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Abstract. We show that if one conditions a cluster in a Brownian loop-soup L (of any intensity) in a two-dimensional domain by
a portion ∂ of its outer boundary, then in the remaining domain, the union of all the loops of L that touch ∂ satisfies the conformal
restriction property while the other loops in L form an independent loop-soup. This result holds when one discovers ∂ in a natural
Markovian way, such as in the exploration procedures that have been defined in order to actually construct the Conformal Loop
Ensembles as outer boundaries of loop-soup clusters. This result implies among other things that a phase transition occurs at
c = 14/15 for the connectedness of the loops that touch ∂ .

Our results can be viewed as an extension of some of the results in our paper (J. Eur. Math. Soc. (2019) to appear) in the
following two directions: There, a loop-soup cluster was conditioned on its entire outer boundary while we discover here only part
of this boundary. And, while it was explained in (J. Eur. Math. Soc. (2019) to appear) that the strong decomposition using a Poisson
point process of excursions that we derived there should be specific to the case of the critical loop-soup, we show here that in the
subcritical cases, a weaker property involving the conformal restriction property nevertheless holds.

Résumé. Dans le présent article, nous étudions certaines propriétés des amas de lacets browniens, dans une soupe de lacets
browniens d’intensité c dans un domaine du plan, pour toute intensité c ≤ 1.

Notre principal résultat dit que si l’on découvre de manière Markovienne une portion ∂ du bord extérieur d’un tel amas, alors
dans le domaine restant, la loi conditionnelle de l’union de tous les lacets dans L qui touchent ∂ satisfait la propriété de restriction
conforme tandis que les autres lacets dans L forment une soupe de lacets indépendante. Ceci implique en particulier l’existence
d’une transition de phase à c = 14/15 pour la connectivité de l’ensemble des lacets qui touchent ∂ .

Nos résultats constituent une extension de certains résultats de notre papier (J. Eur. Math. Soc. (2019) to appear) dans les
deux directions suivantes: Dans (J. Eur. Math. Soc. (2019) to appear), un cluster de lacets est conditionné par son bord extérieur
entier tandis que nous découvrons ici seulement une partie de ce bord. En outre, dans (J. Eur. Math. Soc. (2019) to appear), nous
expliquons que la description que nous donnons de l’ensemble des lacets qui touchent ce bord via un processus ponctuel de Poisson
d’excursions est spécifique au cas de la soupe de lacets critique (c = 1), nous montrons ici que dans les cas sous-critiques c < 1,
une propriété plus faible de restriction conforme reste néanmoins vraie.
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1. Introduction

1.1. General goal

The simple conformal loop ensembles (CLE) form a natural conformally invariant class of random collections of
non-intersecting random loops in a simply connected domain, and they are conjectured to arise as scaling limits of a
number of discrete models (for instance, each CLE is the conjectural scaling limit of a discrete dilute O(N) model –
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in the special case of the critical Ising interfaces i.e. the O(1) model and CLE3, it has now been shown to hold, see [2]
and the references therein). All these simple CLEs have been constructed by Sheffield and Werner as outer boundaries
of Brownian loop-soup clusters in [16], which proved in particular that the SLE branching tree construction from [15]
did indeed construct a conformally invariant collection of disjoint loops. In the special critical case, this CLE (which
is CLE4) can also be constructed as level lines of the two-dimensional Gaussian free field (GFF), see Miller-Sheffield
[10], or [1]. There exists also a coupling of the GFF with the other CLEs, but it is much more involved and somewhat
less natural (it for instance relies on various choices, such as the choice of a root on the boundary of the domain), see
for instance the comments in [11,12]. This suggests that understanding better the coupling of CLEs with subcritical
loop-soups is actually of interest in order to understand better CLEs themselves.

In [14], we have described features of the conditional distribution of the loop-soup given the CLE that it defines
(i.e. given the outermost boundaries of clusters in the loop-soup). In particular, we have shown that conditionally on
the CLE, the loop-soup splits into two different and conditionally independent parts: The set of loops that touch the
CLE loops, and the set of loops that do not touch the CLE loops. In all CLEs, the latter collection turns out to be
distributed like a loop-soup within the complement of the CLE loops. In the special critical case of CLE4, related to
the GFF, we have furthermore shown that the trace of the former collection of loops (that do touch the CLE4 loops) is
distributed exactly like a Poisson point process of Brownian excursions away from the CLE4 loops. As explained at
the end of [14], we do not expect this second result to be valid for subcritical loop-soups.

In the present paper, we present further results on the distribution of the loop-soup conditionally on part of the CLE
loops. For instance, one considers explorations of the CLE from the boundary, where one traces along a CLE loop as
soon as one hits it, and one stops this exploration while tracing a loop, and we will describe features of the conditional
distribution of the loop-soup that are valid throughout the subcritical regime:

• Again, the set of loops that intersect the discovered CLE pieces are independent from the set of loops that do not
intersect the discovered CLE portions. The latter set is just distributed like a loop-soup in the remaining domain.

• The trace of the set of loops that do intersect the CLE portions are shown to satisfy a conformal restriction property.

These results allow to shed some further light on the construction of CLEs via Brownian loop-soups. One interest-
ing outcome is the following phase transition that occurs at c = 14/15 for the structure of the clusters. If we look at
one outermost cluster in the loop-soup and denote by �b the set of loops in that cluster that touch its outer-boundary,
then:

• The loops in �b alone almost surely do not hook up into one single cluster when c ∈ (14/15,1]. However, they are
almost surely hooked up into one single cluster by the loops that are of positive distance from the outer-boundary
of that outermost cluster.

• The loops in �b alone do almost surely hook up into one single cluster when c ∈ (0,14/15].
Note that the value c = 14/15 is equal to 1 − 6/(m(m + 1)) for m = 9, which is one of the special values of c

corresponding to the unitary irreducible highest weight representation in the Virasoro algebra (see [5]). We do not
know, however, whether it is a coincidence.

Another by-product of the results is a simple a posteriori explanation of the relation between conformal restriction
measures, loop-soups and SLE curves that was derived by Werner and Wu in [21] (see also [18]).

Our proofs will combine ideas from [14] with tools developed in the derivation of the Markovian characterization
of CLEs in [16].

1.2. Background

Before stating more precisely the main results of the present paper, we briefly survey some facts and earlier results
about Brownian loop-soup clusters in two-dimensions and Conformal Loop Ensembles:

The simple Conformal Loop Ensembles. In [16], Sheffield and Werner have defined the law of a simple CLE in
U to be a collection � of countably many disjoint random simple loops that are all contained in U which satisfies the
following two axioms:

• The law of � is invariant under any conformal automorphism from U onto itself. Hence we can define a CLE in
any simply connected domain D by letting it be the image of � under some given conformal map from U onto D.



316 W. Qian

• For all A ⊂ U such that U \ A is simply connected, let Ã be the union of A with all the loops in � that it intersects.
Conditionally on Ã, in each of the connected component O of U \ Ã, the loops in � that stay in O are distributed
like a CLE in O , independently of Ã and of the loops outside of O .

They have also proved in [16] that the simple CLEs form exactly a one-parameter family of measures indexed by
κ ∈ (8/3,4]. We will come back to some of the ideas developed in this paper [16] in the next paragraphs.

The Brownian loop-soups. The Brownian loop-soups have been introduced by Lawler and Werner in [8]. A Brow-
nian loop-soup �D in a domain D is a Poisson point process of unrooted Brownian loops of intensity c, restricted to
the loops that are contained in D. We choose the same renormalization of the measure μloop on unrooted Brownian
loops as in [8] (see for example (3.1)). The Brownian loop-soup is conformally invariant. For any two domains D1,
D2 such that there is a conformal map ϕ from D1 onto D2, the law of ϕ(�D1) is equal to the law of �D2 .

When one studies loop-soups in a simply connected domain, by conformal invariance, one can choose to work the
unit disk U or the upper half-plane H. A loop-soup � in U contains almost surely infinitely many small loops (of
diameter smaller than δ) and only finitely many big loops. A cluster of loops is defined to be an equivalent class such
that two loops γ1, γ2 in � are in the same cluster if and only if there is a finite sequence of loops γ3, . . . , γn in �

such that γi intersects γi+1 for i = 2, . . . , n, where γn+1 = γ1. It is shown in [16] that when c ≤ 1, the loop-soup �

of intensity c contains a.s. infinitely many clusters and that for c > 1, it contains a.s. one single cluster. In the present
paper, we only study the case c ≤ 1. All our results are trivially true for the supercritical regime, in which no loop
touches ∂U (the outer boundary of the unique cluster).

It is furthermore proved in [16] that the Brownian loop-soups of intensity c ∈ (0,1] enable to construct simple
CLEs. Almost surely, the closures of different clusters in a loop-soup do not intersect the boundary of the domain or
intersect each other, and the collection of the outer boundaries of all the outer-most clusters in � have the law of a
CLEκ where c(κ) = (3κ − 8)(6 − κ)/(2κ), κ ∈ (8/3,4]. In Figure 3, we see the loop-soup � and the red interfaces
which represent the outer boundaries of all the outer-most clusters in �.

Markovian explorations of CLEs. One idea of the paper [16] is that the restriction property of CLE allows one
to explore the collection � from the boundary in a Markovian way that leads to the fact that the loops of an CLE are
SLE loops. One example of such a Markovian exploration (is described in detail and used in [16]) goes as follows:
One can discover the loops of a CLE � in U in their order of appearance going from the right to the left along the
segment [−1,1].

In fact, when one encounters a loop, instead of discovering the entire loop at once, one can choose to trace it in
the counterclockwise direction until we close the loop. Then, one continues moving left along [−1,1] and trace the
(infinitely many) loops that still remain to be discovered. We denote by γ the piecewise continuous curve (we choose
for instance the right-continuous version) which is the concatenation of all the loops that we have discovered in this
procedure.

One can for instance choose (but this is not important for our purposes because the actual time-parametrization
will be irrelevant in our statements) to parametrize γ up to the disconnecting time S of the origin (that corresponds to
the time at which one discovers the CLE loop surrounding the origin) using the radial normalization: For each t > 0,
let Kt be the hull of γ ([0, t]). Let ϕt be the conformal map from U \ Kt onto U such that ϕt (0) = 0, ϕ′

t (0) > 0. The
radial parametrization of γ is such that ϕ′

t (0) = exp(t). See Figure 1.
One can also (and this would allow to work beyond S) parametrize using the chordal capacity of Kt in U as seen

from −1.
We call T a stopping time for this exploration if it is a stopping time with respect to the filtration generated by γ .

