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FREIDLIN–WENTZELL LDP IN PATH SPACE FOR
MCKEAN–VLASOV EQUATIONS AND THE FUNCTIONAL

ITERATED LOGARITHM LAW

BY GONÇALO DOS REIS∗,1, WILLIAM SALKELD∗ AND JULIAN TUGAUT†

University of Edinburgh∗ and Université Jean Monnet†

We show two Freidlin–Wentzell-type Large Deviations Principles (LDP)
in path space topologies (uniform and Hölder) for the solution process of
McKean–Vlasov Stochastic Differential Equations (MV-SDEs) using tech-
niques which directly address the presence of the law in the coefficients and
altogether avoiding decoupling arguments or limits of particle systems. We
provide existence and uniqueness results along with several properties for
a class of MV-SDEs having random coefficients and drifts of superlinear
growth.

As an application of our results, we establish a functional Strassen-type
result (law of iterated logarithm) for the solution process of a MV-SDE.
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1. Introduction. In this article, we study a general class of McKean–Vlasov
Stochastic Differential Equations (MV-SDEs) having drifts of polynomial growth
and examine Freidlin–Wentzell-type large deviations principle small noise asymp-
totics in related path spaces, namely with the supremum- and Hölder-topologies.

MV-SDEs are more involved than classical SDEs as their coefficients depend
on the law of the solution. They are sometimes referred to as mean-field SDEs
and were first studied in [29]. In a nutshell, these equations describe a limiting be-
haviour of individual particles having diffusive dynamics and which interact with
each other in a “mean-field” sense. The analysis of stochastic particle systems and
MV-SDEs interpreted as their limiting equations are of independent interest and
appear widely in applications. Examples include molecular dynamics, fluid dy-
namics [34]; for the behaviour of large-scale interacting agents in economics or
social networks or interacting neurons in biology, see [8, 9] and references therein.
Recently, there has been a vigorous growth in the literature on MV-SDEs address-
ing existence and uniqueness [32], smoothness of associated PDEs [5, 12], numer-
ical methods and many other aspects.

We begin by reminding the reader what a Large Deviations Principle (LDP) is.
The main goal of the large deviations is to calculate the probability of a rare event.
In the case of stochastic processes, the idea is to find a deterministic path around
which the diffusion is concentrated with high probability. As a consequence, the
stochastic motion can be interpreted as a small perturbation of the deterministic
path.

As a simple example, we present the idea of the large deviations principle for a
classical diffusion with a constant coefficient diffusion:

(1.1) Xε(t) = X(0) + √
εW(t) −

∫ t

0
∇V

(
Xε(s)

)
ds,

where X(0) is deterministic, W is a Brownian motion and V is the so-called con-
fining potential. We also introduce the deterministic path

(1.2) ϕ(t) = X(0) −
∫ t

0
∇V

(
ϕ(s)

)
ds.
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Set νε be the law of the diffusion (Xε(t))t∈[0,1]. Then we say that (νε)ε>0 satisfies
a large deviations principle on C([0,1]) equipped with the norm ‖ · ‖∞ with the
rate function I if and only if for any Borel set �, we have

− inf
φ∈�̊

I (φ) ≤ lim inf
ε→0

ε log
(
νε(�)

)≤ lim sup
ε→0

ε log
(
νε(�)

)≤ − inf
φ∈�

I (φ).

We will say that I is a good rate function if the level set {x : I (x) ≤ α} is compact
for any α.

In the case of (1.1), it is well known (see [22]) that (νε)ε>0 satisfies a LDP on
(C([0,1]),‖ · ‖∞) with the rate function I defined as

I (φ) := 1

2

∫ 1

0

∥∥φ̇(t) + ∇V
(
φ(t)

)∥∥2
dt,

if φ is absolutely continuous and such that φ(0) = X(0); we set I (φ) := +∞ oth-
erwise. It follows that a Borel set � of C([0,1]) which contains the deterministic
path (ϕ(t))t∈[0,1] in its interior is such that infφ∈�0 I (φ) = 0.

