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CRITICAL POINT FOR INFINITE CYCLES IN A RANDOM LOOP
MODEL ON TREES

BY ALAN HAMMOND1 AND MILIND HEGDE

University of California, Berkeley

We study a spatial model of random permutations on trees with a time
parameter T > 0, a special case of which is the random stirring process.
The model on trees was first analysed by Björnberg and Ueltschi [Ann. Appl.
Probab. 28 (2018) 2063–2082], who established the existence of infinite cy-
cles for T slightly above a putatively identified critical value but left open
behaviour at arbitrarily high values of T . We show the existence of infinite
cycles for all T greater than a constant, thus classifying behaviour for all val-
ues of T and establishing the existence of a sharp phase transition. Numerical
studies [J. Phys. A 48 Article ID 345002] of the model on Z

d have shown
behaviour with strong similarities to what is proven for trees.

1. Introduction. Consider a collection of points scattered independently in a
large three-dimensional torus so that any unit-volume region contains a unit order
of points. For T > 0 given, the points follow for time T Brownian trajectories in
the torus, with a short-range repulsive force continually acting between any pair of
points. The system is conditioned on the collective return at time T of the particles
to their starting locations. A random permutation is obtained by following the tra-
jectory for time T of any given particle from its initial location. This mathematical
spatial random permutation model is physically significant, as first recognised by
Richard Feynman in [5]: at higher values of time T , large cycles may be expected
to form in the random permutation, with the reciprocal values T −1 corresponding
to lower temperatures at which gases such as helium form special states such as
Bose–Einstein condensates or superfluids.

A simple mathematical model of spatial random permutations is the random
stirring process, sometimes known as the random interchange model. The model
was introduced by Harris [9]. It associates to a given graph G = (V ,E) a stochastic
process (σt : t ∈ [0,∞)) which takes values in the space of permutations of the
vertex set V . Each edge e ∈ E is independently equipped with a Poisson process
of rate one. We set σ0 to be the identity permutation. If the Poisson process on an
edge e = (v,w) rings at time t , we right-compose σt with the transposition (v,w),
that is, we swap v and w in the permutation process, in a right-continuous manner.
The model is easily seen to be well defined on regular infinite graphs, or indeed if
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the maximum degree of the graph is finite. The formation of large cycles in σt is a
main topic of inquiry.

Bálint Tóth [10] showed that the quantum Heisenberg ferromagnet has long
range order and spontaneous magnetisation in a phase that corresponds to the ap-
pearance of macroscopic cycles in a variant of the random stirring model in which
permutations are reweighted by a factor of two for each cycle.

Tóth conjectured in the 1990s that the random stirring process on transient
graphs should exhibit a critical point above which infinite cycles almost surely
appear and below which they do not, which would imply that Zd should exhibit a
critical point for d ≥ 3.

When d is high, the model on regular trees of degree 2d − 1 may be expected to
be similar to the model on Z

d . Omer Angel [2] showed that on regular trees with
degree at least five, there exists a certain bounded interval of times where σt a.s.
has an infinite cycle. The existence of a critical value for infinite cycles was proved
in [7, 8].

Aizenman and Nachtergaele in [1] introduced a representation of the quantum
Heisenberg anti-ferromagnet via a variant of the random stirring process in which
a certain time reversal occurs when particles are transposed due to the ringing of
Poisson clocks on the associated edge. Ueltschi introduced in [11] a hybrid model
in which ferromagnetic and antiferromagnetic effects are both present, and with
Björnberg in [4] analysed the new model when the underlying graph is a high
degree tree; comparison with numerical evidence shows that the model is a very
good surrogate for its Z

d counterpart. The present article develops their work by
proving a result that was very strongly suggested by their results: that the hybrid
model has a critical point for the formation of infinite cycles.

1.1. The cyclic time random walk and its modification. In order to explain
Björnberg and Ueltschi’s results and how our paper develops them, it is useful to
begin by recalling a random process which is a very close cousin of the random
stirring process. This is the Cyclic-Time Random Meander (CyTRM); it is a slight
variant of the cyclic-time random walk considered by Angel in [2] and has been
used in Angel and Hammond’s analyses of the random stirring process on trees.
We will later introduce a generalisation of this model which is the object of study
of this article.

Recall that, when the random stirring process is specified, a graph G = (V ,E)

is given. The CyTRM(T ) is defined by fixing a parameter T ∈ (0,∞), and associ-
ating to each edge of G an independent Poisson process of rate one on [0, T ). We
may picture the graph’s vertices as points in the plane, with a vertical pole rising to
height T above each of them. A horizontal bridge is placed between the poles ris-
ing from vertices v and w at any height at which the Poisson process for the edge
(v,w) rings; in this case we say the edge (v,w) supports a bridge; see Figure 1.

The CyTRM(T ) is a right-continuous random process X mapping [0,∞) to
V × [0, T ) and may be depicted as a point moving in the union of the poles. If
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FIG. 1. An illustration of the root φ and two offspring. The vertical lines are the poles, the dashed
lines are the edges in the underlying graph, and the solid slanted lines are the bridges supported by
the edges underneath at the heights dictated by the independent rate one Poisson processes associ-
ated with each edge.

initially X(0) = (v,0) for some v ∈ V , X rises vertically at unit speed on the pole
at v. If it encounters a bridge’s intersection with this pole, the process instanta-
neously jumps across the bridge, and then continues its unit speed ascent on the
newly encountered pole. When, at time T , the point reaches the top of a pole, it
immediately jumps to the base of the same pole. Vertical ascent then continues, so
that the process’ height at times t ≥ 0 is the cyclic function t mod T .

The random stirring process σT at parameter T ∈ (0,∞) is formed from cyclic-
time random meander X as the permutation on vertices induced by the evolution
of X during the interval [0, T ]. Formally, when X(0) = (v,0) for given v ∈ V , we
have that X(T ) = (σT (v),0). The presence of an infinite cycle containing v ∈ V

in σT is characterised by the absence of return to its starting point by cyclic-time
random meander with X(0) = (v,0); see [2] for details.

