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APPROXIMATION OF STOCHASTIC PROCESSES BY
NONEXPANSIVE FLOWS AND COMING DOWN FROM INFINITY1

BY VINCENT BANSAYE

CMAP, École Polytechnique

This paper deals with the approximation of semimartingales in finite di-
mension by dynamical systems. We give trajectorial estimates uniform with
respect to the initial condition for a well-chosen distance. This relies on a
nonexpansivity property of the flow and allows to consider non-Lipschitz vec-
tor fields. The fluctuations of the process are controlled using the martingale
technics and stochastic calculus.

Our main motivation is the trajectorial description of stochastic processes
starting from large initial values. We state general properties on the coming
down from infinity of one-dimensional SDEs, with a focus on stochastically
monotone processes. In particular, we recover and complement known results
on �-coalescent and birth and death processes. Moreover, using Poincaré’s
compactification techniques for flows close to infinity, we develop this ap-
proach in two dimensions for competitive stochastic models. We thus classify
the coming down from infinity of Lotka–Volterra diffusions and provide uni-
form estimates for the scaling limits of competitive birth and death processes.
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1. Introduction. The approximation of stochastic processes has been largely
developed and we refer, for example, to [17, 20] for general statements both for
deterministic approximation and study of the fluctuations. Particular attention has
been paid to random perturbation of dynamical systems [18, 28] and the study of
fluid and scaling limits of random models; see [12] for a survey about approxi-
mation of Markov chains. In this paper, we are interested in stochastic processes
(Xt : t ≥ 0) taking values in a Borel subset E of Rd, which can be written as

Xt = X0 +
∫ t

0
ψ(Xs) ds + Rt,

where R is a semimartingale. We aim at proving that X remains close to the flow
φ(x0, t) = xt given by

xt = x0 +
∫ t

0
ψ(xs) ds.

The point here is to estimate the probability of this event uniformly with respect
to the initial condition x0 ∈ D, when the drift term ψ may be non-Lipschitz on D.
Our main motivation for such estimates is the description of the coming down from
infinity, which amounts to let the initial condition x0 go to infinity, and the uniform
scaling limits of stochastic processes describing population models on unbounded
domains.

The approach relies on a contraction property of the flow, which provides sta-
bility on the dynamics. This notion is used in particular in control theory. More
precisely, we say that the vector field ψ is nonexpansive on a domain D when it
prevents two trajectories from moving away for the euclidean norm on a subset D

of Rd. This amounts to

∀x, y ∈ D,
(
ψ(x) − ψ(y)

)
.(x − y) ≤ 0,

where . is the usual scalar product on Rd. Actually, the distance between two
solutions may increase provided that this increase is not too fast. This allows to
deal with additional Lipschitz component or bounded perturbation in the flow and
it is required for the applications considered here. Thus we are working with (L,α)

nonexpansive vector fields.
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DEFINITION 1.1. The vector field ψ : D → Rd is (L,α) nonexpansive on
D ⊂ Rd if for any x, y ∈ D,(

ψ(x) − ψ(y)
)
.(x − y) ≤ L‖x − y‖2

2 + α‖x − y‖2.

The nonexpansivity property ensures that the drift term cannot make the dis-
tance between the stochastic process X and the dynamical system x explode be-
cause of small fluctuations due to the perturbation R. To control the size of these
fluctuations, we use martingale technics in Section 2: let us mention [12] in the
context of scaling limits and [6] for a pioneering work on the speed of coming
down from infinity of �-coalescents.

These results are developed and specified when X satisfies a Stochastic Differ-
ential Equation (SDE), in Section 3, which allows a diffusion component and ran-
dom jumps given by a Poisson point measure. This covers the range of our appli-
cations. We then estimate the probability that the stochastic process remains close
to the dynamical system when a transformation of the domain provides (L,α)-
nonexpansivity of the associated flow. These estimates hold for any x0 ∈ D and a
well-chosen distance d , which is bound to capture the fluctuations of X around the
flow φ. Informally, we obtain that for any ε > 0,

(1) Px0

(
sup

t≤T ∧TD(x0)

d
(
Xt,φ(x0, t)

)≥ ε
)

≤ CT

∫ T

0
V d,ε(x0, t) dt,

where TD(x0) corresponds to the exit time of the domain D for the flow φ started
at x0. The transformation F of the flow is of class C2, so that we can use the
stochastic calculus. The distance d is inherited from this transformation and of the
form

d(x, y) = ∥∥F(x) − F(y)
∥∥

2.

The perturbation needs to be controlled for this distance d in a tube around the
trajectory of the dynamical system and

V d,ε(x0, t) = sup
x∈E

d(x,φ(x0,t))≤ε

{
ε−2∥∥VF (x)

∥∥
1 + ε−1∥∥b̃F (x)

∥∥
1

}
,

where VF will be given by the quadratic variation of F(X) and b̃F will be an
additional approximation term arising from Itô’s formula applied to F(X).

Relevant choices of F will be illustrated through several examples. First, they
are linked to the geometry of the flow and allow to change the metric so that (L,α)

nonexpansivity property is guaranteed. We refer to the last section for a family
of transformations covering the full domain for a two-dimensional competitive
model. Second, these transformations F need to reduce enough fluctuations so
that these latter can be integrated along the trajectory, see in particular the different
functions involved in Section 4.2.
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The estimate (1) becomes uniform with respect to x0 ∈ D as soon as V d,ε(x0, .)

can be bounded by an integrable function of the time. It allows then to charac-
terize the coming down from infinity for stochastic differentials equations in Rd.
Roughly speaking, we consider an unbounded domain D and let T go to 0 to derive
from (1) that for any ε > 0,

lim
T →0

sup
x0∈D

Px0

(
sup
t≤T

d
(
Xt,φ(x0, t)

)≥ ε
)

= 0.

Letting then x0 go to infinity enables to describe the coming down from infinity
of processes in several ways. First, the control of the fluctuations of the process X

for large initial values by a dynamical system gives a way to prove the tightness of
Px0 for x0 ∈ D. Moreover, we can link in general the coming down from infinity of
the process X to the coming down from infinity of the flow φ, in the vein of [5, 6,
25], which focus respectively on � coalescence, � coalescent and birth and death
processes.

In dimension 1, following [5, 16], we use a monotonicity property to identify
the limiting values of Px0 as x0 → ∞ and we determine when the process comes
down from infinity and how it comes down from infinity (Section 4). In particular,
we recover the speed of coming down from infinity of �-coalescent [6] with F =
log and in that case VF is bounded. In [6], the short time behavior of the log of
the number of blocks is captured and the nonexpansivity argument for the flow
is replaced by a technical result relying on the monotonicity of suitable functions
in dimension 1 (Lemma 10 therein). We also recover some results of [5] for birth
and death processes and we can provide finer estimates for regularly varying death
rates. Here, F is polynomial and VF is unbounded so this latter has to be controlled
along the trajectory of the dynamical system. Finally, we consider the example of
transmission control protocol which is nonstochastically monotone and F(x) =
log(1 + log(1 + x)) is required to control its (very) large fluctuations for large
values.

In higher dimension, the coming down from infinity of a dynamical system is
a more delicate problem in general. Poincaré has initiated a theory to study dy-
namical systems close to infinity, which is particularly powerful for polynomial
vector fields (see, e.g., Chapter 5 in [16]). We develop this approach for com-
petitive Lotka–Volterra models in dimension 2 in Section 5.1, which was a main
motivation for this work. We classify the ways the dynamical system can come
down from infinity and describe the counterpart for the stochastic process, which
differs when the dynamical system is getting close from the boundary of (0,∞)2.

The uniform estimates (1) can also be used to prove scaling limits of stochastic
processes XK to dynamical systems, which are uniform with respect to the initial
condition, without requiring Lipschitz property for the vector field ψ . The results
involve a suitable distance d as introduced above to capture the fluctuations of the
process

lim
K→∞ sup

x0∈D

Px0

(
sup
t≤T

d
(
XK

t ,φ(x0, t)
)≥ ε

)
= 0,
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for some fixed T , ε > 0. It is illustrated in this paper by the convergence of birth
and death processes with competition to Lotka–Volterra competitive dynamical
system in Section 5.2.

Let us end up with other motivations for this work, some of which being linked
to works in progress. First, our original motivation for studying the coming down
from infinity is the description of the time for extinction for competitive models
in varying environment. Roughly speaking, competitive periods make large sizes
of populations quickly decrease, which can be captured by the coming down from
infinity. Direction and speed of coming down from infinity are then involved to
quantify the time of extinction or determine coexistence of populations. Let us
also note that the approach developed here could be extended to the varying en-
vironment framework by comparing the stochastic process to a nonautonomous
dynamical system. Second, the coming down from infinity is linked to the unique-
ness of the quasistationary distribution; see [29] for birth and death processes and
[9] for some diffusions. Recently, the coming down from infinity has appeared as
a key assumption for the geometric convergence of the conditioned process to the
quasistationary distribution, uniformly with respect to the initial distribution. We
refer to [11] for details; see, in particular, Assumption (A1) therein.

NOTATION. In the whole paper, . stands for the canonical scalar product on
Rd, ‖.‖2 the associated Euclidean norm and ‖.‖1 the L1 norm.

For convenience, we write x = (x(i) : i = 1, . . . ,d) ∈ Rd a row vector of real
numbers. The product xy for x, y ∈ Rd is the vector z ∈ Rd such that zi = xiyi .

We denote by B(x, ε) = {y ∈ Rd : ‖y − x‖2 ≤ ε} the Euclidean closed ball
centered in x with radius ε. More generally, we note Bd(x, ε) = {y ∈ O : d(x, y) ≤
ε} the closed ball centered in x ∈ O with radius ε associated with the application
d : O × O →R+.

When χ = (χ(1), . . . , χ(d)) is differentiable on an open set of Rd and takes
values in Rd, we denote by Jχ its Jacobian matrix and

(
Jχ(x)

)
i,j = ∂

∂xj

χ(i)(x) (i, j = 1, . . . ,d).

We write F−1 the reciprocal function of a bijection F and A−1 the inverse of an
invertible matrix A. Moreover, the transpose of a matrix A is denoted by A∗.

By convention, we assume that sup∅ = 0, sup[0,∞) = +∞, inf∅ = ∞ and if
x, y ∈R∪ {∞}, we write x ∧ y for the smallest element of {x, y}.

We write d(x) ∼x→a g(x) when d(x)/g(x) → 1 as x → a.
We also use notation

∫ a
. f (x) dx < ∞ (resp., = ∞) for a ∈ [0,∞] when there

exists a0 ∈ (a,∞) such that
∫ a
a0

f (x) dx is well defined and finite (resp., infinite).
Finally, we denote by 〈M〉 the predictable quadratic variation of a continuous

local martingale M and by |A| the total variation of a process A and by 
Xs =
Xs − Xs− the jump at time s of a càdlàg process X.
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Outline of the paper. In the next section, we provide general results for dynam-
ical systems perturbed by semimartingales using the nonexpansivity of the flow
and martingale inequality. In Section 3, we derive approximations results for the
Markov process described by SDE. It relies on a transformation F of the process
for which we apply the results of Section 2. An extension of the result by adjunc-
tion of nonexpansive domains is provided and required for the applications of the
last section. We then study the coming down from infinity for one dimensional
SDEs in Section 4, with a focus on stochastically monotone processes. Finally, we
compare the coming down from infinity of two-dimensional competitive Lotka–
Volterra diffusions with the coming down from infinity of Lotka–Volterra dynam-
ical systems and prove uniform approximations of these latter by birth and death
processes.

2. Random perturbation of dynamical systems. Let (�,F,P) be a proba-
bility space and (Ft )t≥0 a filtration of F , which satisfies the usual conditions. We
assume that X is a Ft -adapted càdlàg process on [0,∞) which takes its values in
a Borel subset E of Rd and satisfies for every t ≥ 0,

Xt = X0 +
∫ t

0
ψ(Xs) ds + Rt,

where X0 ∈ E a.s., ψ is a Borel measurable function from Rd to Rd locally
bounded and (Rt : t ≥ 0) is a càdlàg Ft -semimartingale. Moreover, the process
R is decomposed as

Rt = At + Mt, Mt = Mc
t + Md

t ,

with At a càdlàg Ft -adapted process with a.s. bounded variations paths, Mc
t a

continuous Ft -local martingale, Md
t a càdlàg Ft -local martingale purely discon-

tinuous and R0 = A0 = M0 = Mc
0 = Md

0 = 0. Let us observe that such a decom-
position may be nonunique.

We assume that ψ is locally Lipchitz on a (nonempty) open set E′ of Rd and
consider the solution x = φ(x0, .) of

xt = x0 +
∫ t

0
ψ(xs) ds

for x0 ∈ E′. This solution exists, belongs to E′ and is unique on some time interval
[0, T ′(x0)), where T ′(x0) ∈ (0,∞]. Then, to compare the process X to the solution
x, we define the maximal gap before t :

St := sup
s≤t

‖Xs − xs‖2

for any t < T ′(x0). We also set

TD,ε(x0) = sup
{
t ∈ [0, T ′(x0)) : ∀s ≤ t, xs ∈ D and

B(xs, ε) ∩ E ⊂ D
} ∈ [0,∞](2)
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the last time when xt and its ε-neighborhood in E belong to a domain D. As
mentioned in the Introduction, the key property to control the distance between
(Xt : t ≥ 0) and (xt : t ≥ 0) before time TD,ε(x0) is the (L,α) nonexpansivity
property of ψ on D, in the sense of Definition 1.1.

When α = 0, we simply say that ψ is L nonexpansive on D. If additionally
L = 0, we say that ψ is nonexpansive on D. We first note that in dimension 1, the
fact that ψ is nonexpansive simply means that ψ is nonincreasing. More gener-
ally, when ψ is differentiable on a convex open set O which contains D, ψ is L

nonexpansive on D if for any x ∈ O ,

Sp
(
Jψ + J ∗

ψ

)⊂ (−∞,2L],
where Sp(Jψ + J ∗

ψ) is the spectrum of the symmetric linear operator (and hence
diagonalizable) Jψ + J ∗

ψ ; see Table 1 in [1] for details and more general results
and the last section for an application. Finally, we observe that

ψ = B + χ = B + f + g

is (L,α) nonexpansive on D if B is a vector field whose Euclidean norm is
bounded by α on D and χ is L nonexpansive on D. Moreover χ = f + g is L

nonexpansive on D if f is Lipschitz with constant L and g is nonexpansive on D.
For convenience and use of the Gronwall lemma, we also introduce for L,α ≥ 0

and ε > 0,

(3) T L,α
ε = sup

{
T ≥ 0 : 4αT exp(2LT ) ≤ ε

} ∈ (0,∞],
which is infinite if and only if α = 0, that is, as soon as the vector field ψ is L

nonexpansive.

2.1. Trajectorial control for perturbed nonexpansive dynamical systems. The
following lemma gives the trajectorial result which allows to control the gap be-
tween the stochastic process (Xt : t ≥ 0) and the dynamical system (xt : t ≥ 0) by
the size of the fluctuations of the semimartingale (Rt : t ≥ 0) and the gap between
the initial positions. The control of fluctuations involves the following quantity,
which is defined for all t < T ′(x0) and ε > 0:

R̃ε
t = ‖X0 − x0‖2

2 + 1{St−≤ε}
[
2
∫ t

0
(Xs− − xs).dRs + ∥∥[M]t

∥∥
1

]
,

where
∫ t

0 (Xs− − xs).dRs is a stochastic integral and [M] = [X] = [R] is the
quadratic variation of the semimartingale R. We refer to Chapter I, Theorem 4.31
in [20] for the existence of stochastic integral of càglàd (and thus predictable lo-
cally bounded) process with respect to semimartingale. Moreover, the expression
of the quadratic variation ensures that

(4)
∥∥[M]t

∥∥
1 = ∥∥[X]t

∥∥
1 = ∥∥〈Mc〉

t

∥∥
1 +∑

s≤t

‖
Xs‖2
2;

see, for example, Chapter I, Theorem 4.52 in [20]. Unless otherwise specified, the
identities hold almost surely (a.s.).



NONEXPANSIVE STOCHASTIC FLOWS 2381

LEMMA 2.1. Assume that ψ is (L,α) nonexpansive on some domain D ⊂ E′
and let ε > 0.

Then for any x0 ∈ E′ and T < TD,ε(x0) ∧ T L,α
ε , we have

{ST ≥ ε} ⊂
{

sup
t≤T

R̃ε
t > η2

}
,

where η = ε exp(−LT )/
√

2.

PROOF. Let x0 ∈ E′. First, we consider the quadratic variation of (Xt − xt :
0 ≤ t < T ′(x0)):

[X − x]t = [M]t = (Xt − xt )
2 − (X0 − x0)

2 − 2
∫ t

0
(Xs− − xs) d(Xs − xs),

for t < T ′(x0); see, for example, Chapter I, Definition 4.4.45 in [20] or use Itô’s
formula. Summing the coordinates of [M]t and using the definitions of X and x,
we get

‖Xt − xt‖2
2 = ‖X0 − x0‖2

2 + 2
∫ t

0
(Xs− − xs).

(
ψ(Xs−) − ψ(xs)

)
ds

+ 2
∫ t

0
(Xs− − xs).dRs + ∥∥[M]t

∥∥
1.

Moreover, for any s < TD,ε(x0), xs ∈ D and Xs− ∈ D on the event {Ss− ≤ ε}. So
using that ψ is (L,α) nonexpansive on D,

1{Ss−≤ε}(Xs− − xs).
(
ψ(Xs−) − ψ(xs)

)
≤ 1{Ss−≤ε}

(
L‖Xs− − xs‖2

2 + α‖Xs− − xs‖2
)
.

Then for any t < TD,ε(x0),

1{St−≤ε}‖Xt − xt‖2
2 ≤ 1{St−≤ε}

[
2L

∫ t

0
‖Xs − xs‖2

2 ds + 2α

∫ t

0
‖Xs − xs‖2 ds

+ ‖X0 − x0‖2
2 + 2

∫ t

0
(Xs− − xs).dRs + ∥∥[M]t

∥∥
1

]
and by definition of R̃ε ,

1{St−≤ε}S2
t ≤ 2L

∫ t

0
1{Ss−≤ε}S2

s ds + 2αtε + sup
s≤t

R̃ε
s .

By the Gronwall lemma, we obtain for any T < TD,ε(x0) and t ≤ T ,

1{St−≤ε}S2
t ≤
(
2αT ε + sup

s≤T

R̃ε
s

)
e2LT .

Moreover, for T < T L,α
ε , we have 2αT e2LT < ε

2 and(
2αT ε + η2)e2LT < ε2,
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recalling that η = ε/(
√

2 exp(LT )). Then

(5)
{

sup
s≤T

R̃ε
s ≤ η2

}
⊂
{
sup
t≤T

1{St−≤ε}S2
t < ε2

}
.

Denoting

Texit = inf
{
s < TD,ε(x0) ∧ T L,α

ε : Ss ≥ ε
}
,

and recalling that S is càdlàg, we have STexit− ≤ ε and STexit ≥ ε on the event
{Texit ≤ T }, so using (5) at time t = Texit ensures that

{Texit ≤ T } ⊂
{

sup
s≤T

R̃ε
s > η2

}
,

which completes the proof. �

2.2. Nonexpansivity and perturbation by martingales. We use now martingale
maximal inequality to estimate the probability that the distance between the pro-
cess (Xt : t ≥ 0) and the dynamical system (xt : t ≥ 0) goes beyond some level
ε > 0. Such arguments are classical and have been used in several contexts; see,
in particular, [12] for a survey and applications in scaling limits and [6] for the
coming down from infinity of �-coalescent, which have both inspired the results
below.

PROPOSITION 2.2. Assume that ψ is (L,α) nonexpansive on some domain
D ⊂ E′ and let ε > 0.