One way to interpret some of the results of [16] goes as follows: Conditionally on γ ([0, T ]),
• If at time T , γ is not tracing a CLE loop, then � restricted to U \ KT is just an independent CLE in U \ KT .
• If at time T , γ has only traced a part ∂ of some loop γ0, then we denote by σ(T ) the time at which we start tracing

the loop γ0. Then the conditional law of the rest of that loop is that of an SLEκ from γT to γσ(T ) in U \ KT .

Other examples of explorations of CLEs for which this property holds are described in [16] or in [16,22] (where it is
proved that Sheffield’s branching tree construction/exploration from [15] gives indeed rise to a conformally invariant
collection of loops satisfying the CLE axioms).
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One question that we are going to answer in the present paper goes as follows: Suppose that a CLE has been
constructed via a Brownian loop-soup as described above, and one discovers this CLE using a Markovian exploration
that stops at some stopping time T . What can be said about the conditional distribution of the loop-soup? Before
giving an answer, we need to recall two further items.

The decomposition of Brownian loop-soup clusters. Here we recall some of the main results in [14] on the
decomposition of loop-soup clusters.

Let � be a loop-soup in U and let {γi, i ∈ I } be the collection of the outer boundaries of all the outer-most clusters
of �, which is exactly the CLE coupled with it (the index set I is therefore countably infinite). Let Oi be the open
domain enclosed by γi . Let �i be the set of all the loops in � that are contained in Oi . Here we introduce the new
notion of complete cluster, referring to the union of an outer-most cluster θ with all the loops that are inside the
domain enclosed by the outer boundary of θ . The sets �i are the complete clusters of the loop-soup �.

Fig. 1. The map ϕT maps U \ KT onto U.

Fig. 2. The loops in �b are drawn in red and the loops in �i are drawn in black.

It is shown in [14] that when one conditions � on the collection {γi, i ∈ I }, the different complete clusters �i for
i ∈ I are independent of each other. Let γ0 ∈ {γi, i ∈ I } be the unique loop that surrounds the origin (the origin has no
special role due to conformal invariance). Let O0 and �0 be the domain and the complete cluster associated with γ0.
Then we can define �0 to be the conformal map from O0 onto U such that �0(0) = 0,� ′

0(0) > 0 (see Figure 2). The
following lemma [14, Lemma 2,3] will be useful in this paper.

Lemma 1.1 ([14]). The law of �0(�0) is independent of the collection {γi, i ∈ I }.

Remark 1.2. We denote the law of �0(�0) by P0. The law P0 is invariant under all conformal automorphisms from
U onto itself, due to the conformal invariance of the loop-soup.
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Fig. 3. A Brownian loop-soup, approximated by a random walk loop-soup on the square lattice with a cut-off of small loops (this cut-off is
necessary in the simulation because otherwise the loop-soup is dense in the domain). The approximation is justified by [7,17]. Also see [9]. The
outer-boundaries of outer-most clusters are drawn in red. The boundary-touching loops are drawn in blue. The non-boundary-touching loops are
drawn in black.

The set �0(�0) is the union of two independent sets of loops: the set �b of loops that touch ∂U and the set �i of
loops that stay in the interior of U (also see Figure 3 for an illustration on a simulated Brownian loop-soup). It is shown
in [14] that the two sets �b and �i are independent and the set �i is distributed like a loop-soup in U. Moreover, for
the critical intensity c = 1, the trace of the set �b is distributed like a Poisson point process of Brownian excursions
in U having both end-points on ∂U.

For small intensities, however, considerations on cut-points [14] suggest that �b should no longer be a Poisson
point process of Brownian excursions. It is our goal here to obtain more information on �b for c ∈ (0,1). One result
of the present paper (Proposition 1.4) is that, for all c ∈ (0,1], the trace of all the loops in �b satisfies a version of the
conformal restriction property that we now describe.

Conformal restriction. The conformal restriction property was first introduced and studied by Lawler, Schramm
and Werner in [6]. Note that this conformal restriction property is different from the restriction property of the CLE
that we discussed earlier.

Let us first briefly recall the one-sided version of the chordal restriction property, following [6]. Let a, b ∈ ∂U be
two fixed boundary points. We consider a class of random simply connected and relatively closed sets K ⊂ U such that
K ∩ ∂U is equal to the arc from a to b in the clockwise direction. See Figure 4. Such a set (or rather, its distribution)
is said to satisfy chordal conformal restriction property if the following two conditions hold:

(i) (Conformal invariance) The law of K is invariant under any conformal map from U onto itself that leave the
boundary points a and b invariant.

(ii) (Restriction) For all closed sets A ⊂ U such that U \ A is simply connected and that the distance from A to the
clockwise arc from a to b is strictly positive, the conditional distribution of ϕA(K) given {K ∩ A = ∅} is equal
to the (unconditional) law of K , where ϕA is any conformal map from U \ A onto U that leaves the points a, b
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invariant (property (i) actually ensures that if this holds for one such map ϕA, then it holds also for any other such
map).

Fig. 4. Chordal restriction: ϕA is a conformal map from U \A onto U that leaves a, b invariant. The conditional law of ϕA(K) given {K ∩A = ∅}
is equal to the (unconditional) law of K .

Fig. 5. Interior restriction. Here U1 is U minus the black regions in the left picture, and U2 is the one in the right picture. The conformal map ϕ

sends U1 onto U2. The set K is represented by the random curves.

It is proved in [6] that measures that satisfy such one-sided chordal conformal restriction property can be charac-
terized by a parameter α such that for all closed sets A ⊂U such that U \ A is simply connected and that the distance
from A to the clockwise arc from a to b is strictly positive,

P(K ∩ A =∅) = ϕ′
A(a)αϕ′

A(b)α. (1.1)

Moreover, such measures exist if and only if α ≥ 0. One-sided chordal restriction measures can be constructed in
various ways, for example, as boundaries of Poisson point process of Brownian excursions, or using variants of the
SLE8/3 process.

The conformal restriction property can be naturally extended from the chordal case to other cases, such as the
radial setting [23] and the trichordal setting [13], for which the corresponding measures can also be characterized by
a finite set of real parameters. However in other settings, the family of measures that satisfy the conformal restriction
property can turn out to be much larger.

In the present paper, we will define and use another variant, the interior conformal restriction:

Definition 1.3. We consider a class of relatively closed random sets K ⊂ U. See Figure 5. Such a set (or rather, its
distribution) is said to satisfy interior restriction if the following two conditions hold:

(i) (Conformal invariance) The law of K is invariant under any conformal map from U onto itself.
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(ii) (Restriction) Let U1, U2 ⊂ U be two connected domains such that there is a conformal map ϕ from U1 onto U2

and that the probability of {K ⊂ U1} is non zero. Let P1 be the conditional distribution of K given {K ⊂ U1} and
let P2 be the conditional distribution of K given {K ⊂ U2}. Then the image of P1 under ϕ is equal to P2 (property
(i) actually ensures that if this holds for one such map ϕ, then it holds also for any other such map).

Examples of measures that satisfy this interior restriction are given by Poisson point processes of Brownian excur-
sions away from the boundary.

One result that we will prove in the present paper is the following:

Proposition 1.4. The set �b (defined after Lemma 1.1) satisfies interior restriction.

We will not address in the present paper the issue of how large the class of interior restriction measures is.
Let us now define the notion of chordal interior restriction, which is a variant of the interior restriction property

with two additional marked points.

Definition 1.5. For a, b ∈ ∂U, we consider a class of relatively closed random sets Ka,b ⊂ U such that K do not touch
the clockwise arc from b to a. The family of sets Ka,b (or rather, their distributions) is said to satisfy chordal interior
restriction if the following two conditions hold:

(i) (Conformal invariance) For any conformal map ϕ from U onto itself, the law of ϕ(Ka,b) is equal to the law of
Kϕ(a),ϕ(b).

(ii) (Restriction) Let U1, U2 ⊂ U be two connected domains such that there is a conformal map ϕ from U1 onto
U2 and that the probabilities of {Ka,b ⊂ U1} is non zero. Let P1 be the conditional distribution of Ka,b given
{Ka,b ⊂ U1} and let P2 be the conditional distribution of Kϕ(a),ϕ(b) given {Kϕ(a),ϕ(b) ⊂ U2}. Then the image of
P1 under ϕ is equal to P2.

Note that chordal interior restriction implies chordal restriction.

The relation between restriction measures, CLE and SLE. Finally, we state a result by Werner and Wu [21]
which will turn out to be closely related to our result as it will be explained in the next section.

The statement goes as the following (see Figure 6): Let K be the sample of a one-sided restriction measure in U

with exponent α along the clockwise arc from i to −i. Let � be an independent CLEκ in U. Then the union of K

with all the loops in � that it intersects has an outer boundary which is distributed like a SLEκ(ρ) curve. The relation
between α and ρ is given by α = (ρ + 2)(ρ + 6 − κ)/(4κ).

Fig. 6. The sample K of a restriction measure, the CLEκ and the SLEκ (ρ).
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1.3. Main result

We can now finally state our main result and make some comments. Let � be a loop-soup in U with intensity c ≤ 1
in the unit disk. This defines a CLE that we explore in a Markovian way as described above (for instance exploring
the CLE loops that intersect [−1,1]). Suppose that T is some finite stopping time for the Markovian exploration and
that at this stopping time T , one is almost surely currently in the middle of tracing a CLE loop. One can then define
as before the set KT and the conformal map fT from U \ KT onto U that maps γT , −1 and γσ(T ) respectively to i,
−1 and −i (see Figure 7).

As we have already explained, the conditional law of γ from time T up to the time at which it completes the loop
that it is tracing at time T is a SLEκ in U \ KT . We denote by η the image under fT of this part of γ , which is a SLEκ

in U from −i to i. We define L to be the collection of loops in the loop-soup that do touch γ [σ(T ), T ]. We denote
by �̃ the collection of loops in U \ KT that are not in L. We denote by fT (L) and fT (�̃) their corresponding images
by fT .

Fig. 7. Sketch of the loops in L (red), the loops in �̃ (black), the loops in KT (blue) and their images under fT .

Theorem 1.6. The sets fT (L) and fT (�̃) are independent and they are furthermore independent from γ [0, T ]. More-
over, they satisfy the following property:

• fT (�̃) is a loop-soup of intensity c in U.
• The trace of the union of loops in fT (L) satisfies the one-sided chordal restriction (and a stronger restriction

property that we call chordal interior restriction) with exponent α = (6 − κ)/(2κ).