The random loop model introduced by Björnberg and Ueltschi in [4] is a gen-
eralisation of cyclic-time random meander. Given a parameter u ∈ [0,1], and
the structure that specifies the meander, independently assign to each bridge a
Bernoulli random variable of parameter u. When the random variable equals one,
the bridge is replaced by a cross; and by a double bar in the other case. In keeping
with our previous terminology, we will refer to crosses and double bars collec-
tively as bridges. In this way, a collection of crosses and double bars connect poles
at various heights. Associated to this system is an altered cyclic-time random me-
ander, denoted by Xu,T , which is governed by similar rules as its precursor, with
the behaviour of the meander when a cross is encountered being the same as when
a bridge was encountered in the existing model. The difference is that, on jumping
over a double bar, unit speed motion along the new pole occurs in the opposite
direction to that adopted by the meander immediately before the jump; see Fig-
ure 2. As before, the model is well defined for graphs with bounded degree. We
refer to this generalised model as CyTRM(u,T ). When u = 1, then, we recover
the original model.
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FIG. 2. An illustration of a cross on the left and a double bar on the right, in each case connecting
two vertices v and w. The arrows indicate the path followed till time T by a particle starting at v

and initially moving vertically. Note that though we have drawn arrows on the cross/double bar, in
the model the particle crosses either type of bridge instantaneously.

Supposing, as we will, that G is rooted, we will call the meander Xu,T recurrent
if, when X is begun with vertex component equal to the root, the process has
probability one to visit its initial location at some positive time; in the other case,
the meander will be called transient. For a regular rooted tree (indeed, for any
connected graph of bounded degree), these two conditions are easily seen to be
characterised by the almost sure presence, or respectively absence, of an infinite
cycle in the associated random permutation σT .

Björnberg and Ueltschi proved that, on a regular rooted tree, each of whose
vertices has d offspring, there is a value Tc = Tc(u, d) ∈ (0,∞) which verifies

(1) Tc(u, d) = 1

d
+ 1 − u(1 − u) − 1

6(1 − u)2

d2 + o
(
d−2)

such that cyclic-time random meander Xu,T is transient when T ∈ (Tc, Tc +Ad−2)

and recurrent when T < Tc. Here, the parameter A > 0 is given, and the result is
valid when d exceeds a certain value that may depend on A. What Björnberg and
Ueltschi demonstrate, then, is the presence of a critical value for the transition from
recurrent to transient behaviour, at least locally near the value. It remains possible
in principle that recurrent behaviour may be reestablished as T increases over the
putative critical value by an amount whose order exceeds d−2.

As Björnberg and Ueltschi have noted, the coefficient of d−2 in (1), viewed as
a function of u, has interesting qualitative similarities with behaviour witnessed in
numerical studies of CyTRM(u,T ) on Z

d . The shared features are illustrated in
Figure 3: convexity, a minimum in (0,1), and a higher value at u = 1 than at 0.
See [3] for details.

1.2. Main result. As Björnberg and Ueltschi did, we will consider the graph
G to be a tree where each vertex has d offspring. (One result will be valid when
each vertex has at least d offspring.) Our main result demonstrates that Tc(u, d) is
indeed the critical point for the transition from recurrence to transience.
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FIG. 3. A plot of [0,1] → [0,∞) : u �→ 1 − u(1 − u) − 1
6 (1 − u)2. The plot bears qualitative

similarities to one obtained numerically in [3] for the presumably critical T -value for CyTRM(u,T )

on Z
d , namely convexity, a unique minimum in (0,1), and a higher value at 1 than 0.

THEOREM 1.1. (1) There exists d0 ∈ N such that, if G is a rooted tree of
bounded degree each of whose offspring has at least d0 offspring, and u ∈ [0,1],
then there exists T0 ∈ (0,∞) such that CyTRM(u,T ) is transient when T > T0. In
particular, we may take d0 = 16 and T0 = 0.495.

(2) If G is instead chosen to be a rooted tree each of whose offspring has exactly
d offspring, with d ≥ 56 and u ∈ [0,1], then there exists a Tc = Tc(u, d) such that
CyTRM(u,T ) is transient for T > Tc and recurrent for T < Tc. The critical value
Tc = Tc(u, d) satisfies (1); it exceeds d−1 + 1

2d−2 for d ≥ 56.

1.3. Method of proof: A patchwork of four pieces. Theorem 1.1 is a conse-
quence of four techniques of proof that have been employed to investigate the
problem. In order to offer an overall orientation to the reader, we summarise these
four methods now, all of which have been employed thus far only in the random
stirring case when u = 1. We list them roughly in increasing order for the ranges
of T which the methods address. The graph G in question is the regular tree with
offspring degree d .

I: Absence of large cycles via percolation. The first argument is very simple.
If the pole height satisfies T ∈ (0, log d

d−1), then the probability that a given edge
supports either a cross or a double bar is less than d−1, the bond percolation crit-
ical value for G. The meander remains among edges of a single such percolation
component and is therefore recurrent.

II: Angel’s argument, slightly above the critical value. Angel specifies a local
configuration which forces the meander away from the root. More precisely, he de-
fines a local configuration such that if a particle encounters it, it will either never re-
turn to its current position (so its path is transient), or will move to an offspring ver-
tex where the local configuration has a chance of being repeated. Angel proves that
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the vertices enjoying the local configuration form a super-critical Galton–Watson
tree, which, along with the above claim, gives transience. The local configuration
depends upon there being a low number of bridges on the pole in question; this
event only has a reasonable probability for T slightly above the critical point. As
such, the argument can give transience only for T ∈ [d−1 + (7/6+ ε)d−2,1/2] for
d high enough (depending on ε).

III: Monotonicity around the critical value. In [8], it is argued that, for T ∈
(d−1, d−1 +2d−2], meander transience at T implies transience at any higher value
on this interval. In brief, this is accomplished by proving a formula similar to
Russo’s formula from percolation theory [6], Theorem 2.25, regarding the effect
on the particle’s trajectory of the placement, uniformly at random, of a single extra
bridge on the poles up to distance n from the root.

IV: Large cycles, high above the critical value. In [7], an argument was pre-
sented for transience which works well at high values of T : for example, when
d ≥ 39 and T ≥ 429d−1. This relies on finding a favourable collection of bridges,
called “useful bridges,” whose probability of occurrence does not decay with T .
The useful bridges serve two purposes: they are locations from where the particle
enters unencountered territory (and hence independence comes to the aid of the
analysis), and they are also obstacles which the particle must recross back to the
root if it is to not be transient. The bulk of the proof is in establishing a linear rate
at which useful bridges are generated, thereby showing that infinitely many are
generated over the course of the trajectory with positive probability.

Björnberg and Ueltschi use a different argument in [4]. We make no use of this
argument, except in order to assert the asymptotic formula (1); the statement of
their result is included below for completeness as Proposition 1.3.

One of the roles of this article is the adaptation and simplification of argument
IV as given in [7] to the u �= 1 setting. The simplification is achieved by the iden-
tification of an event which guarantees the generation of a given number of useful
bridges; we will describe the event in Section 2. Another improvement is that we
have obtained tighter bounds on d for which the argument as a whole is applicable.
We elaborate on both these points in greater detail at the end of Section 2.1.

The proof of Theorem 1.1 uses the four arguments mentioned here in a patch-
work manner, so that every value T ∈ (0,∞) is treated by at least one argument.
Our task is to adapt the techniques to work in the case when u ∈ [0,1] is not one.
Indeed, the next four-part result indicates the inference that we will respectively
make from each adapted argument.

PROPOSITION 1.2. Let G be a rooted infinite regular tree each of whose off-
spring has exactly d offspring, and X = Xu,T be CyTRM on G with parameters
u ∈ [0,1] and T ∈ (0,∞). Then:

(1) If T ∈ (0, log d
d−1), X is recurrent.
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(2) If d ≥ 56 and T ∈ [d−1 + 2d−2,4d−1], or if d ≥ 9 and T ∈ [4d−1,1/2],
then X is transient.

(3) Let d ≥ 26 and let T ,T ′ be such that d−1 < T < T ′ ≤ d−1 + 2d−2. If Xu,T

is transient, then so is Xu,T ′ .
(4) If d ≥ 16 and T ∈ [0.495,∞), then X is transient. This remains true if we

relax our hypothesis to every vertex of G having at least d offspring.

Before we next turn to applying Proposition 1.2 to prove Theorem 1.1, we in-
dicate the locations of the proofs of the various parts of Proposition 1.2. Leav-
ing aside the trivial first argument, the work of adapting arguments II and III is
straightforward. We will not rewrite these arguments, but rather indicate the nec-
essary changes to the original papers in the final Section 3; in particular, Propo-
sition 1.2(2) is proved after Lemma 3.4 and Proposition 1.2(3) is proved before
Proposition 3.5. Proposition 1.2(4) entails more substantial adaptation of the argu-
ment given in [7]. We choose to present a self-contained proof of this result, and
do so in Section 2.

PROOF OF THEOREM 1.1. Part (1) follows immediately from Proposi-
tion 1.2(4). For part (2), we simply write out the ranges guaranteed by Propo-
sition 1.2 and check that they overlap.

• From Proposition 1.2(1), we get recurrence for T < log d
d−1 , which implies the

same for T ≤ d−1 + 1
2d−2.

• From Proposition 1.2(2), we get transience for d ≥ 56 and

T ∈ [
d−1 + 2d−2,4d−1]

,

as well as for d ≥ 9 and

T ∈
[
4d−1,

1

2

]
.

• From Proposition 1.2(4), we get transience for d ≥ 16 and

T ∈ [0.495,∞).

• The range excluded by the above three bullet points is (d−1 + 1
2d−2, d−1 +

2d−2). Now if d ≥ 26, Proposition 1.2(3) gives monotonicity in (d−1, d−1 +
2d−2]. Thus if we further have d ≥ 56 for the second bullet point to apply, the
existence of a critical Tc > d−1 + 1

2d−2 is implied.

The claim regarding the asymptotic formula of Tc is just the formula from the
result of Ueltschi and Björnberg in [4] referenced above. We include it as the next
proposition without proof for the reader’s convenience. This completes the proof
of Theorem 1.1. �
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PROPOSITION 1.3 (Theorem 1.1 of [4]). Let A > 0 be given. Then there exists
a d0, possibly depending on A, such that for d ≥ d0, there exists a Tc = Tc(u, d)

with the property that CyTRM(u,T ) is transient for T ∈ (Tc, Tc + Ad−2) and
recurrent for T < Tc. Furthermore, Tc(u, d) satisfies (1).

We conclude this section by stating and proving a proposition which will be
required in proofs of several parts of Proposition 1.2. It states that the particle
cannot move both vertically up and down (at different times) on any portion of a
pole, in spite of the direction-switching double bars.

PROPOSITION 1.4. Suppose a particle performing CyTRM(u,T ) on a tree is
at the position (v, t) ∈ V ×[0, T ) and moving upwards. Suppose there is no bridge
with an endpoint at (v, t). Then at any future time at which the particle is again at
(v, t) it will be moving upwards, that is, it cannot be present at the same location
moving in the opposite direction.

PROOF. Suppose to the contrary that the particle starting at (v, t) and moving
up returns to (v, t) while moving down after tracing out some path. This means
that the path between the two visits to (v, t) is finite.

Let (e, t ′) be the first bridge encountered from cyclic motion upwards from
(v, t), connecting to (v′, t ′). Observe that since there is no bridge endpoint at (v, t),
for the particle to be at (v, t) and moving downwards later, it must necessarily
come by traveling across (e, t ′) and then traveling downwards. Thus in our path
we have a pairing between two trips across the bridge (e, t ′).

Let δ (whose sign depends on whether (e, t ′) was a cross or a double bar) be
such that the particle travels from (v′, t ′) to (v′, t ′ + δ) with no bridge in between
and no bridge at (v′, t ′+δ). Now observe that we have another path from (v′, t ′+δ)

to itself with the initial and final directions opposite that satisfies the condition of
the proposition. By induction, we thus have that every bridge in the original path
was traversed an even number of times.

If particular, double bars were traversed an even number of times, implying that
the direction at (v, t) finally must be the same as it was initially, a contradiction.

�

REMARK 1.5. An immediate consequence of Proposition 1.4 which we will
often use is that on the first return of the particle to a pole p, it will travel in
unexplored territory (at least for some time). For if this return is via the bridge
it originally departed p on, it will continue motion on p in the direction of unex-
plored territory. This can be seen by applying the proposition to a point sufficiently
close to the bridge endpoint on p. If the first return is via a new bridge, the particle
will of course be in unexplored territory no matter which direction it is traveling.
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2. Transience for high T for u ∈ [0,1]. We now turn to the main technical
element of this paper, the proof of Proposition 1.2(4). Our argument bears strong
similarities to that given in [7], for example, it uses the same notion of a useful
bridge. However, the proof given here, apart from applying even when u �= 1, is
also simpler in certain ways. The differences between our argument and that of
Hammond [7] will be discussed at the end of the proof outline below.

2.1. Outline of proof. We are trying to prove that for sufficiently large T ,
CyTRM(u,T ) escapes to infinity with positive probability. This is of course true
if T = ∞ and u = 1, as the projection of the process onto V is then just simple
continuous-time random walk on a tree. Here, the problem is that we do not nec-
essarily have that each move the particle makes is independent of the past; if the
particle returns to a portion of the environment it has already visited, its motion
will be “deterministic” in that it is determined by the past.

However, each time the particle moves into unvisited territory it gets a new
lease of independence which we can exploit. Our approach is to show that, with
high probability, these “frontier departures” (Definition 2.3) into new territory oc-
cur often enough, and detrimental returns to explored territory can be controlled.
For the analysis of the occurrence of frontier departures, we need the notion of
useful bridges (Definition 2.2) till a given time t , defined according to the parti-
cle’s trajectory up to time t . An important property of these bridges is that their
supporting edges have been crossed only once up till time t , and so by the tree ge-
ometry, if the particle is to be recurrent it must recross all edges supporting useful
bridges on its journey back to the root—but useful bridges will be defined such
that when the particle has the opportunity to make such a recross, it may instead
make a frontier departure into new territory, an event whose probability is bounded
below in Lemma 2.5.

If such a favourable frontier departure occurs, Lemma 2.6 identifies an event
which leads to a fixed number of useful bridges being encountered immediately
after, and gives a lower bound on its probability. If the particle’s trajectory is not
so favourable and a frontier departure is not made, Lemma 2.7 limits the damage
done by bounding how many useful bridges can be lost, roughly speaking. Our
proof will conclude by showing that overall the number of useful bridges grows to
infinity with positive probability, which implies that the particle escapes to infinity
with positive probability. This is done by a comparison of the number of useful
bridges with a suitable random walk on Z which is made to escape to +∞.

In adapting certain arguments from [7], we make use of Proposition 1.4 in the
proof of Lemma 2.5.

Apart from adaptations, our proof also differs from [7] in ways that result in a
shorter and simpler argument. Notably, our lower bound on the number of useful
bridges is obtained by introducing the move-forward event MFN,T that the particle
moves away from the root N times consecutively within a time span of T (in this
interval we are guaranteed independence no matter the motion). This is a simple
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event which streamlines the analysis. In the proof of Proposition 1.2(4), we will
be finding a lower bound on the probability of the occurrence of MFN,T in the
immediate aftermath of a frontier departure. If the event occurs, the delay after the
frontier departure at which it is confirmed to do so is a stopping time. The counter-
part to this stopping time in [7] was a deterministic duration; this convenient new
use of randomness is a source of simplification.

In terms of results, we obtain transience for d ≥ 16 and T ≥ 0.495, while [7]
does so for d ≥ 39 and T > 429d−1; however, as Remark 2.10 observes, we may
also get a similar range for higher d by picking parameters T and N differently.

2.2. Proofs. Throughout this section, our graph G is an infinite tree where
each vertex has at least d offspring. We start by establishing some notation.

NOTATION. Given the parameter T > 0, PT will denote the probability mea-
sure with respect to which the rate one Poisson process on V × [0, T ) is defined.

We will refer to a particle being on the pole of a vertex v ∈ V at a height t ∈
[0, T ) by the coordinates (v, t). We similarly refer to a bridge supported by an
edge e ∈ E at height t ∈ [0, T ) as (e, t).

The CyTRM(u,T ) process started at (φ,0), where φ is the root, will be denoted
by X, so that X(t) ∈ V × [0, T ) is the position of the particle at time t ∈ [0,∞)

and X(0) = (φ,0). Y will denote the projection of X onto the vertex set V , so that
Y(t) is the vertex whose pole X(t) is at. We will adopt the intuitive notation that
for any t > 0,

X[0,t) = {
X(s) | s ∈ [0, t)

}
,

with the obvious analogue for Y .
We use notation for two types of hitting times for A ⊆ V × [0, T ):

HA = inf
{
s ≥ 0 | X(s) ∈ A

}
and Ht,A = inf

{
s ≥ t | X(s) ∈ A

}
.

Further, if A = {x}, we will replace A in the above notation by x.
For an edge e connecting vertices, e+ will denote the vertex e is incident to

which is closer to the root and will be called the parent vertex of e. Similarly, e−
will denote the incident vertex further from the root, called the offspring vertex
of e. We will refer to the parent vertex of any given vertex of the tree to mean the
neighbour closer to the root, and likewise for offspring vertices. The graph distance
metric will be denoted by dist.

We record a simple observation regarding the conditional distribution of the
unexplored environment given the trajectory up to time t . We will make use of this
lemma without comment in the sequel.

LEMMA 2.1. Let t > 0. Consider the law PT given X : [0, t] → V × [0, T ).
Let Foundt ⊆ E ×[0, T ) denote the set of bridges that X has crossed during [0, t],



CRITICAL POINT FOR INFINITE CYCLES IN A RANDOM LOOP MODEL 2077

and let UnExploredt ⊆ E × [0, T ) be all elements of E × [0, T ) neither of whose
endpoints lie in X[0,t]. Then the distribution of the collection of bridges B given
X[0,t] is given by Foundt ∪ B(t,∞), where B(t,∞) is a collection of bridges dis-
tributed as a Poisson process on E ×[0, T ) with intensity 1UnExploredt

with respect
to product Lebesgue measure.

PROOF. It is obvious that Foundt is contained in B as it is known given X[0,t].
From the independence property of Poisson processes, it follows that the distribu-
tion of the remaining bridges, that is, those in UnExploredt , is unaffected. �

DEFINITION 2.2 (Useful bridges). We define, for t > 0, a set Ut ⊆ Foundt of
useful bridges at time t . A bridge (e, s) ∈ Foundt belongs to Ut if:

• He+ < He− < t ,
• He− − He+ < T/2,
• {t̃ ∈ [0, t] : Y(t̃) = e+} = [He+,He−), and
• {t̃ ∈ [0, t] : Y(t̃) = e−} is an interval with right endpoint strictly less than t .

Thus, a bridge is useful at time t if it has been crossed before that time, the
particle has spent at most time T/2 at the bridge’s parent vertex, has visited the
parent and offspring vertices only once, and is not at the offspring vertex at time t .

DEFINITION 2.3 (Frontier time). A time t > 0 is called a frontier time if
Y(t) /∈ {Y(s) | 0 ≤ s < t}, that is, t is the time when X(t) reaches a new pole
or, equivalently, when Y(t) reaches a new vertex.

DEFINITION 2.4 (Frontier departure). Under PT given X : [0, t] → V ×
[0, T ), if (e, s) ∈ Ut and conditional upon Ht,e− < ∞, we say X makes a fron-
tier departure from e if after time Ht,e− , at the moment of departing {e+, e−}, X

arrives at the pole of a vertex it has not visited before.

Note carefully that in the above definition we are considering the moment of
departure from {e+, e−}, and not from e− alone; so the particle may go from e−
to e+ first and then depart to an unvisited vertex as part of a frontier departure.

LEMMA 2.5. Let t > 0. Consider the conditional distribution of PT given
X[0,t]. Let (e, s) ∈ Ut with e+ �= φ chosen as a measurable function of the trajec-
tory till time t , that is, e+ ∈ σ(X[0,t]), and condition further on Ht,e− < ∞. Then
the probability of making a frontier departure is at least d−1

d+1(1 − e−(d−1)T /2).

PROOF. Since (e, s) ∈ Ut , we have that e− has been visited by time t . By the
conditioning that Ht,e− < ∞, we note that on the particle returning to the pole at
e−, it can either stay on the pole till reaching (e, s) (in which case it will jump
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back to e+), or it can jump to another vertex before reaching the bridge (e, s). Let
J be the jump event that jumping to e+ occurs, and let J c be the complementary
event.

To simplify notation, let τ be the hitting time of {e+, e−}c after time t , that is,

τ = Ht,{e+,e−}c .
We analyse the case where J c occurs first. Since (e, s) ∈ Ut , Ht,e− is the time

of first return of the particle to the pole at e−. So by Proposition 1.4, the particle
is traveling in an unexplored portion of the pole. Further, since J c occurring is
equivalent to there being a bridge on e− different from (e, s), we only need con-
sider where it connects to: obviously there are d −1 choices of unexplored vertices
out of d + 1 neighbours, and thus we have

PT

(
Y(τ) /∈ Y[0,τ ) | X[0,t], J c) ≥ d − 1

d + 1
.

Now suppose J occurs, that is, the particle travels back to e+ via the bridge (e, s).
Again by the definition of Ut and Proposition 1.4, the particle travels in the direc-
tion of unexplored area on the pole at e+. The unexplored portion of the pole has
length at least T/2 since (e, s) ∈ Ut implies the explored interval has length at most
T/2. So, conditioned on there being at least one bridge in this unexplored portion,
we need to consider the probability that it connects to an unexplored vertex. Doing
so and multiplying by the probability of the conditioning event,

PT

(
Y(τ) /∈ Y[0,τ ) | X[0,t], J

) ≥ d − 1

d + 1

(
1 − e−(d+1)T /2)

.

Combining the above two gives the lemma. �

In the next lemma, we define the move-forward event MFN,T described earlier
and get a lower bound on its probability. This event is the main source of simplifi-
cation of our proof in comparison to [7]. Though in some sense it is quite a crude
event, its job is to generate useful bridges, and it turns out that this is sufficient for
our purpose.

LEMMA 2.6. Let X be a CyTRM(u,T ) started at (v, t0) and MFN,T be the
move-forward event that the particle goes forward at least N times consecutively
in the time interval (0, T ). On MFN,T , let τ be the random time at which the N th
consecutive bridge is crossed, that is, τ = inf{s ≥ 0 | dist(Y (s), v) = N}. Then we
have

PT (MFN,T ) ≥
(

1 − 1

d + 1

)N[
1 − eN−(d+1)T

(
(d + 1)T

N

)N]
=: p(1)

N,T ,d .

Further, on the event MFN,T , |Uτ | ≥ N − 2 a.s. Also, if we condition on t being a
frontier time and on X[0,t], the above event with the time interval (0, T ) replaced
by (t, t +T ) occurs with the same probability, and on that event |Uτt | ≥ N −2 a.s.,
where τt = inf{s ≥ t | dist(Y (s), Y (t)) = N}.
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PROOF. Recall that the gap distribution of a Poisson process of parameter
d + 1 is Exp(d + 1). Let ξ1, . . . , ξN be i.i.d. Exp(d + 1) random variables. By
iteratively conditioning on moving forward one step and using the independence
obtained by moving forward (regardless of vertical direction of motion), we obtain

(2) PT (MFN,T ) ≥
(

1 − 1

d + 1

)N

· P(ξ1 + · · · + ξN ≤ T ).

We need an upper bound on PT (ξ1 + · · · + ξN > T ). Exponentiating, using the
Markov inequality, and recalling that the moment generating function of Exp(d +
1) is given by f (λ) = d+1

d+1−λ
, we get

PT (ξ1 + · · · + ξN > T ) ≤ e−λT

(
d + 1

d + 1 − λ

)N

.

This is minimised when λ = d + 1 − N/T , which gives

PT (ξ1 + · · · + ξN > T ) ≤ eN−(d+1)T

(
(d + 1)T

N

)N

.

Substituting back in (2) implies the claimed lower bound. From the definition of
Uτ , it follows that the last bridge is not in Uτ as the particle has not yet left the off-
spring vertex of the last bridge. Of the remaining N − 1 bridges, we must exclude
any where the particle spent more than T/2 time at the offspring vertex before
jumping; however, this can happen at most once in a time interval of length T .

The fact that the same is true in the time interval (t, t +T ) when conditioned on
t being a frontier time is straightforward, since the particle is in unexplored terri-
tory. More precisely, conditional on X[0,t] and t being a frontier time, Lemma 2.1
implies that the distribution of the bridge locations on the pole of Y(t) remains
unchanged, and so the above argument applies directly. �

The next lemma considers the situation where the particle returns and does not
make a frontier departure, so that Lemmas 2.5 and 2.6 do not apply. Its role is
to control the damage in this situation by bounding the number of useful bridges,
which may be viewed as obstacles to the particle returning to the root, that can be
undone.

LEMMA 2.7. Let t > 0, and e ∈ Ut be the bridge last crossed in X[0,t]. Let
p(e+) be the parent of e+. Then, conditionally on e+ �= φ and Ht,p(e+) < ∞, we
have that |Ut \ UHt,p(e+)

| ≤ 2 a.s.

PROOF. We write U t for the set of edges that support a bridge in Ut . Note that
for each t > 0, these two sets are in one-to-one correspondence by the definition
of Ut : no two elements in Ut can be supported on the same edge. Hence, it suffices
to derive the statement of the lemma with Ut replaced by U t .
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The fourth requirement in the definition of UHt,p(e+)
and Ut gives that the

only way an edge f ∈ U t will not be in UHt,p(e+)
is if the particle visits f −

in (t,Ht,p(e+)). Note that Ht,p(e+) is not included. Now by the tree’s geometry,
the only edges of U t whose children may be visited in (t,Ht,p(e+)) are e and
(p(e+), e+). Thus the lemma follows. �

DEFINITION 2.8 (Acceptable return). Let t > 0 and let the bridge (e, s) be-
long to Ut . Write ec := V (G) \ {e+, e−}. If X returns to e after time t , that is,
Ht,e− < ∞, we say the return is acceptable if:

(1) X makes a frontier departure from e (i.e., X leaves to a previously unen-
countered vertex), say at time τ (so that τ is a frontier time);

(2) and X goes N steps forward consecutively in the time interval (τ, τ + T )

(note that by right-continuity of X the frontier departure step cannot be counted
towards N ).

REMARK 2.9. Observe that, conditional on X making a frontier departure,
Lemma 2.6 says that item 2 above occurs with probability at least p

(1)
N,T ,d . Thus

we can combine Lemmas 2.5 and 2.6 to find that, conditional on Ht,e− < ∞ for
some bridge (e, s) ∈ Ut ,

PT (return to e is acceptable | Ht,e− < ∞)

≥ d − 1

d + 1

(
1 − e−(d−1)T /2) × p

(1)
N,T ,d

=: p(2)
N,T ,d .

Now we may prove Proposition 1.2(4). The idea of the proof is to estimate the
number of useful bridges at a sequence of random stopping times which we will
construct. If we can show that with positive probability this number goes to infinity
without ever hitting 0, then the CyTRM will be seen to be transient—the particle
cannot have returned to the root.

We do this by using Lemma 2.6, that is, by considering the event of moving
forward consecutively N steps after a frontier departure; each time this occurs, the
number of useful bridges at the time of completing the N th step increases by at
least N − 2. Similarly, we control the effect of bad returns by Lemma 2.7. Using
the bounds on the probabilities of these events, we can stochastically dominate
|Ut | by a random walk on Z with related transition probabilities. The final step is
to analyse for what values of T ,d and N this random walk can be guaranteed to
have positive drift, for such a random walk will stay positive forever with positive
probability. We now turn to the technical details.

PROOF OF PROPOSITION 1.2(4). We construct a sequence of stopping times
τk where we estimate the number of useful bridges. The stopping times will be de-
fined iteratively based on when the particle next returns to the child e− of a useful
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bridge e (if it does) and where it jumps to from there. If the return is acceptable,
that is, on returning it moves forward into new territory and then goes N steps
forward consecutively, we will have the next stopping time be the moment that
it completes the N th step. If the return is not acceptable, we will have the next
stopping time be when the particle reaches p(e+) (the worst case), if it does.

Throughout we will need the number of useful bridges to be at least two; this is
only a technical requirement to ensure that we have at least one useful bridge not
joined to φ, as Lemmas 2.5 and 2.7 assume the parent vertex is not the root. Hence
if at any point |Ut | < 2, we choose to give up.

Define τ1 = inf{t ≥ 0 : |Ut | ≥ 2}. Observe that τ1 < ∞ with positive probability;
otherwise, set τj = −∞ for every j > 1, as a technical convention to say that we
have failed and are giving up. Similarly, for k ∈ N

+, if |Uτk
| ≤ 1, set τj = −∞ for

all j > k.
Otherwise, denoting the last bridge crossed in Uτk

before time τk by ek , define
χk = Hτk,e

−
k

. This time is when the particle next returns to e−
k . Now there are a few

cases (dist is the graph distance on G):

• If χk = ∞, set τj = ∞ for j > k, as a technical convention to indicate success;
the particle’s trajectory is transient.

• If χk < ∞ and the return of X to ek is acceptable, set

τk+1 = inf
{
t ≥ Hχk,e

c
k
| dist

(
Y (t), e−

k

) = N
}
,

that is, the first time after Hχk,e
c
k

(the frontier departure time) that X reaches N

steps forward.
• If χk < ∞ and the return of X to ek is not acceptable, set

τk+1 = Hχk,p(e+),

which may be infinite, in which case the particle’s trajectory is transient.

For k ∈ N, define uk = |Uτk
|. Specify three random variables pk, qk, rk , defined

under PT given X[0,τk], as follows. Let Ak be the event that the return to ek is
acceptable, and set

pk = PT (χk < ∞ | X[0,τk]),
qk = PT (Ak | X[0,τk], χk < ∞),

rk = PT

(
Hχk,p(e+) < ∞ | X[0,τk], χk < ∞,Ac

k

)
.

Note that uk is measurable with respect to X[0,τk]. Note also that, by the defini-
tion of an acceptable return and Lemmas 2.6 and 2.7, the conditional distribution
of uk+1 − uk given X[0,τk] and {uk > 1} stochastically dominates the law

(1 − pk) · δ∞ + pkqk · δN−2 + pk(1 − qk)(1 − rk) · δ∞ + pk(1 − qk)rk · δ−2,

which is parametrised by (pk, qk, rk). Since it is not in our favour if pk = 1 or
rk = 1, this law stochastically dominates the one where pk, rk = 1.
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Remark 2.9 says that PT (· | X[0,τk], uk > 1)-a.s.,

qk ≥ p
(2)
N,T ,d .

In summary, conditional on X[0,τk] and {uk > 1}, the law of uk+1 − uk PT -a.s.
stochastically dominates the law

p
(2)
N,T ,d · δN−2 + (

1 − p
(2)
N,T ,d

) · δ−2.

Now let Q : N+ → R denote the random walk with independent increments
whose law is p

(2)
N,T ,d · δN−2 + (1 − p

(2)
N,T ,d) · δ−2 and initial condition Q(1) = 2.

Let ρ be the first time Q goes strictly below 2, and define Q∗ : N+ →R by

Q∗(i) =
{
Q(i) if i ≤ ρ,

0 if i > ρ,

for each i ∈ N
+.

We now have that conditionally on τ1 < ∞, {ui : i ∈ N
+} stochastically domi-

nates {Q∗(i) : i ∈ N
+}. Thus we need to find N,T , d such that with positive prob-

ability Q(i) tends to infinity while staying strictly above 1 always. This is satisfied
if the drift is positive, which is to say that it suffices to have

0 < (N − 2)p
(2)
N,T ,d − 2

(
1 − p

(2)
N,T ,d

)
= Np

(2)
N,T ,d − 2

= N
d − 1

d + 1

(
1 − e−(d−1)T /2)(

1 − 1

d

)N

×
[
1 − eN−(d+1)T

(
(d + 1)T

N

)N]
− 2.

(3)

Note that (3) is increasing in T for T > N(d + 1)−1; hence if some choice of
(N,T , d) works in this range, so will higher values of T . Now taking N = 4, T =
0.495 and d ≥ 16 gives a positive drift by direct calculation. Therefore, ui remains
above 1 and goes to infinity with positive probability for N = 4, T ≥ 0.495 and
d ≥ 16, which can occur only if the particle’s trajectory is transient, thus proving
the theorem. �

REMARK 2.10. Note that it was not necessary to take N = 4 in the last cal-
culation; this was only done so as to get transience for T ≥ 0.495, as the interval
(Tc,0.5] is covered by the other parts of Proposition 1.2. In fact, we can fix ε > 0,
take T = (1 + ε)N(d + 1)−1, and then adjust N and d in order to make (3) posi-
tive. It is easy to check that this is possible by taking N and d sufficiently large. In
other words, given an ε > 0, there exist high N and d such that CyTRM(u,T ) is
transient for T > (1 + ε)N(d + 1)−1.



CRITICAL POINT FOR INFINITE CYCLES IN A RANDOM LOOP MODEL 2083

We end this section by indicating which of these lemmas and propositions
have been taken or modified from [7]. Our Lemma 2.1 is Lemma 2.1 of [7], our
Lemma 2.5 is Lemma 2.6 of [7] and our Lemma 2.7 is Lemma 2.14 of [7].

3. Modifications of previous proofs. In this section, we show how to modify
existing proofs, namely from [2] and [8], to complete the proofs of part (2) and (3)
of Proposition 1.2. Angel’s proof in [2] is applicable to u = 1 only, but a minor
modification using Proposition 1.4 above allows us to extend it. The argument of
Hammond in [8] is applicable even for u �= 1, as elaborated in the Appendix of [4],
but the bounds can be significantly tightened by a more careful calculation. This is
needed for the bounds we claim.

We do not provide self-contained proofs because the involved changes are too
mundane to warrant doing so. However, we have provided an overview with in-
dications on how to modify the original proofs to apply when u �= 1. The reader
may wish to refer to the original papers to get a complete understanding of the
argument.

3.1. Modification of Angel’s proof.

THEOREM 3.1. Let G be a regular tree with d offspring at every vertex (so
(d + 1)-regular). Then for any ε > 0, there exists d0 such that for d ≥ d0 and
any u ∈ [0,1], CyTRM(u,T ) on G will be transient for T ∈ [d−1 + (7/6 +
ε)d−2,1/2].

In particular, we have that CyTRM(u,T ) is transient for T ∈ [d−1 + 2d−2,

4d−1] for d ≥ 56 and for T ∈ [4d−1,1/2] for d ≥ 9.

This is Theorem 3 of [2], but for u �= 1. The proof is essentially that of Angel
[2] except for a minor modification. In particular, the proof of a claim in the initial
section of the proof of [2], Theorem 3, must be modified for u �= 1, which we
isolate below as Lemma 3.4.

First, we recall some required definitions from [2].

DEFINITION 3.2 (Good vertex). Let v be a vertex and u be its parent. We say
v is good if there is only a single bridge between u and v.

DEFINITION 3.3 (Uncovered vertex). Let v be a good vertex, u be its parent
and a good vertex, and v′ be a sibling of v. Call v covered by v′ if the bridges from
u to v′ cyclically separate (on the pole of u) the unique bridge from u to v and the
unique bridge from u to its parent.

We say a vertex v as above is uncovered if it is not covered by any of its siblings.

LEMMA 3.4. Suppose v is uncovered and the particle reaches u, the parent
of v. Then either the particle reaches v, or it leaves u at some point and never
returns.
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PROOF. Suppose that the first case does not occur, that is, the particle does not
reach v. The particle leaving u at some point and never returning is equivalent to
(u, tu) not being part of a finite cycle. For if (u, t) is part of a finite cycle for some
t �= tu, the same must be true for (u, tu); this follows from the fact that given the
pole positions, the trajectory of the particle is fully determined by its location and
direction of movement at any instant.

Assume without loss of generality that the particle is moving up from (u, tu).
Since v is uncovered, we have that if a bridge supported on an edge is present in
I := [tu, tv], there is no bridge supported by the same edge outside I . The fact that
we never reach v implies that the particle can in future be present at vertex u only
in the interval [tu, tv]. Due to the tree geometry, this tells us that if (u, tu) is part of
a finite cycle, the bridge at tu must be encountered via downward motion at some
point. But since we initially moved up from (u, tu), Proposition 1.4, again applied
to a point near (u, tu), tells us that this is not possible. �

PROOF SKETCH OF THEOREM 3.1. Given Lemma 3.4, two things are needed
to complete the proof. It must be shown that the number of good, uncovered off-
spring of distinct vertices are independent random variables, so that the good, un-
covered connected component containing φ is a Galton–Watson tree, and then it
must be shown that for the claimed choices of d and T , this random variable has
mean greater than 1—as this is equivalent to the Galton–Watson tree containing
with positive probability an infinite path starting at the root.

This is accomplished by the rest of Angel’s proof, which goes through even for
u �= 1, and so we obtain the same result as there. Also refer to [7], Lemma B.2, for
the proof of the particular bounds on d and T -intervals. �

PROOF OF PROPOSITION 1.2(2). This is the same statement as the second
part of Theorem 3.1. �

3.2. Modification of Hammond’s proof of monotonicity. As substantiated in
the Appendix of [4], Hammond’s proof of monotonicity given in [8] works essen-
tially without modification for any u ∈ [0,1]. However, the bound on d obtained
in that paper for which the result applies can be easily tightened to get the bounds
we claim by a closer examination of the proof and some new calculations. In this
subsection, we discuss how to go about doing this.

We do not provide a self-contained proof of the monotonicity claimed in Propo-
sition 1.2(3). Instead, we give a sketch, taking certain claims and inputs from [8] as
black boxes. A reader who has not read [8] should be able to read this subsection
and obtain a clear idea of the overall proof, modulo certain facts which are stated
but not proved here. To obtain a complete proof, it is recommended to the reader
to refer to [8] alongside this subsection to get a detailed understanding of where
and how the original proof and calculations are modified.
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First, we recall some notation from [8]. The idea of that paper is to consider the
probability that CyTRM(T ) does not return to the pole over the root φ, denoted
p∞(T ), and to show that it is nondecreasing in the interval (d−1, d−1 + 2d−2]
which contains the critical point. This is done by considering “local approxima-
tions” pn(T ), defined as the probability that CyTRM(T ) ever reaches level n of
the tree, and proving that these functions are differentiable and nondecreasing in
the required interval. This is clearly sufficient as pn ↓ p∞ pointwise. Unlike in [8],
here the quantities pn and p∞ are defined with respect to CyTRM(u,T ) instead
of CyTRM(T ).

PROOF OF PROPOSITION 1.2(3). By the above discussion, this is implied by
the next proposition. �

PROPOSITION 3.5 (Modification of Proposition 1.8 of [8]). Let d ≥ 26 and
suppose d−1 < T ≤ d−1 + 2d−2. Then for each n ≥ 1, pn is differentiable at T

and dpn

dT
(T ) > 0.

REMARK 3.6. Proposition 1.8 of [8] is used to prove that paper’s Proposi-
tion 1.3 (our Proposition 1.2(3)), and is stated as dpn

dT
(T ) > d

2 e−T dpn; however,

as indicated above, the proof of Proposition 1.3 itself only requires dpn

dT
(T ) > 0,

which is partly what allows us to get a better range for the d where Proposi-
tion 1.2(3) is applicable.

NOTATION. We let Tn be the subgraph induced by the vertices within distance
n of the root.

Using a formula analogous to Russo’s formula from percolation theory, we can
write the derivative of pn in terms of certain “pivotal” events P +

n and P −
n . These

events are defined in terms of the effect of a “uniformly added bridge.” To be pre-
cise, to the existing random arrangement of bridges, we add one additional bridge
An sampled from normalised Lebesgue measure on E(Tn)×[0, T ), independently
of the existing bridges, which is direction maintaining with probability u and di-
rection switching with probability 1 − u.

This new bridge An can potentially affect the trajectory of the particle. One of
three things can happen: the trajectory of the particle originally did not exit Tn,
and now does; the particle did exit Tn originally, but no longer does; or finally, the
event of the particle exiting Tn is unaffected. We denote by P +

n and P −
n the events

that the first and the second possibilities occur.
We can now state (without proof) an expression for the derivative of pn in terms

of these events.
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LEMMA 3.7 (Lemma 1.7 of [8]). For each n ∈ N, pn : (0,∞) → [0,1] is
differentiable; for T > 0,

dpn

dT
(T ) = ∣∣E(Tn)

∣∣(PT

(
P +

n

) − PT

(
P −

n

))
.

The probability PT (P +
n ) − PT (P −

n ) is decomposed as A1 + A2, where

A1 = PT

(
P +

n ∩ C ∩ Bc) − PT

(
P −

n ∩ C ∩ Bc),
A2 = PT

(
P +

n ∩ C ∩ B ∩ N
) − PT

(
P −

n ∩ C ∩ B ∩ N
)
.

Here, C is the crossing event that the particle reaches An before exiting Tn. If C

occurs, B is the bottleneck event that some edge between the root and the parent
vertex supporting An supports a single bridge. Let bn be such a bridge that is far-
thest from the root. Suppose both C and B occur, and that the particle’s trajectory
is periodic. Then it must cross back along bn after crossing it the first time. The no
escape event N is the event that the particle, considered from the time it recrosses
bn, reaches the root before exiting Tn.

These details are provided to give the reader some idea of the original proof
and to be consistent with the notation in [8]; we will not actually be needing these
details for our modifications.

At this point, our next step is to give a lower bound on A1. This is the content of
the next two lemmas. The first is stated without proof, but the second is one where
we will need to make a more careful calculation than in [8].

NOTATION. For convenience, we write τ = T d , so that we are interested in
τ ∈ [1,1 + 2/d].

LEMMA 3.8 (Lemma 4.3 of [8]). Suppose that n ≥ 1, d ≥ 2, and T > 0. Then

PT

(
P +

n ∩ C ∩ Bc) ≥ de−τ pn−1

|E(Tn)| .

LEMMA 3.9 (Modification of Lemma 4.5 of [8]). Suppose that n ≥ 1, d ≥ 2
and 1 ≤ τ ≤ 1 + 2/d . Then

PT

(
P −

n ∩ C ∩ Bc) ≤ pn−1

|E(Tn)|
(
τ(τ + 1) + 6e−1 a2(4a2 − 11a − 9)

(1 − a)3

)
,

where a = τ 2e
2+ τ

d

d(e−1)
.

PROOF SKETCH. Here, we indicate how to modify the proof of Lemma 4.5
in [8] to obtain our claim. This comes down to explicitly evaluating a certain sum
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instead of bounding it. In the proof of [8], Lemma 4.5, the following inequality is
obtained:

PT

(
P −

n ∩ C ∩ Bc) ≤
∞∑

k=0

An,k ,

where An,k is a technical quantity which we will not define; for the purpose of
getting a tighter bound, note that it is proven in [8] that An,0 ≤ pn−1

|E(Tn|τ(τ + 1) and

An,k ≤ 6pn−1

|E(Tn)|e
−1((

1 − e−τ )−1
eτ/d+1τ 2d−1)k

(k + 2)2.

Now we only need to estimate the sum of the right hand side as k varies from 0
to ∞. This is done in [8] by bounding the exponential term using τ ≤ 2 and that
(k + 2)2 ≤ 2k+1, but a much tighter bound is easily obtainable.

Using that τ ≥ 1, we can bound the exponent as

τ 2e1+τ/d

d(1 − e−τ )
≤ τ 2e2+ τ

d

d(e − 1)
=: a.

The identity
∑∞

k=1(k + 2)2ak = a(4a2 − 11a + 9)/(1 − a)3 is valid for any −1 <

a < 1. With this and the bound on the exponent, summing the series gives the
claimed upper bound. �

In [8], a lower bound on A2 is obtained from the bound on A1; that argument
goes through even when u �= 1. Hence, we obtain the following.

LEMMA 3.10 (Proposition 3.2 of [8]). Let n ≥ 2, d ≥ 26, τ ∈ [1,1 + 2d−1].
Then

A2 = PT

(
P +

n ∩ C ∩ B ∩ N
) − PT

(
P −

n ∩ C ∩ B ∩ N
) ≥ 0 .

PROOF OF PROPOSITION 3.5. Proposition 3.7 asserts that

dpn

dT
(T ) = ∣∣E(Tn)

∣∣(PT

(
P +

n

) − PT

(
P −

n

)) = ∣∣E(Tn)
∣∣(A1 + A2).

Using Lemmas 3.8, 3.9 and 3.10, we find that

dpn

dT
(T ) ≥ pn−1

[
de−τ − τ(τ + 1) − 6e−1 a2(4a2 − 11a + 9)

(1 − a)3

]
,

where a = τ 2e
2+ τ

d

d(e−1)
. We see that the expression is increasing in d for fixed τ and

decreasing in τ for fixed d . Thus it is bounded below by the value at τ = 1 + 2/d ,
and numerically it can be verified that this expression (with τ = 1 + 2/d) becomes
strictly positive at d = 26. Hence it is positive for all d ≥ 26 and 1 ≤ τ ≤ 1 + 2/d .

�
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