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METASTABILITY OF THE CONTACT PROCESS ON FAST
EVOLVING SCALE-FREE NETWORKS

BY EMMANUEL JACOB1, AMITAI LINKER2 AND PETER MÖRTERS3

Ecole Normale Supérieure de Lyon, Universidad de Chile and Universität zu Köln

We study the contact process in the regime of small infection rates on fi-
nite scale-free networks with stationary dynamics based on simultaneous up-
dating of all connections of a vertex. We allow the update rates of individual
vertices to increase with the strength of a vertex, leading to a fast evolution of
the network. We first develop an approach for inhomogeneous networks with
general kernel and then focus on two canonical cases, the factor kernel and
the preferential attachment kernel. For these specific networks, we identify
and analyse four possible strategies how the infection can survive for a long
time. We show that there is fast extinction of the infection when neither of the
strategies is successful, otherwise there is slow extinction and the most suc-
cessful strategy determines the asymptotics of the metastable density as the
infection rate goes to zero. We identify the domains in which these strategies
dominate in terms of phase diagrams for the exponent describing the decay
of the metastable density.

1. Introduction. The spread of disease, information or opinion on networks
has been one of the most studied problems in mathematical network science over
the past decade. There has been tremendous progress related to a variety of spread-
ing processes and underlying network models. For the vast majority of these stud-
ies, the network has been assumed to be fixed—at least on the time scales of the
processes running on the network. Real networks however undergo change and
this change is often on a similar time scale as the spreading processes running
on the networks. The problem of temporal variability of the networks, and how
this variability can interfere with processes on the network has received little at-
tention so far in the mathematical literature. The aim of this paper is therefore to
investigate the possible effects of stationary dynamics of a network on the spread
of an infection by offering an extensive case study based on the following basic
assumptions:
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• Scale-free network model. We look at the class of sparse inhomogeneous ran-
dom graphs. For this class, vertices are labelled by indices from {1, . . . ,N}
and edges exist independently with the probability of an edge {i, j} given as
1
N

p(i/N, j/N) ∧ 1 for a suitable kernel p : (0,1] × (0,1] → (0,∞). We focus
on two universal types of kernel, which produce scale-free networks. The fac-
tor kernel reproduces the asymptotic connection probabilities of most standard
scale-free network models without significant correlations when the vertices are
ordered by decreasing strength. This includes the Chung–Lu [4], Norros–Reittu
[11] and configuration models [9]. The preferential attachment kernel repro-
duces the connection probabilities of various preferential attachment models
[1, 5]; see [12] for a recent survey of static network models.

• Fast network evolution. We focus on fast dynamics, which arise, for example,
as a rough approximation of migration effects in networks where links corre-
spond to physical proximity. In our network dynamics, all edges adjacent to a
vertex are updated simultaneously at a rate that may depend increasingly on the
vertex strength, so that the most relevant vertices can update relatively quickly.
Upon updating a vertex loses all its connections, and new connections are built
independently. The connection probabilities of a vertex remain the same before
and after the update, so that the network evolution is stationary.

• SIS type epidemic process on the network. We investigate the contact process,
or SIS infection. The key feature which makes this process interesting from our
point of view is that in order to survive the infection travels many times along
individual edges, so that temporal changes in the status of edges become relevant
for the behaviour of the infection. For the contact process on scale-free networks
with the factor kernel, this feature leads to different qualitative behaviour of the
static model and its classical mean-field approximation, as explained in [3]; see
also [2, 6]. It is therefore a natural question to ask how the contact process
behaves for dynamic models that interpolate between the static and the mean-
field case.

An evolving network is a (random) family (G (N)

t : t ≥ 0,N ∈ N) of graphs, where
G (N)

t has vertex set {1, . . . ,N}. Conditionally on this network evolution, the con-
tact process on (G (N)

t : t ≥ 0) is a time-inhomogeneous Markov process that can
be defined as follows: Every vertex v may be healthy or infected; if infected, every
adjacent healthy vertex gets infected with rate λ up until the recovery of v, which
happens at rate one. When a vertex recovers, it is again susceptible to infection.
We write Xt(v) = 1 if the vertex v ∈ {1, . . . ,N} is infected at time t and Xt(v) = 0
otherwise.

The state when every vertex is healthy is absorbing and can be reached at any
time from every other state in finite time with positive probability. Hence there
exists a finite time Text, called the extinction time, which is the infimum over all
times where the contact process is in the absorbing state. If the evolving network
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is itself a (time-homogeneous) Markov process, then (G (N)

t ,Xt )t≥0 is also a (time-
homogeneous) Markov process, and we will work within this context. More pre-
cisely, the evolving network we consider is a stationary Markov process, and unless
otherwise specified, we start the process with the network distributed according to
the stationary measure, and the contact process with every vertex infected. Our
interest is in the size of the extinction time in that case.

We say that the system experiences fast extinction if, for some sufficiently small
infection rate λ > 0, the expected extinction time is bounded by a power of the
network size. We say that we have slow extinction if, for every infection rate λ > 0,
the extinction time is at least exponential in the network size with high probability,
more precisely there exists a positive constant c such that, uniformly in N > 0, we
have

P
(
Text ≤ ecN )≤ e−cN .

Slow extinction is a phenomenon of metastability, a physical system reaching its
equilibrium very slowly because it spends a lot of time in states which are local en-
ergy minima, the so-called metastable states. Metastability in our model suggests,
informally, that starting from all vertices infected the density of infected vertices is
likely to decrease rapidly to a metastable density, and stay close to this density up
to the exponential survival time of the infection. Metastable densities for the con-
tact process have been studied in the case of static networks by Mountford et al.
in [10]. Our interest in metastable densities stems from the fact that, when seen
as a function of small λ, they reflect which is the optimal survival strategy for the
infection. As we shall see, the optimal survival strategies changes as we vary the
network parameters, defining phase transitions.

To understand the mechanisms behind slow extinction, we follow [2] and first
look at a star graph, that is, a single central vertex connected to k neighbouring
vertices of degree one. If only the centre is initially infected, at the time of its
first recovery it has on average λk

λ+1 ∼ λk infected neighbours. The probability that
none of these neighbours reinfects the centre is therefore approximately(

1

1 + λ

)λk

∼ e−λ2k.

Hence the infection survives for a long time on the star graph if k 	 λ−2 and in
this case the survival time is exponential in λ2k.

If now the central vertex in the star graph updates at fixed rate κ , and upon
updating is connected to k uninfected vertices, at the time r of the first recovery
we have on average order λk infected neighbours. The probability that none of
them reinfects the centre before it updates is

κ

λ2k + κ

and in this case we call r a true recovery (as opposed to simple recovery) since
then (and only then) the infection becomes extinct. Again the infection survives
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for a long time on the star graph if k 	 κλ−2 but now the survival time in this
case is of order λ2k, that is, linear in the degree of the central vertex as opposed to
exponential as in the case of the star graph without updating.

To understand the survival of infections on a (static or evolving) inhomogeneous
random graph, we classify vertices as stars and connectors where stars have large
degree and connectors do not. Assuming that the kernel p is decreasing in every
component, we use a function a(λ) ↓ 0 to perform such a classification, where the
set of stars S is

S := {
1, . . . ,

⌊
a(λ)N

⌋}
,

and its elements have degree asymptotically bounded from below by
∫ 1

0 p(a(λ),

x) dx. We think of stars acting locally like the centres in a star graph (hence the
name) with most of their neighbours in the complementary set C of connectors. In
particular, an individual star can hold the infection for a long time if∫ 1

0
p
(
a(λ), x

)
dx 	 λ−2.

Slow extinction of the infection is based on a collective strategy such that, given
that a positive proportion of vertices in the set S is infected, up to an exponen-
tially small error probability a positive proportion of vertices in S will again be
infected after a time span given by the recovery cycle of the stars. The existence of
such a strategy ensures that the infection is kept alive on S for an exponentially
long time, making this set the skeleton of the infection. To obtain the metastable
density associated to any given survival strategy, we find first a maximal function
a(λ) ↓ 0 (which defines S ) such that the strategy holds, and obtain the density as
the number of infected direct neighbours of S divided by the total number N of
vertices.

We have identified four relevant survival strategies for the infection:

(i) Quick direct spreading
Stars directly infect sufficiently many other stars before simple recoveries, so that
the infection can be kept alive for a long time on the subgraph of stars alone. The
connectors play no role for the survival of the infection.

(ii) Delayed direct spreading
As described for the star graph above, in this mechanism a star can retain an infec-
tion on a longer time scale if the lower bound on its degree is of larger order than
λ−2. Operating on this longer time-scale stars spread the infection directly to other
stars and keep the infection alive.

(iii) Quick indirect spreading
Stars infect a large number of their neighbours before a simple recovery, and these
neighbours then pass on the infection to other stars. In this way, stars indirectly
infect sufficiently many other stars keeping the infection alive.
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(iv) Delayed indirect spreading
As described for the delayed direct mechanism, a star retains the infection on a
longer time scale if the lower bound on its degree is of larger order than λ−2. On
this time-scale, stars pass the infection to other stars via their infected neighbours,
as in the quick indirect mechanism.

Assume now that G (N)

0 is an inhomogeneous random graph with a kernel p and
suppose that in the evolving network (G (N)

t : t ≥ 0) every vertex updates with rate κ

and upon updating it receives a new set of adjacent edges with the same probability
as before, given by the kernel p. We now formulate and explain heuristically our
results for the case of updating with constant rate κ in the case of the factor and
preferential attachment kernel. Results for more general kernel and update rules
will be formulated in the next section when we present our main results.

Define

IN(t) := 1

N
E

[
N∑

v=1

Xt(v)

]
,

to be the expected density of infected vertices at time t . Using the self-duality of
the contact process [8], Chapter VI, we get

(1) IN(t) = 1

N

N∑
v=1

Pv(Text > t),

where Pv refers to the contact process started with only vertex v infected. We say
that the contact process has lower metastable density ρ−(λ) and upper metastable
density ρ+(λ) if, whenever tN is going to infinity slower than exponentially, we
have4

0 < ρ−(λ) = lim inf
N→∞ IN(tN) ≤ lim sup

N→∞
IN(tN) = ρ+(λ).

We say that ξ is the metastability exponent of the process if the lower and upper
metastability densities exist for sufficiently small λ > 0 and satisfy

ξ := lim
λ↓0

logρ−(λ)

logλ
= lim

λ↓0

logρ+(λ)

logλ
.

Loosely speaking, the metastability exponent measures the rate of decay of the
metastable density as the infection rate λ approaches the critical value zero.

We first look at the factor kernel

p(x, y) = βx−γ y−γ for some β > 0 and 0 < γ < 1.

It is easy to see that the inhomogeneous networks with kernel p are scale-free with
power-law exponent τ = 1 + 1

γ
. Our first result shows that in the case of factor

4Actually, a more precise and slightly stronger metastability definition is given in next section.
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kernels there are two phase transitions in the behaviour of the contact process with
small infection rates.

PROPOSITION 1. Suppose p is a factor kernel with parameter 0 < γ < 1.

(a) If 0 < γ < 1
3 we have fast extinction, and if 1

3 < γ < 1 slow extinction.
(b) If 1

3 < γ < 1 the metastability exponent exists and equals

ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

3γ − 1
if

1

3
< γ <

2

3
,

γ

2γ − 1
if

2

3
< γ < 1.

(a) is the main result of Jacob and Mörters [7].
We argue now informally that in the regime 1/3 < γ < 2/3 the strategy of

delayed direct spreading prevails, whereas for γ > 2/3 it is quick direct spreading
that is most successful. For γ < 1/3, none of the strategies succeed.

Under quick direct spreading, the infection can be sustained on S if a(λ) sat-
isfies ∫ a(λ)

0

∫ a(λ)

0
λp(x, y) dx dy ≈ a(λ),

which arises from equating the initial amount of infected stars with the vertices
in S infected by those stars before one unit time, which is the average time it
takes to have simple recoveries. This equation yields a(λ) ≈ λ1/(2γ−1), which is
admissible if γ > 1

2 . We hence get a lower bound for the lower metastable density

ρ−(λ) ≈
∫ a(λ)

0

∫ 1

0
λp(x, y) dx dy ≈ λa(λ)1−γ ≈ λ

γ
2γ−1 .

For the delayed mechanism, on the other hand, we note that the lower bound on
the expected degree of a star is a(λ)−γ , and hence the infection can be held at a
star on a time scale of

T (λ) = λ2a(λ)−γ ,

which the average time until a true recovery. Now by the same principle as in the
quick mechanism a(λ) has to satisfy

T (λ)

∫ a(λ)

0

∫ a(λ)

0
λp(x, y) dx dy ≈ a(λ),

hence a(λ) ≈ λ
3

3γ−1 which is admissible if γ > 1
3 . This yields a lower bound of the

form

ρ−(λ) ≈ λa(λ)1−γ ≈ λ
2

3γ−1 .
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Comparing both densities, the delayed strategy therefore wins if 1
3 < γ < 2

3 , but if
γ > 2

3 the quick strategy wins. The other two strategies we have identified turn out
to be inferior in any case. If γ < 1

3 none of the strategies succeeds, that is, gives an
admissible value of a(λ).

The situation is quite different for preferential attachment kernels given by

p(x, y) = β(x ∧ y)−γ (x ∨ y)γ−1 for some β > 0 and 0 < γ < 1.

As before, the networks with kernel p are easily seen to be scale-free with the
same power-law exponent τ = 1 + 1

γ
.

PROPOSITION 2. Suppose p is a preferential attachment kernel with parame-
ter 0 < γ < 1.

(a) For all 0 < γ < 1 there is slow extinction.
(b) The metastability exponent exists and equals

ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 − 2γ

γ
if γ <

3

5
,

3 − γ

3γ − 1
if γ >

3

5
.

We now explain heuristically that in the regime γ < 3/5 the strategy of delayed
direct spreading prevails, whereas for γ > 3/5 it is delayed indirect spreading that
is most successful.

For delayed direct spreading a(λ) again has to satisfy

T (λ)

∫ a(λ)

0

∫ a(λ)

0
λp(x, y) dx dy ≈ a(λ),

for the time scale T (λ) = λ2a(λ)−γ . For the preferential attachment kernel, this
gives a(λ) ≈ λ3/γ , which is always admissible. This mechanism then yields

ρ−(λ) ≈ λa(λ)1−γ ≈ λ
3−2γ

γ .

For the indirect mechanism, the equation for a(λ) changes to

T (λ)

∫ a(λ)

0

∫ 1

a(λ)

∫ a(λ)

0
λ2p(x, y)p(y, z) dx dy dz ≈ a(λ),

where the term on the left represents the amount of stars infected by connectors
that where in turn infected by the initially infected stars in a time-scale of order
T (λ). This gives a(λ) ≈ λ4/(3γ−1) for γ > 1/2, which is admissible and yields

ρ−(λ) ≈ λa(λ)1−γ ≈ λ
3−γ
3γ−1 .

Comparing once again the resulting densities, the indirect strategy therefore wins
if γ > 3/5, otherwise the direct strategy wins.
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To better understand the metastability phenomenon and explore the full range of
possible optimal strategies, we move in the next section to a model where update
rates can depend on the vertex strength. A rich and beautiful picture emerges from
this.

2. Statement of the main results. Recall that for N ∈ N the inhomogeneous
random graph G (N) has vertex set {1, . . . ,N} and every edge {i, j} exists indepen-
dently with probability

pi,j := 1

N
p

(
i

N
,

j

N

)
∧ 1,

where p : (0,1] × (0,1] → (0,∞) is a kernel for which we make the following
assumptions:

(1) p is symmetric, continuous and decreasing in both parameters,
(2) there is γ ∈ (0,1) and constants 0 < c1 < c2 such that for all a ∈ (0,1),

(2) c1a
−γ ≤ p(a,1) ≤

∫ 1

0
p(a, s) ds < c2a

−γ .

Observe that for every f : (0,1] → (0,∞) decreasing, continuous and integrable,
the kernel p(s, t) = (s ∧ t)−γ f (s ∨ t) satisfies conditions (1) and (2). The choices
f (x) = βx−γ and f (x) = βxγ−1 give the factor and preferential attachment ker-
nels, respectively.

We take G (N)

0 = G (N) and obtain the evolving network (G (N)

t : t ≥ 0) using the
following dynamics: Each vertex i updates independently with rate

κi = κ0

(
N

i

)γ η

for i ∈ {1, . . . ,N},
where η ∈ R and κ0 > 0 are fixed constants. When vertex i updates, every un-
ordered pair {i, j}, for j 
= i forms an edge with probability pi,j , independently of
its previous state and of all other edges. The remaining edges {k, l} with k, l 
= i

remain unchanged.
Observe that this evolution is stationary. The expected degree of vertex i does

not depend on time and is of order (N/i)γ so κi is proportional to its degree raised
to the power η. If η > 0, powerful vertices update more quickly and as η passes
from zero to ∞ we interpolate between the evolving networks with fixed update
rates and the mean field model in which no memory of edges present is retained.
We call this a fast evolving dynamics. Conversely, if η < 0 powerful vertices update
slowly and we can consider the connection between them as fixed during long
periods of time. As η passes to −∞, we interpolate between evolving networks
with fixed update rates and the static model. In this work, we only consider the fast
evolving case η ≥ 0 as the slowly evolving case requires additional techniques.

We now consider the contact process with infection rate λ ∈ (0,1) on the evolv-
ing graphs (G (N)

t ). The assumption λ < 1 is unessential but simplifies a bit the
presentation of our results. We say the contact process exhibits:
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• metastability if there there exists ε > 0 such that:
– whenever tN is going to infinity slower than eεN , we have

lim inf
N→∞ IN(tN) > 0;

– whenever sN and tN are going to infinity slower than eεN , we have

IN(sN) − IN(tN) −→
N→∞ 0.

In that case, we can unambiguously define the lower metastable den-
sity ρ−(λ) = lim inf IN(tN) > 0 and the upper metastable density ρ+(λ) =
lim sup IN(tN).

• a metastable density ρ(λ) if there is metastability and ρ−(λ) = ρ+(λ) = ρ(λ).
Equivalently, whenever tN is going to infinity slower than eεN , we have

lim IN(tN) = ρ(λ) > 0.

In the following theorem, we identify conditions on the kernel p for the four
survival strategies identified in the first section to successfully sustain the infection.
We deduce slow extinction and metastability and derive lower bounds on the lower
metastable densities in each case. We also believe that there is a metastable density
as soon as there is slow extinction, but we do not prove this.

THEOREM 1. Define θ = exp(−2(1 + κ02γ η)). For a,λ > 0 define T =
T (a,λ) by

(3) T log2(T ) = c1θ

400κ0(3κ0 + 1)
λ2a−γ (1−2η),

where c1 is as in (2). There exist positive and finite constants M(i), M(ii), M(iii),
M(iv) (that might depend on γ and η), such that, for every λ ∈ (0,1), slow extinc-
tion and metastability are guaranteed as soon as one can find a = a(λ) ∈ (0,1/2)

satisfying at least one of the following conditions:

(i) (Quick Direct Spreading)

λap(a, a) > M(i).

(ii) (Quick Indirect Spreading)

λ2ap(a,1)2 > M(ii).

(iii) (Delayed Direct Spreading)

T (a,λ) > M(iii) and λaT (a,λ)p(a, a) > M(iii).

(iv) (Delayed Indirect Spreading)

T (a,λ) > M(iv) and λ2aT (a,λ)p(a,1)2 > M(iv).
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Moreover, in each of these cases we have

(4) ρ−(λ) ≥ c′(λap(a,1) ∧ 1
)
,

where c′ > 0 is a universal constant (independent of λ).

While the lower bounds above can be verified by investigating each of the four
explicit survival strategies separately, upper bounds require a general, more im-
plicit, method that yields information independent of any chosen strategy. Our
approach is a supermartingale technique which gives upper bounds based on the
choice of a scoring function. By carefully selecting a proper scoring function the
technique will produce upper bounds which match the lower bounds in each of the
cases investigated here.

THEOREM 2. Let the positive constant D be defined by

(5) D = min
{
κ0

4
,

κ2
0

64c2
,

1

16

}
,

where c2 is as in (2). For λ ∈ (0,1), define the time-scale function Tλ : (0,1) →
(0,∞) as

(6) Tλ(x) = max
{
λ2x−γ (1−2η),1

}
.

(a) For λ ∈ (0,1), suppose there is some nonincreasing function S : (0,1] →
(0,∞) with

∫ 1
0 S(x) dx < ∞ and

(7) λTλ(x)

∫ 1

0
p(x, y)S(y) dy ≤ DS(x) ∀x ∈ (0,1].

Then the expected extinction time is at most linear in N and in particular there
is fast extinction. More precisely, writing (H)δ the hypothesis that TλS

−δ is a
bounded function, we have

(i) (H)1 is a consequence of (7).
(ii) If (H)δ is satisfied for some δ ∈ (0,1], then there exists ω = ω(λ, δ)

such that, for every N , we have

E[Text] ≤ ωNδ.

(b) For λ ∈ (0,1), suppose there exists some a = a(λ) > 0 and some nonincreas-
ing function S : [a,1] → (0,∞) such that

(8) λTλ(x)

∫ 1

0
p(x, y)S(y ∨ a)dy ≤ DS(x) ∀x ∈ (0,1].

Then there exists ω = ω(λ) > 0 and a function ε = ε(N) converging to 0 as
N ↑ ∞ such that, for all N and all t ≥ 0, we have

(9) IN(t) ≤ a + 1

S(a)

∫ 1

a
S(y) dy + ω

t
+ ε(N).
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In particular, if there is metastability, then the upper metastable density satis-
fies

(10) ρ+(λ) ≤ a(λ) + 1

S(a(λ))

∫ 1

a(λ)
S(y) dy.

Applying these two theorems to the kernels considered yields our main result.

THEOREM 3.

(a) Suppose p is the factor kernel.

(i) If η < 1
2 and γ < 1

3−2η
, or if η ≥ 1

2 and γ < 1
2 , there is fast extinction.

(ii) if η < 1
2 and γ > 1

3−2η
, or if η ≥ 1

2 and γ > 1
2 , there is slow extinction

and metastability, and the metastability exponent satisfies

(11) ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 − 2γ η

3γ − 2γ η − 1
if γ <

2

3 + 2η
,

γ

2γ − 1
if γ >

2

3 + 2η
.

(b) Suppose p is the preferential attachment kernel.

(i) If η ≥ 1
2 and γ < 1

2 , there is fast extinction.

(ii) If η < 1
2 , or if η ≥ 1

2 and γ > 1
2 , there is slow extinction and metasta-

bility, and the metastability exponent satisfies

(12) ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3 − 2γ − 2γ η

γ − 2γ η
if η <

1

2
and 0 < γ <

3

5 + 2η
,

3 − γ − 2γ η

3γ − 2γ η − 1
if η <

1

2
and

3

5 + 2η
< γ <

1

1 + 2η
,

1

2γ − 1
if

1

1 + 2η
< γ.

REMARK 1. For both kernels, when η > 1
2 and γ < 1

2 we have Tλ(x) = 1, and
hence (H)δ holds for any δ > 0. By Theorem 2(1), we then get that E[Text] is even
subpolynomial in N .

REMARK 2. The different exponents for the metastable densities in Theo-
rem 3 are indicative of different survival strategies for the infection, as indicated
in Figure 1. Propositions 1 and 2 follow from Theorem 3 by letting η = 0.

REMARK 3. In the cases of slow extinction, our results are actually slightly
more precise than stated in Theorem 3. In particular, the upper metastable density
always satisfies ρ+(λ) ≤ cλξ for some constant c. In the phases when quick di-
rect/indirect spreading prevails, the lower metastable density also satisfies ρ−(λ) ≥
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FIG. 1. The figures summarise Theorem 3 in the form of phase diagrams for the factor kernel (left)
and the preferential attachment kernel (right).

cλξ for some c > 0, so in these phases we obtain the metastable densities up to a
bounded multiplicative factor.

The rest of this paper is organized as follows; In Section 3, we introduce a
graphical representation of the evolving network and contact process which allows
us to define the process rigorously, yielding at the same time useful properties
such as self-duality and monotonicity. In Sections 4 and 5, we give the proofs of
Theorems 1 and 2, respectively, and finally in Sections 6 and 7 we apply those
theorems to deduce Theorem 3.

3. Graphical representation. The evolving network model (G (N)

t : t ≥ 0,

N ∈ N) is represented with the help of the following independent random vari-
ables;

(1) For each x ∈ N, a Poisson point process Ux = (Ux
n )n≥1 of intensity κx ,

describing the updating times of the vertex x. Given x 
= y we also write Ux,y =
(U

x,y
n )n≥1 for the union Ux ∪ Uy , which is a Poisson point process of intensity

κx + κy , describing the updating times of the potential edge {x, y}.
(2) For each {x, y} with x 
= y and x, y ≤ N , a sequence of independent ran-

dom variables (C
x,y
n )n≥0, all Bernoulli with parameter px,y , describing the pres-

ence/absence of the edge in the network after the successive updating times of the
potential edge {x, y}. More precisely, if t ≥ 0 then {x, y} is an edge in G (N)

t if and
only if C

x,y
n = 1 for n = |[0, t] ∩ Ux,y |. We denote Cx := (C

x,y
n : y ≤ N,n ∈ N).

Given the network we represent the infection by means of the following set of
independent random variables;

(3) For each x ∈ N, a Poisson point process Rx = (Rx
n)n≥1 of intensity one

describing the recovery times of x.
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(4) For each {x, y} with x 
= y, a Poisson point process Ix,y
0 with intensity λ

describing the infection times along the edge {x, y}. Only the trace Ix,y of this
process on the set

∞⋃
n=0

{[
Ux,y

n ,U
x,y
n+1

) : Cx,y
n = 1

}⊂ [0,∞)

can actually cause infections. Write (I
x,y
n )n≥1 for the ordered points of Ix,y . If just

before time I
x,y
n vertex x is infected and y is healthy, then x infects y at time I

x,y
n .

If y is infected and x healthy, then y infects x; otherwise, nothing happens.

The infection is now described by a process (Xt(x), x ∈ {1, . . . ,N} : t ≥ 0) with
values in {0,1}N , such that Xt(x) = 1 if x is infected at time t , and Xt(x) = 0 if x

is healthy at time t . More formally, the infection process associated to this graphi-
cal representation and to a starting set A0 of infected vertices, is the càdlàg process
with X0(x) = 1A0(x) evolving only at times t ∈ Rx ∪⋃∞

n=1 I
x,y
n , according to the

following rules:

• If t ∈Rx , then Xt(x) = 0 (whatever Xt−(x)).
• If t ∈ Ix,y , then

(
Xt(x),Xt(y)

)=
{
(0,0) if

(
Xt−(x),Xt−(y)

)= (0,0),

(1,1) otherwise.

The process (G (N)

t ,Xt : t ≥ 0) is a Markov process describing the simultaneous
evolution of the network and of the infection. We call (Ft : t ≥ 0) its canonical
filtration.

Using the graphical representation, we obtain monotonicity and duality prop-
erties of the contact process on the evolving graph. The proof of the following
proposition is standard within the context of the contact process (see [8]) and,
therefore, omitted here.

PROPOSITION 3.

(1) Monotonicity. If (X1
t : t ≥ 0), (X2

t : t ≥ 0) are processes constructed as
above with X1

0 ≤ X2
0 and infection rates λ1 ≤ λ2, then X1

t ≤ X2
t stochastically.

(2) Self-duality. If XA, XB correspond to the process with initial condition
X0 = 1A and X0 = 1B , respectively, then for all t > 0,

P
(∃x ∈ A,XB

t (x) = 1
)= P

(∃x ∈ B,XA
t (x) = 1

)
.

The only added subtlety in the proof of the proposition above when compared
to [8] is that the duality property combines both the duality property of the contact
process, and that of the network dynamics.
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4. Slow extinction and lower bounds. In this section, we prove Theorem 1
by showing four different survival strategies which can sustain the infection expo-
nentially long. All these strategies are based on a division between powerful and
weak vertices given by a parameter a = a(λ) ∈ (0,1/2) as

S := {
1,2, . . . , �aN�}, C := {�aN� + 1, . . . ,N

}
.

The elements of S are called stars and the elements of C are called connectors.
Notice that when λ decreases, any vertex with fixed degree has a lower chance
of infecting its neighbours. Our definition of a star changes accordingly, that is,
a(λ) ↓ 0 as λ ↓ 0. We denote by S0 = {x ∈ S ,X0(x) = 1} the set of initially
infected stars, and by S0 = |S0| its cardinality. We start the proof with a relatively
simple lemma, which already contains the flavour of the kind of inequalities we
will use throughout the proof.

LEMMA 1. Fix r > 0 and suppose one is given an initial condition (X0,G0)

such that S0 ≥ raN . Then there exists a constant C > 0 (independent of λ, a, N )
such that, for all t ∈ [2,3],

(13) E

[
N∑

v=1

Xt(v)
∣∣∣X0,G0

]
≥ C

(
λap(a,1) ∧ 1

)
N.

REMARK 4. Lemma 1 remains true if t is in an arbitrary compact set bounded
away from zero, changing only the value of C. For our purposes, the above formu-
lation suffices.

PROOF. We introduce a terminology specific to this proof as follows:

S ′ := {
x ∈ S0 : Rx ∩ [0,2] =∅,Ux ∩ [0,1] 
=∅

}
,

C ′ := {
y ∈ C : Ry ∩ [1,3] = ∅,∃x ∈ S ′,Ix,y ∩ [1,2] 
=∅

}
.

Each x ∈ S0 belongs to S ′ independently with probability e−2(1 − e−κx ) ≥
e−2(1 − e−κ0). Therefore, the cardinality S′ of S ′ dominates a binomial random
variable with parameters S0 and e−2(1 − e−κ0).

For y ∈ C , the event Ry ∩ [1,3] = ∅ has probability e−2 and is independent
of the event Ey := {∃x ∈ S ′,Ix,y ∩ [1,2] 
= ∅}, whose probability we want to
estimate. Conditionally on x ∈ S ′, a sufficient condition for the event Ey to be
satisfied is that

(1) Ix,y
0 ∩ [1,2] 
=∅, which happens with probability 1 − e−λ.

(2) At time t = min(Ix,y
0 ∩ [1,2]), the edge {x, y} belongs to the network. This

happens with probability px,y , independently of the configuration of the network
at time 0, as vertex x has updated on the time interval [0,1].
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The probabilities here obtained are independent from each other and from the re-
alization chosen for the Ux , Rx , hence x infects y on time interval [1,2] (namely
Ix,y ∩ [1,2] 
= ∅) with probability at least px,y(1 − e−λ), which we can bound
from below by (1−e−λ)p(a,1)/N , by the definition of px,y and the monotonicity
of p(·, ·). If we now condition on S ′, the events Ix,y ∩[1,2] 
=∅ are independent
and we get

P
(
Ey |S ′)≥ 1 −

(
1 − (

1 − e−λ)p(a,1)

N

)S′

≥ 1 − exp
(
−(

1 − e−λ)p(a,1)S′

N

)
≥ λp(a,1)S′

4N
∧ 1

2
,

where in the last inequality we used twice the inequality 1 − e−x ≥ (x ∧ 1)/2 for
x ≥ 0 (we also used λ < 1). Finally we obtain that, given the initial condition of the
network and the infection and conditionally on S ′, the cardinality of C ′ dominates
a binomial random variable with parameters |C | ≥ N/2 and

ρ = e−2λp(a,1)S′

4N
∧ e−2

2
.

To conclude, we first consider the case λap(a,1) < 1. Then we always have ρ =
e−2λp(a,1)S′

4N
, and we easily get that the expectation of |C ′| is bounded from below

by

e−4(1 − e−κ0)

8
λap(a,1)rN.

In the case λap(a,1) > 1, we have ρ ≥ e−2S′
4aN

, and we get a bound of

e−4(1 − e−κ0)

8
rN.

This altogether proves (13) with C = re−4(1 − e−κ0)/8. �

Denoting by Sk the set of infected stars at time k ∈ N, and by Sk = |Sk| its
cardinality, we aim to prove that for some r > 0 the events E r

k := {Sk > raN} hold
for a sufficiently long time. With this in mind, we say that a family of events Ek

depending on k ∈ N holds exponentially long if there exists c > 0 such that, for
all N ,

P

( ⋂
k≤ecN

Ek

)
≥ 1 − e−cN .

As E r
k ⊂ {Text > k}, if the events E r

k hold exponentially long, we have slow extinc-
tion. Moreover, from Lemma 1 we have

C
(
λap(a,1) ∧ 1

)
P
(∣∣{x ∈ S : X�t�−2(x) = 1

}∣∣> raN
)≤ IN(t)
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for any t > 2, so if E r
k holds exponentially long, the left-hand side above is

bounded from below by C(λap(a,1) ∧ 1)(1 − e−cN ) for some c > 0, and hence
we deduce the lower bound (4) on the metastable density. Our aim is therefore not
only to prove slow extinction, but the stronger result that under any of the condi-
tions given in Theorem 1, the events E r

k hold exponentially long. Actually, we will
also allow a conditioning on any initial configuration included in the event E r

0 , and
still show that the events E r

k hold exponentially long.
The proof of metastability, on the other hand, will also follow from this result.

First, note that from (1) it is easy to see that IN(·) is decreasing, and hence it
suffices to show that, whenever tN ≤ eεN ,

lim sup
N→∞

∣∣IN(t) − IN(tN)
∣∣ −→
t→∞ 0.

Using self-duality, we can write

IN(t) − IN(tN) = 1

N

N∑
v=1

Pv(t < Text < tN),

where we recall that Pv stands for the probability measure corresponding to the
infection starting with only vertex v infected. So metastability follows if we can
prove that Pv(t < Text < eεN) converges to 0 as t → ∞, uniformly in N and v ∈
{1, . . . ,N}. We separate this proof into three steps:

(1) For all n ≥ 0, uniformly in N and v, Pv(maxSk < n,Text > t) −→t→∞ 0.
(2) Uniformly in N and v, Pv(maxSk ≥ raN |maxSk ≥ n) −→n→∞ 1.
(3) Uniformly in v, Pv(Text ≥ eεN |maxSk ≥ raN) −→N→∞ 1.

These three steps easily give the result. Indeed, for any given ε > 0, choosing N0
as in (3), then n as in (2), then t as in (1), we obtain that for any N ≥ N0 and
v ∈ {1, . . . ,N},

Pv

(
t < Text < eεN )≤ 3ε.

The first step is fairly easy and relies on the observation that there is some
constant c > 0 depending only on n such that for all k ≥ 0,

Pv(Sk+1 ≥ n|Fk) ≥ c1{Sk>0}.

We deduce Pv(maxSk < n,St > 0) ≤ (1 − c)�t�, which proves the first step.
For the second step, we introduce the stopping time K := inf{k ≥ 0, Sk ≥ n}

and prove Pv(maxSk ≥ raN |K < +∞,FK) → ∞ uniformly on N , v and on the
σ -field FK . In other words, we provide a uniform bound in all the possible con-
figurations (G (N)

K ,XK) for which SK ≥ n. This bound follows from the analysis
of the process (Sk) below (see in particular Lemma 3(1) and Lemma 4(1)), and
concludes the second step.
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Finally, the third step also follows from the analysis of the process (Sk). If the
stopping time K̃ := inf{k ≥ 0, Sk ≥ raN} is finite, then the event E r

K̃
holds, and

further the events E r

k+K̃
hold exponentially long, proving the third step.

We now provide the detailed analysis of the process (Sk). A useful tool, which
we will use repeatedly, is the following large deviation estimate, which can be
directly derived from Chernoff’s inequality.

LEMMA 2. Let X be a binomial random variable with parameters n and q .
Then

P(X < snq) ≤ e−Dn where D = sq log(s) + (1 − sq) log
(

1 − sq

1 − q

)
and s < 1.

4.1. Quick direct spreading. Let us start with quick direct spreading, which
is arguably the simplest mechanism, that makes no use of connectors and is only
based on stars infecting directly other stars before recovery. This strategy can only
succeed when the subgraph S is sufficiently connected. In this case, for x, y ∈ S
and small λ > 0, our choice η ≥ 0 implies that there is typically an updating event
Ux,y between two infections in Ix,y

0 so the times Ix,y when infections pass the
edge {x, y} can therefore be approximated by a Poisson point process with rate
λpx,y . If λ is small and N large, these rates tend to zero, and hence, during a brief
interval of time, the infection starting from a single vertex is unlikely to infect
twice the same vertex, resulting in the infection spreading like a Galton–Watson
process.

We use, specifically in this quick direct spreading subsection, the terminology

S ′
k := {

x ∈ Sk : Rx ∩ [k, k + 1] =∅
}
,

and S′
k = |S ′

k |. Clearly, S ′
k ⊂ Sk+1 and thus S′

k ≤ Sk+1, as infected stars that do
not recover on [k, k + 1] are still infected at time k + 1. Further, we let

S ′′
k := {

x ∈ S \Sk : Ux ∩ [k, k + 1/2] 
= ∅,Rx ∩ [k + 1/2, k + 1] = ∅,

∃y ∈ S ′
k,Ix,y ∩ [k + 1/2, k + 1] 
=∅

}
,

and S′′
k = |S ′′

k |. Clearly, we also have S ′′
k ⊂ Sk+1, as the stars in S ′′

k have been
infected on [k + 1/2, k + 1] and did not recover on that time interval.

An advantageous property of S ′
k and S ′′

k , compared to Sk+1, is that their con-

ditional laws knowing (G (N)
k ,Xk), depend only on Sk , and not on the network

structure G (N)
k . So, the cardinality S′

k of S ′
k is (conditionally) a binomial random

variable with parameters Sk and e−1.
Now, if x is in S \Sk , then it satisfies Ux ∩ [k, k + 1/2] 
= ∅ and Rx ∩ [k +

1/2, k + 1] = ∅ with probability e−1/2(1 − e−κx/2) ≥ e−1/2(1 − e−κ0/2). Condi-
tioning on this event and on S ′

k , a similar argument to the one used in the proof of
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Lemma 1 gives that x belongs to S′′
k with probability at least

[
1 −

(
1 − λp(a, a)

4N

)S′
k
]

≥
[
1 − exp

(
−λp(a, a)S′

k

4N

)]

≥ λp(a, a)S′
k

8N
∧ 1

2
.

As a consequence, S′′
k dominates a binomial random variable with parameters S −

Sk and

e−1/2(1 − e−κ0/2)(λp(a, a)S′
k

8N
∧ 1

2

)
.

Gathering these results with Sk+1 ≥ S′
k + S′′

k , we obtain a stochastic lower bound
for the conditional distribution of Sk+1 given Fk , which we exploit in the following
lemma.

LEMMA 3. Suppose ρ, ρ ′ and c are three positive constants such that ρρ′ > 1.
Suppose M0,M

′
0,M1,M

′
1, . . . is a process on {0,1, . . . , n}, adapted to a filtration

(F0,F
′
0,F1,F

′
1, . . .), such that

• given Fk the random variable M ′
k is binomially distributed with parameters Mk

and ρ;
• given F′

k the random variable Mk+1 − M ′
k dominates a binomially distributed

random variable with parameters n − Mk and ρ′ M ′
k

n+1 ∧ c.

Then there exist positive constants r, l, ε > 0 such that for large n:

(1) For every initial condition M0 = m0, the probability that the process Mk

goes above value rn is at least 1 − e−lm0 .
(2) For every initial condition M0 = m0 ≥ rn, with probability at least 1 −

e−εn, the process (Mk) stays above value rn at all times k ≤ eεn.

Under the hypothesis λap(a, a) > 8e/e−1/2(1 − e−κ0/2), we can apply Lem-
ma 3 with the choice Mk = Sk , M ′

k = S′
k , F′

k = σ(Fk, S
′
k), n = �aN�, ρ = e−1,

ρ′ = e−1/2(1 − e−κ0/2)

8
λap(a, a) and c = e−1/2(1 − e−κ0/2)

2
.