The main part of this theorem is the second part on the conformal restriction property of the set fT (L). It is not
surprising that one can deduce, using similar arguments as in [14] and taking some care of the exploration process,
that fT (L) and fT (�̃) are independent from each other and from γ [0, T ], and that fT (�̃) is distributed as a loop-
soup. We also know by [16] that η has the law of a SLEκ . Relating this to Werner and Wu’s result [21], one would
naturally guess that (the filling of) fT (L) should satisfy the one-sided conformal restriction property. We prove that
it is indeed the case and also show a stronger version of the conformal restriction property for fT (L). Note that the
relation between κ , α = (6 − κ)/(2κ) and c(κ) = (3κ − 8)α is the “usual one” that appears in the formulation of
the SLE conformal restriction property defect in [6] and in the Conformal Field Theory framework (α is there the
highest-weight of the degenerate representation of the Virasoro algebra with central charge c).

Note that in the special case κ = 4, it is actually possible to adapt fairly directly the arguments of [14] to see that
the trace of fT (L) has the same law as the trace of a Poisson point process of Brownian excursions in U away from
the right-half circle; this indeed then implies the conformal restriction property described in our theorem.
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When κ �= 4, our result does not describe fully the conditional law of K , but it does nevertheless imply a number
of its features. One interesting fact that is worth stressing is the following phase transition that occurs at c = 14/15
for the structure of loop-soup clusters. Consider the set �b as defined after Lemma 1.1. Then,

• When c ∈ (14/15,1], which corresponds to κ ∈ (18/5,4] and α ∈ [1/4,1/3), the union of loops in fT (L) almost
surely has cut-points seen from −1, due to the fact that a one-sided chordal restriction measure of exponent α

almost surely has cut-points when α < 1/3 (see [6,19]). Since there is no cut-point of a Brownian motion that is
also a double point ([4]), the cut-points of the set fT (L) cannot belong to any loop. Therefore, the loops in fT (L)

alone almost surely do not hook up into a single cluster. This implies that the loops in �b do almost surely not
hook up into a single cluster by themselves either. It is only thanks to the loops that are at positive distance from
the boundary of the cluster that the loops in �b are connected into the same cluster. As this occurs with probability
one, this shows that for any ε, the inside loops of size smaller than ε are alone almost surely sufficient to connect
all the loops of fT (L) into a single cluster.

• When c ∈ (0,14/15], which corresponds to κ ∈ (8/3,18/5] and α ∈ [1/3,5/8), then the set fT (L) has no cut-point
seen from −1. This implies that the loops in �b alone do almost surely hook up into a single cluster. Indeed, if this
were not the case, then the set fT (L) would have cut-points with positive probability.

Let us also mention that the measure μloop on a single Brownian loop can in some sense be seen as the limit of a
loop-soup with an intensity tending to zero. In Section 3, we will prove a similar decomposition-restriction result for
one Brownian loop. This will be our Proposition 3.6 and it can be thought of as the limit as c → 0 of our other results.

Finally, the main body of this paper consists of Sections 4 and 5. We will spend some time at the beginning of both
sections to explain the CLE exploration procedures (developed in [16]) and ensure that the statements can be carried
through to the loop-soup setting. We then proceed to the decompositions of the loop-soups in the different stages
of the exploration process. We deduce the restriction property of certain subsets of the loop-soup and ensure that
this property can be carried through the successive stages. While the exploration process concerns mainly the outer
boundaries of the clusters, the decompositions thereafter depend mainly on the internal structure of the loop-soups.

2. Notations

Here we give some basic definitions and notations that we will use throughout the whole paper (nevertheless each
section may also contain some locally defined notations).

Important domains and sets. Let H denote the upper-half plane, U the unit disk and C the whole plane. In the
upper half-plane setting, for a ∈ R, let D(a, ε) be the half-disk contained in H, centered at a with radius ε. In the unit
disk setting, for a ∈ ∂U, by an abuse of notation, we continue to denote by D(a, ε) the open set in U such that its
image by the map ϕ : z 
→ i(1 + z)(1 − z) is equal to the half-disk in H centered at ϕ(a) of radius ε. Let A be the set
of all relatively closed sets A ⊂ H such that d(0,H \ A) > 0. As opposed to the presentation in the introduction that
was mostly done in the unit disc, we will in fact mostly choose to work in the upper half-plane.

Filling of a set. We denote by F(K) the filling of a set K ⊂ C, which is the complement of the unbounded
connected component(s) of C \ K .

The event z ∈ θ . When we say that a collection θ of loops encircles or surrounds a point z, we mean that z is inside
the filling of the union of the loops in that collection. We denote this event by z ∈ θ .

The collection of loops � as a subset of the plane. Let �, �̃ be two collections of loops and let A be some subset
of the complex plane. We mean by � ∩ �̃ the collection of loops which is the intersection of � and �̃. However,
sometimes we abuse the notation by writing things such as {� ∩ A = ∅}, where � is identified to a subset of the
complex plane which is equal to the union of all the loops in �. The meaning of � will be clear from context.

Complete cluster in �. Given a collection � of loops in some simply connected domain D, a complete cluster
in � is defined to be a collection of loops that consists of the loops in an outer-most cluster C of � and of all the
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loops that are contained in the domain enclosed by the outer boundary of C. When we say that θ is a complete cluster
without giving the bigger collection �, we mean that θ is a complete cluster in θ .

Loop configurations in H. Let θ be a complete cluster contained in H. Let � be a collection of loops that are all
contained in the domain H \ F(θ). Then we say that (θ,�) is a loop configuration in H. We often make an abuse of
notation by identifying the pair (θ,�) with the collection θ ∪ �. The meaning will be clear in the circumstances.

One-point pinned configuration. A loop configuration (θ,�) in H is said to be a one-point pinned configuration
if θ ∩R= {0}.

Two-point pinned configuration. A loop configuration (θ,�) in H is said to be a two-point pinned configuration
if θ ∩R= {0,1}.

Glued configuration. A loop configuration (θ,�) in H is said to be a glued configuration if θ ∩R= [0,1].

The collections of loops CD and CD . For a collection C of loops, CD with subscript D refers to the collection of
loops in C that are in D and CD with superscript D refer to the collection of loops in C that intersect D.

The collection of loops f (�). Let O0 ⊂ O1. Let f be a conformal map from an open domain O0 onto another
open domain O2. Let � be a collection of loops in O1. We denote by f (�) the image of the set �0 under f , where �0
is the collection of loops in � that are contained in O0.

Important measures. Let P 0 denote the measure on the collection of interior loops in a complete cluster, see
Remark 1.2. Let PD denote the measure of a loop-soup in D. Let PD denote the measure of a loop-soup in H restricted
to those loops that touch D. Other measures such as ν(i), ν, ν̄, νA, ν̄A, ρA, ρ̄A and so on will be defined later in the
paper. For all random collections of loops π , we denote by Pπ the measure of π .

The map �. For a simple loop γ , a point z enclosed by the loop, and a closed set K ⊂ U, let � be the map that
maps (γ, z,K) to the set φ(K) where φ is the conformal map from U onto the closure of the domain enclosed by γ

such that φ(0) = z,φ′(0) > 0. In this paper, we will frequently apply the map � to a random triple (γ, z,K) where the
law of K is invariant under all conformal automorphism from U onto itself. We will further choose γ , z independently
of K so that the law of �(γ, z,K) does not depend on the choice of z. In this case, when we are talking about the
laws, we do not need to give precision on the point z and we can talk about the image under � of the law of (γ,K).

The map �up. We define the map �up which upgrades a complete cluster to a configuration in H. Let θ be a
complete cluster and let � be some collection of loops in H. Let �up(θ,�) be equal to the configuration (θ, �̃), where
�̃ is the restriction of � to the loops that are contained in the domain H \ F(θ).

3. The case of a single Brownian loop

In this section, as a warm-up, we discuss the case of a single Brownian loop, which can be seen as the limit of a
loop-soup cluster when the intensity of the loop-soup tends to zero. Our main result will be Proposition 3.6, which
can be interpreted as the c → 0+ limit of Proposition 1.4. The case of a single Brownian loop is much simpler than the
loop-soup case because the cluster and the boundary-touching loops in the cluster are just the single Brownian loop
itself.

We need to be careful since the Brownian loop measure μloop is an infinite measure. However it is not difficult
to find good analogies for the Brownian loop case with the loop-soup case. For example, the exploration process
for the loop-soup and the definition of the one-point pinned complete cluster is analogous with the following path-
decomposition of the Brownian loop measure [8, Proposition 7]

μloop = 1

π

∫ ∞

−∞

∫ ∞

−∞
μbub
H+iy(x + iy) dx dy, (3.1)
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where μbub
H+iy

(x + iy) is the Brownian bubble measure rooted at x + iy, and contained in the upper half-plane above
the horizontal line of height y.

In the following, we will first work with the probability measure P bub which is equal to the infinite measure μbub
U

(1)

on the Brownian bubbles in U rooted at 1 restricted to the loops that encircle the origin and then renormalized. Later,
we will generalize the results to the μloop measure. Let θ be a Brownian bubble with the law P bub. Let γ be the outer
boundary of θ . Let fγ be the conformal map sending the domain enclosed by γ onto U that leaves the points 0, 1
invariant. We first prove the following lemma.

Lemma 3.1. The sets fγ (θ) and γ are independent from each other.

Proof. This is a consequence of the (boundary) conformal restriction property of the measure P bub. For all closed
sets A ⊂ U such that U \ A is simply connected, d(0,A) > 0, d(1,A) > 0, conditionally on the event {θ ∩ A = ∅},
the law of ϕA(θ) is the same as the (unconditional) law of θ , where ϕA is the conformal map from U \ A onto U that
leaves the points 0, 1 invariant. Note that on the event {θ ∩ A = ∅}, the sets fγ (θ) and fϕA(γ )(ϕA(θ)) are the same.
Therefore fγ (θ) conditionally on {θ ∩A =∅} has the same law as fϕA(γ )(ϕA(θ)) conditionally on {θ ∩A =∅} which
is equal in law to the (unconditional) fγ (θ). Since this is true for all such A, the lemma is proved. �

We denote by P int the law of fγ (θ). The law P int depends a priori on the marked points 0 and 1. However, we will
show that it is not the case and that P int is invariant under all conformal automorphisms from U onto itself.

Fig. 8. The loop θ conditioned on the event Eε converges in law to fγ (θ).

Lemma 3.2. The law P int is invariant under all conformal automorphisms from U onto itself that leave the point 1
invariant.

Proof. Let Eε be the event that γ is contained in the ring U \ (1 − ε)U and winds around the origin. The law of θ

conditioned on the event Eε converges to the law P int under the Hausdorff metric (see Figure 8), because of Lemma 3.1
and the fact that the conformal map f −1

γ on the event Eε is close to the identity map under the uniform distance.
Let z ∈ U be some point different from the origin and let fz be the conformal map from U onto itself that sends

the points z, 1 to 0, 1. Choose some ε > 0 such that |fz(0)|, |z| < 1 − ε. Then the image under the map fz of the
law of θ conditionally on Eε is equal to the law of θ conditionally on the event that γ is contained in the domain
U \ fz((1 − ε)U), due to conformal invariance of the measure μbub on Brownian bubbles. However, the law of θ

conditionally on the event that γ is contained in the domain U \ fz((1 − ε)U) also converges to P int as ε → 0.
Therefore, by taking the ε → 0 limit, we obtain that the law P int is invariant under fz. Since this is true for all z, we
have proved the lemma. �

Lemma 3.3. The law P int is invariant under all conformal automorphisms from U onto itself that exchange the points
eiα and 1 for any α ∈ (0,2π).
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Proof. We continue to use the notations of the previous lemma. Let θ be a Brownian bubble sampled with the law
P bub. We explore θ along the radius [eiα,0] from the boundary to the interior. Let T = sup{t > 0, teiα ∈ θ} be the first
time that we encounter the loop θ . Then conditionally on T , the loop θ is distributed like the union of two independent
Brownian excursions in the domain U\ [teiα, eiα], one from 1 to teiα and the other from teiα to 1 (see [8]). The image
fγ (θ) then has two marked points 1 and fγ (T eiα) that play symmetric roles. The law of fγ (θ) is invariant under all
conformal automorphisms from U onto itself that leave the points 1, fγ (T eiα) invariant or exchange the two points.
We know that the law of θ conditioned on the event Eε converges to the law P int. In the meantime, the point fγ (T eiα)

conditionally on Eε converges a.s. to eiα as ε → 0. Therefore we have proved the lemma. �

The results above readily imply the following lemma. Let μbub,ext be the infinite measure on the outer boundary
of the Brownian bubble in U rooted at 1 (which is equal to the measure on SLE8/3 rooted loops, up to normalizing
constant, see [20]). Recall the map � defined in Section 2.

Lemma 3.4. The measure P int is invariant under all conformal automorphisms from U onto itself. The measure
μbub
H

(1) is equal to the image of μbub,ext ⊗ P int under the map �.

Before going to the Brownian loop measure μloop, we also prove the following proposition.

Proposition 3.5. The measure P int satisfies interior restriction (as in Definition 1.3).

Proof. It has been proved in [8] that the measure P bub satisfies interior restriction with the additional marked points
0 and 1. Using the fact that P bub conditioned on the event Eε converges to P int, we can verify that P int satisfies the
same interior restriction property with marked points 0, 1. (We omit the details here. The reader can also see [13,
Lemma 7.10] for a proof in the similar spirit.) The dependence on the points 0 and 1 can be ruled out, since we have
already proved that P int is invariant under all conformal automorphisms from U onto itself. �

Now we can readily extend this result to the measure μloop, thanks to the path decomposition (3.1) of the Brownian
loop measure. Let μext be the infinite measure on the outer boundary of the Brownian loop [20] (which is equal to the
measure of SLE8/3 loops). Then we have the following proposition.

Proposition 3.6. There exist a probability measure P int on closed sets K ⊂ U which satisfies interior restriction
(hence is invariant under all conformal automorphisms from U onto itself), such that μloop is the image under � of
μext ⊗ P int.

Let us now briefly comment on the decomposition of the Brownian loop, given part of its boundary, as this will
provide some motivation and insight into the more general case of loop-soup clusters (the following comment corre-
sponds to the c → 0 limit of loop-soup clusters). We will stay in this paragraph on an informal level and just explain
the main ideas, and leave it to the reader as an easy exercise to turn this into rigorous statements. It is known that the
measure on the outer boundary γ of a Brownian loop θ is a SLE8/3 loop measure [20]. Therefore, conditionally on an
appropriately discovered part ∂ of γ , the rest of γ is distributed like a chordal SLE8/3 in the complement of ∂ , which
is known to satisfy chordal restriction property with exponent 5/8. In fact, θ will satisfy a chordal interior restriction
in the complement of ∂ , due to the restriction property of the Brownian loop itself and some similar arguments as in
Proposition 3.5.

The trace of θ is the union of a number of excursions of the Brownian loop away from ∂ . However, it is not
distributed like a Poisson point process of Brownian excursions in the complement of ∂ , as we now explain: For some
Brownian loop θ encircling the origin, conditionally on a part ∂ of the outer boundary of θ , with positive probability,
∂ contains cut-points of θ with respect to the origin (see Figure 9(a)) i.e. points that separate the unbounded connected
component of the complement of the loop from the connected component that contains the origin (see [3]).

However, in a Poisson point process �BE of intensity 5/8 (here this is with respect to the normalization so that the
obtained collection satisfies chordal restriction with exponent 5/8) of excursions away from the right side of ∂ in the
complement of ∂ (see Figure 9(b)) conditioned to encircle the origin, there is a.s. no cut-point on ∂ . This is because
in �BE, after removing the big excursions encircling the origin, the union of all the other excursions is absolutely
continuous w.r.t. �BE and do not have cut-points on ∂ (this corresponds to the fact the SLE8/3 is a simple curve).
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(a) (b)

Fig. 9. Brownian loop and Poisson point process of excursions. (a) The Brownian loop encircling the origin has positive probability to have local
cut-points on ∂ . (b) The union of the Poisson point process of excursions with ∂ a.s. has no cut-points on ∂ .

4. The one-point pinned configuration

Recall that the paper [16] consists of two almost independent parts:

• On the one hand, it shows that the random collection of disjoint loops that satisfy a certain Markovian property can
be explored progressively in a certain way, which in turn implies that they can be defined in terms of branching
SLE trees. This gives a Markovian characterization of CLEs.

• On the other hand, the outermost cluster boundaries of subcritical and critical Brownian loop-soup do satisfy this
Markovian property. This shows the existence of the CLEs.

One idea in the proofs in the coming sections will be to follow the exploration procedure (and the conditional dis-
tribution of the remaining to be explored configurations) of a CLE that has been defined via loop-soup clusters, and
to study along the way the conditional distribution of the Brownian loop-soup itself (not just of the CLE) given the
already explored pieces.

In this section, we first describe the Markovian CLE-exploration on the loop-soup introduced in [16] in order to
define the one-point pinned configuration, and check that the decomposition ideas can be pushed through. Then we
make two different decompositions of the one-point pinned configuration and thus derive the conformal restriction
property of some specific subset of the one-point pinned configuration.

4.1. Markovian exploration and the one-point pinned configuration

In this section, we perform on the loop-soup the Markovian CLE-exploration which is described in detail in [16]. The
exploration process only depends on the CLE associated to the loop-soup. However we keep track of the additional
loop structure inside each complete cluster. For instance, one needs to show the convergence-type results for the
metric (that we will define later) on the space of countable collections of loops. In the following, we will describe the
successive steps of the exploration process and recall some CLE-related properties for the loop-soup without providing
all the proofs. In the meantime, we will clarify the specificities of the loop-soup case.

Let � be the loop-soup in U which is subject to our exploration. At this stage, we only need to perform the simple
version of exploration where we discover the entire clusters immediately without tracing along their boundaries. Let
θ0 be the complete cluster in � which surrounds the origin. We explore progressively the complete clusters in U that
intersect the segment [0,1] by moving from right to left. Set T := sup{t ≥ 0, t ∈ θ0} to be the first moment that we
discover θ0. Let Ã be the filling of the union of the segment (T ,1] with all the complete clusters that it intersects.
Let �0 be the conformal map from U \ Ã onto U which sends the points 0, T to the points 0, 1. Here we define the
following probability measure on pinned complete clusters.

Definition 4.1. Let ν0 be the law of the complete cluster �0(θ0).

It is shown in [16] that the map �0 can be approximated by the iteration of discrete small exploration maps. We
refer the reader to [16] for a complete description and proof. Here we make a brief summary of the main ideas: We fix
some ε > 0. For each step, we discover all the complete clusters in � that intersect D(y, ε), where the point y is well
chosen to approximate the to-be-explored part of the original segment [0,1]. As long as we have not discovered the
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complete cluster θ0, we map the connected component containing 0 of the complement of the discovered complete
clusters back to U by some conformal map ϕ such that ϕ(0) = 0, ϕ′(0) > 0. Let �ε

0 be the conformal map generated
by the above-mentioned ε-discrete exploration, namely the composition of all the maps ϕ of each step up until the
stopping step, together with a rotation in the end so that it maps the y of the ending step back to the point 1. Let us
note the two facts:

• Each step is i.i.d. modulo the choice of y. Hence the law of �ε
0(θ0) is the same as the law of θ0 conditioned on

{θ0 ∩ D(1, ε) �=∅}.
• The conformal maps �ε

0 converge a.s. to the map �0 as ε → 0. Here we say a sequence of functions (�n) converges
to � in the sense that for all proper compact subsets K of U, the functions �−1

n converge uniformly to �−1 in K .

As a consequence, the authors showed in [16] the Proposition 4.1 that we restate below using our notations. Here γ0
denote the outer boundary of θ0.

Proposition 4.2 (Proposition 4.1 in [16]). As ε → 0, the law of γ0 conditioned on the event {γ0 ∩ D(1, ε) = ∅}
converges to the law of the outer boundary of �0(θ0) (using for instance the weak convergence with respect to the
Hausdorff topology on compact sets).

Our goal is to derive an analogue of this proposition for the Brownian loop-soup, namely to show the convergence
for the entire complete cluster but not only for the outer boundary of the complete cluster. For this purpose, we need
to choose a metric on the space of countable collections of loops. For two finite collections of loops C and C′, let us
define

dM = min
σ

max
γ∈C

d
(
γ,σ (γ )

) ∧ M

where d is the Hausdorff distance between the traces of two loops and min is taken over all bijections σ from C to
C′ with the convention that min∅ = ∞ (so that the distance dM between two collections of loops is at most M). In a
Brownian loop-soup � in U, for n ≥ 1, the collection �n of loops of diameters between 2−n and 2−n−1 is a.s. finite.
Let �0 be the finite collection of loops of size bigger than 1/2. We can define the distance between two loop-soups �

and �′ by

d∗(�,�′) =
∞∑

n=0

2−ndM

(
�n,�

′
n

)
.

Under this distance d∗, the convergence of the conformal maps �ε
0 as described earlier implies the convergence of

�ε
0(θ0) (as a collection of loops). This is because for any fixed δ > 0, the collection of loops in � with diameter greater

than δ is finite and contained in some proper compact subset of U. This leads to the following lemma.

Lemma 4.3. The law of θ0 conditioned on the event {θ0 ∩ D(1, ε) �=∅} converges as ε → 0 to ν0.

From here on, we switch to the upper half-plane setting by applying the conformal map ϕ : z 
→ i(1 + z)/(1 − z),
because it is convenient to have the scaling invariance. The metric on the collections of loops in H can be taken as the
image under ϕ of the metric d∗. For a loop-soup � in H, we denote by θ(i) the complete cluster that surrounds the
point i. We define the conformal map �i in a similar way as �0, but in the H setting, see Figure 10. Definition 4.1
and Lemma 4.3 have the following counterparts.

Definition 4.4. Let ν(i) be the law of the one-point pinned complete cluster �i(θ(i)).

Lemma 4.5. The law of θ(i) conditioned on the event {θ(i) ∩ D(0, ε) �=∅} converges as ε → 0 to ν(i).

Let us recall Lemma 1.1 and the definition of the law P0. Note that the event {θ(i)∩D(0, ε) �=∅} depends only on
the outer boundary γ (i) of θ(i). Let μ(i) denote the law of the outer boundary of �i(θ(i)), which is simply the one-
point pinned loop measure for CLE. Recall the map � defined in Section 2. We are now ready to state the following
lemma, which is a direct consequence of Lemma 1.1.
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Fig. 10. We explore the complete cluster θ(i) which surrounds the point i by moving upwards the segment [0, i].

Lemma 4.6. The measure ν(i) is the image of the product measure μ(i) ⊗ P0 under the map �.

In fact, Definition 4.4, Lemma 4.5 and Lemma 4.6 can be seen as three different approaches to define the same
measure ν(i).

Now we want to extend the probability measure ν(i) to an infinite measure ν on pinned complete clusters in H that
do not depend on the point i. We recall that in [16], it is shown that the probability measure μ(i) can be extended to
an infinite measure μ on pinned loops which satisfies the properties listed below. Let u(ε) be the probability that the
loop γ (i) intersects D(0, ε). We denote by μ(z) the measure μ restricted to loops that surround z.

• For all z ∈ H, the measure μ(z) is the limit of u(ε)−1 times the law of γ (z) in a CLE, restricted to the event
{γ (z) ∩ D(0, ε) �=∅}.

• For any conformal transformation ψ from H onto itself with ψ(0) = 0, we have

ψ ◦ μ = ∣∣ψ ′(0)
∣∣−β

μ.

This is called the conformal covariance property of μ.
• For each z ∈ H, the mass of μ(z) is finite and equal to ψ ′(0)β , where ψ is the conformal map from H onto itself

with ψ(0) = 0 and ψ(z) = i.
• For two different points z, z′ ∈ H, the measures μ(z) and μ(z′) coincide on the loops that surround both z and z′.
• As ε → 0, u(ε)−1 times the law of the largest loop in a CLE that touches D(0, ε) converges vaguely to μ. When

we say ‘largest’, we will always mean that it has the largest diameter. This notion is not conformally invariant.

Note that the description of μ(z) for all z fully determines the measure μ, because every pinned loop necessarily
surrounds a small disc. Now we can define ν using the measure μ. Recall the definition of � in Section 2.

Definition 4.7. Let ν be the image under � of μ ⊗ P0.

The following lemma is a consequence of the Definition above and of the properties of μ.

Lemma 4.8. For a loop-soup in H, u(ε)−1 times the probability measure of the complete cluster with largest diameter
that intersects D(0, ε) converges vaguely as ε → 0 to ν (hence the measure converges weakly when restricted to the
complete clusters that encircle a certain point z, or to the ones with a diameter greater than some c > 0).

The measure ν also inherits the conformal covariance property from μ.

Lemma 4.9 (Conformal covariance). For any conformal transformation ψ from H onto itself with ψ(0) = 0, we
have

ψ ◦ ν = ∣∣ψ ′(0)
∣∣−β

ν.

As a consequence, for each z ∈H, the mass of ν(z) is finite and equal to ψ ′(0)β .
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Now we can upgrade ν to a measure on one-point pinned configurations by adding back all the loops outside the
pinned complete cluster. Recall that the notion of one-point pinned configurations and the function �up are defined in
Section 2.

Definition 4.10. Let the one-point pinned configuration measure ν̄ be the image of the product measure ν ⊗PH under
the map �up.

The measure ν̄ is of course conformally covariant, due to the conformal covariance of ν and PH. The measure
ν̄ is also naturally related to the exploration process. Note that ν̄ restricted to the event that the pinned complete
cluster encircles the point i is a probability measure. It is equal to the probability measure of �i(�′), where �i is the
conformal map defined in Figure 10 and �′ is the collection of loops in � that stay entirely in the domain of definition
of �i .

The results we get until here are not surprising since they are inherited from the CLE. In the next section, we are
going to exploit further the loop-soup structure and break apart the loops in the same complete cluster.

4.2. Decomposition of the one-point pinned configuration

In this section, we will make two decompositions of the one-point pinned configuration and then obtain the conformal
restriction property of the measure ρ̄A, which is a measure on a certain subset of loops of the one-point pinned
configuration defined via the first decomposition.

4.2.1. The first decomposition
Let � be a Brownian loop-soup in H. Recall that A is the set of all relatively closed sets A ⊂ H such that d(0,H\A) >

0. For A ∈ A, � can be decomposed as the union of two independent collections of loops: the collection �A of loops
that intersect A and the collection �H\A of loops that stay entirely in H \ A.

We want to make the same kind of decomposition for the measure ν̄ on pinned configurations (θ,�θ ) in H. Note
that a pinned configuration � = θ ∪�θ is also the union of the two collections of loops: the collection �A of loops that
intersect A and the collection �H\A of loops that stay entirely in H \ A. We want to show that these two collections
are ‘independent’ and that �A is supported on pinned configurations and �H\A is just a loop-soup in H \ A (hence is
equal in law to �H\A). Since we are dealing with infinite measures, the ‘independence’ needs to be stated in terms of
product measures.

As the first step, we show that the loops in �H\A are not needed to pin the complete cluster.

Lemma 4.11. For a.e. pinned complete cluster θ in the support of ν, the collection θA of loops in θ that intersect A

contains a pinned complete cluster.

Proof. We only need to prove the statement for the case where θ is not entirely contained in A. We need to rule out
the case where there is a sequence of complete clusters θn in θA such that they all intersect one common complete
cluster in θH\A and d(θn,0) goes to 0. In this case, the complete clusters θn all have diameter greater or equal than
d(0,H \ A) and the outer boundary of θ is therefore discontinuous at 0, which contradicts the fact that the outer
boundary of θ has the law of a pinned SLE loop (see [16]). �

Let V be the map that maps a pinned complete cluster θ to V (θ) which is the unique pinned complete cluster in the
collection of loops θA. The existence of V (θ) follows from Lemma 4.11 and the uniqueness is due to the fact that
two different clusters in a same loop-soup a.s. have disjoint closures hence cannot be both pinned at the origin. Let us
define the measures ρA and ρz

A.

Definition 4.12. Let ρA be the image of the measure ν under the map V . For all z ∈ A, let ρz
A be the measure ρA

restricted to the complete clusters that encircle the point z, which is a finite measure.

Let us choose some ε such that 0 < ε < d(0,H \ A). Let θε be the largest (in the sequel, by ‘largest’ we mean that
it has the largest diameter) complete cluster in � that intersects D(0, ε) and we denote its law by Pθε . Let πε

A be the
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largest complete cluster in �A that intersects D(0, ε) and we denote its law by Pπε
A. We show that ρz

A is equal to the
following limit.

Lemma 4.13. For all z ∈ A, the measure u(ε)−1Pπε
A1z∈πε

A
converges as ε → 0 to ρz

A.

Remark 4.14. For all pinned complete clusters θ , by Lemma 4.11, V (θ) necessarily surrounds a small disk in A.
Therefore, the description of ρz

A for all z ∈ A fully determines the measure ρA. We can also say that u(ε)−1Pπε
A

converges vaguely to ρA.

Fig. 11. Sketch of different collections of loops in a loop-soup �. The plain loops represent the complete clusters in �A and the dotted loops
represent the complete clusters in �H\A . Their union gives rise to complete clusters in �, such as the θε (shaded). We represent here two (rare)

configurations where J ε,δ do not occur.

Proof. We know by Lemma 4.8 that u(ε)−1 times the measure of θε converges vaguely to the measure ν as ε → 0.
The idea is to consider the respective images of Pθε and ν under the map V to deduce the convergence in the present
lemma. However the direct application of V to θε yields an empty set. Therefore we first define the map V δ that maps
a collection of loops θ to another collection of loops V δ(θ) which is the largest complete cluster in θA that intersects
D(0, δ), see Figure 11.

Let J ε,δ be the event that V δ(θε) is equal to πε
A. We first try to prove (4.1): Conditionally on the event that πε

A

encircles some point z ∈ A, the probability of J ε,δ is close to 1. In fact, conditionally on the event that πε
A encircles z,

the loops in �A \πε
A are distributed like an independent loop-soup in the unbounded connected component of H \πε

A,
restricted to the loops that intersect A. If we add back to �A \πε

A independently in a Poissonnian way all the loops that
either do not intersect A or intersect the filling of πε

A, then we get a loop-soup in H, whose complete clusters are all
bigger than those of �A \ πε

A. Among these enlarged complete clusters, the probability that there exist one complete
cluster that intersect D(0, δ) with diameter greater than d(0,H \ A) is oδ(1). Therefore with probability 1 − oδ(1),
the complete cluster V δ(θε) is either equal to πε

A, or is contained in A. However, if V δ(θε) is contained in A, then θε

must be equal to V δ(θε), in which case it must also be equal to πε
A. Therefore we have proved

P
[
J ε,δ | z ∈ πε

A

] = 1 − oδ(1). (4.1)

Therefore for all continuous and bounded functions Y , we have the following.

u(ε)−1E
[
Y

(
πε

A

)
1z∈πε

A

] = u(ε)−1E
[
Y

(
πε

A

)
1{z∈πε

A}∩J ε,δ

] + oδ(1) (4.2)

= u(ε)−1E
[
Y

(
V δ

(
θε

))
1{z∈V δ(θε)}∩J ε,δ

] + oδ(1) (4.3)

= u(ε)−1E
[
Y

(
V δ

(
θε

))
1{z∈V δ(θε)}

] + oδ(1). (4.4)
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The line (4.2) is due to (4.1), the fact that P(z ∈ πε
A)/u(ε) ≤ 1 and that

u(ε)−1P
((

J ε,δ
)c

, z ∈ πε
A

) = P
((

J ε,δ
)c | z ∈ πε

A

)
P
(
z ∈ πε

A

)
/u(ε) = oδ(1).

The line (4.4) can be deduced similarly using the fact P[J ε,δ | z ∈ V δ(θε)] = 1−oδ(1), which can be deduced similarly
to how we deduce (4.1).

Now we first let ε → 0 in (4.4) and try to show that it converges to

ν
[
Y

(
V δ(θ)

)
1z∈V δ(θ)

] + oδ(1). (4.5)

Note that Lemma 4.8 implies that u(ε)−1Pθε1{z∈θε} converges weakly to ν1{z∈θ}. However, we cannot directly apply
the weak convergence, because V δ is in general discontinuous at θ . The way we have defined d∗ makes it that we can
add as many small loops to θ as we want to create a collection θ ′ which is at small distance from θ but has a very
different cluster structure (disjoint loops in θ can be connected in θ ′ via a long chain of small loops). Nevertheless,
we can surpass this problem by constructing a sequence θεn of complete clusters (whose laws are Pθεn restricted to
those θεns that encircle z and then renormalized to total mass 1) that converges a.s. to θ . More precisely, let γn be a
simple loop that has the same law as the CLE loop in H encircling z conditioned to intersect D(0, εn). By the results
in [16] that we have recalled under Lemma 4.6, we know that the laws of γn converge weakly to μ(z) renormalized to
total mass 1. By Skorokhod’s representation theorem, we can find a sequence γn that converges a.s. to γ . Let ξ be a
collection of loops with the law P0. Let θεn be equal to �(γn, ξ). By definition 4.7 and Lemma 4.8, the θεns have the
desired distributions and converge a.s. to θ which is equal to �(γ, ξ). The maps �(γn, ·) and �(γ, ·) do not change
the cluster structure of ξ (two loops in ξ touch each other if and only if their images in θεn or θ touch each other).
Moreover, if a loop in θ touches A, then it must touch the interior of A. Then, knowing that γn converges a.s. to γ , we
can conclude that V δ(θεn) also converges a.s. to V δ(θ). Since Y is continuous, we get the desired convergence from
(4.4) to (4.5).

Then we let δ → 0 and it converges to ν[Y(V (θ))1z∈V (θ)]. Therefore we have proved

u(ε)−1E
[
Y

(
πε

A

)
1z∈πε

A

] −→
ε→0

ν
[
Y

(
V (θ)

)
1z∈V (θ)

]
,

thus proving the lemma. �

Once we have defined ρA, we can upgrade it to a measure on one-point pinned configurations. Recall the map �up

and the probability measure PA defined in Section 2.

Definition 4.15. Let ρ̄A (resp. ρ̄z
A) be the image of the product measure ρA ⊗ PA (resp. ρz

A ⊗ PA) under the map �up.

Now let us define a map U , which will turn out to relate ρ̄A to the measure ν̄ in Definition 4.10. Let (θ,�θ ) be a
loop configuration in H. Let �′ be another collection of loops in H. We define the map U that maps ((θ,�θ ),�

′) to
(θ ′,�′′) where θ ′ is the complete cluster containing θ in the new loop collection �̃ = θ ∪�θ ∪�′, and where �′′ is the
collection of all the loops in �̃ which are not in θ ′. We also denote by U1 the map from ((θ,�θ ),�

′) to θ ′ (see Figure
12).

The relation between ρ̄A and ν̄ is given by the following lemma.

Lemma 4.16 (First decomposition). The measure ν̄ is the image of ρ̄A ⊗ PH\A by the map U .

Proof. We define θ̃ ε to be the complete cluster in � which contains the collection πε
A. In other words, θ̃ ε is the image

of ((πε
A,�A \ πε

A),�H\A) under the map U1. The measure u(ε)−1Pπε
A converges vaguely to ρA, hence u(ε)−1 times

the measure of (πε
A,�A \ πε

A) converges vaguely to ρ̄A. Now we want to argue that u(ε)−1P θ̃ε converges vaguely
to ν. We already know that u(ε)−1Pθε converges vaguely to ν. The event {θ̃ ε = θε} does not always happen (as in
Figure 11), but it happens with high probability conditionally on {z ∈ πε

A}. We can adapt the same type of reasoning as
in the proof of Lemma 4.13 to conclude that u(ε)−1P θ̃ε converges indeed vaguely to ν. This implies that the measure
ν is the image of ρ̄A ⊗ PH\A under the map U1, which further implies the lemma. �
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Fig. 12. We only draw the outer boundaries of the complete clusters. The complete cluster θ is represented by the red loop. The complete clusters
in �θ are represented by the blue loops. The complete clusters in �′ are represented by the dashed loops. The shaded part represents the complete
cluster θ ′ and all the loops in �̃ that are not in θ ′ belong to �′′.

4.2.2. The second decomposition
In this section, we decompose the pinned configuration differently. For A ∈ A, a loop-soup � is the union of two
independent collections of loops: �A consisting of all the loops in � that stay entirely in A and of �H\A consisting of
all the loops in � that do not stay entirely in A.

Similarly, a pinned configuration � is the union of the two collections of loops: the collection of loops �A that stay
entirely in A and the collection of loops �H\A that do not stay entirely in A. We want to show that �A is supported
on pinned configurations and �H\A is just an ‘independent’ loop-soup. Of course, the ‘independence’ is also in the
sense of product measures.

Similarly to the first decomposition, we need to show that the loops in �H\A are not needed to pin the complete
cluster. This requires a bit more arguments than proving Lemma 4.11, because a priori the loops in �H\A can contain
some cluster that touches the origin. However we will show that it is a.s. not the case.

Lemma 4.17. Let �i be a pinned complete cluster with the law ν(i), then almost surely the origin does not belong to
any of the loops in �i .

Proof. It is equivalent, but more convenient for us to work in U, and to prove that the point 1 a.s. does not belong to
the pinned cluster �0(θ0) which is obtained from the exploration process (see Definition 4.1).

Let us first consider a loop-soup � in U, and an independent Brownian loop η which is chosen with the renormalized
Brownian loop measure restricted to those loops in U with diameter greater than δ. In � ∪ {η}, there is a complete
cluster that encircles the origin that we denote by θ̃0. When we explore along the segment [0,1] from the right to the
left, let T be the first time that we encounter θ̃0 (see Figure 13). We want to show that the point T is a.s. not on η. In
the case where η ∩ [0,1] = ∅, the point T is obviously not on η. Otherwise, let τ be the first time that we encounter
the loop η (by going from right to left along [0,1]). Note that the point τ is independent of the loop-soup �, hence τ

is a.s. in the interior of some loop in �. Therefore, τ must also be in the interior of θ̃0 and hence we must have τ < T ,
thus the point T is not on η either.

Now let us consider the loop-soup � alone. Let η be a loop uniformly chosen within the loops in � with diameter
greater than δ. Then η is distributed like a Brownian loop in U with diameter greater than δ, and is independent of
the rest of the loop-soup � \ {η}. The law of � \ {η} is absolutely continuous with respect to that of �. Let θ0 be the
complete cluster in � that surrounds the origin and let T be the right-most point on [0,1] which is in the closure of θ0.
We know that the point T is a.s. not on η by the argument of the paragraph above. Since this is true for any η in � with
diameter greater than δ and for any δ, we conclude that the point T is a.s. not on any of the loops in �. Consequently
the point 1 is not on any of the loops in �0(θ0). �

This implies in particular the following lemma.

Lemma 4.18. After removing any finite number of loops from the collection �i , among the complete clusters formed
by the remaining loops, there exist a.s. A complete cluster pinned at 0.

Proof. Let R be the finite collection of loops that we have removed from �i . Since 0 is not on any of the loops in �i ,
we only need to rule out the case where in the collection of loops �i \ R, there is a sequence of complete clusters θn
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Fig. 13. The loop-soup � (we only draw its filled complete clusters, in grey), the loop η and the stopping times τ , T .

such that they intersect a common complete cluster of R and d(θn,0) goes to 0. However this is impossible for similar
reasons as in Lemma 4.11. Note that the distance from the loops in R to 0 is strictly positive. �

This lemma tells us that a pinned complete cluster is pinned by the small loops in an infinitesimal neighborhood of
the origin. Now we are going to list the required lemmas for the second decomposition. The main idea is analogous to
the first decomposition, hence we will omit similar proofs and focus on the differences. Let W be the map that maps
a pinned complete cluster θ to the image W(θ) which is the unique pinned complete cluster in θA. The existence of
W(θ) follows from Lemma 4.18 and the uniqueness is due to the fact that two different clusters in a same loop-soup
a.s. have disjoint closures hence cannot be both pinned at the origin. We now define the measure νA.

Definition 4.19. Let νA be the image of the measure ν under the map W . For all z ∈ A, let νz
A be the measure νA

restricted to the complete clusters that encircle the point z, which is a finite measure.

Let θε
A be the largest complete cluster that intersects D(0, ε) formed by the loops in �A. Then we have the following

lemma.

Lemma 4.20. For all z ∈ A, the measure u(ε)−1Pθε
A1z∈θε

A
converges as ε → 0 to νz

A.

Proof. We define the map Wδ that maps a collection of loops θ to another collection of loops Wδ(θ) which is the
largest complete cluster that intersects D(0, δ) formed by the loops in θ that stay entirely in A. Let Hε,δ be the
event that Wδ(θε) is equal to θε

A. Then conditionally on the event {z ∈ θε
A} for some point z ∈ A, the probability of

Hε,δ is close to 1. In fact, conditionally on the event that θε
A encircles z, the loops in �A \ θε

A are distributed like an
independent loop-soup in A \ θε

A. On the event (Hε,δ)c for which Wδ(θε) is not equal to θε
A, the union of the loops in

�H\A and the loops in �A \ θε
A must contain a cluster that touch both D(0, δ) and H \ A. The probability of this event

goes to 0 as δ → 0. Therefore we have proved

P
[
Hε,δ | z ∈ θε

A

] = 1 − oδ(1).

The rest of the proof stays very similar to that of Lemma 4.13, hence we leave it to the reader. �

Now let θA(z) be the complete cluster in θA that encircles the point z. We have the following lemma, which can be
taken as an alternative definition of νz

A.

Lemma 4.21. For all z ∈ A, the measure u(ε)−1PθA(z)1θA(z)∩D(0,ε)�=∅ converges as ε → 0 to νz
A.
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Proof. Note that, conditionally on the event θA(z) ∩ D(0, ε) �=∅, the set θA(z) is with high probability equal to the
set θε

A. Then we can apply Lemma 4.20 to conclude. �

Before stating the second decomposition lemma, let us point out that the measure νA is related to the previously
defined measure ν (which is in fact νH). It is reasonable to expect that for simply connected A, νA is equal to the
image of the measure νH under some given conformal map from H onto A, up to a covariance constant. For more
general (not simply connected) domains A ∈A, we also expect the conformal covariance to hold. Lemma 4.25 (second
decomposition) that will be proved later can be seen as a restriction property of the measure ν. With a little abuse of
notation (talking about νA1 , νA2 as if they were probability measures), we can say that for A1 ⊂ A2, if θA2 is a pinned
complete cluster in A2 with the law νA2 , then the pinned complete cluster formed by the loops in θA2 that stay in A1
is distributed like νA1 . Now we state the above-mentioned properties in the following lemmas.

Lemma 4.22. Let A1, A2 be two domains such that there is a conformal map ϕ from A1 onto A2. The measure νA1

is equal to ϕ′(0)−β times the image of νA2 under ϕ−1.

Proof. The loop-soup itself is conformally invariant. Therefore ϕ(θA1(z)) has the same law as θA2(z
′) where z′ =

ϕ(z). The characterization of Lemma 4.21 and the fact that u(cε)/u(ε) → cβ imply that ϕ ◦ νz
A1

= ϕ′(0)−βνz′
A2

. Since
this is true for all z, z′, we have proved the lemma. �

We can further upgrade νA to a measure ν̄A on pinned configurations in A.

Definition 4.23. Let the measure ν̄A be equal to the image of the measure νA ⊗ PA under the map �up.

It is clear that ν̄A also satisfies the same conformal covariance property as νA.

Lemma 4.24. Let A1, A2 be two domains such that there is a conformal map ϕ from A1 onto A2. The measure ν̄A1

is equal to ϕ′(0)−β times the image of ν̄A2 under ϕ−1.

Now we are ready to state the second decomposition lemma. The proof is quite similar to that of Lemma 4.16. We
leave the details to the reader as an exercise.

Lemma 4.25 (Second decomposition). The measure ν̄ is the image of ν̄A ⊗ PH\A by the map U .

4.2.3. The conformal restriction property of the measure ρA

Recall that ρ̄A is the measure defined in Lemma 4.13.

Lemma 4.26. Let (θ,�) be a configuration supported by the measure ρ̄A. Let B , B̃ be relatively closed sets such that
H \ B,H \ B̃ ∈A, and that there is a conformal map ϕ from H \ B onto H \ B̃ . Then the measure ϕ(ρ̄A) restricted to
the event {(θ ∪ �) ∩ B =∅} is equal to ϕ′(0)−β times the measure ρ̄ϕ(A) restricted to the event {(θ ∪ �) ∩ B̃ =∅}.

Proof. A one-point pinned configuration supported by ν̄ is the union of 4 disjoint collections of loops: the collection
C1 of loops that touch A but not B , the collection C2 of loops that touch B but not A, the collection C3 of loops that
touch both A and B , and the collection C4 of loops that touch neither A nor B (see Figure 14).

By the first decomposition lemma applied to the set A, the collection C1 ∪ C3 follows the measure ρ̄A and the
collection C2 ∪C4 is an independent loop-soup in H \A. The event {(C1 ∪C3)∩B =∅} is the same as the event that
C3 =∅.

By the second decomposition lemma applied to the set H \ B , the collection C1 ∪ C4 follows the measure of ν̄H\B
and is independent of the collection C2 ∪ C3.

The two decompositions imply that the four sets C1, C2, C3, C4 are independent from each other. In particular, the
collection C1 ∪ C3 conditioned on the event C3 =∅ is simply the collection C1.
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Fig. 14. The 4 different sets of loops: C1 is drawn in red, C2 in blue, C3 in yellow and C4 in dashed black. We only draw the outer boundaries of
the complete clusters composed of the loops in each of the collections C1, . . . ,C4.

The same arguments apply for the pinned configuration in H \ B̃ and we denote the corresponding sets by
C̃1, . . . , C̃4. The lemma boils down to proving that the measure of ϕ(C1) is equal to ϕ′(0)−β times the measure
of C̃1. However we know by Lemma 4.24 that the measure of the pinned configuration ϕ(C1 ∪C4) is equal to ϕ′(0)−β

times the measure of (C̃1 ∪ C̃4). Note that ϕ(C1) is the image of ϕ(C1 ∪ C4) under the map of keeping only those
loops that intersect A. So is C̃1 the image of (C̃1 ∪ C̃4) under the same map. We can thus conclude. �

5. The glued configuration

In this section, we will first define the two-point pinned configuration and the glued configuration. Then we will make
a decomposition of the glued configuration and prove the conformal restriction property of the boundary-touching
loops in the glued configuration, thus proving the main theorem.

5.1. Markovian exploration and the glued configuration

In this section, we will continue to perform the Markovian exploration on the one-point pinned configuration in order
to obtain at first the two-point pinned configuration and then the glued configuration. This procedure is also explained
for CLE in [16]. In fact, the one-point pinned configuration satisfies the same CLE-type of restriction property as
the original loop-soup and we can again explore it from the boundary. In the following, we describe the exploration
process, but omit the proofs that can either be found in [16], or are similar to those in Section 4.1.

Note that the ν̄-mass of the pinned configurations where the pinned complete cluster intersects the vertical half-line
1 + iR+ is finite.

Definition 5.1. Let Q0 to be the renormalized probability measure of ν̄ restricted to such configurations.

Let (θ1,�1) be a one-point pinned configuration with the law Q0. We can explore (θ1,�1) by moving upwards the
half-line 1+ iR+, see Figure 15. Let T = inf{t ≥ 0,1+ t i ∈ θ1} be the first moment that the half-line intersects θ1. Let
Ã be the closure of the union of [1,1 + T i) with all the complete clusters that it intersects. Let H 0 be the unbounded
connected component of H \ Ã. Let � be the conformal map from H 0 onto H which sends 0, 1 + T i to 0, 1 with
� ′(0) = 1. Then (�(θ1),�(�1)) is a two-point pinned configuration.

Definition 5.2. Let Q denote the probability measure of the two-point pinned configuration (�(θ1),�(�1)).

Similarly to Section 4.1, the law of �(θ1) does not depend on the map � and can be obtained as the following
limit.

Lemma 5.3. The law Q0 conditioned on the event {θ1 ∩ D(0, ε) �=∅} converges as ε → 0 to Q.

It can again be proved that the two-point pinned configuration with the law Q still satisfies the CLE-type restriction
property. Let (θ2,�2) be a two-point pinned configuration with the law Q. Let γ − denote the lower boundary of the
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Fig. 15. The exploration of the one-point pinned configuration and the Definition of the measure Q on two-point pinned complete clusters.

two-point pinned complete cluster θ2 (γ − has 0 and 1 as extremities, see Figure 16). We denote by �+ all the loops
in the two-point configuration which are above γ − (including those loops that touch γ −). We define ϕ− to be the
conformal map from the unbounded connected component of H \ γ − onto H that preserves the points 0, 1 and such
that (ϕ−)′(0) = 1.

Definition 5.4. Let Qg be the probability measure of the glued configuration ϕ−(�+) and we call ϕ−(θ2) the glued
complete cluster.

The CLE-type loop-restriction property of the two-point pinned configuration implies that ϕ−(�+) is independent
of γ −.

Fig. 16. The map ϕ− and the glued configuration.

Fig. 17. One-point pinned configuration conditioned on Eδ .

Note that the measures Q, Qg are also invariant under all conformal mappings from H onto itself that leave the
points 0, 1 invariant. This is due to the conformal covariance property of ν and the fact that Q, Qg are normalized to
be probability measures.
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Now, similarly to Lemma 5.3, we want to claim that the measure Qg is the measure Q0 conditioned on the event
that its one-point pinned complete cluster has [0,1] as a part of its boundary. This event has zero probability and
we have to make sense of it by taking the limit. Let (θ1,�1) be a one-point pinned configuration with the law Q0.
Note that the outer boundary of the pinned complete cluster θ1 is a simple loop, and hence can be parametrized in the
trigonometric orientation by a continuous function γ : R → R

2 such that γ (0) = 0+, γ (∞) = 0−. Let T = inf{t ≥
0, γ (t) ∈ [1,1 + 2δi]} with the convention that inf∅ = ∞. Let Eδ be the event that the complete cluster θ1 intersects
the line segment [1,1+2δi] (so T < ∞) and that γ ([0, T )) is a subset of the rectangle Rδ = [−δ,1]× [0,2δ], namely
the event that the first part of the boundary of θ1 stays close to [0,1] (see Figure 17).

Lemma 5.5. Let Qδ be the measure Q0 conditioned on the event Eδ . Then Qδ converges as δ → 0 to the glued
configuration Qg .

Proof. Let (θδ
1 ,�δ

1) be a one-point pinned configuration with the law Qδ . We perform the gluing-down procedure
that was explained above: we first explore (θδ

1 ,�δ
1) along [1,1 + 2δi] until the first time we hit the pinned complete

cluster and then map it down by � to get the two-point pinned configuration; then we again map it down by ϕ− to
get the glued configuration (θδ

g ,�δ
g). The configuration (θδ

g ,�δ
g) is independent of γ ([0, T ]). However the condition

on Eδ is a condition solely on γ ([0, T ]). Hence (θδ
g ,�δ

g) has the same law as a glued configuration obtained from an
unconditioned one-point pinned configuration. Therefore (θδ

g ,�δ
g) has the law Qg .

Now it is enough to show that for all ε > 0, the probability that the d∗ distance between (θδ
g ,�δ

g) and (θδ
1 ,�δ

1) be
greater than ε decays to 0 as δ → 0. For this, it is enough to show that when δ → 0, the two conformal maps � and
ϕ− that we applied in the gluing procedure are both very close to the identity with probability tending to 1. This can
be deduced from basic properties of the loop-soup/CLE (note that �δ

1 is just an ordinary loop-soup in H \ θδ
1 ). �

To end this section, we describe another way to obtain the glued configuration with the law Qg , which is by cutting
along the boundary of a one-point pinned complete cluster. This was stated and proved in [16, Lemma 6.4] for the
CLE case. We will state in Lemma 5.6 the version for the loop-soup case. The proof is the same, hence we do not
repeat the details. The idea is that instead of exploring along the vertical half-line 1 + iR+, we can explore along any
deterministic path in H with starting point on the boundary, and this leads to the same glued measure. For all simple
paths that follow the dyadic grids, conditionally on the fact that the first part of the boundary of the pinned complete
cluster is close to this dyadic path, the gluing down procedure is very close to the procedure of cutting along that part
of the boundary of the pinned complete cluster.

More precisely, let (θ1,�1) be sampled with the law Q0. Let γ be the outer boundary of the complete cluster θ1. We
give γ the following parametrization (see Figure 18). We orient γ “counterclockwise”, starting from 0+ and ending
at 0−. Fix some r ∈ (0,1]. Let z0 be the first intersection point of γ with {z : |z| = r}. We define b0 := b0(γ ) to be the
initial part of the loop between 0 and z0, and we call e0 := e0(γ ) the end-part of the loop γ between z0 and 0. Let h0

denote the conformal mapping from H \ b0 onto H normalized by h0(z0) = 1, h0(0−) = 0, h0(∞) = ∞. The image
of e0 under h0 is a simple path from 1 to 0 in H that we now call ξ . We parametrize ξ in such a way that, the image
of ξ([0, t]) under the conformal map z 
→ 1 − 1/z has half-plane capacity t . We denote by ft some given conformal
map from H \ ξ([0, t]) onto H that sends the points 0, ξ(t) to 0, 1. Let ht = ft ◦ h0. We can now state the following
lemma.

Lemma 5.6. For all t ≥ 0, the image under ht of (θ1,�1) has the law Qg .

5.2. Decomposition of the glued configuration

In this section, we are going to decompose the glued configuration with the law Qg . Note that a glued configuration
is the union of two collections of loops: the collection K of loops that intersect [0,1] and the collection �0 of loops
that do not intersect [0,1]. Our goal is to show that K satisfies conformal restriction property and that the collection
�0 is just an independent loop-soup in H.
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Fig. 18. The conformal maps h0 and ft .

Lemma 5.7 (Decomposition of the glued configuration). The collections K and �0 are independent. The law of �0
is that of a loop-soup in H.

Proof. We will use the first decomposition lemma for the one-point pinned complete cluster and then combine this
with Lemma 5.5 to conclude.

Let (θδ
1 ,�δ

1) be some one-point pinned configuration with the law Qδ . Then the union θδ
1 ∪ �δ

1 is also the union of
the following two collections of loops: the collection Kδ of loops that intersect Rδ , and the collection �δ

0 of loops that
do not intersect Rδ . Note that the measure Qδ is in fact equal to ν̄ restricted to the event Eδ and then renormalized to
have total mass 1. By adapting fairly directly the arguments in [14, Lemma 4], we can see that the event Eδ is entirely
determined by the loops in Kδ , and hence is independent of the collection �δ

0. Therefore, by applying Lemma 4.16
(first decomposition) to (θδ

1 ,�δ
1) and Rδ , we can show that the two sets Kδ and �δ

0 are independent, and moreover,

• The collection Kδ has the law pδ , where pδ is a probability measure defined to be the (infinite) measure ρ̄Rδ

restricted to the event Eδ and then renormalized.
• The collection �δ

0 is just a loop-soup in H \ Rδ .

Now our goal is to show that the couple (Kδ,�δ
0) converges in law jointly to the couple (K,�0), thus proving the

lemma. Recall that Lemma 5.5 says that the configuration Kδ ∪ �δ
0 converges in law to the configuration K ∪ �0. We

can then approximate (Kδ,�δ
0) by the image of Kδ ∪ �δ

0 under Xε , which maps a set � of loops in H to the couple
(�1,�2) where �1 consists of all the loops in � that intersect the rectangle Rε and �2 = � \ �1. Then the image
measure Xε(Qδ) converges as δ → 0 to Xε(Qg). Then again, as ε → 0, the measure Xε(Qg) converges to the law of
the couple (K,�0). It remains to show that, with high probability, Xε(θδ

1 ∪ �δ
1) is very close to (Kδ,�δ

0) with respect
to d∗, uniformly for all δ < ε. This is true because the loops that intersect Rε but not Rδ are with high probability very
small. �

Now we are going to show that K satisfies conformal restriction.

Proposition 5.8. The set K satisfies conformal restriction, namely for all closed sets B , B̃ such that H\B,H\ B̃ ∈A
and that there is a conformal map ϕ from H \ B onto H \ B̃ , the law of ϕ(K) conditionally on {K ∩ B = ∅} is equal
to the law of K conditionally on {K ∩ B̃ =∅}.

Proof. We continue with the notations of the proof of the previous lemma. We will show that the set Kδ (with the law
pδ) satisfies conformal restriction and then conclude by letting δ go to 0.

Let � be a one-point pinned configuration in the support of ν̄. We denote by �Rδ the set of loops in � that touch
Rδ . In the following, we will talk about ‘conditioning’ of infinite measures on some event of finite mass, meaning that
we first restrict the measure to this event and then renormalize it to be a probability measure.

Let pδ
B be the measure pδ conditioned on {Kδ ∩ B =∅}. In other words, pδ

B is also equal to the measure ρ̄Rδ first
‘conditioned’ on Eδ and then conditioned on {�Rδ ∩B =∅}. We can also exchange the order of conditioning and say
that pδ

B is identical to the measure ρ̄Rδ first restricted to the event {�Rδ ∩ B =∅} and then ‘conditioned’ on Eδ .
By Lemma 4.26, the measure ϕ(ρ̄Rδ ) restricted to {�Rδ ∩ B = ∅} is equal to ϕ′(0)−β times the measure ρ̄ϕ(Rδ)

restricted to {�ϕ(Rδ) ∩ B̃ = ∅}. Hence ϕ(pδ
B) is equal to the measure ρ̄ϕ(Rδ) first restricted to {�ϕ(Rδ) ∩ B̃ = ∅} and

then ‘conditioned’ on ϕ(Eδ) where ϕ(Eδ) is the event that the pre-image by ϕ of a configuration satisfies the event
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Eδ . We can again exchange the order of conditioning. Hence ϕ(pδ
B) is equal to the measure ρ̄ϕ(Rδ) first ‘conditioned’

on ϕ(Eδ) and then conditioned on {�ϕ(Rδ) ∩ B̃ =∅}.
On the one hand, we know by Lemma 5.7, that as δ → 0, ϕ(pδ

B) converges to the measure of ϕ(K) conditioned on
{K ∩B =∅}. On the other hand, the measure ρ̄ϕ(Rδ) first ‘conditioned’ on ϕ(Eδ) and then conditioned on {�Rδ ∩ B̃ =
∅} converges in law to K conditioned on {K ∩ B̃ = ∅} as δ → 0, for the same reason as stated in Lemma 5.5, 5.7.
Therefore we have proved the proposition. �

In addition to this proposition, to determine the law of the outer boundary (or the filling) of K , it is [6] enough to
find out the restriction exponent α defined in (1.1). Let F(K) be the filling of the union of all the loops in K . Then
we have the following proposition.

Proposition 5.9. The set F(K) satisfies one-sided chordal restriction with exponent α = (6 − κ)/(2κ).

Proof. The set F(K) satisfies one-sided chordal restriction with a certain exponent α > 0. It was shown in [21] that for
a one-sided restriction sample J of exponent α and an independent CLEκ , the outer boundary of the union of J with
all the loops in the CLEκ that it intersects has the law of a SLEκ(ρ) such that α = (ρ + 2)(ρ + 6 − κ)/(4κ),ρ > −2.
Therefore, Lemma 5.7 and Lemma 5.6 imply that the curve ht (e0(γ )) is a SLEκ(ρ). However we also know [16] that
the curve ht (e0(γ )) is in fact a SLEκ with ρ = 0. Therefore we must have α = (6 − κ)/(2κ). �

Let us now explain why these decomposition and conformal restriction statements for the glued configuration in
the upper half-plane do imply our main result for explorations of CLE. For this, using conformal invariance, we need
to show that the image under fT of the loop-soup � in Figure 7 is exactly a glued configuration in U. This will come
as a rather direct consequence of the fact derived in [16] that when one explores/constructs a CLE in a Markovian
way, the bubbles that one encounters are distributed like a Poisson point process with intensity given by the (infinite)
pinned loop measure μ. More precisely, it is shown in [16] that one can construct the CLE in a Markovian way,
by composing an ordered countable family (ftn) from the connected component of U \ ξγtn outside of ξγtn onto
U, where (γtn) is obtained via a Poisson point process of loops pinned on 1 with intensity μ, and the pinned point
ξ is chosen on ∂U in a measurable way with respect to the past exploration. For instance, when exploring along
[−1,1], the successive (infinitely many) loops that one meets in Figure 1 (resp. the clusters in Figure 7) are exactly
distributed as a Poisson point process with intensity μ (resp. ν). In the setting of Figure 7, up to T such that γT is
in the middle of a loop, fσ(T )(�) (where fσ(T ) is any conformal map from U \ Kσ(T ) onto U) is a one-point pinned
configuration “conditioned” on the partial discovery of the boundary of its pinned cluster i.e. of fσ(T )(γ (σ (T ), T ))

(this conditioning makes that fσ(T )(�) is indeed defined under a probability measure). Then we can further map out
the curve fσ(T )(γ (σ (T ), T )) and deduce by Lemma 5.6 that fT (�) is a glued configuration.

Finally, in order to complete the proof of Theorem 1.6, it remains to prove Proposition 1.4 i.e. that the set �b

satisfies interior restriction.

Proof of Proposition 1.4. Here we go back to the unit disk setting and we continue with the notation in the introduc-
tion. We adopt the exploration process with radial parametrization as described in and above Figure 1. Note that S is
the time at which we discover the (entire) loop surrounding the origin.

By looking at stopping times tending to S, we deduce from the main theorem that the set �b satisfies interior
restriction with the marked point ϕS(1). However we can rule out the dependence of the law of �b on the point ϕS(1)

in a similar way as in the proof of Lemma 3.3. Therefore �b satisfies interior restriction. �
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