Then for any x0 ∈ E′ and T < TD,ε(x0) ∧ T L,α
ε , for any p ≥ 1/2 and q ≥ 0,

P(ST ≥ ε)

≤ P

(
‖X0 − x0‖2 ≥ ε

e−LT

2
√

2

)
+ Cq

e2qLT

εq
E

((∫ T

0
1{Ss−≤ε} d

∥∥|A|s
∥∥

1

)q)

+ Cp,d
e4pLT

ε2p

[
E

((∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

)p)
+E

((∑
t≤T

1{St−≤ε}‖
Xt‖2
2

)p)]
,

for some positive constants Cq (resp. Cp,d) which depend only on q (resp., p,d).

PROOF. By definition of R̃ε ,

{
sup
t≤T

R̃ε
t ≥ η2

}
⊂
{
‖X0 − x0‖2

2 ≥ η2

4

}
∪ Bη,
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where Bη = {supt≤T 1{St−≤ε}
∫ t

0 (Xs− − xs).dRs ≥ η2/8} ∪ {supt≤T 1{St−≤ε} ×
‖[M]t‖1 ≥ η2/4}. Recalling that Rt = At + Mt and (4),

Bη ⊂
{

sup
t≤T

∫ t

0
1{Ss−≤ε}(Xs− − xs).dAs ≥ η2

16

}

∪
{

sup
t≤T

∫ t

0
1{Ss−≤ε}(Xs− − xs).dMs ≥ η2

16

}

∪
{∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1 ≥ η2

8

}
∪
{∑

t≤T

1{St−≤ε}‖
Xt‖2
2 ≥ η2

8

}
.

We also know from Lemma 2.1 that

{ST ≥ ε} ⊂
{

sup
s≤T

R̃t ≥ η2
}

and using the Markov inequality yields

P(ST ≥ ε)

≤ P

(
‖X0 − x0‖2

2 ≥ η2

4

)
+ P(Bη)

≤ P

(
‖X0 − x0‖2

2 ≥ η2

4

)
+
(

16

η2

)q

E

(
sup
t≤T

∣∣∣∣∫ t

0
1{Ss−≤ε}(Xs− − xs).dAs

∣∣∣∣q)

+
(

16

η2

)2p

E

(
sup
t≤T

∣∣∣∣∫ t

0
1{Ss−≤ε}(Xs− − xs).dMs

∣∣∣∣2p)

+
(

8

η2

)p

E

((∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

)p)

+
(

8

η2

)p

E

([∑
t≤T

1{St−≤ε}‖
Xt‖2
2

]p)
.(6)

First, using that |fs.dgs | ≤ ‖fs‖2d‖|g|s‖1 since |f (i)
s | ≤ ‖fs‖2, we have for t ≤ T ,∣∣∣∣∫ t

0
1{Ss−≤ε}(Xs− − xs).dAs

∣∣∣∣≤ ∫ t

0
1{Ss−≤ε}‖Xs− − xs‖2 dA1

s

≤ ε

∫ T

0
1{Ss−≤ε} dA1

s ,(7)

where A1
s := ‖|A|s‖1 is the sum of the coordinates of the total variations of the

process A.
Second, the Burkholder–Davis–Gundy inequality (see [14], 93, Chapter VII,

page 287) for the local martingale

Nt =
∫ t

0
1{Ss−≤ε}(Xs− − xs).dMs
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ensures that there exists Cp > 0 such that

E
(
sup
t≤T

|Nt |2p
)

≤ CpE
([N ]pT

)
.

Writing the coordinates of X, M and x, respectively, (X(i) : i = 1, . . . ,d), (M(i) :
i = 1, . . . ,d) and (x(i) : i = 1, . . . ,d) and adding that

[N ]T =
∫ T

0

d∑
i,j=1

1{Ss−≤ε}
(
X

(i)
s− − x(i)

s

)(
X

(j)
s− − x(j)

s

)
d|[M(i),M(j)]|s

≤ ε2
∫ T

0

d∑
i,j=1

1{Ss−≤ε}d
[
M(i),M(j)]

s

and that d|[M(i),M(j)]|s ≤ d[M(i)]s + d[M(j)]s , we obtain

E

(
sup
t≤T

∣∣∣∣∫ t

0
1{Ss−≤ε}(Xs− − xs).dMs

∣∣∣∣2p)

≤ Cp,dε
2pE

((∫ T

0

d∑
i=1

1{St−≤ε} d
[
M(i)]

t

)p)

≤ C′
p,dε

2p

[
E

((∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

)p)
+E

((∑
t≤T

1{St−≤ε}‖
Xt‖2
2

)p)]
,(8)

for some positive constants Cp,d and C′
p,d, where we recall that [M(i)]t =

〈Mc,(i)〉t +∑s≤t (
X
(i)
s )2. Plugging (7) and (8) in (6), we get

P(ST ≥ ε) ≤ P

(
‖X0 − x0‖2

2 ≥ η2

4

)
+
(

16ε

η2

)q

E

((∫ T

0
1{Ss−≤ε} dA1

s

)q)

+ C′′
p,d

(
ε2p

η4p
+ 1

η2p

)[
E

((∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

)p)

+E

((∑
t≤T

1{St−≤ε}‖
Xt‖2
2

)p)]

for some C′′
p,d positive. Recalling that η = ε/(

√
2 exp(LT )) completes the proof.

�

3. Uniform estimates for stochastic differential equations. In this section,
we assume that X = (X(i) : i = 1, . . . ,d) is a càdlàg Markov process which takes
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values in E ⊂ Rd and is the unique strong solution of the following SDE on
[0,∞):

Xt = x0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dBs +

∫ t

0

∫
X

H(Xs−, z)N(ds, dz)

+
∫ t

0

∫
X

G(Xs−, z)Ñ(ds, dz),

a.s. for any x0 ∈ E, where (X ,BX ) is a measurable space,

• B = (B(i) : i = 1, . . . ,d) is a d-dimensional Brownian motion;
• N is a Poisson Point Measure (PPM) on R+ ×X with intensity dsq(dz), where

q is a σ -finite measure on (X ,BX ); and Ñ is the compensated measure of N .
• N and B are independent;
• b = (b(i) : i = 1, . . . ,d), σ = (σ

(i)
j : i, j = 1, . . . ,d), H and G are Borel mea-

surable functions locally bounded, which take values respectively in Rd, R2d,
Rd and Rd.

Moreover, we follow the classical convention (see Chapter II in [19]) and we as-
sume that HG = 0, G is bounded and for any t ≥ 0,∫ t

0

∫
X

∣∣H(Xs−, z)
∣∣N(ds, dz) < ∞ a.s.,

E

(∫ t

0

∫
X

∥∥G(Xs−∧σn, z)
∥∥2

2 ds q(dz)

)
< ∞,

for some sequence of stopping time σn ↑ ∞. We dot not discuss here the condi-
tions which ensure the strong existence and uniqueness of this SDE for any initial
condition. This will be standard results for the examples considered in this paper
and we refer to [13] for some general statement relevant in our context.

3.1. Main result. We need a transformation F to construct a suitable distance
and evaluate the gap between the process X and the associated dynamical system
on a domain D.

ASSUMPTION 3.1. (i) The domain D is an open subset of Rd and the function
F is defined on an open set O which contains D ∪ E.

(ii) F ∈ C2(O,Rd) and F is a bijection from D into F(D) and its Jacobian JF

is invertible on D.
(iii) For any x ∈ E,∫

X

∣∣F (x + H(x, z)
)− F(x)

∣∣q(dz) < ∞
and the function x ∈ E → hF (x) = ∫X [F(x + H(x, z)) − F(x)]q(dz) can be ex-
tended to the domain D ∪ E. This extension hF is locally bounded on D ∪ E and
locally Lipschitz on D.

(iv) The function b is locally Lipschitz on D.
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Under this assumption, F is a C2 diffeomorphism from D into F(D) and F(D)

is an open subset of Rd . We require in (iii) that the large jumps of F(X) can be
compensated. This assumption could be relaxed by letting the large jumps which
could not be compensated in an additional term with finite variations, that is, using
the term At of the semimartingale Rt in the previous section. But that will not
be useful for the applications given here. Under Assumption 3.1, we set bF =
b+J−1

F hF , which is well defined and locally Lipschitz on D. We note that for any
x ∈ E ∩ D,

bF (x) = b(x) + JF (x)−1
(∫

X

[
F
(
x + H(x, z)

)− F(x)
]
q(dz)

)
.

We introduce the flow φF associated to bF and defined for x0 ∈ D as the unique
solution of

φF (x0,0) = x0,
∂

∂t
φF (x0, t) = bF

(
φF (x0, t)

)
,

for t ∈ [0, TD(x0)), where TD(x0) ∈ (0,∞] is the maximal time until which the
solution exists and belongs to D. We observe that when H = 0, then bF = b and
φF = φ do not depend on the transformation F .

We introduce now the vector field ψF defined by

ψF = (JF bF ) ◦ F−1 = (JF b + hF ) ◦ F−1

on the open set F(D). We also set, for any x ∈ E,

b̃F (x) = 1

2

d∑
i,j=1

∂2F

∂xi∂xj

(x)

d∑
k=1

σ
(i)
k (x)σ

(j)
k (x)

+
∫
X

[
F
(
x + G(x, z)

)− F(x) − JF (x)G(x, z)
]
q(dz).(9)

Let us note that the generator of X is given by LF = ψF ◦ F + b̃F . The term b̃F

is not contributing significantly to the coming down from infinity in the examples
we consider here, and thus considered as an approximation term. On the contrary,
we need to introduce

VF (x) =
d∑

i,j,k=1

∂F

∂xi

(x)
∂F

∂xj

(x)σ
(i)
k (x)σ

(j)
k (x)

+
∫
X

[
F
(
x + H(x, z) + G(x, z)

)− F(x)
]2

q(dz)(10)

for x ∈ E, to quantify the fluctuations of the process due to the martingale parts.
Finally, we use the following application defined on O (and thus on D ∪ E) to
compare the process X and the flow φF :

dF (x, y) = ∥∥F(x) − F(y)
∥∥

2.
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We observe that d is (indeed) a distance (at least) on D and in the examples below
it is actually a distance on D ∪ E. We recall notation (3) and the counterpart of (2)
is defined by

(11) TD,ε,F (x0) = sup
{
t ∈ [0, TD(x0)) : ∀s ≤ t,BdF

(
φF (x0, s), ε

)∩ E ⊂ D
}
.

THEOREM 3.2. Under Assumption 3.1, we assume that ψF is (L,α) nonex-
pansive on F(D).

Then for any ε > 0 and x0 ∈ E ∩ D and T < TD,ε,F (x0) ∧ T L,α
ε , we have

Px0

(
sup
t≤T

dF

(
Xt,φF (x0, t)

)≥ ε
)

≤ Cde
4LT
∫ T

0
V F,ε(x0, s) ds,

where Cd is a positive constant depending only on the dimension d and

(12) V F,ε(x0, s) = sup
x∈E

dF (x,φF (x0,s))≤ε

{
ε−2∥∥VF (x)

∥∥
1 + ε−1∥∥b̃F (x)

∥∥
1

}
.

We refer to the two next sections for examples and applications, which involve
different choices for F and (L,α) nonexpansivity with potentially α or L equal
to 0. The key assumption concerns the nonexpansivity of ψF , which need to be
combined with control of the fluctuations VF . Before the proof of Theorem 3.2, let
us illustrate the condition of L nonexpansivity of ψF by considering the diffusion
case (q = 0 and X continuous). This will be useful in Section 5.

EXAMPLE. We recall from the first section (or Table 1 in [1]) that when F(D)

is convex and ψF is differentiable on F(D), ψF is L nonexpansive on F(D) iff
Sp(JψF

(y)+ J ∗
ψF

(y)) ⊂ (−∞,2L] for any y ∈ F(D). In the case q = 0, choosing

F(x) = (fi(xi) : i = 1, . . . ,d
)

and setting A(x) = JψF
(F (x)), we have for any i, j = 1, . . . , d such that i �= j ,

(13) Aij (x) = f ′
i (xi)

f ′
j (xj )

∂

∂xj

b(i)(x), Aii(x) = ∂

∂xi

b(i)(x) + f ′′
i (xi)

f ′
i (xi)

b(i)(x).

Then ψF is L nonexpansive on F(D) iff the largest eigenvalue of A(x) + A∗(x)

is less than 2L for any x ∈ D.

PROOF OF THEOREM 3.2. Under Assumption 3.1, we can further assume that
F ∈ C2(Rd,Rd). Indeed, we can consider ϕF where ϕ ∈ C∞(Rd,Rd) is equal to 0
on the complementary set of O and to 1 on D ∪ E, since these two sets are disjoint
closed sets, using, for example, the smooth Urysohn lemma. This allows to extend
F from D ∪ E to Rd in such a way that F ∈ C2(Rd,Rd).
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Applying now Itô’s formula to F(Xt) (see Chapter 2, Theorem 5.1 in [19]), we
have

F(Xt) = F(x0) +
∫ t

0
JF (Xs)b(Xs) ds

+
∫ t

0

∫
E

[
F
(
Xs− + H(Xs−, z)

)− F(Xs−)
]
N(ds, dz)

+
∫ t

0

d∑
i,j=1

∂F

∂xi

(Xs)σ
(i)
j (Xs) dB(j)

s

+
∫ t

0

∫
E

[
F
(
Xs− + G(Xs−, z)

)− F(Xs−)
]
Ñ(ds, dz)

+
∫ t

0
b̃F (Xs) ds

for t ≥ 0. Then the Ft -semimartingale Yt = F(Xt) takes values in F(E) and can
be written as

(14) Yt = F(x0) +
∫ t

0
ψ(Ys) ds + At + Mc

t + Md
t ,

where ψ , A, Mc and Md are defined as follows. First, we consider the Borel
locally bounded function ψ(y) = 1{y∈F(D)}ψF (y) for y ∈ Rd, so writing b̂F (x) =
JF (x)b(x) + hF (x) for x ∈ E, we have ψ(Ys) = 1{Ys∈F(D)}b̂F (Xs). Moreover,

At =
∫ t

0

(
b̃F (Xs) + 1{Ys /∈F(D)}b̂F (Xs)

)
ds

is a continuous Ft -adapted process with a.s. bounded variations paths and

Mc
t =
∫ t

0

d∑
i,j=1

∂F

∂xi

(Xs)σ
(i)
j (Xs) dB(j)

s

is a continuous Ft -local martingale and writing K = G + H and using Assump-
tion 3.1(iii),

Md
t =

∫ t

0

∫
X

[
F
(
Xs− + K(Xs−, z)

)− F(Xs−)
]
Ñ(ds, dz)

is a càdlàg Ft -local martingale purely discontinuous.
We observe that the dynamical system yt = F(φF (x0, t)) satisfies for t < T (x0),

y0 = F(x0), y′
t = JF

(
φF (x0, t)

)
bF

(
φF (x0, t)

)= ψF (yt ) = ψ(yt ),

since ψF = ψ on F(D). This flow is thus associated with the vector field ψ and
ψ is locally Lipschitz on F(D). Moreover, recalling the definition (2) and set-
ting E′ = F(D), T ′(y0) = TD(x0), the first time TF(D),ε(y0) when (yt )t≥0 starting
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from y0 is at distance ε from the boundary of F(D) for the Euclidean distance is
larger than TD,ε,F (x0) defined by (11):

TF(D),ε(y0) = sup
{
t ∈ [0, T ′(y0)) : ∀s ≤ t,B(ys, ε) ∩ F(E) ⊂ F(D)

}
≥ TD,ε,F (x0).

Adding that ψ is (L,α) nonexpansive on F(D), we apply now Proposition 2.2 to
Y with p = q = 1 and Y0 = y0 = F(x0). Then, for any T < TD,ε,F (x0)∧T L,α

ε , we
get

P(ST ≥ ε) ≤ Cde
4LT

[
ε−1E

(∫ T

0
1{St−≤ε} d

∥∥|A|t
∥∥

1

)

+ ε−2E

(∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

)
+ ε−2E

(∑
t≤T

1{St−≤ε}‖
Yt‖2
2

)]
(15)

for some constant Cd positive, where St = sups≤t ‖Ys − ys‖2. Using now

〈
Mc〉

t =
∫ t

0

d∑
i,j,k=1

∂F

∂xi

(Xs)
∂F

∂xj

(Xs)σ
(i)
k (Xs)σ

(j)
k (Xs) ds,

we get∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

≤
∫ T

0
sup
x∈E

dF (x,φF (x0,t))≤ε

{ d∑
i,j,k,l=1

∂F (l)

∂xi

(x)
∂F (l)

∂xj

(x)σ
(i)
k (x)σ

(j)
k (x)

}
dt,

since St = sups≤t ‖Ys − ys‖2 = sups≤t dF (Xs,φF (x0, s)). Similarly,

E

(∑
t≤T

1{St−≤ε}‖
Yt‖2
2

)

= E

(∫ T

0

∫
X

1{St−≤ε}
∥∥F (Xt− + K(Xt−, z)

)− F(Xt−)
∥∥2

2 dt q(dz)

)

≤
∫ T

0
sup
x∈E

dF (x,φF (x0,t))≤ε

{∫
X

∥∥F (x + K(x, z)
)− F(x)

∥∥2
2q(dz)

}
dt
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and combining the two last inequalities we get

E

(∫ T

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

)
+E

(∑
t≤T

1{St−≤ε}‖
Yt‖2
2

)

≤
∫ T

0
sup
x∈E

dF (x,φF (x0,t))≤ε

∥∥VF (x)
∥∥

1 dt.(16)

Finally, on the event {St− ≤ ε}, Yt− = F(Xt−) ∈ F(D) for any t ≤ T since T <

TD,ε,F (x0), so

E

(∫ T

0
1{St−≤ε} d

∥∥|A|t
∥∥

1

)
≤
∫ T

0
1{St−≤ε}

∥∥b̃F (Xt−)
∥∥

1 dt

≤
∫ T

0
sup
x∈E

dF (x,φF (x0,t))≤ε

∥∥b̃F (x)
∥∥

1 dt(17)

and the conclusion comes by plugging the two last inequalities in (15). �

3.2. Adjunction of nonexpansive domains. We relax here the assumptions re-
quired for Theorem 3.2. Indeed finding a transformation which guarantees nonex-
pansivity of the flow is delicate in general. Adjunction of simple transformations
is relevant for covering the whole state space and performing computations. It will
be useful for the study of two-dimensional competitive processes in Section 5. Let
us note that the trajectorial estimates obtained previously are well adapted to glu-
ing domains, while this is a delicate problem for controls of stochastic processes
relying for instance on Lyapounov functions. Thus, we decompose the domain D

as follows.

ASSUMPTION 3.3. (i) The domains D and (Di : i = 1, . . . ,N) are open sub-
sets of Rd and Fi are Rd valued functions from an open set Oi which contains Di

and

D ⊂
N⋃

i=1

Di, Fi ∈ C2(Oi,R
d).

Moreover, Fi is a bijection from Di into F(Di) whose Jacobian matrix is invertible
on Di .

(ii) There exist a distance d on
⋃N

i=1 Di ∪ E and c1, c2 > 0 such that for any
i ∈ {1, . . . ,N}, x, y ∈ Di ,

c1d(x, y) ≤ ∥∥Fi(x) − Fi(y)
∥∥

2 ≤ c2d(x, y).

(iii) For each i ∈ {1, . . . ,N}, for any x ∈ E ∩ Di ,∫
X

∣∣Fi

(
x + H(x, z)

)− Fi(x)
∣∣q(dz) < ∞
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and the function x ∈ E ∩ Di → hFi
(x) = ∫X [Fi(x + H(x, z)) − Fi(x)]q(dz) can

be extended to Di .
Moreover, this extension is locally bounded on Di and locally Lipschitz on Di .
(iv) The function b is locally Lipschitz on

⋃N
i=1 Di .

Second, we consider the flow associated to the vector field bFi
, where bFi

is
defined as previously by bFi

(x) = b(x) + JFi
(x)−1hFi

(x) and is locally Lips-
chitz on the domain Di . But now φ may go from one domain to an other. To
glue the estimates obtained in the previous part by adjunction of domains, we
need to bound the number of times κ φ changes domain. More precisely, we con-
sider a nonautonomous flow φ(., .) such that φ(x0,0) = x0 for x0 ∈ D and let
ε0 ∈ (0,1), κ ≥ 1 and (tk(.) : k ≤ κ) be a sequence of elements of [0,∞] such that
0 = t0(x0) ≤ t1(x0) ≤ · · · ≤ tκ (x0) for x0 ∈ D, which meet the following assump-
tion.

ASSUMPTION 3.4. For any x0 ∈ D, φ(x0, .) is continuous on [0, tκ(x0))

and for any k ≤ κ − 1, there exists nk(x0) ∈ {1, . . . ,N} such that for any t ∈
(tk(x0), tk+1(x0)),

Bd

(
φ(x0, t), ε0

)⊂ Dnk(x0) and
∂

∂t
φ(x0, t) = bFnk(x0)

(
φ(x0, t)

)
.

This nonautonomous flow φ will be used in the continuous case in Section 5.
Then we recall that bF = b does not depend on the transformation F and the flow
φ will be simply given by φ(x0,0) = x0, ∂

∂t
φ(x0, t) = b(φ(x0, t)) as expected.

Recalling notation ψF = (JF bF )◦F−1 and the expressions of T L,α
ε and b̃F and

VF given respectively in (3), (9) and (10), the result can be stated as follows.

THEOREM 3.5. Under Assumptions 3.3 and 3.4, we assume that for each i ∈
{1, . . . ,N}, ψFi

is (Li, αi) nonexpansive on Fi(Di) and let T0 ∈ (0,∞).
Then for any ε ∈ (0, ε] and T < min{T Li,αi

ε : i = 1, . . . ,N} ∧ tκ (x0) ∧ T0 and
x0 ∈ E ∩ D,

Px0

(
sup
t≤T

d
(
Xt,φ(x0, t)

)≥ ε
)

≤ C

κ−1∑
k=0

∫ tk+1(x0)∧T

tk(x0)∧T
V d,ε(Fnk(x0), x0, t) dt,

with ε and C positive constants which depend (only) on d, c1, c2, (Li)i=1,...,N , κ ,
ε0 and T0; and

V d,ε(F, x0, s) = sup
x∈E

d(x,φ(x0,s))≤ε

{
ε−2∥∥VF (x)

∥∥
1 + ε−1∥∥b̃F (x)

∥∥
1

}
.

The proof relies also on Proposition 2.2 but it is technically more involved than
the proof of Theorem 3.2. We observe that T0 could be chosen equal to ∞ in
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this statement in the case where Li = 0 for any i ∈ {1, . . . , κ}. We need now the
following constants:

bk(x0, T ) = 2
√

2 exp(Lnk(x0)T ), ak(x0, T ) = c2

c1
bk(x0, T ),

εk(x0, T ) = c1ε0

c2bk(x0, T )
= ε0

ak(x0, T )
,

for k = 0, . . . , κ − 1 and observe that ak(x0, T ) ≥ 1.

LEMMA 3.6. Under the assumptions of Theorem 3.5, for any x0 ∈ E ∩ D,

k ∈ {0, . . . , κ − 1}, T < T
Lnk(x0),αnk(x0)

ε ∧ tκ (x0) and ε ∈ (0, εk(x0, T )], we have

Px0

(
sup

tk(x0)∧T ≤t≤tk+1(x0)∧T

d
(
Xt,φ(x0, t)

)≥ εak(x0, T )
)

≤ P(d
(
Xtk(x0), φ

(
x0, tk(x0)

)≥ ε
)

+ C

∫ tk+1(x0)∧T

tk(x0)∧T
V d,εak(x0,T )(Fnk(x0), x0, s) ds,

where C is a positive constant which depends only on d and c1 and Lnk(x0).

PROOF. Let us fix k ∈ {0, . . . , κ − 1} and x0 ∈ E ∩ D. We write L = Lnk(x0),
α = αnk(x0), F = Fnk(x0) and D = Dnk(x0) for simplicity and consider T <

T L,α
ε ∧ tκ (x0). As at the beginning of the previous proof, we can assume that

F ∈ C2(Rd,Rd) and recall that F is bijection from D into F(D). We note that
z0 = φ(x0, tk(x0)) ∈ D by Assumption 3.4 and the solution z of z′

t = bF (zt ) is
well defined on a nonempty (maximal) time interval since bF is locally Lipschitz
on D using Assumption 3.3. By uniqueness in the Cauchy–Lipschitz theorem,
zt = φ(x0, tk(x0) + t) for t ∈ [tk(x0), tk+1(x0)). We write now X̃t = Xtk(x0)+t and
the counterpart of (14) for Yt = F(X̃t ) is

(18) Yt = Y0 +
∫ t

0
ψ(Ys) ds + At + Mc

t + Md
t ,

for t ≥ 0, where ψ(y) = 1{y∈F(D)}ψF (y),

Mc
t =
∫ t

0

d∑
i,j=1

∂F

∂xi

(X̃s)σ
(i)
j (X̃s) dB(j)

s

and we make here the following decomposition for A and Md . Using Assump-
tion 3.3(iii) for the compensation of jumps when X̃s− ∈ D, we set

At =
∫ t

0

(
b̃F (X̃s) + 1{F(X̃s)/∈F(D)}JF (X̃s)b(X̃s)

− 1{X̃s /∈D,F(X̃s)∈F(D)}hF ◦ F−1(Ys)
)
ds

+
∫ t

0

∫
X

1{X̃s− /∈D}
[
F
(
X̃s− + H(X̃s−, z)

)− F(X̃s−)
]
N(ds, dz),
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which is a process with a.s. finite variations paths; and

Md
t =

∫ t

0

∫
X

[
F
(
X̃s− + G(X̃s−, z)

)− F(X̃s−)
]
Ñ(ds, dz)

+
∫ t

0

∫
X

1{X̃s−∈D}
[
F
(
X̃s− + H(X̃s−, z)

)− F(X̃s−)
]
Ñ(ds, dz)

is a càdlàg Ft -local martingale purely discontinuous.
Moreover, by Assumptions 3.4 and 3.3(ii), for any t < tk+1(x0)− tk(x0), xt ∈ D,

yt = F(xt ) ∈ F(D) and satisfies y′
t = ψ(yt ) and for any ε ∈ (0, c1ε0],

B(yt , ε) ∩ F(E) ⊂ F
(
BdF

(zt , ε)
)⊂ F

(
Bd(zt , ε/c1)

)⊂ F(D).

Adding that ψ = ψF is (α,L) nonexpansive on F(D), we can apply Proposi-
tion 2.2 to the process Y on F(D) for p = q = 1 and E′ = F(D) and get for any
ε ∈ (0, c1ε0],

Px0

(
sup
t≤T1

‖Yt − yt‖2 ≥ ε
)

≤ P
(‖Y0 − y0‖2 ≥ ε/bk(x0, T0)

)+ Cε−1E

(∫ T1

0
1{St−≤ε} d

∥∥|A|t
∥∥

1

)

+ Cε−2
[
E

(∫ T1

0
1{St−≤ε} d

∥∥〈Mc〉
t

∥∥
1

)
+E

(∑
t≤T1

1{St−≤ε}‖
Yt‖2
2

)]

for any T1 < T L,α
ε ∧ (tk+1(x0) − tk(x0)), where C is positive constant depending

on Lnk(x0) and d. Following (16) and (17) in the proof of Theorem 3.2, we obtain

Px0

(
sup

[tk(x0)∧T ,tk+1(x0)∧T )

dF

(
Xt,φ(x0, t)

)≥ ε
)

≤ P
(
dF (Xtk(x0), xtk(x0))) ≥ ε/bk(x0, T )

)
+ C′

∫ tk+1(x0)∧T

tk(x0)∧T
V F,ε(x0, s) ds(19)

for some constant C′ depending also only of L and d, where V F,ε has been defined
in (12). Using again Assumption 3.3(ii) to replace dF by d above, we have{

d
(
Xtk(x0), φ

(
x0, tk(x0)

))
< ε/

(
c2bk(x0, T )

)}
⊂ {dF

(
Xtk(x0), φ

(
x0, tk(x0)

))
< ε/bk(x0, T )

}
and

V F,ε(x0, s) ≤ (c−1
1 + c−2

1

)
V d,ε/c1(F, x0, s)
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and we obtain

Px0

(
sup

[tk(x0)∧T ,tk+1(x0)∧T )

d
(
Xt,φ(x0, t)

)≥ ε/c1

)
≤ P

(
d
(
Xtk(x0), φ

(
x0, tk(x0)

))≥ ε

c2bk(x0, T )

)

+ C′(c−1
1 + c−2

1

) ∫ tk+1(x0)∧T

tk(x0)∧T
V d,ε/c1(F, x0, s) ds.

Using the quasi-left continuity of X, this inequality can be extended to the closed
interval [tk(x0) ∧ T , tk+1(x0) ∧ T ] for k < κ − 1. This completes the proof by
replacing ε by εc2bk(x0, T ). �

PROOF OF THEOREM 3.5. We write Tm = T0 ∧ min{T Li,αi
ε : i = 1, . . . ,N} ∧

tκ (x0) ∈ (0,∞) and set

ε = inf
{
εk(x0, T ) : k = 1, . . . ,N;x0 ∈ E ∩ D;T < T0

} ∈ (0,∞).

Lemma 3.6 and the Markov property at time tk(x0) ∧ T ensure that for any ε ∈
(0, ε], x0 ∈ E ∩ D, T ∈ (0, Tm),

Px0

(
sup

[tk(x0),tk+1(x0)∧T ]
d
(
Xt,φ(x0, t)

)≥ εak(x0, T ),

sup
[0,tk(x0)∧T ]

d
(
Xt,φ(x0, t)

)
< ε
)

≤ C

∫ tk+1(x0)∧T

tk(x0)∧T
V d,εak(x0,T )(Fnk(x0), x0, s) ds

for each k = 0, . . . , κ − 1, by setting C = max{Cd,c1,Li
: i = 1, . . . ,N}.

Denoting Ak(x0, T ) = �i≤kai(x0, T ) and recalling that ai(x0, T ) ≥ 1, by itera-
tion we obtain for ε ≤ ε/Aκ(x0, t) and T < Tm that

Px0

(
κ−1⋃
k=0

{
sup

[tk(x0),tk+1(x0)∧T ]
d
(
Xt,φ(x0, t)

)≥ εAk(x0, T )
})

≤ C

κ−1∑
k=0

∫ tk+1(x0)∧T

tk(x0)∧T
V d,εAk(x0,T )(Fnk(x0), x0, s) ds,

since X0 = x0 = φ(x0,0). This ensures that for any T < Tm,

Px0

(
sup

0≤t≤T

d
(
Xt,φ(x0, t)

)≥ εAκ(x0, T )
)

≤ CAκ(x0, T )2
κ−1∑
k=0

∫ tk+1(x0)∧T

tk(x0)∧T
V d,εAκ(x0,T )(Fnk(x0), x0, s) ds.
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Recalling that (nk(x0) : k = 0, . . . , κ) takes value in a finite set, Aκ(x0, T ) is
bounded for x0 ∈ E ∩ D and T ∈ [0, T0) by a constant depending only on κ ,
(Li : i = 1, . . . ,N), c1 and c2. This yields the result. �

4. Coming down from infinity for one-dimensional stochastic differential
equations. In this section, we assume that E ⊂ R and +∞ is a limiting value
of E and D = (a,∞) for some a ∈ (0,∞). Following the beginning of the previ-
ous section, we consider a càdlàg Markov process X which takes values in E and
assume that it is the unique strong solution of the following SDE on [0,∞):

Xt = x0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dBs +

∫ t

0

∫
X

H(Xs−, z)N(ds, dz)

+
∫ t

0

∫
X

G(Xs−, z)Ñ(ds, dz),

for any x0 ∈ E, where we recall that (X ,BX ) is a measurable space; B is a Brow-
nian motion; N is a Poisson point measure on R+ ×X with intensity dsq(dz); N

and B are independent and HG = 0. We make the following assumption, which is
a slightly stronger counterpart of Assumption 3.1 and is convenient for the study
of the coming down infinity in dimension 1.

ASSUMPTION 4.1. Let F ∈ C2((a′,∞),R), for some a′ ∈ [−∞, a) such that
E ⊂ (a′,∞):

(i) For any x > a, F ′(x) > 0 and F(x) → ∞ as x → ∞.
(ii) For any x ∈ E,

∫
X |F(x + H(x, z)) − F(x)|q(dz) < ∞.

The function x ∈ E → hF (x) = ∫X [F(x+H(x, z))−F(x)]q(dz) can be extended
to E ∪ [a,∞).

This extension is locally bounded on E ∪ [a,∞) and locally Lipschitz on
(a,∞).

(iii) b is locally Lipschitz on (a,∞).
(iv) The function bF = b + hF /F ′ is negative on (a,∞).

Following the previous sections, we consider now the flow φF given for x0 ∈
(a,∞) by

φF (x0,0) = x0,
∂

∂t
φF (x0, t) = bF

(
φF (x0, t)

)
,

which is well and uniquely defined and belongs to (a,∞) on a maximal time in-
terval denoted by [0, T (x0)), where T (x0) ∈ (0,∞]. We first observe that x0 →
φF (x0, t) is increasing where it is well defined. This can be seen by recalling that
the local Lipschitz property ensures the uniqueness of solutions, and thus prevents
the trajectories from intersecting. Then T (x0) is increasing and its limit when
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x0 ↑ ∞ is denoted by T (∞) and belong to (0,∞]. Moreover, the flow starting
from infinity is well defined by a monotone limit:

φF (∞, t) = lim
x0→∞φF (x0, t)

for any t ∈ [0, T (∞)). Finally, under Assumption 4.1, for x0 ∈ (a,∞), bF (x0) < 0
and for any t < T (x0),

∫ φF (x0,t)
x0

1/bF (x) dx = t . This yields the following classi-
fication.

Either ∫ ∞
.

1

−bF (x)
< +∞,

and then

φF (∞, t) = inf
{
u ≥ 0 :

∫ ∞
.

1

−bF (x)
dx < t

}
< ∞

for any t ∈ (0, T (∞)). We say that the dynamical system instantaneously comes
down from infinity. Moreover, the application t ∈ [0, T (∞)) → φ(∞, t) ∈ R is
continuous, where R = R∪ {∞} is endowed with the distance

(20) d(x, y) = ∣∣e−x − e−y
∣∣.

Otherwise, T (∞) = ∞ and φ(∞, t) = ∞ for any t ∈ [0,∞).
Our aim now is to derive an analogous classification for stochastic differential

equations using the results of the previous section. Letting the process start from
infinity requires additional work. We give first a condition useful for the identifi-
cation of the limiting values of (Px : x ∈ E) when x → ∞.

DEFINITION 4.2. The process X is stochastically monotone if for all x0, x1 ∈
E such that x0 ≤ x1, for all t > 0 and x ∈ R, we have

Px0(Xt ≥ x) ≤ Px1(Xt ≥ x).

The �-coalescent, the birth and death process, continuous diffusions with strong
pathwise uniqueness and several of their extensions satisfy this property, while, for
example, the transmission control protocol does not. We refer to the examples of
forthcoming Section 4.2 for details.

4.1. Weak convergence and coming down from infinity. We recall that R =
R∪{∞} endowed with d defined by (20) is polish and the notation of the previous
section become ψF = (F ′bF )◦F−1, b̃F (x) = F ′′(x)σ (x)2 +∫X [F(x+G(x, z))−
F(x) − F ′(x)G(x, z)]q(dz) and VF (x) = (F ′(x)σ (x))2 + ∫X [F(x + H(x, z) +
G(x, z)) − F(x)]2q(dz).

In this section, we introduce

V̂F,ε(a, t) = sup
x∈E∩DF,ε(a,t)

{
ε−2VF (x) + ε−1b̃F (x)

}
,
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where for convenience we use the extension F(∞) = ∞ and we set

DF,ε(a, t) = {x ∈ (a,∞) : F(x) ≤ F
(
φ(∞, t)

)+ ε
}
.

Finally, we make the following key assumption to use the results of the previous
section.

ASSUMPTION 4.3. The vector field ψF is (L,α) nonexpansive on (F (a),∞)

and for any ε > 0,

(21)
∫ .

0
V̂F,ε(a, t) dt < ∞.

Let us remark that ψF is (L,α) nonexpansive on (F (a),∞) iff for all y1 > y2 >

F(a), ψF (y1) ≤ ψF (y2) + L(y1 − y2) + α. This means that for all x1 > x2 > a,
F ′(x1)b(x1) + hF (x1) ≤ F ′(x2)b(x2) + hF (x2) + L(F(x1) − F(x2)) + α.

Let us now give sufficient conditions for the convergence of (Px)x∈E as x → ∞.
For that purpose, we introduce the modulus

(22) w′(f, δ, [A,B])= inf
b

max
�=0,...,L−1

sup
b�≤s,t<b�+1

d(fs, ft ),

where the infimum extends over all subdivisions b = (b�, � = 0, . . . ,L) of [A,B]
which are δ-sparse. We refer to Chapter 3 in [8] for details on the Skorokhod
topology.

PROPOSITION 4.4. We assume that X is stochastically monotone:

(i) If E = {0,1,2, . . .}, then (Px)x∈E converges weakly as x → ∞ in the space
of probability measures on D([0, T ],R).

(ii) If Assumptions 4.1 and 4.3 hold and
∫∞
.

1
−bF (x)

dx < +∞ and for any
K > 0 and ε > 0,

(23) lim
δ→0

sup
x∈E,x≤K

Px

(
w′(X,δ, [0, T ])≥ ε

)= 0,

then (Px)x∈E converges weakly as x → ∞ in the space of probability measures on
D([0, T ],R).

The convergence result (i) concerns the discrete case σ = 0. It has been obtained
in [15] when the limiting probability P∞ is known a priori and the process comes
down from infinity. The proof of the tightness for (i) follows [15] and relies on the
monotonicity and the fact that the states are noninstantaneous, which is here due
to our càdlàg assumption for any initial state space. The identification of the limit
is derived directly from the monotonicity and the proof of (i) is actually a direct
extension of Lemma 2.1 in [5]. This proof is omitted.
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The tightness argument for (ii) is different and can be applied to processes with
a continuous part and extended to larger dimensions. The control of the fluctua-
tions of the process for large values relies on the approximation by the continuous
dynamical system φF using Assumption 4.3 and the previous section. Then the
tightness on compacts sets is guaranteed by (23). The proof is given below.

In the next result, we assume that (Px)x∈E converges weakly and P∞ is then
well defined as the limiting probability. We determine under our assumptions when
(and how) the process comes down from infinity. More precisely, we link the com-
ing down from infinity of the process X to that of the flow φF , in the vein of [5, 6,
25] who considered some classes of discrete processes; see below for details.

THEOREM 4.5. We assume that Assumptions 4.1 and 4.3 hold and that
(Px : x ∈ E) converges weakly as x → ∞ in the space of probability measures
on D([0, T ],R) to P∞:

(i) If ∫ ∞
.

1

−bF (x)
dx < +∞,

then

P∞(∀t > 0 : Xt < +∞) = 1 and P∞
(

lim
t↓0+F(Xt) − F

(
φF (∞, t)

)= 0
)

= 1.

(ii) Otherwise, P∞(∀t ≥ 0 : Xt = +∞) = 1.

After the proof given below, we consider examples with different size of fluctu-
ations at infinity. For �-coalescent, we recover the speed of coming down from in-
finity of [6] using F = log and in that case VF is bounded. For birth and death pro-
cesses with polynomial death rates, fluctuations are smaller and we use F(x) = xβ

(β < 1) and get a finer approximation of the process coming down from infinity by
a dynamical system. But VF is no longer bounded and has to be controlled along
the dynamical system coming down from infinity. When proving that some birth
and death processes or transmission control protocol do not come down from infin-
ity, DF,ε(a, t) is nonbounded and we are looking for F increasing slowly enough
so that VF is bounded to check (21); see the next section for details.

The proofs of the two last results need the following lemma. We recall notation
D = (a,∞), dF (x, y) = |F(x) − F(y)| and TD,ε,F (x0), respectively, T L,α

ε given
in (11), respectively, (3).

LEMMA 4.6. Under Assumptions 4.1 and 4.3, for any ε > 0, x0 ∈ E ∩ D and
T < TD,ε,F (x0) ∧ T L,α

ε , we have

Px0

(
sup
t≤T

dF

(
Xt,φF (x0, t)

)≥ ε
)

≤ C(ε,T ),
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where

C(ε,T ) = C exp(4LT )

∫ T

0
V̂F,ε(a, t) dt

goes to 0 when T → 0 and C is a positive constant.

PROOF. Assumption 3.1 and the (L,α) nonexpansivity of ψF are guaranteed
respectively by Assumptions 4.1 and 4.3, with here O = (a′,∞) and D = (a,∞).
Thus, we can apply Theorem 3.2 on the domain D and for any x0 ∈ D ∩ E and
ε > 0 and T < TD,ε,F (x0) ∧ T L,α

ε , we have

Px0

(
sup
t<T

dF

(
Xt,φF (x0, t)

)≥ ε
)

≤ C exp(4LT )

∫ T

0
V F,ε(x0, s) ds.

Now let t < TD,ε,F (x0) and x ∈ E such that dF (x,φF (x0, t)) ≤ ε. Then x > a and
F(a) < F(x) ≤ F(φF (x0, t)) + ε and combining the monotonicities of the flow
φF and the function F ,

F(a) < F(x) ≤ F
(
φF (∞, t)

)+ ε,

since φ(x0, t) > a. Thus x ∈ DF,ε(a, t) and

V F,ε(x0, t) ≤ V̂F,ε(a, t),

which completes the proof, since the behavior of C(ε,T ) when T → 0 comes from
(21). �

PROOF OF THE PROPOSITION 4.4(ii). The fact that X is a stochastically
monotone Markov process ensures that for all x0, x1 ∈ E, x0 ≤ x1, k ≥ 0, 0 ≤
t1 ≤ · · · ≤ tk , a1, . . . , ak ∈ R,

Px0(Xt1 ≥ a1, . . . ,Xtk ≥ ak) ≤ Px1(Xt1 ≥ a1, . . . ,Xtk ≥ ak).

It can be shown by induction for k ≥ 1 by using the Markov property at time t1
and writing X

x1
t1

= X
x0
t1

+ B , where Xx is the process X starting at x and B is a
nonnegative random variable Ft1 )-measurable. Then

Px0(Xt1 ≥ a1, . . . ,Xtk ≥ ak)

converges as x0 → ∞ (x0 ∈ E) by monotonicity, which identifies the finite dimen-
sional limiting distributions of (Px : x ∈ E) when x → ∞.

Let us turn to the proof of the tightness in the Skorokhod space D([0, T ],R)

and fix η > 0. The flow φF comes down instantaneously from infinity since∫ .
∞ 1/bF (x) < ∞. Thus, we can choose T0 ∈ (0, T (∞)) such that φF (∞, T0) ∈ D.

Using also that F tends to ∞, let us now fix K1 ∈ [φF (∞, T0),∞) and ε ∈ (0, η]
such that d(K1,∞) ≤ η and for any x ≥ K1 and y ∈ R such that dF (x, y) < ε,
we have BdF

(x, ε) ⊂ D and d(x, y) < η. By continuity and monotonicity of t →
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φF (∞, t), there exists T1 ∈ (0, T0] such that φF (∞, T1) = K1 + 1. Adding that
T (x0) ↑ T (∞) and φF (x0, T1) ↑ φF (∞, T1) as x0 ↑ ∞, we have φF (x0, T1) ≥ K1
for any x0 large enough and then TD,ε,F (x0) ≥ T1. Thus, Lemma 4.6 ensures that
for any x0 large enough and T < T1 ∧ T L,α

ε ,

(24) lim sup
x0→∞,x0∈E

Px0

(
sup
t≤T

dF

(
Xt,φF (x0, t)

)≥ ε
)

≤ C(ε,T ),

where C(ε,T ) → 0 as T → 0. Let now T2 ∈ (0, T1 ∧T L,α
ε ) such that C(ε,T2) ≤ η.

Using that for any t ∈ [0, T2], φF (x0, t) ≥ K1 and d(φF (x0, t),∞) ≤ η for x0 large
enough, {

sup
t≤T2

d(Xt ,∞) ≥ 2η
}

⊂
{

sup
t≤T2

d
(
φF (x0, t),Xt

)≥ η
}

⊂
{

sup
t≤T2

dF

(
Xt,φF (x0, t)

)≥ ε
}
.

Writing K = F−1(F (φ(∞, T2))+η) and using that φF (x0, T2) ↑ φF (∞, T2) ∈ D,
we have also

{XT2 ≥ K} ⊂ {F(XT2) ≥ F
(
φF (∞, T2)

)+ η
}⊂ {dF

(
XT2, φF (x0, T2)

)≥ ε
}
,

since F ′ is positive on D and η ≥ ε. Then (24) and the two last inclusions ensure
that

Px0

({
sup
t≤T2

d(Xt ,∞) ≥ 2η
}

∪ {XT2 ≥ K}
)

≤ η

for x0 large enough. Moreover, by (23), for any T ≥ T2, for δ small enough,

sup
x∈E;x≤K

Px

(
w′(X,δ, [0, T − T2])≥ 2η

)≤ η.

Combining these two last bounds at time T2 by the Markov property, we get that
for x0 large enough and δ small enough, Px0(w

′(X, δ, [0, T ]) ≥ 2η) ≤ 2η. The
tightness is proved. �

PROOF OF THEOREM 4.5. We fix ε > 0 and let T0 ∈ (0, T (∞) ∧ T L,α
ε )

such that BdF
(φF (∞, T0),2ε) ⊂ D. We observe that TD,ε,F (x0) ≥ T0 for x0 large

enough since φF (x0, T0) ↑ φF (∞, T0) as x0 ↑ ∞ and t ∈ [0, T (x0)) → φF (x0, t)

decreases. We apply Lemma 4.6 and get for any T < T0,

(25) lim sup
x0→∞,x0∈E

Px0

(
sup
t≤T

dF

(
Xt,φF (x0, t)

)≥ ε
)

≤ C(ε,T ),

where C(ε,T ) → 0 as T → 0.
We first consider the case (i) and fix now also t0 ∈ (0, T0). The flow φF comes

down from infinity instantaneously, so φF (∞, t) < ∞ on [t0, T ]. By Dini’s theo-
rem, φF (x0, .) converges to φF (∞, .) uniformly on [t0, T ], using the monotonicity
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of the convergence and the continuity of the limit. We obtain from (25) that for any
T < T0,

lim sup
x0→∞,x0∈E

Px0

(
sup

t0≤t≤T

dF

(
Xt,φF (∞, t)

)≥ 2ε
)

≤ C(ε,T ),

and the weak convergence of (Px : x ∈ E) to P∞ yields

P∞
(

sup
t0≤t≤T

dF

(
Xt,φF (∞, t)

)
> 2ε

)
≤ C(ε,T ).

Letting t0 ↓ 0 and then T ↓ 0 ensures that

lim
T →0

P∞
(

sup
0<t≤T

dF

(
Xt,φF (∞, t)

)
> 2ε

)
= 0.

Then P∞(limt↓0+ F(Xt)−F(φF (∞, t)) = 0) = 1 and P∞(∀t > 0 : Xt < ∞) = 1,
which proves (i).

For the case (ii), that is,
∫ .
∞ 1/bF (x) = ∞, we recall that T (∞) = ∞, so (25)

yields

P∞
(
F(XT ) < lim sup

x0→∞
F
(
φ(x0, T )

)− A
)

≤ C(A,T )

for any T ∈ (0, T L,α
ε ). Adding that F(φ(x0, T )) ↑ F(φ(∞, T )) = F(∞) = ∞ as

x0 ↑ ∞,

P∞(XT < ∞) ≤ C(A,T ).

Since φ(∞, t) = ∞ for any t ≥ 0, DF,A(a, t) = (a,∞) for any A > 0. Then
C(A,T ) ≤ 1

A
C(1, T ) for A ≥ 1 and C(A,T ) → 0 as A → ∞, since C(1, T ) < ∞

by (21). We get P∞(XT = ∞) = 1 for any T > 0, which completes the proof
recalling that X is a càdlàg Markov process under P∞. �

4.2. Examples and applications. We consider here examples of processes in
one dimension and recover some known results. We also get new estimates and we
illustrate the assumptions required and the choice of F . Thus, we recover classical
results on the coming down from infinity for �-coalescent and refine some of
them for birth and death processes. Here, b,σ = 0 and the condition allowing the
compensation of jumps (Assumption 4.1(ii)) will be obvious. We also provide a
criterion for the coming down from infinity of the transmission control protocol,
which is a piecewise deterministic Markov process with b �= 0, σ = 0. Several
extensions of these results could be achieved, such as mixing branching coalescing
processes or additional catastrophes. They are left for future works, while the next
section considers diffusions in higher dimension.



2402 V. BANSAYE

4.2.1. �-coalescent [6, 26, 27]. Pitman [26] has given a Poissonian represen-
tation of �-coalescent. We recall that � is a finite measure on [0,1] and we set
ν(dy) = y−2�(dy). Without loss of generality, we assume that �[0,1] = 1 and for
simplicity, we focus on coalescent without Kingman part and assume �({0}) = 0.
We consider a Poisson point process on (R+)2 with intensity dt ν(dy): each atom
(t, y) yields a coalescence event where each block is picked independently with
probability y and all the blocks picked merge into a single bock. Then the num-
bers of blocks jump from n to Bn,y + 1Bn,y<n, where Bn,y follows a binomial
distribution with parameter (n, 1 − y). Thus, the number of blocks Xt at time t is
the solution of the SDE

Xt = X0 −
∫ t

0

∫ 1

0

∫
[0,1]N

(
−1 + ∑

1≤i≤Xs−
1ui≤y

)+
N(ds, dy, du),

where N is a PPM with intensity on R+ × [0,1] × [0,1]N with intensity
dtν(dy) du. Thus here E = {1,2, . . .}, X = [0,1] × [0,1]N is endowed with the
cylinder σ -algebra of Borelian sets of [0,1], q(dy du) = ν(dy) du where du is the
uniform measure on [0,1]N, b = σ = G = 0 and

H(x, z) = H
(
x, (y,u)

)= −
(
−1 + ∑

1≤i≤x

1ui≤y

)+
.

We follow [6] and we denote for x ∈ (1,∞),

F(x) = log(x), ψ(x) =
∫
[0,1]
(
e−xy − 1 + xy

)
ν(dy).

In particular, F meets the Assumption 4.1(i) with a > 0 and a′ = 0. Moreover, for
every x ∈ N,

hF (x) =
∫
X

[
F
(
x + H(x, z)

)− F(x)
]
q(dz)

=
∫
X

log
(

x + H(x, z)

x

)
q(dz)

=
∫
[0,1]

ν(dy)E

(
log
(

Bx,y + 1Bx,y<x

x

))
= −ψ(x)

x
+ h(x),

where h is bounded thanks to Proposition 7 in [6]. Thus h can be extended to a
bounded C1 function on (0,∞) and Assumption 4.1(ii) is satisfied. Moreover,

ψF (x) = hF

(
F−1(x)

)= −ψ(exp(x))

exp(x)
+ h
(
exp(x)

)
and Lemma 9 in [6] ensures that x ∈ (1,∞) → ψ(x)/x is increasing. Then ψF is
(0,2‖h‖∞) nonexpansive on (0,∞). Besides

bF (x) = F ′(x)−1hF (x) = −ψ(x) + xh(x).
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Adding that ψ(x)/x → ∞ as x → ∞, we get bF (x) < 0 for x large enough and
Assumption 4.1(iv) is checked. Finally, b̃F = 0 since σ = 0 and G = 0 and the
second part of Proposition 7 in [6] ensures that

VF (x) =
∫
X

[
F
(
x + H(x, z)

)− F(x)
]2

q(dz)

=
∫
[0,1]

ν(dy)E

((
log
(

Bx,y + 1Bx,y<x

x

))2)
is bounded for x ∈ N and so is V̂F,ε . Then Assumptions 4.1 and 4.3 are satis-
fied with F = log, a′ = 0 and a large enough. Moreover, (Px : x ∈ N) converges
weakly to P∞, which can be seen here from Proposition 4.4(i) since X is stochas-
tically monotone. Thus Theorem 4.5 can be applied and writing wt = φF (∞, t),
we have:

(i) If
∫∞
.

1
−bF (x)

< +∞, then wt ∈ C1((0,∞), (0,∞)), w′
t = −ψ(wt) +

wth(wt) for t > 0 and

P∞(∀t > 0 : Xt < ∞) = 1 and P∞
(

lim
t↓0+

Xt

wt

= 0
)

= 1.

(ii) Otherwise P∞(∀t ≥ 0 : Xt = +∞) = 1.

To compare with known results, let us note that bF (x) ∼ −ψ(x) as x → ∞, so
that we recover here the criterion of coming down from infinity obtained in [7].
This latter is equivalent to the criterion initially proved in [27]. Finally,

wt ∼t↓0+ vt where vt = inf
{
s > 0 :

∫ ∞
s

1

ψ(x)
dx < t

}
satisfies v′

t = ψ(vt ) for t > 0. We recover the speed of coming down from infinity
of [6].

4.2.2. Birth and death processes [5, 29]. We consider a birth and death pro-
cess X and we denote by λk (resp., μk) the birth rate (resp., the death rate) when
the population size is equal to k ∈ E = {0,1,2, . . .}. We assume that μ0 = λ0 = 0
and μk > 0 for k ≥ 1 and we denote

π1 = 1

μ1
, πk = λ1 · · ·λk−1

μ1 · · ·μk

(k ≥ 2).

We also assume that

(26)
∑
k≥1

1

λkπk

= ∞.

Then the process X is well defined on E and eventually becomes extinct a.s. [21,
22], that is, T0 = inf{t > 0 : Xt = 0} < ∞ a.s. It is the unique strong solution on E
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of the following SDE:

Xt = X0 +
∫ t

0

∫ ∞
0

(1z≤λXs− − 1λXs−<z≤λXs−+μXs− )N(ds, dz),

where N is a Poisson Point Measure with intensity ds dz on [0,∞)2. Lemma 2.1
in [5] ensures that (Px)x∈E converges weakly to P∞. It can also be derived from
Proposition 4.4(i) since X is stochastically monotone. Under the extinction as-
sumption (26), the following criterion for the coming down from infinity is well
known [2]:

(27) S = lim
n→∞En(T0) =∑

i≥1

πi +∑
n≥1

1

λnπn

∑
i≥n+1

πi < +∞.

The speed of coming down from infinity of birth and death processes has been
obtained in [5] for regularly varying death rate (with index � > 1) and a birth rate
negligible compared to the death rate. Let us here get a finer result for a rele-
vant subclass which allows rather simple computations and describes competitive
model in population dynamics. It contains in particular the logistic birth and death
process.

PROPOSITION 4.7. We assume that there exist b ≥ 0, c > 0 and � > 1 such
that

λk = bk, μk = ck� (k ≥ 0).

Then for any α ∈ (0,1/2),

P∞
(

lim
t↓0+ tα/(1−�)(Xt/wt − 1) = 0

)
= 1,

where

wt ∼t↓0+
[
ct/(� − 1)

]1/(1−�)
.

This complements the results obtained in [5], where it was shown that Xt/wt →
1 as t ↓ 0. The proof used the decomposition of the trajectory in terms of the first
hitting time of integers, which works well (in one dimension) when simultaneous
deaths cannot occur. The fact that X satisfies a central limit theorem when t → 0
under P∞ (see Theorem 5.1 in [5]) ensures that the previous result is sharp in the
sense that it does not hold for α ≥ 1/2.

Before the proof, we consider the critical case where the death rate is slightly
larger than the birth rate. We recover here the criterion for the coming down from
infinity using Theorem 4.5. We complement this result by providing estimates both
when the process comes and does not come from infinity. The function fβ defined
by

fβ(x) =
∫ 2+x

2
1/

√
y log(y)β dy
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provides the best distance (i.e., the fastest increasing function going to infinity)
allowing to compare the process and the flow by bounding the quadratic variation.
It allows in particular to capture the fluctuations when they do not come down from
infinity, see (ii) below.

PROPOSITION 4.8. We assume that there exist b ≥ 0, c > 0 and β > 0 such
that

λk = bk, μk = ck log(k + 1)β (k ≥ 0).

(i) If β > 1, then P∞(∀t > 0 : Xt < +∞) = 1 and

P∞
(

lim
t↓0+fβ(Xt) − fβ(wt) = 0

)
= 1,

where wt = φfβ (∞, t) ∈ C1((0,∞), (0,∞)).
(ii) If β ≤ 1, P∞(∀t ≥ 0 : Xt = +∞) = 1 and for any ε > 0,

lim
T →0

lim sup
x0→∞,x0∈N

Px0

(
sup
t≤T

∣∣fβ(Xt) − fβ

(
φfβ (x0, t)

)∣∣≥ ε
)

= 0.

We do not provide more explicit estimates for the flow φfβ or for wt in short
time for that case and we turn to the proof of the two previous propositions. Let
us specify notation for the birth and death process. Here, χ = [0,∞), q(dz) = dz

and

H(x, z) = 1z≤λx − 1λx<z≤λx+μx .

Letting F ∈ C1((−1,∞),R), we have
∫
X |F(x +H(x, z))−F(x)|q(dz) < ∞ and

hF (x) = (F(x + 1) − F(x)
)
λx + (F(x − 1) − F(x)

)
μx

for x ∈ {0,1, . . .}. For the classes of birth and death rates λ, μ considered in the two
previous propositions, hF is well defined on (−1,∞) by the identity above and
hF ∈ C1((−1,∞),R). Assumption 4.1(ii) will be checked with a′ = −1. Finally,

VF (x) = (F(x + 1) − F(x)
)2

λx + (F(x) − F(x − 1)
)2

μx.

PROOF OF PROPOSITION 4.7. We consider α ∈ (0,1/2) and

F(x) = (1 + x)α
(
α ∈ (0,1/2)

)
.

Then F ′(x) > 0 for x > −1 and hF (x) = ((x + 2)α − (x + 1)α)bx + (xα − (x +
1)α)cx� and there exists a > 0 such that h′

F (x) < 0 for x ≥ a. This ensures that
Assumption 4.1 is checked with a′ = −1 and a. Moreover, ψF = hF ◦ F−1 is
nonincreasing and thus nonexpansive on (F (a),∞).
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Adding that here

hF (x) ∼x→∞ −cαx�+α−1

we get

(28) bF (x) = F ′(x)−1hF (x) = −c(1 + x)� +O
(
xmax(�−1,1)). (x → ∞)

By integrating the inverse of this identity, we obtain

(29) φF (∞, t) ∼t↓0+
[
ct/(� − 1)

]1/(1−�)
.

Finally,

VF (x) = ((x + 2)α − (x + 1)α
)2

bx + ((x + 1)α − xα)2cx�

∼ α2cx�+2α−2 (x → ∞).

Adding that for any T > 0, there exists c0 > 0 such that φ(∞, t) ≤ c0t
1/(1−�) for

t ∈ [0, T ] and that F−1(y) = y1/α − 1, then for any ε > 0, there exists c′
0 > 0 such

that for any t ≤ T ,

V̂F,ε(a, t) ≤ ε−2 sup
{
VF (x) : 0 ≤ x ≤ ((φF (∞, t) + 1

)α + ε
)1/α − 1

}
≤ c′

0
(
t1/(1−�))�+2α−2

.

Using that (� + 2α − 2)/(1 − �) = −1 + (2α − 1)/(1 − �) > −1 since α < 1/2,
we obtain ∫ .

0
V̂F,ε(a, t) dt < ∞.

Thus Assumptions 4.1 and 4.3 are satisfied and Theorem 4.5(i) can be applied,
since

∫∞
. −1/bF (x) dx < ∞. Defining wt = φF (∞, t), we get P∞(limt↓0+ Xα

t −
wα

t = 0) = 1 for any α ∈ (0,1/2). Writing

Xα
t − wα

t = wα
t

((
1 + (Xt/wt − 1)

)α − 1
)

and using a Taylor expansion completes the proof recalling (29). �

PROOF OF PROPOSITION 4.8. The criterion β > 1 for the coming down from
infinity can be derived easily from the criterion S < ∞ recalled in (27). It is also
a consequence of Theorem 4.5 using F(x) = (1 + x)α as in the previous proof
and the integrability criterion for

∫∞
. 1/bF (x), using that bF (x) = hF (x)/F ′(x) ∼

−cx log(x + 1)β as x → ∞.
Let us turn to the proof of the estimates (i)–(ii) and take F = fβ . Then F(x) →

∞ as x → ∞,

hF (x) = bx

∫ 3+x

2+x

1√
y log(y)β

dy − cx log(x)β
∫ 2+x

1+x

1√
y log(y)β

dy
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and its derivative is negative for x large enough. Then Assumption 4.1 is satisfied
with again a′ = 1 and a large enough. So ψF (x) = hF (F−1(x)) is decreasing, and
thus nonexpansive for x large enough. Moreover, there exists C > 0 such that

VF (x) ≤ Cx log(x)β
(∫ 2+x

1+x

1√
y log(y)β

dy

)2
.

So VF is bounded and Assumption 4.3 is satisfied. Then (i) comes from Theo-
rem 4.5(i) and (ii) comes from Lemma 4.6 observing that TD,ε,F (x0) → ∞ as
x0 → ∞. �

4.2.3. Transmission control protocol. The Transmission control protocol [3]
is a model for transmission of data, mixing a continuous (positive) drift which
describes the growth of the data transmitted and jumps due to congestions, where
the size of the data are divided by two. Then the size Xt of data at time t is given
by the unique strong solution on [0,∞) of

Xt = x0 + bt −
∫ t

0
1{u≤r(Xs−)}

Xs−
2

N(ds, du),

where x0 ≥ 0, b > 0, r(x) is a continuous positive nondecreasing function and
N is PPM on [0,∞)2 with intensity ds du. This is a classical example of the
piecewise deterministic Markov process. Usually, r(x) = cxβ , with β ≥ 0, c > 0.
The choice of F is a bit more delicate here owing to the size and intensity of
the fluctuations. Consider F such that F ′(x) > 0 for x > 0. Now E = [0,∞),
hF (x) = r(x)(F (x/2) − F(x)),

bF = b + hF /F ′, ψF = (bF ′ + hF

) ◦ F−1.

Finally,

VF (x) = r(x)
(
F(x/2) − F(x)

)2
and we cannot use F(x) = (1 + x)γ or F(x) = log(1 + x)γ since then the second
part of Assumption 4.3 does not hold. We need to reduce the size of the jumps
even more and take F(x) = log(1 + log(1 + x)). The model is not stochastically
monotone but Lemma 4.6 can be used to get the following result, which yields a
criterion for the coming down from infinity.

PROPOSITION 4.9. (i) If there exists c > 0 and β > 1 such that r(x) ≥
c log(1 + x)β for any x ≥ 1, then for any T > 0, η > 0, there exists K such that

inf
x0≥0

Px0(∃t ≤ T : Xt ≤ K) ≥ 1 − η.

(ii) If there exists c > 0 and β ≤ 1 such that r(x) ≤ c log(1 + x)β for any x ≥ 0,
then for any T ,K > 0,

lim
x0→∞Px0(∃t ≤ T : Xt ≤ K) = 0.
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Thus, in the first regime, the process comes down instantaneously and a.s. from
infinity, while in the second regime it stays at infinity, even if P∞ has not been
constructed here. In particular, if r(x) = cxβ and β, c > 0, the process comes down
instantaneously from infinity. If β = 0, it does not, which can actually be seen
easily since in the case r(.) = c, Xt ≥ (x0 +bt)/2Nt , where Nt is a Poisson process
with rate c and the right-hand side goes to ∞ as x0 → ∞ for any t ≥ 0.

PROOF OF PROPOSITION 4.9. Here, E = [0,∞) and we consider

F(x) = log
(
1 + log(1 + x)

)
on (a′,∞) where a′ ∈ (−1,0) is chosen such that log(1 + a′) > −1. Then

F ′(x) = 1

(1 + x)(1 + log(1 + x))
> 0.

Moreover,

F(x/2) − F(x) = log
(
1 − ε(x)

)
,

where

ε(x) = 1 − 1 + log(1 + x/2)

1 + log(1 + x)
= log(2) +O(1/(1 + x))

1 + log(1 + x)
.

We consider now

r(x) = c log(1 + x)β

with c > 0 and β ∈ [0,2]. We get

bF (x) = b + c log(1 + x)β(1 + x)
(
1 + log(1 + x)

)
log
(
1 − ε(x)

)
∼ −c log(2)x log(x)β

as x → ∞. Thus, Assumptions 4.1 is satisfied for a′ and a large enough. Moreover,∫ .

∞
1

bF (x)
dx < +∞ if and only if β > 1.

We observe that when β ≤ 1, bF ′ + hF is bounded. Adding that h′
F (x) = cβ(x +

1)−1 log(1 + x)β−1(F (x/2)−F(x))+ c log(1 + x)β(F ′(x/2)/2 −F ′(x)), we get
(bF ′ + hF )′(x) < 0 for x large enough when β > 1. Thus for any β ≥ 0, ψF =
(bF ′ + hF ) ◦ F−1 is (0, α) nonexpansive on (F (a),∞), for some α > 0 and a

large enough. Finally,

VF (x) = c log(1 + x)β log
(
1 − ε(x)

)2 ∼ c log(x)β−2

as x → ∞ and VF is bounded for β ≤ 2. So Assumptions 4.1 and 4.3 are satisfied
for a′ and a large enough and we can apply Lemma 4.6. We get for any x0 ≥ 0 and
T > 0,

(30) Px0

(
sup
t≤T

∣∣F(Xt) − F
(
φF (x0, t)

)∣∣≥ A
)

≤ C(A,T ),
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for A large enough, where C(A,T ) → 0 as T → 0 and C(A,T ) ≤ C.T . ×
supx≥0 VF (x)/A2.

We can now prove (i) and let β > 1. There exists c̃ > 0 such that

r̃(x) = c̃ log(1 + x)β∧2

satisfies for any x ≥ 1 and y ∈ [x,2x], r(x) ≥ r̃(y). By a coupling argument, we
can construct a TCP associated with the rate of jumps r̃ such that Xt ≤ X̃t a.s. for
t ∈ [0, inf{s ≥ 0 : Xs ≤ 1}). Then φF (x0, t) ≤ φF (∞, t) < ∞ since β > 1 ensures
that the dynamical system comes down from infinity. Letting T → 0 in (30) yields
(i).

To prove (ii), we use similarly the coupling Xt ≥ X̃t with r̃(x) = c̃ log(1 + x)β

and β ≤ 1 and let now A → ∞ in (30). This completes the proof since VF bounded
ensures that C(A,T ) → 0. �

4.2.4. Logistic Feller diffusions [9] and perspectives. The coming down from
infinity of diffusions of the form

dZt =√γZt dBt + h(Zt) dt

has been studied in [9] and is linked to the uniqueness of the quasi-stationary
distribution (Theorem 7.3). Writing Xt = 2

√
Zt/γ , it becomes

dXt = dBt − q(Xt) dt,

where q(x) = x−1(1/2 − 2h(γ x2/4)/γ ). Under some assumptions (see Re-
mark 7.4 in [9]), the coming down from infinity is indeed equivalent to∫ ∞ 1

q(x)
dx < ∞,

which can be compared to our criterion in Theorem 4.5. Several extensions and
new results could be obtained using the results of this section. In particular, one
may be interested to mix a diffusion part for competition, negative jumps due to
coalescence and branching events. In that vein, let us mention [24]. This is one
motivation to take into account the compensated Poisson measure in the definition
of the process X, so that Lévy processes and CSBP may be considered in general.
It is left for future stimulating works. Let us here simply mention that a class of
particular interest is given by the logistic Feller diffusion:

dZt =√γZt dBt + (τZt − aZ2
t

)
dt.

The next part is determining the speed of coming down from infinity of this diffu-
sion. This part actually deals more generally with the two dimensional version of
this diffusion, where nonexpansivity and the behavior of the dynamical system are
more involved.



2410 V. BANSAYE

5. Uniform estimates for two-dimensional competitive Lotka–Volterra pro-
cesses. We consider the historical Lotka–Volterra competitive model for two
species. It is given by the unique solution xt = (x

(1)
t , x

(2)
t ) of the following ODE

on [0,∞): (
x

(1)
t

)′ = x
(1)
t

(
τ1 − ax

(1)
t − cx

(2)
t

)
,

(31) (
x

(2)
t

)′ = x
(2)
t

(
τ2 − bx

(2)
t − dx

(1)
t

)
,

starting from x0 = (x
(1)
0 , x

(2)
0 ), where a, b, c, d ≥ 0. The associated flow is denoted

by φ:

φ : [0,∞)2 × [0,∞) → [0,∞)2, φ(x0, t) = xt = (x(1)
t , x

(2)
t

)
.

The coefficients a and b are the intraspecific competition rates and c, d are the
interspecific competition rates. We assume that

a, b, c, d > 0

or a, b > 0 and c = d = 0, so that our results cover the (simpler) case of one-single
competitive (logistic) model. It is well known [4, 23] that this deterministic model
is the large population approximation of individual-based model, namely birth and
death processes with logistic competition; see also Section 5.2. Moreover and more
generally, when births and deaths are accelerated, these individual-based models
converge weakly to the unique strong solution of the following SDE on [0,∞),

X
(1)
t = x

(1)
0 +

∫ t

0
X

(1)
t

(
τ1 − aX(1)

s − cX(2)
s

)
ds +

∫ t

0
σ1

√
X

(1)
s dB(1)

s

(32)

X
(2)
t = x

(2)
0 +

∫ t

0
X

(2)
t

(
τ2 − bX(2)

s − dX(1)
s

)
ds +

∫ t

0
σ2

√
X

(2)
s dB(2)

s ,

where B is a two-dimensional Brownian motion. This is the classical Lotka–
Volterra diffusion for two competitive species; see, for example, [10] for related
issues on quasi-stationary distributions.

In this section, we compare the stochastic Lotka–Volterra competitive processes
to the deterministic flow φ for two new regimes allowing to capture the behavior
of the process for large values. These results rely on the statements of Section 3
which are applied to a well-chosen finite family of transformations among

(33) Fβ,γ (x) =
(

x
β
1

γ x
β
2

)
, x ∈ (0,∞)2, β ∈ (0,1], γ > 0,

using the adjunction procedure. Moreover, Poincaré’s compactification technics
for flows is used to describe and control the coming down from infinity.

First, in Section 5.1, we study the small time behavior of the diffusion X =
(X(1),X(2)) starting from large values. We compare the diffusion X to the flow
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φ(x0, t) for a suitable distance which captures the fluctuations of the diffusion at
infinity. We then derive the way the process X comes down from infinity, that is,
its direction and its speed. Second, in Section 5.2, we prove that usual scaling
limits of competitive birth and death processes (see (38) for a definition) hold
uniformly with respect to the initial values, for a suitable distance and relevant set
of parameters.

These results give answers to two issues which have motivated this work: first,
how classical competitive stochastic models regulate large populations (see, in
particular, forthcoming Corollary 5.2); second, can we extend individual based-
models approximations of the Lotka–Volterra dynamical system to arbitrarily large
initial values and if yes, when and for which distance. These results will be use-
ful for forthcoming works on coexistence of competitive species in varying en-
vironment. We believe that the technics developed here allow to study similarly
the coming down from infinity of these competitive birth and death processes and
other multidimensional stochastic processes.

5.1. Uniform short time estimates for competitive Lotka–Volterra diffusions.
We consider the domain

Dα = (α,∞)2

and the distance dβ on [0,∞)2 defined for β > 0 by

(34) dβ(x, y) =
√∣∣xβ

1 − y
β
1

∣∣2 + ∣∣xβ
2 − y

β
2

∣∣2 = ∥∥Fβ,1(x) − Fβ,1(y)
∥∥

2.

We recall that a, b, c, d > 0 or (a = b > 0 and c = d = 0) and we define

(35) TD(x0) = inf
{
t ≥ 0 : φ(x0, t) /∈ D

}
the first time when the flow φ starting from x0 exits D.

THEOREM 5.1. For any β ∈ (0,1), α > 0 and ε > 0,

lim
T →0

sup
x0∈Dα

Px0

(
sup

t≤T ∧TDα (x0)

dβ

(
Xt,φ(x0, t)

)≥ ε
)

= 0.

This yields a control of the stochastic process X defined in (32) by the dynam-
ical system for large initial values and times small enough. We are not expecting
that this control hold outside Dα . Indeed, the next result shows that the process
and the dynamical system coming from infinity have a different behavior when
they come close to the boundary of (0,∞)2. It is naturally due to the diffusion
component and the absorption at the boundary.

The proof cannot be achieved for β = 1 since then the associated quadratic
variations are not integrable at time 0. Heuristically,

√
Zt dBt is of order

√
1/t dBt

for small times. This latter does not become small when t → 0 and the fluctuations
do not vanish for d1 in short time.
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We denote (̂x, y) ∈ (−π,π] the oriented angle in the trigonometric sense be-
tween two nonzero vectors of R2 and if ab �= cd , we write

(36) x∞ = 1

ab − cd
(b − c, a − d).

The following classification yields the way the diffusion comes down from infinity.

COROLLARY 5.2. We assume that σ1 > 0, σ2 > 0 and let x0 ∈ (0,∞)2:

(i) If a > d and b > c, then for any η ∈ (0,1) and ε > 0,

lim
T →0

lim sup
r→∞

Prx0

(
sup

ηT ≤t≤T

‖tXt − x∞‖2 ≥ ε
)

= 0.

If furthermore x0 is collinear to x∞, the previous limit holds also for η = 0.
(ii) If a < d and b < c and ̂(x∞, x0) �= 0, then for any T > 0,

lim
r→∞Prx0

(
inf
{
t ≥ 0 : X(i)

t = 0
}≤ T

)= 1,

where i = 1 when ̂(x∞, x0) ∈ (0, π/2] and i = 2 when ̂(x∞, x0) ∈ [−π/2,0).
(iii) If (a ≤ d and b > c) or if (a < d and b ≥ c), then for any T > 0,

lim
r→∞Prx0

(
inf
{
t ≥ 0 : X(2)

t = 0
}≤ T

)= 1.

(iv) If a = d and b = c, then for any ε > 0,

lim
T →0

lim sup
r→∞

Prx0

(
sup
t≤T

∥∥tXt − (ax
(1)
0 + bx

(2)
0

)−1
x0
∥∥

2 ≥ ε
)

= 0.

In the first case (i), the diffusion X and the dynamical system x come down
from infinity in a single direction x∞, with speed proportional to 1/t . They only
need a short time at the beginning to find this direction. This short time quantified
by η here could be made arbitrarily small when x0 becomes large. Let us also
observe that the one-dimensional logistic Feller diffusion Xt is given by X

(1)
t for

c = d = 0. Thus, taking x0 collinear to x∞, (i) yields the speed of coming down
from infinity of one-dimensional logistic Feller diffusions:

(37) lim
T →0

lim
r→∞Pr

(
sup
t≤T

|atXt − 1| ≥ ε
)

= 0.

In the second case (ii), the direction taken by the dynamical system and the process
depends on the initial direction. The dynamical system then goes to the boundary
of (0,∞)2 without reaching it. But the fluctuations of the process make it reach
the boundary and one species becomes extinct. When the process starts in the
direction of x∞, additional work would be required to describe its behavior, linked
to the behavior of the dynamical system around the associated unstable variety
coming from infinity.
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In the third case (iii), the dynamical system φ goes to the boundary (0,∞)×{0}
when coming down from infinity, wherever it comes from. Then, as above, the
diffusion X(2) hits 0. Let us note that, even in that case, the dynamical system may
then go to a coexistence fixed point or to a fixed point where only the species 2
survives. This latter event occurs when τ2/b > τ1/c, τ2/d > τ1/a and is illustrated
in the third simulation below. Obviously, the symmetric situation happens when
(b ≤ c and d < a) or (b < c and d ≤ a). Moreover, in cases (ii)–(iii), the proof tells
us that when X hits the axis, it is not close from (0,0). Then it becomes a one-
dimensional Feller logistic diffusion whose coming down infinity has been given
above; see (37).

In the case (iv), the process comes down in the direction of its initial value, at
speed a/t .

See Figure 1 below for simulations illustrating these four regimes.
Finally, let us note that this raises several questions on the characterization of a

process starting from infinity in dimension 2. In particular, informally, the process
coming down from infinity in a direction x0 which is not x∞ has a discontinuity at
time 0 in the cases (i)–(ii)–(iii).

5.2. Uniform scaling limits of competitive birth and death processes. Let us
deal finally with competitive birth and death processes and consider their scal-
ing limits to the Lotka–Volterra dynamical system φ given by (31). These scal-
ing limits are usual approximations in large populations of dynamical system by
individual-based model; see, for example, [4, 23]. We provide here estimates which
are uniform with respect to the initial values in a cone in the interior of (0,∞)2,
for a distance capturing the large fluctuations of the process at infinity. The birth
and death rates of the two species are given for population sizes n1, n2 ≥ 0 and
K ≥ 1 by

λK
1 (n1, n2) = λ1n1, μK

1 (n1, n2) = μ1n1 + an1.
n1

K
+ cn1.

n2

K

for the first species and by

λK
2 (n1, n2) = λ2n2, μK

2 (n1, n2) = μ2n2 + bn2.
n2

K
+ dn2.

n1

K

for the second species. We assume that

λ1 − μ1 = τ1, λ2 − μ2 = τ2.

Dividing the number of individuals by K , the normalized population size XK sat-
isfies

(38) XK
t = x0 +

∫ t

0

∫
[0,∞)

HK(Xs−, z)N(ds, dz),
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FIG. 1. Simulations. We consider two large initial values x0 such that ‖x0‖1 = 105. We plot the
dynamical system (in black line) and two realizations of the diffusion (in red line) starting from these
two initial values. In each simulation, τ1 = 1, τ2 = 4 and the solutions of the dynamical system
converge to the fixed point where only the second species survives. The coefficient diffusion terms are
σ1 = σ2 = 10. We plot here G(xt ) and G(Xt ), where G(x,y) = (X,Y ) = (log(1+x), log(1+y)), to
zoom on the behavior of the process when coming close to the axes. The four regimes (i)–(ii)–(iii)–(iv)
of the corollary above, which describe the coming down from infinity, are successively illustrated.
One can also compare with the pictures of Section 5.3 describing the flow.

where writing τK
1 = λK

1 + μK
1 for convenience,

HK(x, z)

= 1

K

(
1{z≤λK

1 (Kx)} − 1{λK
1 (Kx)≤z≤τK

1 (Kx)}
1{0≤z−τK

1 (Kx)≤λK
2 (Kx)} − 1{λK

2 (Kx)≤z−τK
1 (Kx)≤λK

2 (Kx)+μK
2 (Kx)}

)
(39)

and N is a PPM on [0,∞) × [0,∞) with intensity ds dz. We set

Dα = {(x1, x2) ∈ (α,∞)2 : x1 ≥ αx2, x2 ≥ αx1
}
,
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FIG. 2. Flow close to infinity. We draw the four regimes of the compactified flow � starting close
or on the boundary ∂S and below the associated behavior of the original flow φ on [0,∞)2. The
fixed points of the boundary are fat.

which is required both for the control of the flow and of the fluctuations. We only
consider here the case

(b > c > 0 and a > d > 0) or (a, b > 0 and c = d = 0) or
(40)

(a = d > 0 and b = c > 0)

since we know from the previous corollary that it gives the cases when the flow
does not go instantaneously to the boundary of (0,∞)2 in short time when coming
from infinity. Thus the flow does not exit from Dα instantaneously, which would
prevent the uniformity in the convergence below. This corresponds to the cases
� = x∞ and � = x̂0 in the forthcoming Lemma 5.7(ii) and Figure 2.

THEOREM 5.3. For any T > 0, β ∈ (0,1/2) and α, ε > 0, there exists C > 0
such that for any K ≥ 0,

sup
x0∈Dα∩N2/K

Px0

(
sup
t≤T

dβ

(
XK

t ,φ(x0, t)
)≥ ε

)
≤ C

K
.

The proof, which is given below, relies on (L,αK) nonexpansivity of the flow
associated with XK , with αK → 0. Additional work should allow to make T go to
infinity when K goes to infinity. The critical power β = 1/2 is reminiscent from
results obtained for one-dimensional logistic birth and death process in Proposi-
tion 4.7 in Section 4.2.2.
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5.3. Nonexpansivity of the flow and Poincaré’s compactification. The proofs
of the three previous statements of this section rely on the following lemmas.

The first one provides the domains where the transformation Fβ,γ yields a non-
expansive vector field. It is achieved by determining the spectrum of the sym-
metrized operator of the Jacobian matrix of ψFβ,γ and provide a covering of the
state space. This is the key ingredient to use the results of Section 3 for the study
of the coming down from infinity of Lotka–Volterra diffusions (Theorem 5.1) and
the proof of the scaling limits of birth and death processes (Theorem 5.3).

We also need to control the flow φ when it comes down from infinity. The
lemmas of Section 5.3.2 describe the dynamics of the flow and provide some addi-
tional results useful for the proofs. These proofs rely on the extension of the flow
on the boundary at infinity, using Poincaré’s technics. Finally, we combine these
results in Sections 5.3.3 and 5.3.4 and decompose the whole trajectory of the flow
in a finite number of time intervals during which it belongs to a domain where
nonexpansivity holds for one of the transformation Fβ,γ .

As one can see on spectral computations below, nonexpansivity holds in a cone.
We recall that a cone is a subset C of R2 such that for all x ∈ C and λ > 0, λx ∈ C.
We use the convex components of open cones, which are open convex cones. For
S a subset of R2, we denote by S the closure of S. Recalling notation of Section 3,
we have here E = [0,∞)2, d = 2 and

ψF = (JF b) ◦ F−1

where b(x) = b(x1, x2) =
(

τ1x1 − ax2
1 − cx1x2

τ2x2 − bx2
2 − dx1x2

)
.(41)

5.3.1. Nonexpansitivity in cones. Let us write τ = max(τ1, τ2) and

qβ = 4ab(1 + β)2 + 4
(
β2 − 1

)
cd

for convenience and consider the open cones of (0,∞)2 defined by

Dβ,γ = {x ∈ (0,∞)2 : 4β(1 + β)
(
a dx2

1 + bcx2
2
)+ qβx1x2

− (cγ −1x
β
1 x

1−β
2 − dγ x

1−β
1 x

β
2

)2
> 0
}
.(42)

LEMMA 5.4. Let β ∈ (0,1] and γ > 0.
The vector field ψFβ,γ is τ nonexpansive on each convex component of the open

cone Fβ,γ (Dβ,γ ).

In the particular case a, b > 0 and c = d = 0, for any β ∈ (0,1] and γ > 0,
Dβ,γ = (0,∞)2. But this fact does hold in general. We need the transformations
Fβ,γ for well-chosen values of γ to get the nonexpansivity property of the flow
on unbounded domains. Let us also note that (0,∞)2 is not coverable by a single
domain of the form Dβ,γ in general and the adjunction procedure of Section 3.2
will be needed.
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PROOF OF LEMMA 5.4. We write for y = (y1, y2) ∈ [0,∞)2,

(43) ψFβ,γ (y) = ψ1(y) + ψ2,β,γ (y),

where

ψ1(y) =
(
βτ1y1
βτ2y2

)
, ψ2,β,γ (y) = −

(
βy1
(
ay

1/β
1 + cγ −1/βy

1/β
2

)
βy2
(
bγ −1/βy

1/β
2 + dy

1/β
1

)) .

First, ψ1 is Lipschitz on [0,∞)2 with constant τ since β ∈ (0,1]. Moreover, writ-
ing Aβ,γ (x) = Jψ2,β,γ

(Fβ,γ (x)), we have for any x ∈ [0,∞)2,

Aβ,γ (x) + A∗
β,γ (x)

= −
(

2a(1 + β)x1 + 2cβx2 cγ −1x
β
1 x

1−β
2 + dγ x

β
2 x

1−β
1

cγ −1x
β
1 x

1−β
2 + dγ x

β
2 x

1−β
1 2b(1 + β)x2 + 2dβx1

)
.

This can be seen using (13) or by a direct computation. We consider now the trace
and the determinant of this matrix:

(44) T (x) = Tr
(
Aβ,γ (x) + A∗

β,γ (x)
)
, 
(x) = det

(
Aβ,γ (x) + A∗

β,γ (x)
)
.

As β > 0 and x ∈ (0,∞)2, T (x) < 0, while


(x) = (2a(1 + β)x1 + 2cβx2
)(

2b(1 + β)x2 + 2dβx1
)

− (cγ −1x
β
1 x

1−β
2 + dγ x

β
2 x

1−β
1

)2
.(45)

It is positive when x = (x1, x2) ∈ Dβ,γ and then the spectrum of Aβ,γ (x) +
A∗

β,γ (x) is included in (−∞,0]. Recalling Table 1 in [1] or the beginning of Sec-
tion 2, this ensures that ψ2,β,γ is nonexpansive on the open convex components
of Fβ,γ (Dβ,γ ). Then ψFβ,γ is τ nonexpansive on the open convex components of
Fβ,γ (Dβ,γ ). Let us finally observe that Dβ,γ , and thus Fβ,γ (Dβ,γ ) are open cones,
which completes the proof of the lemma. �

We define now

Cη,β,γ = {x ∈ (0,∞)2 : x1/x2 ∈ (0, η) ∪ (xβ,γ − η, xβ,γ + η) ∪ (1/η,∞)
}
,

writing xβ,γ = (dγ 2/c)1/(2β−1) when it is well defined. The next result ensures
that these domains provide a covering by cones for which nonexpansivity hold.
The case c = d = 0 is obvious and we focus on the general case.

LEMMA 5.5. Assume that a, b, c, d > 0. Let γ > 0, β ∈ (0,1) − {1/2} such
that qβ > 0.

There exists η > 0 and A > 0 and μ > 0 such that:

(i) Cη,β,γ ⊂ Dβ,γ .
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(ii) for any y, y′ which belong both to a same convex component of the cone
Fβ,γ (Cη,β,γ ) and to the complementary set of B(0,A), then

(46)
(
ψFβ,γ (y) − ψFβ,γ

(
y′)).(y − y′)≤ −μ.

(‖y‖2 ∧ ∥∥y′∥∥
2

)
.
∥∥y − y′∥∥2

2.

PROOF. (i) The inclusion {x ∈ (0,∞)2 : x1 = xγ x2} ⊂ Dβ,γ comes from the
fact that

x1 = (dγ 2/c
)1/(2β−1)

x2 implies that
(
cγ −1x

β
1 x

1−β
2 − dγ x

1−β
1 x

β
2

)2 = 0

and the fact that qβ > 0. The inclusion {x ∈ (0,∞)2 : x1/x2 ∈ (0, η)∪ (1/η,∞)} ⊂
Dβ,γ is obtained by bounding(

cγ −1x
β
1 x

1−β
2 − dγ x

1−β
1 x

β
2

)2 ≤ (cγ −1η1−β + dγ ηβ)2x2
1

when x2 ≤ ηx1. Indeed, a, d > 0 and letting η be small enough such that 4β(1 +
β)ad > (cγ −1η1−β + dγ ηβ)2 yields the result since β ∈ (0,1).

(ii) Recalling notation (44), for any x ∈ [0,∞)2 − {(0,0)}, T (x) < 0 and the
value of 
(x) is given by (45). Let x0 �= 0 such that 
(x0) > 0, then there exist
v1, v2 > 0 and some open ball V(x0) centered in x0, such that for any x ∈ V(x0),
we have −v1 ≤ T (x) < 0 and 
(x) ≥ v2. Writing {−μ1(x),−μ2(x)} with 0 ≤
μ1 ≤ μ2 the two negative eigenvalues of the symmetric matrix Aβ,γ (x)+A∗

β,γ (x),
we have for for any λ > 0 and x ∈ V(x0)

μ1(λx) = μ1(λx)μ2(λx)

μ2(λx)
≥ μ1(λx)μ2(λx)

μ1(λx) + μ2(λx)
= 
(λx)

−T (λx)
= λ


(x)

−T (x)
≥ λ

v2

v1
,

since 
 (resp., T ) gives the product (resp., the sum) of the two eigenvalues. We ob-
tain that there exists μ > 0 such that for any x in the convex cone C(x0) generated
by V(x0), the spectrum of Aβ,γ (x)+A∗

β,γ (x) is included in (−∞,−2μ‖x‖2]. Re-
calling that Aβ,γ = Jψ2,β,γ

◦ Fβ,γ and β ≤ 1, there exists μ̃ such that the spectrum
of Jψ2,β,γ

(y) + J ∗
ψ2,β,γ

(y) is included in (−∞,−2μ̃‖y‖2] for any y ∈ Fβ,γ (C(x0))

such that ‖y‖2 ≥ 1. Then(
ψ2,β,γ (y) − ψ2,β,γ

(
y′)).(y − y′)≤ −μ̃.

(‖y‖2 ∧ ∥∥y′∥∥
2

)
.
∥∥y − y′∥∥2

2,

for any y, y′ in a convex set containing Fβ,γ (C(x0)) ∩ B(0,1)c; see again Table
1 in [1] for details. Recalling now (43) and that ψ1 is Lipschitz with constant τ ,
there exists A > 0 such that(

ψFβ,γ (y) − ψFβ,γ

(
y′)).(y − y′)≤ −1

2
μ̃.
(‖y‖2 ∧ ∥∥y′∥∥

2

)
.
∥∥y − y′∥∥2

2

for any y, y′ ∈ B(0,A)c which belong to convex component of Fβ,γ (C(x0)). We
conclude by choosing η > 0 such that Cη,β,γ ⊂⋃x0∈{xγ ,(0,1),(1,0)} C(x0). �
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5.3.2. Poincaré’s compactification and coming down from infinity of the flow.
To describe the coming down from infinity of the flow φ, we use the following
compactification K of [0,∞)2:

K(x) =K(x1, x2) =
(

x1

1 + x1 + x2
,

x2

1 + x1 + x2
,

1

1 + x1 + x2

)
= (y1, y2, y3).

The application K is a bijection from [0,∞)2 into the simplex S defined by

S = {y ∈ [0,1]2 ×(0,1] : y1 +y2 +y3 = 1
}⊂ S = {y ∈ [0,1]3 : y1 +y2 +y3 = 1

}
.

We note ∂S the outer boundary of S :

∂S = S − S
= {(y1,1 − y1,0) : y1 ∈ [0,1]}
=
{

lim
r→∞K(rx) : x ∈ [0,∞)2 − {(0,0)

}}
.

The key point to describe the direction of the dynamical system φ coming from in-
finity is the following change of time. It allows to extend the flow on the boundary
and is an example of Poincaré’s compactification technics, which is particularly
powerful for polynomial vector field [16]. More precisely, we consider the flow �

of the dynamical system on S given for z0 ∈ S and t ≥ 0 by

(47) �(z0,0) = z0,
∂

∂t
�(z0, t) = H

(
�(z0, t)

)
,

where H is the Lipschitz function on S defined by

H(1)(y1, y2, y3) = y1y2
[
(b − c)y2 + (d − a)y1

]
+ y1y3

[
(τ1 − τ2 − c)y2 − ay1 + y3τ1

]
,

H (2)(y1, y2, y3) = y1y2
[
(a − d)y1 + (c − b)y2

]
(48)

+ y2y3
[
(τ2 − τ1 − d)y1 − by2 + y3τ2

]
,

H (3)(y1, y2, y3) = y3
(
ay2

1 + by2
2 + (c + d)y1y2 − τ1y1y3 − τ2y2y3

)
.

The study of � close to ∂S is giving us the behavior of φ close to infinity using
the change of time ϕ ∈ C1([0,∞)2 × [0,∞), [0,∞)) defined by

ϕ(x0,0) = x0,
∂

∂t
ϕ(x0, t) = 1 + ∥∥φ(x0, t)

∥∥
1.

LEMMA 5.6. For any x0 ∈ [0,∞)2 and t ≥ 0,

K
(
φ(x0, t)

)= �
(
K(x0), ϕ(x0, t)

)
.
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PROOF. We denote by (yt : t ≥ 0) the image of the dynamical system (xt : t ≥
0) through K: yt = K(xt ) =K(φ(x0, t)). Then

y′
t = G(xt ) = G ◦K−1(yt )

where G = (G(1),G(2),G(3)) is given by

G(1)(x1, x2) = (d − a)x2
1x2 + (b − c)x1x

2
2 + (τ1 − τ2 − c)x1x2 − ax2

1 + τ1x1

(1 + x1 + x2)2 ,

G(2)(x1, x2) = (c − b)x2
2x1 + (a − d)x2x

2
1 + (τ2 − τ1 − d)x2x1 − bx2

2 + τ2x2

(1 + x1 + x2)2 ,

G(3)(x1, x2) = ax2
1 + bx2

2 + (c + d)x1x2 − τ1x1 − τ2x2

(1 + x1 + x2)2 .

Using that x1 = y1/y3 and x2 = y2/y3 and recalling the definition (48) of H , we
have

(49) G ◦K−1(y) = 1

y3
H(y)

for y = (y1, y2, y3) ∈ S . The key point in the theory of Poincaré is that H is contin-
uous on S and that the trajectories of the dynamical system (zt : t ≥ 0) associated
to the vector field H :

z′
t = H(zt )

are the same than the trajectories of (yt : t ≥ 0) whose vector field is G ◦ K−1.
Indeed the positive real number 1/y3 only changes the norm of the vector field,
and thus the speed at which the same trajectory is covered. The associated change
of time vt = ϕ(x0, t) such that

zvt = yt = K(xt )

can now be simply computed. Indeed (zvt )
′ = H(yt )v

′
t coincides with y′

t = G ◦
K−1(yt ) as soon as

v′
t = 1

y
(3)
t

= 1

K(3)(φ(x0, t))
= 1 + ∥∥φ(x0, t)

∥∥
1,

using (49). This completes the proof. �

To describe the direction from which the flow φ comes down from infinity, we
introduce the hitting times of cones centered in x:

t−(x0, x, ε) = inf
s≥0

{
(̂xs, x) ∈ [−ε,+ε]},

t+(x0, x, ε) = inf
s≥t−(x0,x,ε)

{
(̂xs, x) /∈ [−2ε,+2ε]},(50)

where we recall that xs = φ(x0, s) and inf∅ = ∞. The directions � of the coming
down from infinity are defined by:
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• � = x∞ if b > c and a > d , where x∞ has been defined in (36).
• � = (1/a,0) if b > c and a ≤ d; or if b ≥ c and a < d; or if c > b and d > a and

̂(x0, x∞) > 0.
• � = (0,1/b) if a > d and b ≤ c; or if a ≥ d and b < c; or if c > b and d > a and

̂(x0, x∞) < 0.
• � = x̂0 if a = d and b = c, where x̂0 = x0/(ax

(1)
0 + bx

(2)
0 ) for any x0 ∈ (0,∞)2.

The proof of the direction relies on the previous compactification result. We can
then specify the speed of coming down from infinity of the flow φ since the prob-
lem is reduced to one single dimension where computations can be easily achieved.

LEMMA 5.7. (i) For any T > 0, there exists cT > 0 such that ‖φ(x0, t)‖1 ≤
cT /t for all x0 ∈ [0,∞)2 and t ∈ (0, T ].

(ii) For all x0 ∈ (0,∞)2 and ε > 0,

lim
r→∞ t−(rx0, �, ε) = 0, lim

r→∞ t+(rx0, �, ε) > 0.

(iii) Moreover,

lim
t→0

lim sup
r→∞

∣∣∥∥tφ(rx0, t)
∥∥

1 − ‖�‖1
∣∣= 0.

PROOF. (i) Using a > 0, we first observe that (x
(1)
t )′ ≤ −a(x

(1)
t )2/2 in the

time intervals when x
(1)
t ≥ 2τ1/a. Solving (x

(1)
t )′ = −(x

(1)
t )2a/2 proves (i).

(ii) We use the notation (47) and (48) above and the dynamics of zt = �(z0, t)

on the invariant set ∂S is simply given by the vector field H(y1, y2,0) for y1 ∈
[0,1], y1 + y2 = 1:

H(1)(y1, y2,0) = −H(2)(y1, y2,0) = y1y2
[
(b − c)y2 + (d − a)y1

]
.

The two points (1,0,0) and (0,1,0) on ∂S are invariant for the dynamical system
(zt : t ≥ 0).

Let us first consider the case when a �= d or b �= c. There is an additional invari-
ant point in ∂S if and only if

(b − c)(a − d) > 0.

Thus, if (b − c)(a − d) ≤ 0, H−1((0,0,0)) ∩ ∂S = {(1,0,0), (0,1,0)} and zt

starting from the boundary ∂S goes either to (1,0,0) whatever its initial value z0
in the interior of the boundary; or to (0,1,0) whatever its initial value z0 in the
interior of the boundary. These cases are inherited from the sign of b − c, which
provides the stability of the fixed points (1,0,0) and (0,1,0). Then by Lemma 5.6
the dynamical system zϕ(x0,t) = K(xt ) starting close to the boundary ∂S goes:

• either to (1,0,0); and then (̂xt , �) becomes small, where � = (1/a,0).
• or to (0,1,0); and then (̂xt , �) becomes small, where � = (0,1/b).
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More precisely, z issued from K(φ(rx0, t)) reaches any neighborhood of (1,0,0)

or (0,1,0) in a time which is bounded for r large enough. Adding that ∂ϕ(rx0, t)/

∂t = 1 + ‖φ(rx0, t)‖1 is large before zϕ(rx0,.) has reached this neighborhood en-
sures that this reaching time is arbitrarily small for K−1(φ(rx0, .)) when r is large.
This proves that t−(rx0, �, ε) → 0 as r → ∞. Moreover, t+(rx0, �, ε) is not be-
coming close to 0 as r → ∞ since the speed of the dynamical system φ(rx0, .) is
bounded on the compacts sets of [0,∞)2.

Otherwise, (b − c)(a − d) > 0 and

H−1((0,0,0)
)∩ ∂S = {(1,0,0), (0,1,0), z∞

}
,

where z∞ is the unique invariant point in the interior of the boundary

z∞ = 1

b − c + a − d
(b − c, a − d,0).

Then we need to see if z∞ is repulsive or attractive on the invariant set ∂S . In the
case c > b and d > a, this point is attractive and z∞ is a a saddle and

z∞ = lim
r→∞K(rx∞).

So Lemma 5.6 now ensures that the dynamical system xt takes the direc-
tion � = x∞ when starting from a large initial value. As in the previous case,
t−(rx0, �, ε) → 0 and t+(rx0, �, ε) does not.

In the case b < c and a < d , y∞ is a source and the dynamical system zt either
goes to (1,0,0) (and then � = (1/a,0)) or to (0,1,0) (and then � = (0,1/b)). This
depends on the position of the initial value with respect to the second unstable
variety, and thus on the sign of ̂(x0, x∞).

Finally, the case a = d , b = c is handled similarly noting that the whole set ∂S
is invariant.

(iii) We know from (ii) that the direction of the dynamical system coming from
infinity is � and we reduce now its dynamics close to infinity to a one-dimensional
and solvable problem. Indeed, let us write

xt (r) = φ(rx0, t)

and focus on the case �(1) �= 0. First, we observe that for any T > 0, there exists
MT > 0 such that for any t ∈ [0, T ] and r ≥ 1,

(51) x
(2)
t (r) ≤ MT x

(1)
t (r).

Indeed K(xt ) = zvt does not come close to the boundary {(0, u,1 − u) : u ∈ [0,1]}
on compact time intervals when �(1) �= 0. Plugging (51) in (31) provides a lower
bound for x

(1)
t (r) and we obtain for any ε > 0,

t1(ε) = lim inf
r→∞ inf

{
t ≥ 0 : x(1)

t (r) <
(|τ1| + 1

)
/ε
} ∈ (0,∞].
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Moreover, by definition (50), for any ε > 0 and r > 0 and t ∈ [t−(rx0, �, ε),

t+(rx0, �, ε)], we have ̂(xt (r), �) ≤ 2ε and

(52)
∣∣∣∣x(2)

t (r)

x
(1)
t (r)

− �(2)

�(1)

∣∣∣∣≤ u(ε),

where u(ε) ∈ [0,∞] and u(ε) → 0 as ε → 0. We write

θ� = �(2)

�(1)
, t−(r) = t−(rx0, �, ε), t+(r) = t+(rx0, �, ε) ∧ t1

(
u(ε)

)
for convenience. Plugging (52) in the first equation of (31) yields for any t ∈
[t−(r), t+(r)] and r ≥ 1,

−(a + cθ� + (1 + c)u(ε)
)≤ (x

(1)
t (r))′

(x
(1)
t (r))2

≤ −(a + cθ� − (1 + c)u(ε)
)
.

We get by integration, for any ε small enough,

1

(a + cθ� + (1 + c)u(ε))(t − t−(r)) + 1/x
(1)
t−(r)(r)

≤ x
(1)
t (r) ≤ 1

(a + cθ� − (1 + c)u(ε))(t − t−(r)) + 1/x
(1)
t−(r)(r)

.

Using (ii), t−(r) → 0 and t+ = lim inf t+(r) > 0 as r → ∞. Moreover, �(1) �= 0
ensures that x

(1)
t−(r)(r) → ∞ as r → ∞. Then for any ε positive small enough and

t ≤ t+,

1

a + cθ� + (1 + c)u(ε)
≤ lim inf

r→∞ tx
(1)
t (r)

≤ lim sup
r→∞

tx
(1)
t (r) ≤ 1

a + cθ� − (1 + c)u(ε)
.

Letting finally ε → 0, u(ε) → 0 and we obtain

lim
t→0

lim sup
r→∞

∣∣tx(1)
t (r) − 1/(a + cθ�)

∣∣= 0.

Using again (52) provides the counterpart for tx
(2)
t and completes the proof in the

case �(1) �= 0. The case �(2) �= 0 is treated similarly. �

5.3.3. Approximation of the flow of scaled birth and death processes. We use
notation of Section 3 for

XK =
(
XK,(1)

XK,(2)

)
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with here E = {0,1,2, . . .}2, χ = [0,∞), q(dz) = dz and

hK
F (x) =

∫ ∞
0

[
F
(
x + HK(x, z)

)− F(x)
]
dz,

where HK is defined in (39). Recalling the definition of Fβ,γ from (33), we get

hK
Fβ,γ

(x)

=
(

λ1Kx1
(
(x1 + 1/K)β − x

β
1

)+ Kx1(μ1 + ax1 + cx2)
(
(x1 − 1/K)β − x

β
1

)
γ λ2Kx2

(
(x2 + 1/K)β − x

β
2

)+ γKx2(μ2 + bx2 + dx1)
(
(x2 − 1/K)β − x

β
2

)) .(53)

We consider

bK
Fβ,γ

= J−1
Fβ,γ

hK
Fβ,γ

, ψK
Fβ,γ

= hK
Fβ,γ

◦ F−1
β,γ

and we recall that Dα = {(x1, x2) ∈ (α,∞)2 : x1 ≥ αx2, x2 ≥ αx1} and

b(x) =
(

τ1x1 − ax2
1 − cx1x2

τ2x2 − bx2
2 − dx1x2

)
, ψFβ,γ = (JFβ,γ b) ◦ F−1

β,γ .

To compare these quantities and approximate the flow associated with bK , we
introduce


K
β,γ (x) = β(β − 1)

2K

(
(ax1 + cx2)x

β−1
1

γ (bx2 + dx1)x
β−1
2

)
.

LEMMA 5.8. For any α > 0 and β ∈ (0,1] and γ > 0, there exists C > 0 such
that for any x ∈Dα and y ∈ Fβ,γ (Dα) and K ≥ 2/α:

(i) ∥∥hK
Fβ,γ

(x) − JFβ,γ (x)b(x) − 
K
β,γ (x)

∥∥
2 ≤ C

K
‖x‖β−1

2 .

(ii) ∥∥bK
Fβ,γ

(x) − b(x)
∥∥

2 ≤ C

K
‖x‖2.

(iii)

ψK
Fβ,γ

(y) = ψFβ,γ (y) + 
K
β,γ

(
F−1

β,γ (y)
)+ RK

β,γ

(
F−1

β,γ (y)
)
,

where ‖RK
β,γ (x)‖2 ≤ C/K .

(iv) Moreover, ψK
Fβ,γ

is (C,C/K) nonexpansive on each convex component of
Fβ,γ (Dβ,γ ∩Dα), where we recall that Dβ,γ is defined in (42).

(v) Finally, ∥∥ψK
Fβ,γ

(y) − ψFβ,γ (y)
∥∥

2 ≤ C
1 + ‖y‖

K
.
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PROOF. First, by the Taylor–Lagrange formula applied to (1 + h)β , there ex-
ists c0 > 0 such that∣∣∣∣(z + δ

K

)β

− zβ − δ

K
βzβ−1 − δ2

2K2 β(β − 1)zβ−2
∣∣∣∣≤ c0

K2 zβ−3

for any z > α and K ≥ 2/α and δ ∈ {−1,1}, since h = δ/(Kz) ∈ (−1/2,1/2).
Using then (53) and

JFβ,γ (x) =
(
βx

β−1
1 0
0 γβx

β−1
2

)
,

JFβ,γ (x)b(x) =
(

βx
β−1
1 x1(τ1 − ax1 − cx2)

γβx
β−1
2 x2(τ2 − bx2 − dx1)

)
yields (i), since ‖x‖2, x1 and x2 are equivalent up to a positive constant when
x ∈ Dα . We immediately get (iii) since ‖x‖β−1

2 is bounded on [α,∞)2 when β ≤ 1.
Then (i) and the fact that there exists c0 > 0 such that for any x ∈ Dα and

u ∈ [0,∞)2,∥∥JFβ,γ (x)−1
K
β,γ (x)

∥∥
2 ≤ c0

‖x‖2

K
,

∥∥JFβ,γ (x)−1u
∥∥

2 ≤ c0‖x‖1−β
2 ‖u‖2

proves (ii).
We observe that 
K

β,γ ◦ F−1
β,γ is uniformly Lipschitz on Fβ,γ (Dα) with constant

L since its partial derivative are bounded on this domain. Recalling then from
Lemma 5.4(i) that ψFβ,γ is τ̄ nonexpansive on Fβ,γ (Dβ,γ ), the decomposition (iii)
ensures that ψK

Fβ,γ
is (τ + L,C/K) nonexpansive on Fβ,γ (Dβ,γ ∩ Dα). So (iv)

holds.
Finally, using (iii) and adding that

sup
y∈Fβ,γ (Dα),K≥1

K
‖
K

β,γ (F−1
β,γ (y))‖2

‖y‖2
= sup

x∈Dα,K≥1
K

‖
K
β,γ (x)‖2

‖Fβ,γ (x)‖2
< ∞

proves (v) and completes the proof. �

5.3.4. Adjunction of open convex cones. We decompose the trajectory of the
flow in Dα = (α,∞)2 into time intervals where a nonexpansive transformation
can be found. This relies on the next lemma and the results of Section 5.3.1. Recall
from (35) that TD(x0) is the exit time of D for the flow started from x0. Moreover
dβ(x, y) = ‖Fβ,1(x) − Fβ,1(y)‖2 from (34), while the definition of � is given in
previous Section 5.3.2.

LEMMA 5.9. (i) Let α > 0, β ∈ (0,1], N ∈ N and (Ci)i=1,...,N be a family of
open convex cones of (0,∞)2 such that

(0,∞)2 =
N⋃

i=1

Ci.
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Then there exists κ ∈ N and ε0 > 0 and (tk(x0) : k = 0, . . . , κ) and (nk(x0) : k =
1, . . . , κ − 1) such that for any x0 ∈ Dα ,

0 = t0(x0) ≤ t1(x0) ≤ · · · ≤ tκ (x0) = TDα (x0), nk(x0) ∈ {1, . . . ,N}
and for any k ≤ κ − 1 and t ∈ [tk(x0), tk+1(x0)), we have

Bdβ

(
φ(x0, t), ε0

)⊂ Cnk(x0).

(ii) In the case � = x∞ ∈ (0,∞)2, for any x0 ∈ (0,∞)2 and ε > 0,

lim inf
r→∞ TDε (rx0) > 0.

(iii) In the case � = (1/a,0), for any x0 ∈ (0,∞)2 and ε > 0 and T > 0, for r

large enough,

TDε (rx0) = inf
{
t ≥ 0 : φ(rx0, t) ∈ [0,∞) × [0, ε]}≤ T .

(iv) Under Assumption (40), for any α0 > 0,

inf
x0∈Dα0

TDα
(x0)

α→0−→ +∞.

PROOF. (i) We define

Cε
i = {x ∈ Dα ∩ Ci : Bdβ (x, ε) ⊂ Ci

}
and we first observe that for ε small enough,

N⋃
i=1

C2ε
i = Dα,

since β > 0 and the open convex cones Ci are domains between two half-lines of
(0,∞)2 and their collection for i = 1, . . . ,N covers (0,∞)2. We define t0(x0) = 0
and

n0(x0) = min
{
i = 1, . . . ,N : x0 ∈ C2ε

i

}
,

t1(x0) = inf
{
t ≥ 0 : φ(x0, t) /∈ Cε

n0(x0)

}
and by recurrence for k ≥ 1,

nk(x0) = min
{
i = 1, . . . ,N : φ(x0, tk(x0)

) ∈ C2ε
i

}
,

t ik+1(x0) = inf
{
t ≥ tk(x0) : φ(x0, t) /∈ Cε

nk(x0)

}
.

Let us now prove that

M(x0) = max
{
k : tk(x0) < ∞}

is bounded by 2N . Indeed, the direction of variation of the angle

�t = (̂0, xt ) = Arctan
(
x

(2)
t /x

(1)
t

)
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is given by the sign of

∂

∂t
log
(
x

(2)
t

)
/x

(1)
t ) = τ2 − τ1 + (a − d)x

(1)
t + (c − b)x

(2)
t .

If the flow crosses the line {(x, y) ∈ R2 : τ1 − τ2 + (d − a)x + (b − c)y = 0} at
some time, then it enters a stable subdomain, since the vector field ψ is entrant at
the boundary. This means that it stays inside this domain and the angle is monotone
from this time. As a consequence, the sense of variations of � can change at most
once, when it crosses the line, if it does. This ensures that the dynamical system
may at most visit each cone (Ci : i = 1, . . . ,N) twice, in a monotone way, so
supM ≤ 2N . This provides the expected construction.

(ii) comes simply from Lemma 5.6 which ensures that in the case � = x∞, the
dynamical system comes down from infinity in the interior of (0,∞)2, see also the
first picture in Figure 2 above.

(iii) We use again the dynamical system (zt : t ≥ 0) given by � and defined in
(47). More precisely, the property here comes from the continuity of the associated
flow with respect to the initial condition. Indeed, in the case � = (1/a,0), the
trajectories of (zt : t ≥ 0) starting from r large go to (1,0,0) along the boundary
∂S and then remain close to boundary {(u,0,1 − u) : u ∈ [u0,1]} for some fixed
u0 < 1. This ensures that (xt : t ≥ 0) exits from Dε through (0,∞) × {ε} and in
finite time for r large enough. The fact that this exit time TDε (rx0) goes to zero as
r → ∞ is due to the fact that the dynamics of (xt : t ≥ 0) is an acceleration of that
of (zt : t ≥ 0) when starting close to infinity, with time change 1 + ‖φ(x0, t)‖1.

Finally, (iv) is a consequence of Lemma 5.7. Indeed, noticing that Assumption
(40) ensures that � ∈ {x∞, x0} and using that the speed of the dynamical system is
bounded on compact sets, the dynamical system does not come arbitrarily close to
the boundary (0,∞)2 in a given time interval and more precisely the time to reach
the boundary of Dα goes to infinity as α goes to 0. �

LEMMA 5.10. Let β ∈ (0,1)−{1/2} such that qβ = 4ab(1+β)2 +4cd(β2 −
1) > 0 and α > 0.

There exists N ≥ 1, (γi : i = 1, . . . ,N) ∈ (0,∞)N , convex cones (Ci : i =
1, . . . ,N), κ ∈ N, ε0 > 0, 0 = t0(x0) ≤ t1(x0) ≤ · · · ≤ tκ (x0) = TDα (x0) and
nk(x0) ∈ {1, . . . ,N} such that:

(i) For each i = 1, . . . ,N , ψFβ,γi
is τ nonexpansive on Fβ,γi

(Ci) and⋃N
i=1 Ci = (0,∞)2.

(ii) For any x0 ∈ Dα , k = 0, . . . , κ − 1, t ∈ (tk(x0), tk+1(x0)),

Bdβ

(
φ(x0, t), ε0

)⊂ Cnk(x0) ∩Dα/2.

(iii) Finally, for K large enough, there exists a continuous flow φK such
that for any x0 ∈ Dα , φK(x0,0) = x0 and for any k = 0, . . . , κ − 1 and t ∈
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(tk(x0), tk+1(x0) ∧ TDα
(x0)),

Bdβ

(
φK(x0, t), ε0/2

)⊂ Cnk(x0) ∩Dα/2 and
∂

∂t
φK(x0, t) = bK

Fnk(x0)

(
φK(x0, t)

)
and for any T > 0,

(54) sup
x0∈Dα,

t<TDα (x0)∧T

dβ

(
φK(x0, t), φ(x0, t)

) K→∞−→ 0.

PROOF. We only deal with the case c �= 0 (and then d �= 0). Indeed, we recall
from Lemma 5.4 that the proofs of (i)–(ii) in the case c = d = 0 is obvious, since
one can take N = 1 and C1 = (0,∞)2. Moreover, the proof of (iii) is simplified in
that case.

By Lemma 5.5, for any γ > 0, there exists η(β, γ ) > 0 such that Cη(β,γ ),β,γ ⊂
Dβ,γ and (46) holds for some Aβ,γ ,μβ,γ ≥ 0. The collection of the convex com-
ponents of (Cη(β,γ ),β,γ : γ > 0) covers (0,∞)2, since it contains the half lines
{(x1, x2) ∈ (0,∞) : x1 = x2xγ } and {xγ : γ > 0} = (0,∞). We underline that
this collection also contains the cones {(x1, x2) ∈ (0,∞)2 : x1 < η(β, γ )x2} and
{(x1, x2) ∈ (0,∞)2 : x2 < η(β, γ )x1}. Then, by a compactness argument, we can
extract a finite covering of (0,∞)2 from this collection of open convex cones.
This means that there exists N ≥ 1 and (γi : i = 1, . . . ,N) ∈ (0,∞)N and convex
cones (Ci : i = 1, . . . ,N) such that

⋃N
i=1 Ci = (0,∞)2 and Ci ⊂ Cη(β,γi),β,γi

. By
Lemma 5.4, ψFβ,γi

is τ is nonexpansive on Fβ,γi
(Ci) for each i = 1, . . . ,N , which

proves (i).
We let now α > 0. The point (ii) is a direct consequence of Lemma 5.9(i) applied

to the covering (Ci : i = 1, . . . ,N) of (0,∞)2. Indeed, one just need to choose ε0
small enough so that Bdβ (x, ε0) ⊂ Dα/2 for any x ∈ Dα .

Let us now deal with (iii). First, from the proof of (i) and writing Fi = Fβ,γi
,

Ai = Aβ,γi
and μi = μβ,γi

, (46) becomes(
ψFi

(y) − ψFi

(
y′)).(y − y′)

≤ −μi

(‖y‖2 ∧ ∥∥y′∥∥
2

)∥∥y − y′∥∥2
2,(55)

for any i = 1, . . . ,N and y, y′ ∈ Fi(Ci) ∩ B(0,Ai)
c, since Fi(Ci) is convex by

construction and included in Fi(Cη(β,γi),β,γi
).

We define the flow φK
i associated to bK

Fi
on Ci :

φK
i (x0,0) = x0,

∂

∂t
φK

i (x0, t) = bK
Fi

(
φK

i (x0, t)
)

for x0 ∈ Ci and t < T K
i (x0), where T K

i (x0) is the maximal time when this
flow is well defined and belongs to Ci . We consider the image φ̃K

i (y0, t) =
Fi(φ

K
i (F−1

i (y0), t)) of this flow. It satisfies

φ̃K
i (y0, t) = y0,

∂

∂t
φ̃K

i (y0, t) = ψK
Fi

(
φ̃K

i (y0, t)
)
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for any y0 ∈ Fi(Ci) and t < T K
i (F−1

i (y0)). Similarly, writing φ̃i(y0, t) =
Fi(φ(F−1

i (y0), t)), we have

φ̃i(y0, t) = y0,
∂

∂t
φ̃i(y0, t) = ψFi

(
φ̃i(y0, t)

)
for any y0 ∈ Fi(Ci) and t < TCi

(F−1
i (y0)).

Combining (55) with Lemma 5.8 (v) and observing that ‖y‖2 ∧ ‖y′‖2 ≥
‖y‖2(1 − ε0/A) when y′ ∈ B(y, ε0) and ‖y‖ ≥ A, the assumptions of Lemma 6.1
in the Appendix are met for ψFi

and ψK
Fi

on the domain Fi(Ci ∩Dα/2). We apply
this lemma with η = KrK . It ensures that for any T > 0 and any sequence rK → 0,

sup
y0∈Fi(Ci∩Dα),y1∈B(y0,rK)

t<T̃i,ε0 (y0)∧T

∥∥φ̃K
i (y1, t) − φ̃i(y0, t)

∥∥
2

K→∞−→ 0,

where T̃i,ε(y0) = sup{t ∈ (0, TCi
(F−1

i (y0))) : ∀s ≤ t,B(φ̃i(y0, s), ε) ⊂ Fi(Ci ∩
Dα/2)}. Then

(56) sup
x0∈Ci∩Dα,x1∈Bdβ

(x0,rK)

t<Ti,ε0 (x0)∧T

dβ

(
φK

i (x1, t), φ(x0, t)
) K→∞−→ 0,

where Ti,ε(x0) = sup{t ∈ (0, TCi
(x0)) : ∀s ≤ t,Bdβ (φ(x0, t), ε) ⊂ Ci ∩ Dα/2}.

From (ii), we also know that Bdβ (φ(x0, t), ε0) ⊂ Cnk(x0) ∩ Dα/2 for t ∈ [tk(x0),

tk+1(x0) ∧ TDα
(x0)), so

sup
x0∈Dα

x1∈Bdβ
(φ(x0,tk(x0)),rK)

t∈[tk(x0),tk+1(x0)∧TDα (x0)∧T )

dβ

(
φK

nk(x0)

(
x1, t − tk(x0)

)
, φ(x0, t)

) K→∞−→ 0.

Then for K large enough, we construct the continuous flow φK inductively for
k = 0, . . . , κ − 1 such that for any x0 ∈ Dα ,

φK(x0,0) = x0, φK(x0, t) = φK
nk(x0)

(
φK(x0, tk(x0)

)
, t − tk(x0)

)
for any t ∈ [tk(x0), tk+1(x0) ∧ TDα

(x0)). This construction satisfies

sup
x0∈Dα,

t∈[tk(x0),tk+1(x0)∧TDα (x0)∧T )

dβ

(
φK(x0, t), φ(x0, t)

) K→∞−→ 0

and for K large enough, for any t ∈ [tk(x0), tk+1(x0) ∧ TDα
(x0)),

Bdβ

(
φK(x0, t), ε0/2

)⊂ Cnk(x0) ∩Dα/2.

Adding that φK
i is the flow associated with the vector field bK

Fi
completes the proof.

�
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5.4. Proofs of Theorem 5.1, Corollary 5.2 and Theorem 5.3. We can now
prove Theorem 5.1 for the diffusion X defined by (32) using the results of Sec-
tion 3. Here, E = [0,∞)2, d = 2, q = 0 (H = G = 0), σ

(i)
j = 0 if j �= i and

σ
(1)
1 (x) = σ1

√
x1, σ

(2)
2 (x) = σ2

√
x2.

Moreover, bFβ,γ = b is given by (41), ψFβ,γ = (JFβ,γ bFβ,γ ) ◦ F−1
β,γ and

(57) b̃Fβ,γ (x) = 1

2

2∑
i=1

∂2Fβ,γ

∂2xi

(x)σ
(i)
i (x)2 = 1

2
β(β − 1)

(
σ 2

1 x
β−1
1

γ σ 2
2 x

β−1
2

)
and

(58) VFβ,γ (x) =
2∑

i=1

(
∂Fβ,γ

∂xi

(x)σ
(i)
i (x)

)2
= β2

(
σ 2

1 x
2β−1
1

(γ σ2)
2x

2β−1
2

)
.

PROOF OF THEOREM 5.1. Let β ∈ (1/2,1) close enough to 1 so that qβ =
4ab(1 + β)2 + 4cd(β2 − 1) > 0. Using Lemma 5.10(ii), we can check As-
sumptions 3.3 and 3.4 of Section 3 with D = Dα , Di = Ci ∩ Dα/2, Oi = Dα/4
(i = 1, . . . ,N ), d = dβ and φ defined by (31). Moreover, writing Fi = Fβ,γi

for
convenience, Lemma 5.10(i) ensures that ψFi

is τ nonexpansive on Fi(Di). We
recall also that T τ̄ ,0

ε = ∞ and apply then Theorem 3.5 to the diffusion X and get
for any ε small enough, for any T < 1 and x0 ∈ Dα ,

Px0

(
sup

t≤T ∧TDα (x0)

dβ

(
Xt,φ(x0, t)

)≥ ε
)

≤ C

κ−1∑
k=0

∫ tk+1(x0)∧T

tk(x0)∧T
V dβ,ε(Fnk(x0), x0, t) dt

for some positive constant C, by a.s. continuity of dβ(Xt ,φ(x0, t)) at time T ∧
TDα (x0). We need now to control V . First, we recall from Lemma 5.10(ii) that
Bdβ (φ(x0, t), ε0) ⊂ Dα/2 for x0 ∈ Dα and t < TDα (x0). Then we use (57) to see
that b̃Fi

is bounded on Dα/2, so

c′
i (ε) := sup

x0∈Dα,t<TDα (x0)

dβ(x,φ(x0,t))≤ε

∥∥b̃Fi
(x)
∥∥

1 < ∞

for ε ≤ ε0. Moreover, plugging Lemma 5.7(i) into (58) to control VFi
, there exists

c′′
i (ε) > 0 such that for any x0 ∈ Dα and t < TDα (x0),

V dβ,ε(Fi, x0, t) = sup
x∈[0,∞)2

dβ(x,φ(x0,t))≤ε

{
ε−2∥∥VFi

(x)
∥∥

1 + ε−1∥∥b̃Fi
(x)
∥∥

1

}

≤ ε−2 c′′
i (ε)

t2β−1 + ε−1c′
i (ε).
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Adding that
∫ .

0(ε
−2 c′′

i (ε)

t2β−1 + ε−1c′
i (ε)) dt < ∞ for β < 1, we get

lim
T ↓0

sup
x0∈Dα

Px0

(
sup

t≤T ∧TDα (x0)

dβ

(
Xt,φ(x0, t)

)≥ ε
)

= 0

for ε small enough. This completes the proof for β < 1 close enough to 1, which
is enough to conclude, since dβ ′ is dominated by dβ on Dα if β ′ ≤ β . �

We can now describe the coming down from infinity of the competitive diffu-
sion X.

PROOF OF COROLLARY 5.2. Let us deal with (i), so � = x∞ ∈ (0,∞)2 and
we fix x0 ∈ (0,∞)2 and η ∈ (0,1). First, plugging Lemma 5.7(ii) and (iii) in the
inequality∥∥txt (r) − x∞

∥∥
2 ≤ ∣∣∥∥txt (r)

∥∥
1 − ‖x∞‖1

∣∣+ min
(∥∥txt (r)

∥∥
2,‖x∞‖2

)∣∣sin(x̂t , x∞)
∣∣

ensures that

(59) lim
T →0

lim sup
r→∞

sup
ηT ≤t≤T

∥∥txt (r) − x∞
∥∥

2 = 0.

Moreover, for any ε > 0, Lemma 5.9(ii) ensures that

lim inf
r→∞ TDε (rx0) > 0,

where we recall definition (35) for the exit time TDε (.). Writing again xt (r) =
φ(rx0, t) for convenience, Theorem 5.1 ensures that for any β ∈ (0,1),

lim
T →0

lim sup
r→∞

Prx0

(
sup
t≤T

dβ

(
Xt, xt (r)

)≥ ε
)

= 0.

Then, using that dβ(tx, ty) = tβdβ(x, y) and ‖txt (r)‖1 is bounded for t ≤ 1 and
r > 0 by Lemma 5.7(i), the last limit yields

(60) lim
T →0

lim sup
r→∞

Prx0

(
sup
t≤T

∥∥tXt − txt (r)
∥∥

2 ≥ ε
)

= 0,

for any ε > 0, since the Euclidean distance is uniformly continuous from the
bounded sets of [0,∞)2 endowed with dβ to R+ endowed with the absolute value.

Combining (59) and (60) ensures that for any ε > 0,

lim
T →0

lim sup
r→∞

Prx0

(
sup

ηT ≤t≤T

‖tXt − x∞‖2 ≥ ε
)

= 0.

This proves the first part of (i). The second part of (i) (resp., the proof of (iv)) is
obtained similarly just by noting that t−(rx0, x∞, ε) = 0 (resp., t−(rx0, x̂0, ε) = 0)
if x0 is collinear to x∞.
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For the cases (ii)–(iii), we know from Lemma 5.7 that the dynamical system is
going to the boundary of (0,∞)2 in short time. Let us deal with the case

� = (1/a,0)

and the case � = (0,1/b) would be handled similarly. We fix x0 ∈ (0,∞)2, T0 > 0,
ε ∈ (0,1], η > 0 and β ∈ (0,1). By Theorem 5.1, there exists T ≤ T0 such that for
r large enough

Prx0

(
sup

t≤T ∧TDε (rx0)

dβ

(
Xt, xt (r)

)≥ ε
)

≤ η.

By Lemma 5.9(iii), for r large enough, we have TDε (rx0) = inf{t ≥ 0 : x
(2)
t (r) ≤

ε} ≤ T . Thus,

Prx0

(
dβ

(
XTDε (rx0), xTDε (rx0)(r)

)≥ ε
)≤ η and x

(2)
TDε (rx0)

(r) = ε.

Fix now c ≥ 1 such that cβ ≥ 2. We get

Prx0

(
X

(2)
TDε (rx0)

≥ cε
)= Prx0

((
X

(2)
TDε (rx0)

)β − εβ ≥ (cβ − 1
)
εβ)

≤ Prx0

(
dβ

(
XTDε (rx0), xTDε (rx0)(r)

)≥ ε
)≤ η,

since εβ ≥ ε. By the Markov property and the fact that the boundaries of [0,∞)2

are absorbing, we obtain for r large enough

Prx0

(
X

(2)
2T0

= 0
)≥ P

(
X

(2)
TDε (rx0)

≤ cε,∃t ∈ [TDε (rx0), TDε (rx0) + T0
] : X(2)

t = 0
)

≥ (1 − η)p(cε),

where, using that X(2) is stochastically smaller than a one-dimensional Feller dif-
fusion Z with diffusion coefficient σ2 �= 0,

p(z) = Pz(ZT0 = 0).

Thus, limz↓0+ p(z) = 1 and letting ε → 0 in the previous inequality yields

lim inf
r→∞ Prx0

(
X

(2)
2T0

= 0
)≥ 1 − η.

Letting η → 0 completes the proof of (ii)–(iii). �

Recalling the notation of Section 5.3.3, we finally prove Theorem 5.3.

PROOF OF THEOREM 5.3. Let T0 > 0 and β ∈ (0,1/2) and α0 > α > 0. We
first observe that assumption (40) ensures that qβ = 4ab(1 + β)2 + 4cd(β2 −
1) > 0. Using Lemma 5.10(iii), Assumptions 3.3 and 3.4 are satisfied for the
process XK , with the domains D = Dα and Di = Ci ∩ Dα/2, the continuous
flow φK , the transformations Fi = Fβ,γi

, the times tk(.) ∧ TDα
(.) and the integers

nk(.). Recalling that Ci is convex and Ci ⊂ Cη(β,γi),β,γi
⊂ Dβ,γi

, we know from
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Lemma 5.8(iv) that ψK
Fi

is (ci, ci/K) nonexpansive on Fi(Di) for some constant

ci ≥ 0. Thus, we apply Theorem 3.5 and there exists ε = εK which does not depend
on K so that for any K ≥ 1, ε ∈ (0, ε], T < min(T

ci ,ci/K
ε : i = 1, . . . ,N)∧ (T0 +1)

and x0 ∈ Dα ,

Px0

(
sup

t<T ∧TDα (x0)

dβ

(
XK

t ,φK(x0, t)
)≥ ε

)

≤ C

κ−1∑
k=0

∫ tk+1(x0)∧T

tk(x0)∧T
V

K

dβ,ε(Fnk(x0), x0, t) dt,

where C is positive constant which does not depend on K , x0 and

V
K

dβ,ε(Fi, x0, t) = sup
{
ε−2∥∥V K

Fi
(x)
∥∥

1 : x ∈ [0,∞)2, dβ

(
x,φK(x0, t)

)≤ ε
}
.

Moreover, for K large enough, we have 4ciT0 exp(2LiT0) < Kε, so that T0 <

T
ci,ci/K
ε for i = 1, . . . ,N and

Px0

(
sup

t<T0∧TDα (x0)

dβ

(
XK

t ,φK(x0, t)
)≥ ε

)

≤ C

κ−1∑
k=0

∫ tk+1(x0)∧T0

tk(x0)∧T0

V
K

dβ,ε(Fnk(x0), x0, t) dt.(61)

Adding that

V K
Fβ,γ

(x) =
⎛⎝ V

K,(1)
Fβ,γ

(x)

V
K,(2)
Fβ,γ

(x))

⎞⎠
=
∫ ∞

0

(
Fβ,γ

(
x + HK(x, z)

)− Fβ,γ

(
x + HK(x, z)

))2
dz

and recalling (39) and writing γ1 = 1, γ2 = γ , we have for i ∈ {1,2} and x ∈ Dα ,

V
K,(i)
Fβ,γ

(x) = γi

[
λK

i (Kx)
(
(xi + 1/K)β − x

β
i

)2
+ μK

i (Kx)
(
(xi − 1/K)β − x

β
i

)2]
≤ cst

K
x

2β−2
i xi(1 + x1 + x2)

for some cst > 0, which depends on β , γ , α and can now change from line to line.
Then for x ∈ Dα ,∥∥V K

Fβ,γ
(x)
∥∥

1 ≤ cst

K

(
x

2β
1 (1 + x2/x1) + x

2β
2 (1 + x1/x2)

)≤ cst

K

(
x

2β
1 + x

2β
2

)
.

Moreover from Lemma 5.10(iii) that for K large enough, Bdβ (φK(x0, t), ε0/2) ⊂
Dα/2 for any x0 ∈ Dα and t < tκ(x0). Combining the last part of Lemma 5.10(iii)
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and Lemma 5.7(i), ‖φK(x0, t)‖1 ≤ cT /t for t ∈ [0, T ]. We obtain that for any
x0 ∈ Dα and ε ≤ ε0/2,∫ tk+1(x0)∧T0

tk(x0)∧T0

V
K

dβ,ε(Fnk(x0), x0, t) dt ≤ ε−2 cst

K

∫ tk+1(x0)∧T0

tk(x0)∧T0

t−2β dt

for k ∈ {0, . . . , κ − 1}. Using the fact that
∫ .

0 t−2β dt < ∞ for β < 1/2, we get

κ−1∑
k=0

∫ tk+1(x0)∧T0

tk(x0)∧T0

V d,ε(Fnk(x0), x0, t) dt ≤ ε−2 cst

K
.

Recall now from Lemma 5.9(iv) that under Assumption (40), we can choose
α ∈ (0, α0) small enough so that TDα

(x0) ≥ T0 for any x0 ∈ Dα0 . Using also (54),
(61) becomes

sup
x0∈Dα0

Px0

(
sup
t<T0

dβ

(
XK

t ,φ(x0, t)
)≥ ε

)
≤ ε−2 C

K
,

for ε ≤ ε ∧ ε0/2 and K large enough, where C is a positive constant which does
not depend on K . �

APPENDIX

We need the following estimates. We assume that ψ and ψK are locally Lip-
schitz vectors fields on the closure D of an open domain D ⊂ Rd and their re-
spective flows on D are φ and φK . We assume that there are well defined and
belongs to D, respectively, until a maximal time TD and T K

D . We write again
TD,ε(x0) = sup{t ≥ 0 : ∀s < T (x0),B(φ(x0, s), ε) ⊂ D}.

LEMMA 6.1. We assume that there exist A ≥ 1, c,μ > 0 and ε ∈ (0,1] such
that

(62)
(
ψ(x) − ψ(y)

)
.(x − y) ≤ −μ‖x‖2‖x − y‖2

2

for any x ∈ D ∩ B(0,A)c and y ∈ B(x, ε) and

(63)
∥∥ψ(x) − ψK(x)

∥∥
2 ≤ c

1 + ‖x‖2

K

for any x ∈ D and K ≥ 1. Then, writing M = 3c/μ, there exists L ≥ 0 such that
for all T ≥ 0, η > 0, K ≥ 2 max(M,η) exp((L + 1/M)T )/ε, x0 ∈ D and x1 ∈
B(x0, η/K), we have T K

D (x1) ≥ TD,ε(x0) and

sup
t<TD,ε(x0)∧T

∥∥φ(x0, t) − φK(x1, t)
∥∥

2 ≤ max(M,η) exp((L + M)T )

K
.
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PROOF. Let T > 0 and K ≥ 2 max(M,η) exp((L + 1/M)T )/ε, so that

max(M,η)/K ≤ max(M,η)e(L+1/M)T /K ≤ ε/2.

Write

xt = φ(x0, t), xK
t = φK(x1, t), T K = TD(x0) ∧ T K

D (x1)

for convenience and consider the time

tK1 = inf
{
t ∈ [0, T K) : ∥∥xt − xK

t

∥∥2
2 ≥ M/K

} ∈ (0,∞].
Let us assume that tK1 < TD,ε(x0) ∧ T ∧ T K and set

t2 = inf
{
t ∈ (tK1 , T K) : ∥∥xt − xK

t

∥∥2
2 ≥ ε or

∥∥xt − xK
t

∥∥2
2 < M/K

}
.

We show now that for any t ∈ [tK1 , tK2 ∧ T K), we have

d

dt

∥∥xt − xK
t

∥∥2
2 = 2

(
ψ(xt ) − ψK(xK

t

))
.
(
xt − xK

t

)
≤ 2(L + 1/M)

∥∥xt − xK
t

∥∥2
2(64)

to get from the Gronwall inequality and ‖xtK1
− xK

tK1
‖2 ≤ max(M,η)/K that

∥∥xt − xK
t

∥∥
2 ≤ max(M,η) exp

(
(L + 1/M)T

)
/K.

This will be enough to prove the lemma since the right-hand side is smaller than
ε/2.

First, using that on the closure of D ∩ B(0,A + 1), ψ is Lipschitz and that
K‖ψK(.) − ψ(.)‖2 is bounded on D ∩ B(0,A + 1) by (63), there exists L > 0
such that ∥∥ψ(x) − ψK(y)

∥∥
2 ≤ L

(‖x − y‖2 + 1/K
)
,

for any x, y ∈ D ∩ B(0,A + 1). Then, using the Cauchy–Schwarz inequality, for
any t ∈ [tK1 , tK2 ∧ T K) such that xt ∈ B(0,A),

d

dt

∥∥xt − xK
t

∥∥2
2 ≤ 2

∥∥xt − xK
t

∥∥
2

∥∥ψ(xt ) − ψK(xK
t

)∥∥
2

≤ 2L
∥∥xt − xK

t

∥∥2
2 + 2

K

∥∥xt − xK
t

∥∥
2

≤ 2(L + 1/M)
∥∥xt − xK

t

∥∥2
2

since ‖xt − xK
t ‖2 ≥ M/K for t ≤ tK2 . This proves (64) when xt ∈ B(0,A).
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To conclude, we consider t ∈ [tK1 , tK2 ∧ T K ] such that xt ∈ B(0,A)c. Then (62)
and (63) and the Cauchy–Schwarz inequality give

d

dt

∥∥xt − xK
t

∥∥2
2 = 2

(
ψ(xt ) − ψ

(
xK
t

))
.
(
xt − xK

t

)
+ 2
(
ψ
(
xK
t

)− ψK(xK
t

))
.
(
xt − xK

t

)
≤ 2
(
−μ‖xt‖2

∥∥xt − xK
t

∥∥
2 + c

1 + ‖xK
t ‖2

K

)∥∥xt − xK
t

∥∥
2.

Moreover, ‖xt‖2 ≥ A ≥ 1 and xK
t ∈ B(xt , ε), so

1 + ∥∥xK
t

∥∥
2 ≤ 1 + ‖xt‖2 + ∥∥xK

t − xt

∥∥
2 ≤ 3‖xt‖2,

and adding that ‖xt − xK
t ‖2 ≥ M/K = 3c/(Kμ) since t ≤ tK2 , we get

d

dt

∥∥xt − xK
t

∥∥2
2 ≤ 0.

This completes the proof of (64), and thus of the lemma. �
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