We work with McKean–Vlasov SDEs satisfying Xε(0) = X0 and

(1.3) dXε(t) = bε

(
t,Xε(t),LXε

t

)
dt + √

εσε

(
t,Xε(t),LXε

t

)
dW(t),

where LXε
t stands for Law(Xε(t)). Since the law of the process is present in the

coefficients, this equation is nonlinear—in the sense of McKean. Exact assump-
tions on σε and on bε will be given subsequently. Let us discuss a particular case
of this McKean–Vlasov diffusion (in dimension one):

(1.4) Xε(t) = Xε(0) + √
εW(t) −

∫ t

0
V ′(Xε(s)

)
ds −

∫ t

0
F ′ ∗ uε

s

(
Xε(s)

)
ds,

where uε
s = LXε

s , σε(t, x,μ) := 1, bε(t, x,μ) := −V ′(x) − F ′ ∗ μ(x) and “∗” is
the usual convolution operator.

The motion of the process is generated by three concurrent forces. The first
one is the derivative of a potential V —the confining potential. The second influ-
ence is a Brownian motion (W(t))t∈R+ . It allows the particle to move against the
potential V . The third term—the so-called self-stabilizing term—represents the
attraction between all the others trajectories. Indeed, we remark

F ′ ∗ uε
s

(
Xε(s)(ω0)

)=
∫
ω∈


F ′(Xε(s)(ω0) − Xε(s)(ω)
)
dP(ω),

where (
,F,P) is the underlying measurable space; see [29, 30].
The particle Xε which verifies (1.4) can be seen as one particle in a continuous

mean-field system of an infinite number of particles. The mean-field system that
we will consider is a random N -dimensional dynamical system for i ∈ {1, . . . ,N}
where Xi,N

ε (0) = X0 and

dXi,N
ε (t) = √

ε dBi,N(t) − V ′(Xi,N
ε (t)

)
dt

− 1

N

N∑
j=1

F ′(Xi,N
ε (t) − Xj,N

ε (t)
)
dt,
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where the N Brownian motions (Bi(t))t∈R+ are independent. Mean-field systems
are the subject of a rich literature. The link between the self-stabilizing process and
the mean-field system when N goes to +∞ is called propagation of chaos. We say
that there is propagation of chaos for the system of interacting particles when the
law of k fixed particles Xi,N tends to the distribution of k independent particles
X solving (1.4) with same law when the size of the system N goes to infinity; see
[37] under Lipschitz properties; [31] under Lipschitz assumptions but allowing for
jumps; [4] if V is a constant; [10] for a uniform result in time in the nonuniformly
convex case. For applications, see [11] about social interactions or [13] about the
stochastic partial differential equations.

Another side to propagation of chaos are large deviations results which quantify
the rate of convergence of the empirical measure in exponential scales. Many LDP
results for McKean–Vlasov SDEs exist exploring Sanov-type large deviations for
the N -particle empirical measures from the McKean–Vlasov limit. This is a huge
field and a small selection of relevant references is given by [6, 14, 15, 17] (see
references therein). As argued in [6], these results are a kind of Freidlin–Wentzell
small noise asymptotics, but they are “small noise” at a different level (that of
measure-valued processes or path-distribution-valued random variables) compared
to the usual (process level) Freidlin–Wentzell results being discussed in this work.

Our contributions. We prove our results by dealing with the presence of the
laws in the coefficients directly and avoiding arguments on empirical measures or
approximation/convergence of measures. Moreover, our LDP result in the Hölder-
topology sharpen existing ones in the classical SDE framework.

Existence and uniqueness problem. The existence problem for (1.4) has been
investigated by two different methods. The first one consists in the application of a
fixed-point theorem; see [4, 10, 27, 30] in the nonconvex case. The other consists
in a propagation of chaos; see, for example, [31]. Moreover, it has been proved
in [27], Theorem 2.13, that there is a unique strong solution. Further results on
existence and uniqueness, but away from our setting, can be found in [7–9, 32].
We highlight [35] for a discussion on counterexamples on uniqueness of solutions.

We work with MV-SDE with dynamics (1.3) and the work closest to ours is that
of [24]. There the author provides existence and uniqueness results for (1.3) under
similar superlinear growth conditions but his methodology focuses on certain PDE
arguments which force the coefficients to be deterministic, time-independent and
impose a uniform ellipticity constraint on σ . Our methods are fully probabilistic
in nature and lift these restrictions. We assume a random drift b with of spatial su-
perlinear growth satisfying a (noncoercive) monotonicity condition and a random
possibly degenerate Lipschitz diffusion coefficient (see Assumption 3.2 below).
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Large deviations. The LDP results we present are with respect to the vanish-
ing noise [when ε ↘ 0 in (1.3)] as in Freidlin–Wentzell theory. For instance, [27]
investigates the large deviations principle for the McKean–Vlasov diffusion (1.4)
in general dimensions, assuming superlinear growth of the drift but imposing coer-
civity in their monotonicity condition and a constant diffusion term. In particular,
they show that the family of laws (νε)ε satisfies a large deviations principle on
C([0,1]) equipped with the uniform norm with the good rate function

I (φ) := 1

2

∫ 1

0

∥∥φ̇(t) + ∇V
(
φ(t)

)+ F ′(φ(t) − ϕ(t)
)∥∥2

∞ dt,

when φ is absolutely continuous such that φ(0) = X(0) and I (φ) := +∞ other-
wise [ϕ as in (1.2)].

We show a similar result, in the uniform norm, for the family associated to (1.3).
However, unlike [27], we assume a Lipschitz σ coefficient (not a constant one) and
we do not impose any coercivity condition (strict negativity of the monotonicity
constant). For this result, we combine aspects of their work jointly with [16].

Concerning the Hölder topologies LDP, we find inspiration in [3]. Studying
standard SDEs, the authors find a way to transfer LDP results from a coarse
topology to a finer one; in their case, from supremum norms to Hölder norms.
Their method, explained later, relies on establishing the following inequality:
∀R > 0,∀ρ > 0, ∃δ > 0 and for ε small enough (see Theorem 4.9 below for the
precise statement)

(1.5) P
[∥∥Xx

ε − 
x(h)
∥∥
α ≥ ρ,‖√εW − h‖∞ ≤ δ

]
� exp

(
−R

ε

)
,

for classical SDE’s where 
x(h) is the so-called Skeleton map (an ODE) asso-
ciated with XX

ε . This can be thought of as establishing that the probability of X

having a high variation in the ‖ · ‖α-norm given that the input signal (from the
Brownian motion) is small in ‖ · ‖∞-norm is exponentially small. For this, they as-
sume boundedness and Lipschitz properties of the drift and diffusion coefficients
of the SDE Xε dependent only on the spatial variables. We provide results in the
same vein but for the general class of MV-SDEs with drifts of polynomial growth
(see Assumption 4.1). Their conditions are stronger than our conditions so our
results extend existing results in classical SDE literature. To the best of our knowl-
edge, LDPs in path space in Hölder topologies or general Besov–Orlicz spaces for
MV-SDEs remain unexplored.

Our results on LDPs are of general interest and can be applied to the Monte-
Carlo simulation of MV-SDEs. They can be used in the spirit of [25] as a way to
find the optimal importance sampling measure; see [18].

Functional Strassen law. The final contribution of our work is a functional
Strassen law (a type of law of iterated logarithm) for the solution of a MV-SDE.
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Strassen’s law for a Brownian motion W was originally stated in [36] and says for
any t

W(nt)√
n log log(n)

→ 0 in Prob. as n → ∞ but a.s. convergence does not hold.

We show that if one replaces the Brownian motion W by the solution of a MV-
SDE then the result still holds; a by-product is that this statement allows one to
characterize Lyapunov functions for such equations.

In broad strokes, the essence of our proof stems from arguments in [1] and is
about showing that the set of rescaled paths is relatively compact in the path space
topology which implies convergence in probability, but that the set of limit points
of this set (connected to the Skeleton of MV-SDEs) is uncountable which implies
the failure of almost sure convergence. In [2], the authors show Strassen’s result in
Hölder topologies for the Brownian motion.

The work closest to ours is [1]. A similar result is shown for standard SDEs with
time-independent uniformly Lipschitz and bounded coefficients. These conditions
are much stronger than the conditions we impose (roughly our Assumption 3.2 but
with b, σ deterministic, time-independent and σ bounded), and hence our results
extends the existing results of the classical SDE literature.

In methodological terms, we recast the notion of the re-scaling operators used
in [1] to fit the MV-SDE setting (our Definitions 5.2 and 5.4) and most notably so
that they act on the process and law in tandem and in the “right way”. After this
build-up, we prove our main result as described above.

Our contribution in view of the “decoupling argument”. From a methodolog-
ical point of view, many results of standard SDEs can be carried forward to the
MV-SDE framework using the so-called “decoupling argument”. The latter, is just
that after establishing existence and (crucially) uniqueness for a MV-SDE, one
can freeze the law (via an independent copy) and the dynamics that remains is
that of a standard SDE with an added time dependency. As long as the new time
dependency has the right properties, one can apply most of the known results of
standard SDE and transfer them to the MV-SDEs setting. Concerning the LDPs,
this topic is discussed in Section 4.2.2; concerning the functional Strassen results,
see Remark 5.1.

This work is organized as follows.
In Section 2 we introduce this work’s notation and in Section 3 we prove the ex-

istence/uniqueness results as well as deriving properties of the associated dynam-
ics. The LDP results appear in Section 4. In Section 5, we establish a functional
iterated logarithm law (Strassen’s law) for the solution of the MV-SDE. Some aux-
iliary results, including extensions of some other known ones, are provided in the
Appendix.
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2. Preliminaries.

2.1. Notation. We denote by N = {1,2, . . .} the set of natural numbers; Z and
R denote the set of integers and reals, respectively; R+ = [0,∞). By a � b, we
denote the relation a ≤ Cb where C > 0 is a generic constant independent of the
relevant parameters and may take different values at each occurrence. By �x�, we
denote the largest integer less than or equal to x. Let A be a d × d ′ matrix, we
denote the transpose of A by AT .

Let f :Rd → R be a differentiable function. Then we denote ∇f to be the gra-
dient operator and H [f ] to be the Hessian operator. ∂xi

is the 1st partial derivative
with relation to the ith position.

Probability. Let 0 < T < ∞. Let (
,F,P) be a probability space carrying a
d ′-dimensional Brownian motion on the interval [0, T ]. The filtration on this space
satisfies the usual assumptions. We denote by E and E[·|Ft ] the usual expectation
and conditional expectation operator, respectively. For a random variable X (RV
in short), we denote its probability distribution (or law) by LX = P ◦ X−1; the law
of a process (Y (t))t∈[0,T ] at time t is denoted by LY

t = P ◦ [Y(t)]−1.
Let Lp(Ft ,R

d), t ∈ [0, T ], is the space of R
d -valued Ft -measurable RVs X

with norm ‖X‖Lp = E[|X|p]1/p < ∞; L∞ refers to the subset of essentially
bounded RVs. Sp([0, T ]) is the space of Rd -valued measurable F -adapted pro-
cesses Y satisfying ‖Y‖Sp = E[supt∈[0,T ] |Y(t)|p]1/p < ∞; S∞ refers to the sub-
set of Sp(Rd) of absolutely uniformly bounded processes.

Other spaces and norms. We set C([0, T ]) as the space of continuous func-
tions f : [0, T ] → R endowed with the uniform norm ‖ · ‖∞. For the space of
continuous functions on the interval [0, T ] and α ∈ (0,1), we define the uniform
and the Hölder norm of a function ψ ,

‖ψ‖∞ = sup
t∈[0,T ]

∣∣ψ(t)
∣∣ and ‖ψ‖α = sup

s,t∈[0,T ]
|ψ(t) − ψ(s)|

|t − s|α .

With ‖ · ‖α , we define the space of α-Hölder continuous functions f : [0, T ] → R

by Cα([0, T ],R); a ball centered on the map ψ and with radius r > 0 in this
topology Cα([0, T ],R) is denoted as Bα(ψ, r); we use B∞(ψ, r) to denote the
same ball on the topology of the ‖ · ‖∞-norm.

We define, for t ∈ [0, T ], the restricted norm ‖ · ‖α,t and ‖ · ‖∞,t based on ‖ · ‖α

and ‖ · ‖∞ such that ‖ · ‖α,T = ‖ · ‖α , ‖ · ‖∞,T = ‖ · ‖∞ and is defined as

‖f ‖∞,t = sup
0≤s≤t

∣∣f (s)
∣∣ and ‖f ‖α,t = sup

0≤r<s≤t

|f (s) − f (r)|
|s − r|α .

This is similar to the Hölder/Supremum norm and they are also a monotone in-
creasing function with respect to t . It is also clear that ∀ψ ∈ Cα([0, T ]) with
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ψ(0) = 0 we have ‖ψ‖∞,t ≤ ‖ψ‖∞ ≤ ‖ψ‖α and ‖ψ‖∞,t ≤ ‖ψ‖α,t ≤ ‖ψ‖α (see
Lemma A.6).

Let L2([0, T ]) denote the space of square integrable functions f : [0, T ] → R

satisfying ‖f ‖2 := (
∫ T

0 |f (r)|2 dr)1/2 < ∞. Let H be the usual Cameron–Martin–
Hilbert space for Brownian motion; the space of all absolutely continuous paths on
the interval [0, T ] which start at 0 and have a derivative almost everywhere which
is L2([0, T ]) integrable,

H :=
{
h : [0, T ] �→R, h(0) = 0, h(·) =

∫ ·
0

ḣ(s) ds; ḣ ∈ L2([0, T ])}.
It is easy to see that if h ∈ H then h(0) = 0, h ∈ C

1
2 ([0, T ]) and ‖h‖∞ ≤ ‖h‖ 1

2
≤

‖ḣ‖2.

2.2. The Wasserstein metric. In this section, we introduce the Wasserstein
metric and some results related to it, for in-depth treatments we refer the reader
to [38] or [8], Chapter 5. Consider a measurable space (E,E) and let P(E) be the
class of probability measures in this space. Let k ∈ N, let Pk(E) be the space of
probability distributions on (E,E) with finite kth moments. The Dirac delta mea-
sure concentrated at a point x ∈ E is denoted by δx . We define a metric on the
space of distributions.

DEFINITION 2.1 (Wasserstein metric). Let E be a complete, separable metric
space with metric d : E ×E →R

+ and σ -algebra E . Let μ,ν ∈P2(E). We define
the Wasserstein distance to be

W(2)(μ, ν) = inf
{(∫

E2
d(x, y)2π(dx, dy)

)1/2
;π ∈ P(E × E)

}
,

where μ(A) = ∫
E2 χA(x)π(dx, dy) and ν(B) = ∫

E2 χB(y)π(dx, dy).

The Wasserstein metric is a metric and it induces a topology on P2(E). This has
been shown to be the topology of weak convergence of measure together with the
convergence of all moments of order up to 2. It is important to define the Wasser-
stein distance for a generic complete separable metric space because later on we
will be interchanging between measures on R

d and C([0, T ];Rd). In order to dis-
tinguish between these two types of objects, we denote m ∈ P2(C([0, T ];Rd)) and
mt ∈ P2(R

d) and we define for A ⊂ R
d ,

mt(A) =
∫
C([0,T ];Rd )

1{x(·)∈C([0,T ];Rd );x(t)∈A}(x)m(dx).

If one needed a metric on the entire space P(E) rather than the subset P2(E),
one could use the modified Wasserstein distance

W(0)(μ, ν) = inf
{∫

E2

[
1 ∧ d(x, y)

]
π(dx, dy);π ∈ P(E × E)

}
,
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where π has marginals μ and ν as before. This metric induces that of weak con-
vergence on P(E).

DEFINITION 2.2. