We can easily check that

μ(a + b, a, c) = 1

2

(
(a + b + c)2H + b2H − (b + c)2H − (a + b)2H

)
,

and hence,

μ(a + b, a, c) = H(2H − 1)ac

∫
[0,1]2

|b + av1 + cv2|2H−2 d �v,

Relation (5.4) follows by dropping the term av1 + cv2 in the previous integral, while (5.5) follows from the following
computation, which is valid for every H > 1

2 ,

μ(a + b, a, c) = H(2H − 1)ac

∫
[0,1]2

|b + av1 + cv2|2H−2 dv1 dv2

≤ H(2H − 1)ac

∫ 1

0

∣∣(a ∨ b ∨ c)v
∣∣2H−2

dv

= Hac|a ∨ b ∨ c|2H−2 ≤ H42H−2ac|2a + b + c|2H−2

= 42H−2H(x + u1 + u2)
2H−2u1u2. (5.6)

�

Lemma 5.3. Define the functions μ and �1 by (2.19) and (2.35) respectively. Let 3
2d

< H < 1, and 0 < p < 4Hd
3 be

fixed. Then, the following integral is convergent∫
Si

μ(x,u1, u2)
2

u2H
1 u2H

2

�1(x,u1, u2)
− d

p dx d �u < ∞, (5.7)
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for i = 1,2, where the sets Si are defined by (3.18). Moreover, if H < 3
4 , then∫

R
3+

μ(x,u1, u2)
2

u2H
1 u2H

2

�1(x,u1, u2)
− d

p dx d �u < ∞. (5.8)

Proof. Denote the integrand in (5.8) and (5.7) by �(x,u1, u2), namely,

�(x,u1, u2) = μ(x,u1, u2)
2(u1u2)

−2H �1(x,u1, u2)
− d

p . (5.9)

We can decompose the domain of integration of (5.8), as R3+ = S1 ∪ S2 ∪ S3, where S1,S2,S3 are defined by (3.18).
Then, it suffices to show that∫

Si

�(x,u1, u2) dx d �u < ∞, (5.10)

for i = 1,2 provided that 0 < p < 4Hd
3 , and for i = 3, provided that 0 < p < 4Hd

3 and H < 3
4 . First consider the case

i = 1. Changing the coordinates (x,u1, u2) by (a := x, b := u1 − x, c := x + u2 − u1) in (5.10) for i = 1, we get∫
S1

�(x,u1, u2) dx d �u =
∫
R

3+
�(a,a + b, b + c) da db dc.

To bound the integral in the right-hand side we proceed as follows. First we notice that the term μ(a, a + b, b + c) is
given by

μ(a, a + b, b + c) = 1

2

(
(a + b + c)2H + b2H − c2H − a2H

)
.

By the Cauchy–Schwarz inequality, |μ(a, a + b, b + c)| ≤ (a + b)H (b + c)H . In addition, by (5.1) there exists a
constant δ > 0 such that

(a + b)2H (b + c)2H − μ(a, a + b, b + c)2 ≥ δ
(
(a + b)2H c2H + (b + c)2H a2H

)
. (5.11)

As a consequence,

�(a,a + b, b + c) ≤ (
1 + (a + b)2H + (b + c)2H + δ

(
(a + b)2H c2H + (b + c)2H a2H

))− d
p .

Define �1 = �1(a, b, c) and �2 = �2(a, b, c) as the first and second largest element of {a, b, c}. Hence, we deduce that
there exists a constant K > 0 such that

�(a,a + b, b + c) ≤ K
(
1 + �2H

1 + �2H
1 �2H

2

)− d
p ≤ K(1 ∨ �1)

− 2Hd
p (1 ∨ �1)

− 2Hd
p . (5.12)

Using the condition p < 4Hd
3 , as well as the previous inequality, we can easily check that �(a,a + b, b + c) is

integrable in R
3+, which in turn implies that �(x,u1, u2) is integrable in S1, as required.

Next we consider the case i = 2. Changing the coordinates (x,u1, u2) by (a := x, b := u2, c := u1 − x − u2) in
(5.10) for i = 2, we get∫

S2

�(x,u1, u2) dx du1 du2 =
∫
R

3+
�(a,a + b + c, b) da db dc.

To bound the integral in the right-hand side we proceed as follows. First notice that the term μ(a, a + b + c, b) is
given by

μ(a, a + b + c, b) = 1

2

(
(b + c)2H + (a + b)2H − c2H − a2H

)
. (5.13)
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By the Cauchy–Schwarz inequality, |μ(a, a+b+c, b)| ≤ bH (a+b+c)H . In addition, by (5.2), there exists a constant
δ > 0 such that

b2H (a + b + c)2H − μ(a, a + b + c, b)2 ≥ δb2H
(
a2H + c2H

)
.

As a consequence,

�(a,a + b + c, b) ≤ (
1 + b2H + (a + b + c)2H + δb2H

(
a2H + c2H

))− d
p .

From here it follows that there exists a constant K > 0 such that (5.12) holds. Using the condition p < 4Hd
3 , as well

as the previous inequalities, we can easily check that �(a,a + b + c, b) is integrable in the region {(a, b, c) ∈ R
3+ |

b ≥ a ∧ c}.
Next we check the integrability of �(a,a + b + c, b) in {(a, b, c) ∈ R

3+ | b ≤ a ∧ c}. Applying the mean value
theorem in (5.13), we can easily check that

μ(a, a + b + c, b) = 1

2

(
2H(a + ξ1)

2H−1b + 2H(c + ξ2)
2H−1b

)
, (5.14)

for some ξ1, ξ2 between 0 and b. Therefore, if H < 1
2 , we obtain

μ(a, a + b + c, b) ≤ H
(
a2H−1 + c2H−1)b, (5.15)

which in turn implies that

�(a,a + b + c, b) ≤ H 2(a2H−1 + c2H−1)2
b2−2H (a + b + c)−2H

× (
1 + b2H + (a + b + c)2H + δb2H

(
a2H + c2H

))− d
p . (5.16)

For the case H ≥ 1
2 , we use (5.14), in order to obtain

μ(a, a + b + c, b) ≤ H
(
(a + b)2H−1 + (c + b)2H−1)b,

which in turn implies that

�(a,a + b + c, b) ≤ H 2((a + b)2H−1 + (c + b)2H−1)2
b2−2H (a + b + c)−2H

× (
1 + b2H + (a + b + c)2H + δb2H

(
a2H + c2H

))− d
p . (5.17)

From (5.16), we deduce that, if H < 1
2 , there exists a constant K > 0 such that

�(a,a + b + c, b) ≤ K(a ∧ c)4H−2b2−2H (a ∨ c)−2H
(
1 + (a ∨ c)2H + b(a ∨ c)2H

)− d
p . (5.18)

In turn, from (5.17), it follows that if H ≥ 1
2 , there exists a constant K > 0, such that

�(a,a + b + c, b) ≤ K(a ∨ c)4H−2b2−2H
(
1 + (a ∨ c)2H + b2H (a ∨ c)2H

)− d
p . (5.19)

Using the conditions H < 3
4 and p < 4Hd

3 , we can easily check that 2H < Hd
2p

, which, by (5.18) and (5.19), implies

that �(a,a + b + c, b) is integrable in {(a, b, c) ∈ R
3+ | b ≤ a ∧ c}. From here it follows that �(a,a + b + c, b) is

integrable in R
3+, and hence �(x,u1, u2) is integrable in S2, as required.

Finally we consider the case i = 3 for H < 3
4 . Changing the coordinates (x,u1, u2) by (a := u1, b := x − u1, c :=

u2) in (5.10) for i = 3, we get∫
S3

�(x,u1, u2) dx d �u =
∫
R3

�(a + b, a, c) da db dc.
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To bound the integral in the right-hand side we proceed as follows. First we notice that the term μ(a +b, a, c) is given
by

μ(a + b, a, c) = 1

2

(
(a + b + c)2H + b2H − (b + c)2H − (a + b)2H

)
. (5.20)

By the Cauchy–Schwarz inequality, μ(a + b, a, c) ≤ aH cH . In addition, by (5.3), there exist constants k, δ > 0 such
that

a2H c2H − μ(a + b, a, c)2 ≥ δa2H c2H , (5.21)

and

μ(a + b, a, c) ≤ kb2H−2ac. (5.22)

From (5.21) and (5.22), we deduce the following bounds for �

�(a + b, a, c) ≤ (
1 + a2H + c2H + δa2H c2H

)− d
p , (5.23)

�(a + b, a, c) ≤ 2Hb4H−4(ac)−2H+2(1 + a2H + c2H + δa2H c2H
)− d

p . (5.24)

Using (5.23), as well as the condition p < 4Hd
3 , we can easily check that �(a + b, a, c) is integrable in the region

{(a, b, c) ∈R
3+ | b ≤ a ∧ c}.

Next we check the integrability of �(a + b, a, c) in the region {(a, b, c) ∈ R
3+ | b ≥ a ∨ c}. Since H < 3

4 , from
(5.24) it follows that there exists a constant C > 0 such that∫ ∞

(a∨c)

�(a + b, a, c) db ≤ C(ac)−2H+2(a ∨ c)4H−3(1 + a2H + c2H + a2H c2H
)− d

p

≤ C(ac)
1
2
(
1 + a2H + c2H + a2H c2H

)− d
p .

The integrability of �(a + b, a, c) in the region {(a, b, c) ∈R
3+ | b ≥ a ∨ c} then follows from condition the p < 4Hd

3 .
Finally, we prove the integrability of �(a +b, a, c) in the regions {(a, b, c) ∈R

3+ | a ≤ b ≤ c} and {(a, b, c) ∈R
3+ |

c ≤ b ≤ a}. Let a, b, c ≥ 0 be such that a ≤ b ≤ c. Applying the mean value theorem to (5.20), we can easily show
that

μ(a + b, a, c) = 1

2

(
ξ2H−1

1 a − ξ2H−1
2 a

)
,

for some ξ1 between c + b and a + b + c, and ξ2 between b and a + b. Hence, if H ≤ 1
2 , it follows that

∣∣μ(a + b, a, c)
∣∣ ≤ 1

2

(|ξ1|2H−1a + |ξ2|2H−1a
) ≤ 1

2

(
(c + b)2H−1a + b2H−1a

)
.

From here it follows that there exists a constant C > 0, only depending on H such that∣∣μ(a + b, a, c)
∣∣ ≤ Cb2H−1a. (5.25)

Using inequalities (5.21) and (5.25), we deduce that there exists a constant K > 0 such that

�(a + b, a, c) ≤ Kb4H−2a2−2H c−2H
(
1 + a2H + c2H + a2H c2H

)− d
p .

From here, it follows that

�(a + b, a, c) ≤ Kb4H−2a2−2H c−2H
(
1 + a2H + c2H + a2H c2H

)− d
p . (5.26)
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Using the condition H ≤ 3
4 , we can easily show that 2H − 2Hd

p
≤ 3

2 − 2Hd
p

< 0. Hence, from (5.26), we deduce

that �(a + b, a, c) is integrable in {(a, b, c) ∈ R
3+ | a ≤ b ≤ c}. The integrability of �(a + b, a, c) over the region

{(a, b, c) ∈ R
3+ | c ≤ b ≤ a} in the case H ≤ 1

2 , follows from a similar argument. To handle the case H > 1
2 , we

proceed as follows. From (5.20), we can easily show that for every a, b, c ≥ 0 such that a ≤ b ≤ c,

μ(a + b, a, c) = H(2H − 1)ac

∫
[0,1]2

(b + aξ + cη)2H−2 dξ dη ≤ H(2H − 1)ac

∫ 1

0
(cη)2H−2 dη,

and hence

μ(a + b, a, c) ≤ Hac2H−1.

From here it follows that

�(a + b, a, c) ≤ a2−2H c2H−2(1 + a2H + c2H + a2H c2H
)− d

p .

Using the condition p < 4Hd
3 , we deduce that �(a + b, a, c) is integrable in {(a, b, c) ∈ R

3+ | a ≤ b ≤ c}. The in-
tegrability of �(a + b, a, c) over the region {(a, b, c) ∈ R

3+ | c ≤ b ≤ a} in the case H > 1
2 , follows from a similar

argument. From the previous analysis it follows that �(a + b, a, c) is integrable in R
3+, and hence �(x,u1, u2) is

integrable in S3, as required. The proof is now complete. �

Following similar arguments to those presented in the proof of Lemma 5.3, we can prove the following result

Lemma 5.4. Let the functions μ and �1 be defined by (2.19) and (2.35) respectively. Then, for every 3
4 < H < 1 and

0 < p < 4Hd
3 ,

sup
ε∈(0,1)

∫
R

2+

∫ T

0
ε− 2

H
μ(x, ε

1
2H u1, ε

1
2H u2)

2

u2H
1 u2H

2

�1
(
ε− 1

2H x,u1, u2
)− d

p dx d �u < ∞. (5.27)

Proof. Denote by κε(x,u1, u2) the function

κε(x,u1, u2) := ε− 2
H μ

(
x, ε

1
2H u1, ε

1
2H u2

)2
(u1u2)

−2H �1
(
ε− 1

2H x,u1, u2
)− d

p .

To prove (5.27), it suffices to show that

sup
ε∈(0,1)

∫
R

2+

∫ T

0
1Si

(
x, ε

1
2H u1, ε

1
2H u2

)
κε(x,u1, u2) dx d �u < ∞, (5.28)

for i = 1,2,3. To prove (5.28) in the case i = 1,2, we make the change of variable x̂ := ε− 1
2H x, in order to get∫

R
2+

∫ T

0
1Si

(
x, ε

1
2H u1, ε

1
2H u2

)
κε(x,u1, u2) dx d �u

= ε− 3
2H

+2
∫
R

2+

∫ ε
− 1

2H T

0
1Si

(̂x, u1, u2)�(̂x,u1, u2) dx̂ d �u,

where � is defined by (5.9). Hence,∫
R

2+

∫ T

0
1Si

(
x, ε

1
2H u1, ε

1
2H u2

)
κε(x,u1, u2) dx d �u ≤

∫
Si

�(x,u1, u2) dx d �u. (5.29)
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In Lemma 5.3, we proved that
∫
S1

�(x,u1, u2) dx d �u < ∞, provided that p < 4Hd
3 . To handle the case i = 2, we

change the coordinates (x,u1, u2) by (a := x, b := u2, c := u1 − x − u2), in order to get∫
S2

�(x,u1, u2) dx d �u =
∫
R

3+
�(a,a + b + c, b) da db dc.

By (5.12), �(a,a + b + c, b) is integrable in {(a, b, c) ∈ R
3+ | b ≥ a ∧ c}. In addition, since 2H − 1

2 ≤ 3
2 < Hd , by

(5.19), �(a,a + b + c, b) is integrable in {(a, b, c) ∈ R
3+ | b ≤ a ∧ c}, and hence, �(x,u1, u2) is integrable in S2, as

required. It then remains to prove (5.28) in the case i = 3. By (5.6), for every (x, v1, v2) ∈ S3,∣∣μ(x, v1, v2)
∣∣ ≤ Cv1v2x

2H−2. (5.30)

On the other hand, for every (x, ε
1

2H u1, ε
1

2H u2) ∈ S3, it holds (ε− 1
2H x,u1, u2) ∈ S3, and hence, by (5.21),

�1
(
ε− 1

2H x,u1, u2
) ≥ δu2H

1 u2H
2 . (5.31)

By (5.30) and (5.31), we obtain

κε(x,u1, u2) ≤ C(u1u2)
2−2H x4H−4(1 + u2H

1 + u2H
2 + u2H

1 u2H
2

)− d
p , (5.32)

for some constant C > 0, and hence,∫
R

2+

∫ T

0
1S3

(
x, ε

1
2H u1, ε

1
2H u2

)
κε(x,u1, u2) dx d �u

≤
∫
R

2+

∫ T

0
(u1u2)

2−2H x4H−4(1 + u2H
1 + u2H

2 + u2H
1 u2H

2

)− d
p dx d �u.

Since H > 3
4 , then 3 − 2H < 3

2 < Hd , and hence, the integral in the right-hand side of the previous identity is finite,
which implies that (5.28) holds for i = 3, as required. The proof is now complete. �

Lemma 5.5. Let d ≥ 3, and T > 0 be fixed. Let the functions μ and �ε be defined by (2.19) and (2.35) respectively
and and assume that H = 3

4 . Then, for every 0 < p < d ,

sup
ε∈(0,1/e)

ε−8/3

log(1/ε)

∫
R

2+

∫ T

0
(u1u2)

− 3
2 μ

(
x, ε

2
3 u1, ε

2
3 u2

)2
�1

(
ε− 2

3 x,u1, u2
)− d

p dx d �u < ∞.

Proof. Denote by κε(x,u1, u2) the function

κε(x,u1, u2) := ε−8/3

log(1/ε)
μ

(
x, ε

2
3 u1, ε

2
3 u2

)2
(u1u2)

− 3
2 �1

(
ε− 2

3 x,u1, u2
)− d

p .

As in Lemma 5.4, it suffices to show that

sup
ε∈(0,1)

∫
R

2+

∫ T

0
1Si

(
x, ε

2
3 u1, ε

2
3 u2

)
κε(x,u1, u2) dx d �u < ∞, (5.33)

for i = 1,2,3, where the regions Si are defined by (3.18). The cases i = 1,2 are handled similarly to Lemma 5.4, so it

suffices to prove (5.28) in the case i = 3. Suppose (x, ε
2
3 u1, ε

2
3 u2) ∈ S3. Then, by Lemma 5.2, there exists a constant

C > 0, such that∣∣μ(
x, ε

2
3 u1, ε

2
3 u2

)∣∣ ≤ Cε4/3(x + ε
2
3 u1 + ε

2
3 u2

)− 1
2 u1u2 = Cε

(
ε− 2

3 x + u1 + u2
)− 1

2 u1u2.
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In addition, by Lemma 5.1 we have that u
3
2
1 u

3
2
2 − μ(ε− 2

3 x,u1, u2)
2 ≥ δ(u1u2)

3
2 , for some δ > 0. Therefore, we con-

clude that there exists a constant C > 0, such that

κε(x,u1, u2) ≤ ε− 2
3 C2

log(1/ε)

(
ε− 2

3 x + u1 + u2
)−1√

u1u2
(
1 + u

3
2
1 + u

3
2
2 + u

3
2
1 u

3
2
2 − μ(x,u1, u2)

2)− d
p

≤ ε− 2
3 C2δ

− d
p

log(1/ε)

(
ε− 2

3 x + u1 + u2
)−1√

u1u2
(
1 + u

3
2
1 + u

3
2
2 + u

3
2
1 u

3
2
2

)− d
p .

Consequently, there exists a constant C > 0, such that∫
R

2+

∫ T

0
1Si

(x, u1, u2)κε(x,u1, u2) dx d �u

≤ Cε− 2
3

log(1/ε)

∫ T

0

∫
R

2+

(
ε− 2

3 x + u1 + u2
)−1√

u1u2
(
1 + u

3
2
1 + u

3
2
2 + u

3
2
1 u

3
2
2

)− d
p d �udx.

Hence, making the change of variable x̃ := ε− 2
3 x, we obtain∫

R
2+

∫ T

0
1Si

(x, u1, u2)κε(x,u1, u2) dx d �u

= C

log(1/ε)

∫
R

2+

∫ 1

0
(x + u1 + u2)

−1√u1u2
(
1 + u

3
2
1 + u

3
2
2 + u

3
2
1 u

3
2
2

)− d
p dx d �u

+ C

log(1/ε)

∫
R

2+

∫ ε
− 2

3 T

1
(x + u1 + u2)

−1√u1u2
(
1 + u

3
2
1 + u

3
2
2 + u

3
2
1 u

3
2
2

)− d
p dx d �u. (5.34)

Applying the inequalities (x + u1 + u2)
−1 ≤ (u1 + u2)

−1 ≤ 1
2 (u1u2)

− 1
2 for x ∈ [0,1], and (x + u1 + u2)

−1 ≤ x−1 for
x ≥ 1, in the first and second terms in the right-hand side of (5.34), and then integrating the variable x, we can show
that ∫

R
2+

∫ T

0
1Si

(x, u1, u2)κε(x,u1, u2) dx d �u ≤ C

∫
R

2+

(
(u1u2)

− 1
2 + 2

3 log(1/ε) + log(T )

log(1/ε)

)
× √

u1u2
(
1 + u

3
2
1 + u

3
2
2 + u

3
2
1 u

3
2
2

)− d
p dx d �u,

and consequently, for every ε < 1/e,∫
R

2+

∫ T

0
1Si

(x, u1, u2)κε(x,u1, u2) dx d �u

≤ C

∫
R

2+

(
(u1u2)

− 1
2 + log(T )

)√
u1u2

(
1 + u

3
2
1 + u

3
2
2 + u

3
2
1 u

3
2
2

)− d
p dx d �u.

The right-hand side of the previous inequality is finite due to the condition 0 < p < d . This finishes the proof of
(5.33). �
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