Item (2) then completes the proof of slow extinction, while items (1) and (2) com-
plete the proof of metastability. Thus, using Lemma 3, we have proven the quick
direct spreading part of Theorem 1, with M(i) = 8e/e−1/2(1 − e−κ0/2).

PROOF OF LEMMA 3. We first prove the second item. Choose r < c ∧ 1
ρ′ ,

which, together with ρρ′ > 1, implies r < ρ. If Mk ≥ r ′n with r ′ > r/ρ, then
Lemma 2 implies Mk+1 ≥ M ′

k ≥ rn with probability at least 1 − e−cn, for some
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constant c > 0. If rn ≤ Mk ≤ r ′n, choosing ι in the nonempty interval ( 1
ρ′ , ρ ∧ c

rρ′ ),
a further application of Lemma 2 yields M ′

k ≥ ιMk , with error probability bounded
by some e−cn (possibly with a new value of c > 0).

Further, we can bound ρ′ M ′
k

n+1 from below by ιρ′ n
n+1r , which is in (r, c) for

large n. A last application of Lemma 2 yields Mk+1 − M ′
k ≥ r(n − Mk) and then

Mk+1 ≥ rn, with error probability bounded by e−εn. This easily gives item (2) of
the theorem (dividing ε by 2 if needed).

For the first item we let K := inf{k ≥ 0,Mk = 0 or Mk ≥ r ′n}, where r ′ is a
constant to be determined later. We possibly have r ′ < r , but (2) still holds if we
replace5 r by r ∧ r ′. Under the hypothesis r ′ < η/ρ′ and k < K , we can bound
below the law of Mk+1 knowing M ′

k by a binomial random variable with parame-
ters (1 − r ′)n and ρ′M ′

k/(n + 1). We now prove that for some well-chosen l > 0,
the process (e−lMk∧K )k≥0 is a positive supermartingale. Note that the result then
follows from a standard stopping theorem.

It suffices to prove the inequality

E
[
e−lM1 |F0

]≤ e−lM0

on the event M0 < r ′n. But on this event, the Laplace transform of Binomial ran-
dom variables easily gives the following:

E
[
e−lM1 |F′

0
]≤

(
1 − ρ′M ′

0

n + 1

(
1 − e−l))(1−r ′)n

≤ exp
(
−(1 − r ′)n

n + 1
ρ′M ′

0
(
1 − e−l)).

Thus, a further Laplace transform gives

E
[
e−lM1 |F0

]≤ (
1 − ρ

(
1 − e− (1−r′)n

n+1 ρ′M ′
0(1−e−l )))M0

≤ exp
(−ρM0

(
1 − e− (1−r′)n

n+1 ρ′(1−e−l ))).
When l goes to 0, the last expression is exp(−l (1−r ′)n

n+1 ρρ′M0(1+o(1))). Choosing

r ′ > 0 small and n large so that (1−r ′)n
n+1 ρρ′ > 1, and then l > 0 small, we can

guarantee E[e−lM1 |F0] ≤ e−lM0 , and this completes the proof. �

4.2. Quick indirect spreading. Quick indirect spreading is a mechanism sim-
ilar to quick direct spreading in the sense that stars spread the infection before
seeing a simple recovery event, but in this case the infection spreads to connec-
tors which in turn infect stars again. Being a two stage mechanism, quick indirect
spreading can be less efficient than its direct version as we see in the case of the
factor kernel. However, as it relies on the connectedness of the whole network
rather than the connectedness among stars it can be advantageous when the latter

5Also, the reader can check that once the process has gone above level r ′n, it is actually likely to
go above level rn, too.
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is scarce. As with the direct version, the quick update of stars allows us to think of
valid infections as Poisson point processes with parameter λpx,y and then approx-
imate the behaviour of Xt as a Galton–Watson process.

We keep from the quick direct spreading subsection the notation Sk = |Sk|
as well as S′

k = |S ′
k | = |{x ∈ Sk : Rx ∩ [k, k + 1] = ∅}|. Again, conditionally

on the network and infection evolution up to time k, the cardinality S ′
k of S ′

k is
binomial with parameters Sk and e−1. In order to consider indirect spreading, we
now introduce the following terminology, specific to this subsection:

Ck := {
y ∈ C : Uy ∩ [k, k + 1/3] 
= ∅,Ry ∩ [k + 1/3, k + 1] = ∅,

∃x ∈ S ′
k,Ix,y ∩ [k + 1/3, k + 2/3] 
= ∅

}
,

S ′′
k := {

x ∈ S \Sk : Rx ∩ [k + 2/3, k + 1] =∅,

∃y ∈ Ck,Ix,y ∩ [k + 2/3, k + 1] 
=∅
}
.

We also denote the cardinality of these sets by Ck = |Ck|, and S′′
k = |S ′′

k |, re-
spectively. It should be clear that Sk+1 ≥ S′

k + S′′
k . Indeed, for each star x ∈

S ′′
k , we can find a star z ∈ S ′

k that infects a connector y ∈ Ck on time inter-
val [k + 1/3, k + 2/3], which stays infected until it infects x on time interval
[k + 2/3, k + 1]. Note that the condition that connectors in Ck should update on
[k, k + 1/3], is useful for the law of Ck , conditionally on S ′

k and on the network
and infection evolution up to time k, to actually only depend on S ′

k . More pre-
cisely, each y ∈ C belongs to Ck with probability at least

e−2/3(1 − e−κ0/3)(1 − (
1 − e−λ/3)p(a,1)

N

)S′
k

≥ e−2/3(1 − e−κ0/3)(λp(a,1)S′
k

6N
∧ 1

2

)
.

Hence Ck dominates a binomial random variable with parameters (1 − a)N and
e−2/3(1 − e−κ0/3)(λp(a,1)S′

k/(6N) ∧ 1
2). Similarly, conditionally on Sk , S′

k and
Ck , we can bound S′′

k from below by a binomial random variable with parameters

aN − Sk and e−1/3(λp(a,1)Ck/(6N) ∧ 1
2). Lemma 3 has to be replaced by the

following lemma.

LEMMA 4. Suppose ρ, ρ ′, ρ′′, ρ′′′ and c, c′ are positive constants such that
ρρ′ρ′′ρ′′′ > 1, and M0,M

′
0,M

′′
0 ,M1,M

′
1,M

′′
1 , . . . is a process on {0,1, . . . , n}

adapted to the filtration (F0,F
′
0,F

′′
0,F1,F

′
1,F

′′
1, . . .) such that:

• given Fk the random variable M ′
k is binomially distributed with parameters Mk

and ρ;
• given F′

k the random variable M ′′
k dominates a binomially distributed random

variable with parameters �ρ′′′n� and ρ′
n+1M ′

k ∧ c;
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• given F′′
k the random variable Mk+1 − M ′

k dominates a binomially distributed
random variable with parameters n − Mk , and ρ′′

n+1M ′′
k ∧ c′.

Then there exist positive constants r, l, ε > 0 such that for large n:

(1) For every initial condition M0 = m0, the probability that the process Mk

goes above value rn is at least 1 − e−lm0 .
(2) For every initial condition M0 = m0 ≥ rn, with probability at least 1 −

e−εn, the process (Mk) stays above value rn at all times k ≤ eεn.

The proof is similar to that of Lemma 3. It just involves more calculation, which
is not so informative, so we omit it. We can now apply this lemma with the param-
eters

Mk = Sk, M ′
k = S′

k, M ′′
k = Ck,

F′
k = σ

(
Fk, S

′
k

)
, F′′

k = σ
(
F′

k,Ck

)
, n = �aN�,

ρ = e−1, ρ′ = e−2/3(1 − e−κ0/3)λap(a,1)/12,

ρ′′ = e−1/3λap(a,1)/12,

and ρ ′′′ = (1 − a)/a, under the condition ρρ′ρ′′ρ′′′ > 1, which is satisfied if a <

1/2 and λ2ap(a,1)2 > 288e2/(1 − e−κ0/3). We now conclude the quick indirect
spreading part of Theorem 1 just like the quick direct spreading part, with M(ii) =
288e2/(1 − e−κ0/3).

4.3. Delayed direct spreading. Delayed direct spreading is a mechanism sim-
ilar to quick direct spreading in the sense that the infection spreads directly from
star to star. The main difference is that the infection is kept alive at a star on a
longer time scale with the aid of connectors. A single vertex, if powerful enough,
can survive a recovery event by infecting a connector which in turn infects it back
before an updating event (where the connection is lost with a high probability)
thus prolonging the recovery cycle of stars. In contrast with the stars studied at
[2] which survive for an amount of time exponential in their degree, the survival
time here is roughly linear in this parameter, which is explained by the cost of
maintaining the right conditions on the network for this effect to take place.

To begin our proof, for each k ∈ N, k ≥ 1 define C̄k as

C̄k := {
y ∈ C : [Uy ∪Ry]∩ [k, k + 2] =∅

}
that is, C̄k is the set of all stable connectors in the interval [k, k + 2]. As
each y ∈ C , y > N/2 belongs to C̄k independently with probability at least
θ = exp(−2(κ02γ η + 1)), Lemma 2 shows that P(|C̄k| > θN/4) > 1 − e−cN for
some fixed c > 0, and hence these events hold exponentially long. For the entire
remainder of this section, we therefore fix a realization of Uy,Ry, y ∈ C such that
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{|C̄k| > θN/4} holds exponentially long and all probabilities will be taken to be
conditional on such a realization.

Next, we denote by Sk the set of infected stars at time kT , and Sk = |Sk|. Note
that we use the same notation as before, though the length of a recovery cycle has
been modified, from one to T = T (a,λ) as defined in Theorem 1. Our hope is that
this will not confuse the reader, but rather stress the unity of the approach.

4.3.1. Properties of stars. As the probability px,y of having a connection be-
tween a star x and a connector y is bounded from below by 1

N
p(a,1) ≥ 1

N
c1a

−γ ,
we deduce that for given t , the number of connectors y ∈ ¯C�t� connected to x

dominates a binomial random variable with parameters �θN/4� and c1a
−γ /N .

By Lemma 2, one can deduce that

(14) P
(∣∣{y ∈ C̄�t� : {x, y} ∈ G (N)

t

}∣∣> c1θa−γ /5
)
> 1 − e−ca−γ

,

for some c > 0, uniformly in a ≤ 1/2 and N ≥ c1a
−γ .

DEFINITION 1. For any T > 0, let

Ūx := {0} ∪ ⋃
Ux

m∈Ux

{
Ux

m + n : n ∈ N0 ∩ [
0,Ux

m+1 − Ux
m

]}
.

A star x ∈ S is T -stable if:

(i) |Ux ∩ [0, T ]| < 3κxT ;
(ii) at times t ∈ Ūx ∩[0, T ], the vertex x has at least c1θ

5 a−γ neighbours in C̄�t�.

The set Ūx arises by adding points to Ux between consecutive updating events
when these are further than one unit of time apart. Loosely speaking, T -stability
means that x does not update too much and that at every time in this enlarged up-
dating set it has sufficiently many neighbouring stable connectors. The next result
follows from (14) and the fact that T (a,λ) ≤ Cλ2a−γ . We omit its easy proof.

LEMMA 5. limT →∞ lim infN→∞ infx∈S P(x is T -stable) = 1.

Since the events {x is T -stable}x∈S are independent, we deduce that for large T

and N , most stars will exhibit this property. We define next the concept of [L,T ]-
susceptibility of x, depending only on Ux , Rx , which loosely speaking means that
recoveries of x are not too frequent, and not too close to its updating events.

DEFINITION 2. For any L ∈ [0, T ), we say that a star x ∈ S is [L,T ]-
susceptible if:

(i) there are no recovery events in [L,L + 1] or [T − 1, T ],
(ii) |Rx ∩ [L,T ]| < 2T ,
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(iii) for every pair of consecutive times t1, t2 ∈ Ūx ∩ [L,T ], such that Rx ∩
[t1, t2] 
=∅ we have

(15) (r1 − t1)(t2 − r2) > κ0
[
20(3κ0 + 1)κ2

xT log(T )
]−1

,

where r1 and r2 are the first and last recoveries in [t1, t2], respectively.

There is no reason most stars should be [L,T ]-susceptible, however the proba-
bility of having this property is bounded from zero uniformly for all stars, if T and
N are large.

LEMMA 6. There exists q1 > 0 such that for all T large and L ∈ [0, T ),

lim inf
N→∞ inf

x∈S
P
(
x is [L,T ]-susceptible and T -stable

)
> q1.

PROOF. Fix a realization of Ux , Cx making x T -stable and notice that
in this case [L,T ]-susceptibility depends on the process Rx alone. In fact,
all three conditions in Definition 2 are decreasing with Rx . By Harris’ in-
equality, the three conditions are therefore positively correlated, and hence
P(x is [L,T ]-susceptible|Ux,Cx) is larger than the product of the individual con-
ditional probabilities, which we now calculate. It is easy to see that the proba-
bility of conditions (i) and (ii) are independent of Ux , Cx and their probability
is bounded from below by e−2 and 1/2, respectively (the latter value is obtained
from a rough Markov inequality). For the bound on (iii) call t1, t2, . . . the elements
of Ūx ∩ [L,∞) in increasing order, and observe that for (iii) to fail, it must do so
in some interval [ti , ti+1]. We take two consecutive ti , ti+1 with ti ≤ T and find an
upper bound for the probability Pi of the event where (15) fails at [ti , ti+1]. To do
so, call li = ti+1 − ti and D = κ0[20(3κ0 + 1)κ2

xT log(T )]−1, and split this event
in two scenarios:

First suppose li < 2
√

D and observe that in this case for any point r ∈ [ti , ti+1]
we have (r − ti)(ti+1 − r) < D, so (15) fails if and only if Rx ∩ [ti , ti+1] 
= ∅. We
bound this probability by 1 − e−li ≤ li .

Second suppose 2
√

D ≤ li ≤ 1 and observe that we still need Rx ∩ [ti , ti+1] 
=
∅, which we divide into the events ϒ10, ϒ01 and ϒ11 where there is a recovery
event only at the first half, the second half or both halves of the interval, respec-
tively. In ϒ10, we have (r1 − ti)(ti+1 − r2) ≥ (r1 − ti)

li
2 so we necessarily have

r1 − ti ≤ 2D
li

, and hence the probability of failure is bounded in this scenario by

e−li/2(1 − e−2D/li ) ≤ 2D
li

. By symmetry, the same bound holds in the event ϒ01.
In the event ϒ11, the random variables r1 − ti and ti+1 − r2 are dominated by in-
dependent exponential random variables. We deduce that the probability of failure
in this scenario is equal to

∫ li
2

0

∫ li
2

0
e−y−z1{z<min{D/y,li/2}} dzdy.
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Dividing the integral as to which expression is smaller in the indicator function
yields

∫ 2D
li

0

∫ li
2

0
e−y−z dz dy +

∫ li
2

2D
li

∫ D
y

0
e−y−z dz dy,

and bounding all the exponentials by 1, the expression above is less than D(1 +
log(

l2i
4D

)). Putting together the bounds for (i), (ii) and (iii), we finally obtain

P
(
x is [L,T ]-susceptible and T -stable|Ux,Cx)
≥ 1

2
e−2

(
1 − ∑

i∈N
ti∈Ūx∩[0,T ]

Pi

)
1{x is T -stable},

and hence, to find the lower bound for the probability, we take expectation with
respect to the realization of Ux , Cx in this expression. From our previous argument,
we have

Pi ≤ li1{li<2
√

D} + D

(
4

li
+ 1 + log

(
l2
i

4D

))
1{2√

D≤li≤1}

for each Pi , which depends on li alone. Notice that from the definition of Ūx , each
li is exponentially distributed with rate κk in [0,1] and has mass e−κx at 1, so that

EPi ≤
∫ 2

√
D

0
liκxe

−κxli dli +
∫ 1

2
√

D
D

(
4

li
+ 1 + log

(
l2
i

4D

))
κxe

−κxli dli

+ e−κxD
(
5 − log(4D)

)
.

For the first integral, we bound the exponential term by 1 to deduce that it is less
than 2Dκx , while for the remaining expression observe that it can be written as∫ ∞

2
√

D
D

(
4

li ∧ 1
+1+ log

(
(li ∧ 1)2

4D

))
κxe

−κxli dli ≤
∫ ∞

2
√

D
D

(
4

li
+5

)
κxe

−κx li dli ,

since the logarithmic term is at most zero. Changing variables we obtain that this
expression is equal to

5De−2κx

√
D + 4Dκx

∫ ∞
2κx

√
D

e−y

y
dy ≤ 5D + 4Dκx log

(
1 + 1

2κx

√
D

)
,

where the inequality follows from an elementary bound on the exponential integral
Ei(x). We conclude that, since T is large,

EPi ≤ 11Dκx log
(

1 + 1

2κx

√
D

)
= 11κ0

20(3κ0 + 1)κxT log(T )
log

(
1 +

√
T log(T )

)

≤ 11κ0

20(3κ0 + 1)κxT
.
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Noticing that each li is independent of ti , we finally deduce

E

( ∑
i∈N

ti∈Ūx∩[0,T ]

Pi1{x is T -stable}
)

≤ 11κ0

20(3κ0 + 1)κxT

(
3κxT + �T �)≤ 3

5
,

where the first inequality follows from T -stability and from observing that to build
Ūx we add at most �T � additional points to Ux in [0, T ]. It follows that

P
(
x is [L,T ]-susceptible and T -stable

)≥ e−2

2

(
P(x is T -stable) − 3

5

)
,

and we conclude the result by taking T large such that P(x is T -stable) > 4
5 . �

As it will be seen later, [L,T ]-susceptibility gives stars enough time after each
update to infect stable connectors that, in turn, have enough time to reinfect them
back. This amount of time, however, is not enough to infect other stars. For this
purpose, we introduce the concept of T -infectiousness as follows.

DEFINITION 3. A star x ∈ S is T -infectious if∣∣{t ∈ Ux ∩ [0, T ] : (Ux ∪Rx)∩ [t, t + κ−1
x ) = {t}}∣∣> 1

2
e−1−κ−1

0 κxT .

A large deviation argument yields limT →∞ lim infN→∞ infx∈S P(x is
T -infectious) = 1, so most of the stars will have this property if T is sufficiently
large. Gathering all the results obtained here, we obtain the following lemma.

LEMMA 7. There exists q1 > 0 as in Lemma 6 such that, for all large T and
L ∈ [0, T ),

lim inf
N→∞ inf

x∈S
P
(
x is T -infectious, T -stable and [L,T ]-susceptible

)
> q1.

4.3.2. Survival and spreading. The star properties mentioned in the last
lemma are useful to bound from below the probability that a star maintains the
infection on [0, T ] and infects another star.

DEFINITION 4. A star x ∈ S is [L,T ]-infected if XL(x) = XT (x) = 1 and,
for all t ∈ Ūx ∩ [L,T ], we have Xt(x) = 1.

If x is [0, T ]-infected, we say the infection is maintained at x on [0, T ] (al-
though the star may of course have recovered several times on this time interval).

LEMMA 8. There exists q2 > 0 independent of N , such that for all λ, a such
that T = T (a,λ) is sufficiently large, and for all x ∈ S and L ∈ [0, T ), we have

(16)
P
(
x is [L,T ]-infected|XL(x) = 1,

x is T -stable and [L,T ]-susceptible
)
> q2.
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PROOF. Fix a realization of Ux , Rx and (C
x,y
n )y∈C making x a T -stable

and [L,T ]-susceptible star, and assume that XL(x) = 1. Call t0 = L and
{t1, . . . , tn} the elements of Ūx ∩[L,T ] in increasing order. By definition of [L,T ]-
susceptibility, there are no recovery events in [L,L+1] which gives Xt1 = 1. From
the same argument, we have XT = 1 as soon as Xtn = 1, so along with conditional
probabilities and the Markov property, this allows us to bound from below the
probability in the statement by

(17)
n−1∏
i=1

P
(
Xti+1(x) = 1|Xti (x) = 1

)
.

To control this product observe first that for all terms with [ti , ti+1] ∩Rx = ∅, we
trivially have P(Xti+1(x) = 1|Xti (x) = 1) = 1. Fix now some ti such that Rx ∩
[ti , ti+1] 
= ∅ and define r1 and r2 as the first and last element in that intersection,
respectively. A sufficient scenario for Xti+1(x) = 1 is that:

• x infects some neighbour y ∈ C̄�ti� during [ti , r1],
• since y ∈ C̄�ti� and ti+1 − t1 ≤ 1, it remains infected (and also a neighbour of x)

up until time ti+1,
• y infects x back during [r2, ti+1].
The scenario above follows from the event

(18)
⋃

x∼y at time ti
y∈C̄�ti �

{
Ix,y

0 ∩ [ti , r1] 
=∅ and Ix,y
0 ∩ [r2, ti+1] 
=∅

}
,

and using independence we can calculate its probability as

1 − ∏
x∼y at time ti

y∈C̄�ti �

[
1 − (

1 − e−λ(r1−ti )
)(

1 − e−λ(ti+1−r2)
)]

.

Since ti+1 − ti ≤ 1 and λ > 0 small, we can use the bound

(
1 − e−λ(r1−ti )

)(
1 − e−λ(ti+1−r2)

)≥ λ2(r1 − ti)(ti+1 − r2)

4

≥ κ0λ
2

80(3κ0 + 1)κ2
xT logT

,

which follows from the third condition of [L,T ]-susceptibility, to obtain that (18)
has probability at least

1 − ∏
x∼y at time ti

y∈C̄�ti �

[
1 − κ0λ

2

20(3κ0 + 1)κ2
xT log(T )

]
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≥ 1 − exp
(
− λ2c1θa−γ

400a−2γ ηκ0(3κ0 + 1)T log(T )

)

= 1 − 1

T
,

where the inequality follows from the T -stability of x and the monotonicity of κ

and the equality from the definition of T . This allows us to bound the argument
in (17) by (1 − 1/T ), and from [L,T ]-stability there are at most 2T recoveries,
giving ∣∣{ti ∈ Ux ∩ [L,T ] : Rx ∩ [ti , ti+1] 
=∅

}∣∣≤ 2T ,

so we finally obtain

n−1∏
i=0

P
(
Xti+1(x) = 1|Xti (x) = 1

)≥
(

1 − 1

T

)2T

≥ e−4,

which holds if T is large, giving the result. �

Denote by S ′
0 ⊂ S0 the set of initially infected stars, that are also T -infectious,

T -stable, [0, T ]-susceptible, and [0, T ]-infected. From Lemmas 7 and 8, when T

and N are large, conditionally on S0, the random variable S′
0 = |S ′

0| dominates a
binomial random variable with parameters S0 and q1q2. Further, we bound from
below the number of initially uninfected stars, that get infected by some star in
S ′

0, and are still infected at time T .

LEMMA 9. We have, uniformly in λ < 1 and a < 1/2,

(19)

lim inf
N→∞ inf

x∈S \S0
P
(∃y ∈ S ′

0, t ∈ Ix,y ∩ [0, T ] : Xt(y) = 1|S ′
0
)

>
λTp(a, a)S′

0

8e1+1/κ0N
∧ 1

2
.

PROOF. Fix y ∈ S ′
0 and consider t ∈ Uy ∩[0, T ] such that [t, t +κ−1

x ]∩(Ry ∪
Uy) = ∅, which exists since y is T -infectious. As y ∈ S ′

0, it satisfies the condition
in Lemma 8, and hence it is infected throughout the interval [t, t + κ−1

x ], which
gives a small time interval for y to infect x. To find a lower bound for the event
{Ix,y ∩ [t, t + κ−1

x ] 
= ∅}, it is enough that Ix,y
0 ∩ [t, t + κ−1

x ] 
= ∅ and that at
the first infection event the edge {x, y} belongs to the graph, but this happens with
probability

px,y

[
1 − e−λκ−1

x
]≥ 1 − e

− λpx,y
2κx .
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Using independence, we deduce

P
(∃t ∈ Ix,y ∩ [0, T ] : Xt(y) = 1

)≥ 1 − ∏
t∈Uy∩[0,T ]

[t,t+κ−1
x ]∩Ry=∅

exp
(
−λpx,y

2κx

)

≥ 1 − exp
(
− λpx,yT

4e1+1/κ0

)
,

where the last inequality is due to the fact that y ∈ S ′
0, and hence it is T -infectious.

Finally, to deduce (19), we use independence one last time to deduce

P
(∃y ∈ S ′

0, t ∈ Ix,y ∩ [0, T ],Xt(y) = 1
)

≥ 1 − exp
(
− λT

4e1+1/κ0

∑
y∈S ′

0

px,y

)

≥ 1 − exp
(
−λTp(a, a)S′

0

4e1+1/κ0N

)
>

λTp(a, a)S′
0

8e1+1/κ0N
∧ 1

2
. �

Using Lemma 9, we get that, when T and N are large, each x ∈ S \S0 has

probability at least
λTp(a,a)S′

0
8e1+1/κ0N

∧ 1
2 to receive an infection in [0, T ]. Calling Tx ∈

[0, T ] the first time when this occurs, we can use Lemma 6 to deduce that with
probability at least q1 the star x is T -stable and [Tx, T ]-susceptible. Now, being
infected at time Tx , Lemma 8 gives that with probability at least q2, the star x will
be infected at time T . Since all these events are independent for different values of
x, we deduce that S1 − S′

0 dominates a binomial random variable with parameters
�aN� − S0 and

q1q2

(
λTp(a, a)S′

0

8e1+1/κ0N
∧ 1

2

)
.

Finally, the same reasoning applies for the whole process Sk , which can now be
studied similarly as for quick direct spreading. More precisely, if T is large and
under the hypothesis

q2
1q2

2λT ap(a, a)

8e1+1/κ0
> 1,

we can apply Lemma 3 with n = �aN�, ρ = q1q2, ρ′ = q1q2λT ap(a,a)

8e1+1/κ0
. In that case,

slow extinction and metastability follow just as before. To actually deduce the
lower bound for the lower metastable density, inequality (4), we need not only
that the events Sk ≥ raN hold exponentially long for some r > 0 (as we get from
Lemma 3), but that the events |{x ∈ S : Xk(x) = 1}| ≥ r ′aN with k ∈ N, hold
exponentially long, for some r ′ > 0. However, it is clear from our proofs that we
do get this, for some r ′ < r . This altogether proves the case of delayed direct
spreading of Theorem 1.
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4.4. Delayed indirect spreading. In the delayed indirect spreading strategy
stars survive during long periods of time, and the spreading between stars does
not occur directly but using connectors as intermediaries. The proof in this case
takes most of the work already done for the other mechanisms, with the sole ex-
ception being that infections on connectors have a very limited lifespan, which
forces us to be a little more careful.

In particular, we introduce a more restrictive notion of stability for connectors.
For every k ≥ 1, we introduce

¯̄Ck := {
y ∈ C̄k : Uy ∩ [k − 1, k] 
= ∅

}
,

and we use these connectors in the spreading mechanism. Similarly, as for stable
connectors, the events {| ¯̄Ck| > θ ′N/4} hold exponentially long, where θ ′ = θ(1 −
e−κ0). We now work conditionally on a realization of Uy,Ry, y ∈ C such that both
{|C̄k| > θN/4} and {| ¯̄Ck| > θ ′N/4} hold exponentially long. Recall the concepts
of T -stability and [L,T ]-susceptibility as given in Definitions 1 and 2. We replace
the concept of T -infectiousness used for spreading among stars, by the following
definition.

DEFINITION 5. We say that x ∈ S is T –C -infectious if

∣∣{k ∈ N∩ [0, T − 1] : Rx ∩ [k, k + 1] =∅
}∣∣> T

3
.

Using Lemma 2, we know that each x ∈ S is T –C -infectious with probability
1 − e−cT for some c > 0, and hence lim infT →∞ lim infN→∞ infx∈S P(x is T –C -
infectious) = 1, which is why we can obtain the following result, in analogy to
Lemma 7.

LEMMA 10. There exists q1 > 0 as in Lemma 6 such that for all large T and
L ∈ [0, T ),

lim inf
N→∞ inf

x∈S
P
(
x is T –C -infectious, T -stable and [L,T ]-susceptible

)
> q1,

and these events are independent for different x ∈ S .

We set S ′
0 ⊂ S0 to be the subset of the initially infected stars that are also T -

stable, T –C -infectious, [0, T ]-susceptible and [0, T ]-infected. If a is small and N

large, its cardinality S′
0 dominates a binomial random variable with parameters S0

and q1q2. Moreover, for x ∈ S0, the event x ∈ S ′
0 is increasing in the processes

Ix,y , y 
= x, and thus by Harris’ inequality, it is positively correlated with every
event which is increasing in the processes Ix,y , y 
= x. Further, let

K := {
k ∈ N∩ [0, T ] : ∣∣{x ∈ S ′

0,Rx ∩ [k, k + 1] =∅
}∣∣≥ S′

0/6
}
.



THE CONTACT PROCESS ON EVOLVING SCALE-FREE NETWORKS 2683

We necessarily have

S′
0T

3
≤ ∑

k∈N∩[0,T ]

∑
x∈S ′

0

1{Rx∩[k,k+1]=∅} ≤ |K|S′
0 + (

T − |K|)S′
0

6
,

where the left inequality follows from the definition of T –C -infectiousness, and
the right inequality from the definition of K . It follows |K| ≥ T/5. We use this set
to search for times in which stars can infect sufficiently many stable connectors.
More precisely, we let

P0 := {
(k, y), k ∈ K,y ∈ ¯̄Ck,∃x ∈ S ′

0,Ix,y ∩ [k, k + 1] 
=∅
}
.

Conditionally, on k ∈ K , y ∈ ¯̄Ck and x ∈ S ′
0, we have Ix,y

0 ∩[k, k+1] 
=∅ with
probability at least 1 − e−λ, thanks to the positive correlation with the event x ∈
S ′

0, and at time t = min(I
x,y
0 ∩ [k, k + 1]) we have {x, y} ∈ G (N)

t with probability
at least px,y ≥ p(a,1)/N , thanks to the update of y on time interval [k − 1, k].

Proceeding as before, we obtain that for large T and large N and conditionally
on S′

0, on K and on (Ck)k∈K , the cardinality P0 of P0 dominates a binomial
random variable with parameters⌈

θ ′T N

20

⌉
and

λp(a,1)

24N
S′

0 ∧ 1

2
.

Finally, we define S ′′
0 := {x ∈ S \S0 : ∃(k, y) ∈ P0,Ix,y ∩ [k + 1, k + 2] 
=

∅,XT (x) = 1} and S′′
0 = |S ′′

0 |, and observe that S1 ≥ S′
0 + S′′

0 . Conditionally on
S0, S ′

0 and P0, we have, independently for each (k, y) ∈ P0,

P
(
Ix,y ∩ [k + 1, k + 2] 
= ∅

)≥ λp(a,1)

2N
,

whence the probability that there exists (k, y) ∈ P0 such that Ix,y ∩ [k + 1, k +
2] 
= ∅ is at least λP0p(a,1)

4N
∧ 1

2 . Now, the probability that x gets infected on [0, T ]
is at least λP0p(a,1)

4N
∧ 1

2 . Conditionally on this, writing Tx the first time when it gets
infected, we have that with probability at least q1q2 (when T and N large), the
star x is T -stable, [Tx, T ]-susceptible and [Tx, T ]-infected, whence XT (x) = 1.
In other words, we can bound S′′

0 from below by a binomial random variable with
parameters

�aN� − S0 and q1q2

(
λp(a,1)

4N
P0 ∧ 1

2

)
.

Gathering the results, when T is large we can use Lemma 4 with n = �aN�,
ρ = q1q2, ρ′ = λ

24ap(a,1), ρ ′′ = λq1q2ap(a,1)/4, and ρ ′′′ = θ ′T/20a, under the
condition ρρ′ρ′′ρ′′′ > 1. This condition is satisfied if λ2T (a,λ)ap(a,1)2 is large
enough, which concludes the proof of the delayed indirect spreading case of The-
orem 1.
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5. Fast extinction and upper bounds. To obtain upper bounds we need to
show that no mechanism can outperform the ones examined in the lower bounds.
This cannot be done explicitly, but requires a more abstract supermartingale ar-
gument, which we now introduce. We start by coupling our process to a simpler
process which is a stochastic upper bound.

5.1. A coupling. We construct a coupling between the contact process on the
dynamic network, described by the pair of processes (X,G (N)), and a process Y ,
which we call the “wait-and-see” process. The process (Yt : t > 0) takes values in
{0,1}N × {0,1}N⊗N , where N ⊗ N is the set of potential edges, that is, unordered
pairs of distinct vertices in {1, . . . ,N}. We say a vertex x is infected at time t

(for the wait-and-see process) if Yt (x) = 1, and we say a potential edge {x, y} is
revealed at time t if Yt (x, y) = 1. Informally, a potential edge is unrevealed at time
t if we have no information about its presence in the dynamic network G (N)

t . The
wait-and-see model evolves according to the following rules:

• Every infected vertex x recovers at rate 1.
• If x is infected then it infects every uninfected vertex y,

– with rate λ if {x, y} is revealed (i.e., if Yt (x, y) = 1) and
– with rate λpx,y if it is unrevealed (i.e., if Yt (x, y) = 0).
In the latter case, when x infects y, the value of Yt (x, y) immediately turns to 1.

• If x, y are both infected and {x, y} is unrevealed, it gets revealed at rate λpx,y .
• Finally, each vertex updates at rate κx . Updating of x means that all its adjacent

potential edges turn to unrevealed.

LEMMA 11. Fix deterministic initial conditions X0(v) ≤ Y0(v) for all v ∈
{1, . . . ,N}. There exists a coupling of:

• the dynamic random network (G (N)

t : t ≥ 0),
• the original infection process on this network (Xt : t ≥ 0), and
• the wait-and-see process (Yt : t ≥ 0), started from vertices in Y0 infected and all

its edges unrevealed,

such that, at all times t ≥ 0, we have Xt(v) ≤ Yt (v) for all v ∈ {1, . . . ,N}, and
every revealed edge is an edge in G (N)

t .

The proof of this lemma is similar to the proof of Proposition 6.1 in [7], so we
omit it.

5.2. Proof of Theorem 2. In this section, we prove Theorem 2 for the vertex
component of Y , and hence for X since we have that X ≤ Y stochastically. We use
the function S, given in the assumptions of the theorem, to define a function mt

which, based on the state of Y , attaches a score to every vertex, in such a way that
the accumulated score of the vertices in the network is a supermartingale. Raising
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it to the power δ and adding a small drift still yields a supermartingale if we stop it
at the extinction time. We then exploit optional stopping to get upper bounds and
prove both statements of the theorem.

We now suppose S : (0,1] → (0,+∞) satisfies (7) and (H)δ for some given δ ∈
(0,1], and for vertices x ∈ {1, . . . ,N}, we introduce the notation s(x) = S(x/N)

and t (x) = 4D
Tλ(x/N)κx

s(x), where we recall D = min{κ0
4 ,

κ2
0

64c2
, 1

16}. Observe that the
monotonicity properties of p and S easily imply

λ
∑
y

px,ys(y) ≤ λ

N

∑
y

p

(
x

N
,

y

N

)
S

(
y

N

)
≤ λ

∫ 1

0
p

(
x

N
,y

)
S(y) dy,

so inequality (7) implies

(20) λ
∑
y

px,ys(y) ≤ D

Tλ(
x
N

)
s(x).

We now define the score of a configuration as

Mt :=
N∑

x=1

mt(x),

where

mt(x) =
⎧⎪⎨
⎪⎩

s(x) +
(

2κ−1
x λNt(x) ∧ 1

2

)(
2t (x)

)
if Yt (x) = 1,(

2κ−1
x λNt(x) ∧ 1

)(
s(x) + t (x)

)
if Yt (x) = 0,

and Nt(x) =∑
y 
=x Yt (x, y) is the number of revealed neighbours of x at time t .

Even though it may seem a bit obscure at first glance, the score is actually natu-
ral; every vertex has a base score of s(x) or 0 (depending on whether it is infected
or not) and mt(x) increases linearly on the amount of its revealed neighbours,
which reflects the fact that revealed neighbours make the propagation of the in-
fection easier. In both cases, the score grows linearly up until some maximal cap
at which mt is the same for infected and noninfected vertices; a natural choice
since from a certain amount of revealed neighbours on, we can think of vertices as
permanently infected. Observe also that:

• From the inequalities Tλ(x/N) ≥ 1 and κx ≥ κ0 and the definition of D, we
always have t (x) ≤ s(x).

• The score of a vertex is monotone with respect to the value of Yt (x) and of
Nt(x).

• The maximal value mt(x) = s(x) + t (x) is obtained if either Yt (x) = 1 and
Nt(x) ≥ λ−1κx/4, or Yt (x) = 0 and Nt(x) ≥ λ−1κx/2.

We now aim at proving that Mt is a supermartingale, as well as Zt∧Text , where
Text is the extinction time of the infection and Zt := Mδ

t + δεt , for some suitable
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ε > 0. We do this by showing that the expected infinitesimal change of Mt is less
than −εM1−δ

t when Mt > 0. To begin, we bound the expected infinitesimal change
of mt(x) according to the values of Yt (x) and Nt(x).

(i) Yt(x) = 1, Nt(x) ≥ λ−1κx/4. In this case, the score of x can only decrease
(or remain unchanged) with each possible change, so we obtain the bound consid-
ering only an update event at x, which yields

1

dt
E
[
mt+dt (x) − mt(x)|Ft

]≤ −κxt (x).

(ii) Yt(x) = 1, Nt(x) < λ−1κx/4. In this case, we can bound the infinitesimal
change by the expression(

2κ−1
x λNt(x)

[
s(x) − t (x)

]− s(x)
)+ 4λ2κ−1

x t (x)
∑

y : Yt (x,y)=0

px,y,

where the first term comes from the recovery at x and the second one from the
possible revealing of a neighbouring edge. As t (x) ≤ s(x) and Nt(x) < λ−1κx/4
the first term is bounded by

−s(x) + t (x)

2
≤ −s(x)

2
= − 1

8D
κxt (x)Tλ

(
x

N

)
.

On the other hand, since
∑

y px,y can be bounded by
∫

p( x
N

, t) dt ≤ c2(
x
N

)−γ , we
can bound the second term by

4c2κ
−2
0

(
κxt (x)

)[
λ2
(

x

N

)−γ+2γ η]
≤ 4c2κ

−2
0 κxt (x)Tλ

(
x

N

)

≤ 1

16D
κxt (x)Tλ

(
x

N

)
.

Adding the two terms, we obtain

1

dt
E
[
mt+dt (x) − mt(x)|Ft

]≤ −κxt (x)Tλ(
x
N

)

16D
≤ −κxt (x).

(iii) Yt(x) = 0,Nt(x) ≥ λ−1κx/2. As in the first scenario, the score is maximal
in this case. We obtain the bound again considering only an update event at x,
which yields

1

dt
E
[
mt+dt (x) − mt(x)|Ft

]≤ −κxmt(x).

(iv) Yt(x) = 0, Nt(x) ≤ λ−1κx/2. In this case, we can bound every positive
increment of m(x) by the maximal score s(x) + t (x), hence we can bound the
infinitesimal change by

−κxmt(x) + λNt(x)
[
s(x) + t (x)

]+ ∑
y : Yt (y)=1

λpx,y

[
s(x) + t (x)

]
,
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where the first term comes from possible updates of x, the second from infections
coming through neighbouring revealed edges and the third from infections com-
ing through unrevealed edges. Since Nt(x) ≤ λ−1κx/2, the second term is exactly
κx

2 mt(x), and hence, since t (x) ≤ s(x), we obtain

1

dt
E
[
mt+dt (x) − mt(x)|Ft

]≤ −κx

2
mt(x) + 2λ

∑
y : Yt (y)=1

px,ys(x).

Now, we can consider the whole score, and write

1

dt
E
[
M(t + dt) − M(t)|Ft

]

=∑
x

1

dt
E
[
mt+dt (x) − mt(x)|Ft

]

≤ ∑
x : Yt (x)=0

Nt (x)≥λ−1κx/2

−κxmt(x) + ∑
x : Yt (x)=1

−κxt (x)

+ ∑
x : Yt (x)=0

Nt (x)<λ−1κx/2

−κx

2
mt(x) + ∑

x : Yt (x)=0
Nt (x)<λ−1κx/2

2λ
∑

y : Yt (y)=1

px,ys(x).

For the last term, we can reverse the role of x and y obtaining the expression

∑
x : Yt (x)=1

2λ
∑
y

px,ys(y) ≤ 2D
∑

x : Yt (x)=1

s(x)

Tλ(x/N)
≤ 1

2

∑
x : Yt (x)=1

κxt (x),

where the first inequality comes from (20). We thus arrive at

(21)
1

dt
E
[
M(t + dt) − M(t)|Ft

]≤ −1

2

∑
x : Yt (x)=0

κxmt(x) − 1

2

∑
x : Yt (x)=1

κxt (x),

which is clearly negative, and hence (M(t) : t ≥ 0) is a supermartingale. To show
that (Zt∧Text : t ≥ 0) is a supermartingale, recall that c := ‖TλS

−δ‖∞ is finite by
(H)δ , and observe the following inequality is satisfied:

2λ

κx

s(x)1mt (x)>0 ≤ mt(x) ≤ 2s(x),

by the definition of mt(x) and the property t (x) ≤ s(x). Further,

κxt (x) = 4Ds(x)

Tλ(x/N)
≥ 4D

c
s(x)1−δ ≥ 21+δD

c
mt(x)1−δ,

κxmt(x) ≥ (
2λS(1)

)δ
κ1−δ

0 mt(x)1−δ,
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with the understanding (in the last inequality) mt(x)1−δ = 0 if mt(x) = 0 and
δ = 1. This together with (21) yields the existence of ε > 0 depending on λ but not
on N such that

(22)
1

dt
E
[
M(t + dt) − M(t)|Ft

]≤ −ε
∑
x

mt (x)1−δ ≤ −εM(t)1−δ,

where the last inequality is due to 0 < δ ≤ 1, and hence Zt∧Text defines a positive
supermartingale which converges almost surely to ZText . Since Text is increasing in
the initial condition of Y it is enough to take Y0 = 1 to prove the theorem. We infer
from the optional stopping theorem that

(23) δεE[Text] = E[ZText] ≤ E[Z0] = E
[
Mδ

0
]= Nδ

[
1

N

N∑
x=1

s(x)

]δ

,

but the expression inside the brackets is bounded by
∫ 1

0 S(x) dx which is a fixed
constant and hence the first statement of Theorem 2 is proved.

In order to prove the second statement, we use the duality described in Propo-
sition 3 to deduce IN(t) = 1

N

∑N
x=1 Px(Xt 
= 0) where under Px the process X

is started from initial condition X0 = δx . Since Yt stochastically bounds Xt from
above, we get

(24) IN(t) ≤ 1

N

N∑
x=1

Px(t < Text),

where in this context Text is the extinction time of Y , started from Y0 = δx . Defining
Thit as the first time that Yt (x) = 1 for some x ≤ �aN�, and T := Text ∧ Thit, we
obtain

(25) P(t < Text) ≤ P(Thit < Text) + P(t < T ),

which leads us to use the stopped process Yt∧T instead of Yt .
We suppose a and S : [a,1] → (0,∞) nonincreasing are such that (8) is satis-

fied. We extend the function S to the whole interval [0,1] by setting S(x) = S(a)

for x < a. A close look at the latter proof shows that if we define s(x), t (x), mt(x),
and M and Z as before, with δ = 1 and ε > 0 small enough, then the stopped pro-
cess Zt∧T is a positive supermartingale. Furthermore, it converges to

ZT = MT + εT = MThit1{Thit<Text} + εT ≥ S(a)1{Thit<Text} + εT .

By the optional stopping theorem, we get Ex[ZT ] ≤ Ex[Z0] = s(x), and thus in
particular

Px(Thit < Text) ≤ s(x)

S(a)
, Px(t < T ) ≤ 1

t
ExT ≤ s(x)

εt
.
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Gathering this with (24) and (25), and bounding the probability of survival by 1
whenever x ≤ �aN�, we obtain

IN(t) ≤ �aN�
N

+ 1

NS(a)

N∑
x=�aN�+1

s(x) + 1

εtN

N∑
x=�aN�+1

s(x).

Noticing that all these terms converge when N → ∞, we have that for all N and
t ≥ 0,

IN(t) ≤ a + 1

S(a)

∫ 1

a
S(x) dx + 1

εt

∫ 1

a
S(x) dx + ε′(N),

with ε′(N) → 0, which concludes the result when taking t large enough (note both
integrals are finite since S is bounded by S(a)).

6. Application to the factor kernel. In this section, we prove the first half
of Theorem 3 applying both Theorems 1 and 2 to the factor kernel p(x, y) =
βx−γ y−γ . Our proof is structured as follows:

(1) For each of the four strategies in Theorem 1 we find the function a(λ) of
maximal order satisfying the respective condition given in the theorem.

(2) We define a0(λ) as the maximum of these functions over the four strate-
gies. This function gives for each λ the definition of the set of stars. Using Theo-
rem 1, we derive from it a lower bound of order λa0p(a0,1) ∧ 1, or more simply
λa0(λ)1−γ , for the lower metastable density.

(3) We search for a nonincreasing function S and for a1 = a1(λ) ∈ [0,1] as
small as possible such that inequality (8) is satisfied for small λ and a = a1(λ).

If we can take a1 = 0, then we can apply Theorem 2, (1) and deduce fast extinc-
tion for small λ. In the other cases, we will always have proven already metasta-
bility, and Theorem 2, (2) then gives us, for small λ, an upper bound on the upper
metastable density as

ρ+(λ) ≤ a1(λ) + 1

S(a1(λ))

∫ 1

a1(λ)
S(y) dy.

Note we have not discussed how to choose the function S. This will be further
discussed in the examples below.

To avoid cluttered notation we henceforth assume β = 1, which does not affect the
results.

The function a0(λ). Our aim is to find for each strategy the maximal function
satisfying the respective condition in Theorem 1.

• Quick direct spreading: We study the expression λap(a, a) = λa1−2γ and
check whether it is bounded away from zero. If γ ≤ 1/2, this is never satisfied.
If γ > 1/2, we impose that the expression be constant and obtain

a(λ) = rλ
1

2γ−1 for some r > 0.



2690 E. JACOB, A. LINKER AND P. MÖRTERS

• Delayed direct spreading: We study the expression λT ap(a, a) = λT a1−2γ

with T as in Theorem 1. To facilitate our study, we impose T → ∞ instead of
just being large, but this translates into T log2(T ) = Cλ2a−γ (1−2η) → ∞ which
can only occur if η < 1/2. To ensure boundedness of the expression from zero,
we observe that λT a1−2γ ≤ λ3a1−3γ+2γ η, and hence it suffices that 1 − 3γ +
2γ η < 0. Assuming this and η < 1/2, we find a(λ) by imposing that λT a1−2γ

be constant, say equal to c, and deduce from the definition of T that

[
log(c) − log

(
λa1−2γ )]2 = C

c
λ3a1−3γ+2γ η.

Since T → ∞, the expression on the left goes to infinity, and hence a is of the
form

a(λ) = λ
3

3γ−2γ η−1 f (λ),

for some function f going to zero as λ → 0. Replacing this new expression
for a, we obtain [log(c) − c1 log(λ) − c2 log(f (λ))]2 = C

c
f (λ)1−3γ+2γ η. The

expression on the right tends to infinity polynomially in f , so the equality holds

only if logλ dominates logf (λ) giving f (λ) of order [− logλ] 2
1−3γ+2γ η . We

finally get the maximal a of the form

a(λ) = r

[
λ3

(logλ)2

] 1
3γ−2γ η−1

for some r > 0.

• Quick indirect spreading: We study the expression λ2a1−γ p(a,1) = λ2a1−2γ .
If γ ≤ 1/2, this inevitably tends to zero and otherwise we obtain that the maxi-
mal a is of the form

a(λ) = rλ
2

2γ−1 for some r > 0.

• Delayed indirect spreading: In this case, we need to consider the expression
λ2T a1−γ p(a,1) = λ2T a1−2γ whose study is analogous to what was done in the
delayed direct spreading case, obtaining that condition (iv) can only hold when
η < 1/2 and 1 − 3γ + 2γ η < 0 and in this case a must be of the form

a(λ) = r

[
λ4

(− logλ)2

] 1
3γ−2γ η−1

for some r > 0.

For the final form of a0, we notice first that on the set

(26)
{
(γ, η) : γ ≤ 1

3 − 2η
,η ≤ 1

2
or γ ≤ 1

2
, η ≥ 1

2

}

none of the conditions of Theorem 1 hold, so we expect that fast extinction occurs
for parameters inside this region. For the construction of a0 on the complement
of this set, we note that all of the functions a have the form λe

′+o(1), and since
λ < 1, for each λ small the dominant survival strategy (i.e., the one which gives
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the largest lower bound for the density) corresponds to the expression with the
smallest exponent. If η < 1/2, this gives

a0(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r

[
λ3

(− logλ)2

] 1
3γ−2γ η−1

if
1

3 − 2η
< γ <

2

3 + 2η
,

rλ
1

2γ−1 if
2

3 + 2η
< γ < 1,

while in the case η > 1/2 we obtain

a0(λ) = rλ
1

2γ−1 if γ >
1

2
.

Computing the lower bound for the density as λa
1−γ
0 for the values of the param-

eter where a0 is defined gives the lower bound in (11).

The function S. In the case of the factor kernel, inequality (8) takes the simple
form

λTλ(x)x−γ
∫ 1

0
y−γ S(y ∨ a)dy ≤ DS(x).

Since the integral does not depend on x, a natural choice is to consider the function

S(x) = Tλ(x)x−γ .

This scoring function is also somehow natural, as we now explain. The average
degree of x is of order x−γ and if x is infected, we should wait on average at most
time Tλ(x) before x turns to healthy and surrounded by unrevealed edges. More
precisely, this should happen roughly at time max{T (x,λ),1}, where T (x,λ) is as
in (3), but this is bounded by Tλ(x), and even of the same order, up to logarithmic
terms.6 Thus λS(x) should be a reasonable upper bound for the average number of
infections sent by vertex x before the first time when it is healthy and surrounded
by unrevealed edges (namely the first time t for which mt(x) = 0), and thus S

seems a reasonable scoring function.
Using this choice of S, inequality (8) becomes

λ

∫ 1

0
y−γ S(y ∨ a)dy ≤ D.

6The discrepancy between the time-scale function Tλ(x) used in Theorem 2 and that in Theorem 1
explains why, as we will see, the lower bounds for ρ−(λ) and the upper bounds for ρ+(λ) that we
get match only up to logarithmic terms. They match indeed up to a constant multiplicative term when
Tλ(x) = 1.
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Using that Tλ(x) ≤ 1+λ2x−γ (1−2η), the left-hand side can be bounded as follows:

λ

∫ 1

0
y−γ S(y ∨ a)dy = λa1−2γ Tλ(a) + λ

∫ 1

a
S(y)y−γ dy

≤ λa1−2γ Tλ(a) + λ3
∫ 1

a
y−γ (3−2η) dy + λ

∫ 1

a
y−2γ dy

≤ ρ
(
λ3a1−γ (3−2η) + λa1−2γ + λ

)
,

for some constant ρ > 0 depending only on γ , η, under the hypothesis γ /∈
{1

2 , 1
3−2η

}. Note that in the last inequality we have used that
∫ 1
a yι dy ≤ 1

|1+ι|(1 +
a1+ι) for ι 
= −1, and the upper bound is sharp up to a multiplicative constant.

We now consider three different cases.

(1) The case η < 1
2 and γ < 1

3−2η
, or η ≥ 1

2 and γ < 1
2 .

Here, we can take a1 = 0. Indeed, we have λ
∫ 1

0 y−γ S(y) dy ≤ ρλ, therefore, in-
equality (8) is satisfied if λ ≤ D/ρ. Moreover, the function S satisfies Tλ(x) ≤
S(x)δ for:

• δ ≥ 1−2η
2−2η

whenever 0 ≤ η < 1/2,
• δ > 0 in the case η > 1/2.

Using Theorem 2, (1), we deduce fast extinction for small λ. More precisely,
when η < 1/2, we get E[Text] ≤ ω′N(1−2η)/(2−2η) for some ω′ < +∞. In the case
η ≥ 1/2, for every δ > 0, there is some ω′ < +∞ such that E[Text] ≤ ω′Nδ . In
particular, the extinction time grows even slower than polynomially.

(2) The case η < 1
2 and 1

3−2η
< γ < 2

3+2η
.

A sufficient condition for Inequality (8) to be satisfied is

max
(
λ3a1−γ (3−2η), λa1−2γ , λ

)≤ D/3ρ.

This requires, in particular, that

a ≥ a1(λ) := rλ
3

3γ−2η−1 ,

where r = (D/(3ρ))
1

3γ−2η−1 < ∞. One can check this is also a sufficient condition
for small λ when γ < 2

3+2η
. Applying Theorem 2, (2), we deduce that

ρ+(λ) ≤ a1(λ) + 1

S(a1(λ))

∫ 1

a1(λ)
S(y) dy.

From now on, we write f (λ) � g(λ) if the function g(λ)/f (λ) is bounded from
below by a positive constant, and similarly for �. One can check the following:∫ 1

a1(λ)
S(y) dy �

∫ 1

a1(λ)
λ2y−γ (2−2η) + y−γ dy

� λ2a1(λ)1−2γ+2γ η + 1 � λ
1+2γ η

3γ−2γ η−1 + 1 � 1.
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This, together with S(a1(λ)) ≥ λ2a
−γ (2−2η)
1 � λ

− 2−2γ η
3γ−2γ η−1 , gives

ρ+(λ) ≤ cλ
2−2γ η

3γ−2γ η−1 ,

for some constant c < ∞. Thus we obtain the upper bound (11) in this region.
(3) The case η < 1

2 and γ > 2
3+2η

, or η ≥ 1/2 and γ > 1/2.
Similarly, as in the previous case, it suffices for small λ to require

a ≥ a1(λ) := rλ
1

2γ−1 ,

with r = (D/(3ρ))
1

2γ−1 . We have S(x) = x−γ for x ≥ a1(λ), and Theorem 2, (2),
yields

ρ+(λ) ≤ a
γ
1

∫ 1

0
y−γ dy ≤ cλ

γ
2γ−1 ,

for some constant c < ∞. This gives again the upper bound (11) and concludes
our study of the metastable densities for the factor kernel.

7. Application to the preferential attachment kernel. In this section,
we derive results for the preferential attachment kernel given by p(x, y) =
β min{x, y}−γ max{x, y}γ−1 following the programme set out at the beginning
of Section 6. Again, we assume β = 1 for simplicity. Taking into account that
p(a, a) = a−1 and p(a,1) = a−γ , straightforward calculations allow us to deduce
the values of the maximal order functions a(λ) summarised in Table 1. The third
column gives the conditions needed to define the maximal function a(λ).

TABLE 1
Maximal order function a(λ) for given spreading strategy, case of preferential attachment kernel

Strategy a(λ) Condition

Quick Direct Spreading – –

Delayed Direct Spreading
[

λ3

(− logλ)2

] 1
γ (1−2η) η < 1/2

Quick Indirect Spreading λ
2

2γ−1 γ > 1/2

Delayed Indirect Spreading
[

λ4

(− logλ)2

] 1
3γ−2γ η−1 η < 1

2 and γ > 1
3−2η
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Taking the maximum over permissible strategies we deduce a0(λ). If η < 1/2,
we get

a0(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r

[
λ3

(− logλ)2

] 1
γ (1−2η)

if 0 < γ <
3

5 + 2η
,

r

[
λ4

(− logλ)2

] 1
3γ−2γ η−1

if
3

5 + 2η
< γ <

1

1 + 2η
,

rλ
2

2γ−1 if
1

1 + 2η
< γ < 1.

If η > 1/2 and γ > 1/2, we get a0(λ) = rλ
2

2γ−1 , but if η > 1/2 and γ < 1/2 none
of the strategies succeed. Calculating λa0(λ)1−γ gives the lower bounds as in (12)
and there is slow extinction for all parameters except for the case η > 1/2 and
γ < 1/2, as expected.

To get upper bounds in the case of the preferential attachment kernel, the choice
of a scoring function S is much more delicate. Our initial approach has been to
search for a function S giving equality in (8), or in the related Fredholm equation
of the second kind

(27)
∫ 1

a1(λ)
Tλ(x)p(x, y)S(y) dy = D

λ
S(x),

as such an S is a plausible candidate to give the best possible bounds in Theorem 2.
To carry out this programme requires extensive calculations with Bessel functions
and modified Bessel functions. However, it turns out that relatively crude approxi-
mations to these functions also suffice and this is the approach we now follow.

The upper bound for γ > 1/2. We start with the case γ > 1/2, and we define
S by

S(x) = Tλ(x)
(
xγ−1 + ρλx−γ ),

where ρ > 0 is a constant to be chosen later. To argue why S may be a “reasonable
scoring function”, it is useful to note that the cardinality of the sets {y ≤ x : y ∼ x}
and {y ≤ x : ∃z ≥ x, y ∼ z ∼ x} are of order xγ−1 and x−γ , respectively. Thus,
λS(x) might be a reasonable upper bound for the number of other strong vertices
a strong vertex x can typically infect, either directly or indirectly, before it totally
recovers (namely mt(x) = 0).

Using this function, inequality (8) becomes

λ

xγ−1 + ρλx−γ

∫ 1

0
p(x, y)S(y ∨ a)dy ≤ D.

We denote the left-hand side by I (x, a), and observe that the hypothesis γ > 1/2
implies

p(x, y) ≤ xγ−1y−γ + x−γ yγ−1 ≤ 2p(x, y).
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If x ≥ a, we can bound I using the notation α = γ (1 − 2η) as

I (x, a) = λ

xγ−1 + ρλx−γ

[∫ a

0
p(x, y)S(a) dy

+
∫ 1

a
p(x, y)Tλ(y)

(
yγ−1 + ρλy−γ )dy

]

≤ λ

xγ−1 + ρλx−γ

[
xγ−1S(a)

∫ a

0
y−γ dy

+
∫ 1

a
p(x, y)

(
1 + λ2y−α)(yγ−1 + ρλy−γ )dy

]

≤ λ

xγ−1 + ρλx−γ

[
xγ−1

(
a1−γ S(a)

1 − γ

+
∫ 1

a

(
y−1 + ρλy−2γ + λ2y−1−α + ρλ3y−α−2γ )dy

)

+ x−γ
∫ 1

a

(
y2γ−2 + ρλy−1 + λ2y2γ−2−α + ρλ3y−1−α)dy

]

≤ λ

(
a1−γ S(a)

1 − γ
+
∫ 1

a

(
y−1 + ρλy−2γ + λ2y−1−α + ρλ3y−α−2γ )dy

)

+ 1

ρ

∫ 1

a

(
y2γ−2 + ρλy−1 + λ2y2γ−2−α + ρλ3y−1−α)dy.

At this point, we observe that the bounds we used are tight up to a multiplicative
constant. Indeed, replacing a “max” by a sum can multiply the result by 2 at worst.
The last inequality is tight because taking x = 1 gives at least 1/(1 + ρλ) ≥ 1/2
times the first term (for λ < 1/ρ), while taking x = a gives at least 1/2 times the
second term, if we further suppose ρλa−γ > aγ−1 or a ≤ (ρλ)1/(2γ−1) (one can
check a posteriori that a1 below will always satisfy this property).

For simplicity,7 we now suppose that the exponents in the integrals are different
from −1, and use again the inequality

∫ 1
a yι dy ≤ 1

|1+ι|(a
1+ι + 1) for ι 
= −1. This

allows to give a relatively simple upper bound for I (x, a) (again tight up to a
multiplicative constant) as

I (x, a) � 1

ρ
+ ρλ2 + λ| loga| + ρλ2a1−2γ + λ3a−α + ρλ4a1−α−2γ

+ 1

ρ
a2γ−1 + 1

ρ
λ2a2γ−1−α.

7We get an additional factor loga when the exponent is −1. However, the reader can check this
actually never concerns the leading term, so our results also hold when one of the exponents equals
−1.
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We want this to be smaller than D. To this end, we now fix ρ = 2/D, so the
first term is smaller than D/2. Now, we can ensure I (x, a) is smaller than D by
requesting:

• a > rλ3/α with r large,
• a > rλ2/(2γ−1) with r large,
• a > rλ4/(2γ+α−1) with r large,
• a > rλ2/(α+1−2γ ) with r large (only in the case α + 1 − 2γ > 0).

We then choose a1 = a1(λ) the smallest value making all these requests satisfied.
After some more computations, these give:

• a1(λ) = rλ3/α in the case 1/2 < γ < 3/(5 + 2η),
• a1(λ) = rλ4/(2γ+α−1) in the case 3/(5 + 2η) < γ < 1/(1 + 2η),
• a1(λ) = rλ2/(2γ−1) in the case γ > 1/(1 + 2η).

Theorem 2, (2), now gives the upper bound for the upper metastable density

ρ+(λ) ≤ a1(λ) + 1

S(a1(λ))

∫ 1

a1(λ)
S(y) dy.

The reader can check that in all three cases, S is integrable and the integral gives a
constant term, while S(a1(λ))−1 is of same order as λa

1−γ
1 . Actually, the expres-

sion λa1−γ S(a) appears in the upper bound of I (1, a), and the choice of a1 made
it small, but of constant order. Finally, we get an upper bound of order λa

1−γ
1 ,

which matches (12).

The upper bound for γ < 1/2 and η < 1/2. Here, we define the scoring func-
tion S by

S(x) = (
x−γ + λxγ−1)Tλ(x)

and avoid to use the inequality p(x, y) ≤ xγ−1y−γ + x−γ yγ−1, as it is not sharp
anymore. Now inequality (8) is equivalent to the inequality I (x, a) ≤ D for x ≥ a,
where

I (x, a) := λ

x−γ + λxγ−1

(∫ x

0
y−γ xγ−1S(y ∨ a)dy +

∫ 1

x
x−γ yγ−1S(y) dy

)

≤ λxγ−1

x−γ + λxγ−1

×
(

a1−γ S(a)

1 − γ
+
∫ x

a

(
y−2γ + λy−1 + λ2y−2γ−α + λ3y−1−α)dy

)

+ λx−γ

x−γ + λxγ−1

∫ 1

x

(
y−1 + λy2γ−2 + λ2y−1−α + λ3y2γ−2−α)dy

≤ I1(x, a) + I2(x).
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We again suppose for simplicity that the exponents do not equal −1, and af-
ter tedious but straightforward calculations we obtain the following simple upper
bounds for x ∈ [a,1]:

I1(x, a) � λ| loga| + λ3a−α + λ2a1−2γ−α,

I2(x)) � λ| logx| + λ3x−α.

For example, one of the terms of I2(x) is

λx−γ

x−γ + λxγ−1

∫ 1

x
λ3y2γ−2−α dy � λx−γ

x−γ + λxγ−1

(
λ3 + λ3x2γ−1−α)

� λ4 x−γ

x−γ + λxγ−1 + λ3x−α λxγ−1

x−γ + λxγ−1

� λ4 + λ3x−α � λ| logx| + λ3x−α,

and we bound the other terms similarly. As in the case γ > 1/2, we search for
the minimal value making I1 and I2 small, and find that in the region γ < 1/2,
η < 1/2, we can always take a1(λ) = rλ3/α . Finally, as in the case γ > 1/2, we
obtain the upper bound

ρ+(λ) ≤ a1(λ) + 1

S(a1(λ))

∫ 1

a1(λ)
S(y) dy.

Again, the integral is of constant order, while S(a1(λ))−1 is of same order as
λa1(λ)1−γ , yielding an upper bound matching (12).

The upper bound for γ < 1/2 and η > 1/2. In this case, none of the scoring
functions introduced before enable us to prove slow extinction. Besides, the time-
scale function is simply Tλ(x) = 1. We define the scoring function S(x) = x−γ ′

,
with γ ′ ∈ (γ,1 − γ ). Inequality (8) for a1 = 0 becomes

λ

∫ 1

0
p(x, y)y−γ ′

dy ≤ Dx−γ ′
.

But simple calculations give

λ

∫ 1

0
p(x, y)y−γ ′

dy = λxγ−1
∫ x

0
y−γ−γ ′

dy + λx−γ
∫ 1

x
yγ−1−γ ′

dy

≤ λx−γ ′
(

1

1 − γ − γ ′ + 1

γ ′ − γ

)
,

thus inequality (8) is satisfied for small λ. Moreover, Tλ(x) = 1 satisfies Hypothe-
sis (H)δ for every δ > 0, thus we have fast extinction, and the expected extinction
time grows subpolynomially. This completes our analysis for the preferential at-
tachment kernel.
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8. Conclusions. We have investigated the effect of fast network dynamics on
the behaviour of the contact process on scale-free networks modelled as inhomo-
geneous random network with suitable connection kernels. The stationary network
dynamics consists of vertices updating their neighbourhoods independently of the
contact process. Variation of a parameter η, which controls the rate at which the
most powerful vertices update, allows an interpolation between a scenario where
vertices update on the time-scale of the contact process (η = 0) and a mean-
field model where updates occur on a time scale of much faster order (η ↑ ∞).
We develop general techniques to study the behaviour of the extinction time and
metastable densities at small infection rates for this class of models. Lower bounds
are based on the identification of four core survival strategies for the contact pro-
cess, and upper bounds are proved using coupling and supermartingale techniques.

Our focus is on two paradigmatic connection kernels, the factor kernel and the
preferential attachment kernel, which exhibit very different behaviour. For the fac-
tor kernel, we identify a phase transition between fast and slow extinction, and, in
case η < 1

2 , a further transition within the slow extinction phase between two types
of metastable densities. For the preferential attachment kernel, a phase transition
between fast and slow extinction only occurs when η > 1

2 . For η < 1
2 , we always

have slow extinction and two phase transitions in the behaviour of the metastable
densities.

In a future paper, we will discuss slowly evolving networks. This will include
updating edges individually as well as vertex updating in the case where the most
powerful vertices update very slowly (η < 0) and will allow us to interpolate be-
tween a scenario where vertices update on the time-scale of the contact process
(η = 0) and the case of static networks (η ↓ −∞). The mathematical problems
emerging in this work will require, in part, significantly different methods from
those explained in this paper.
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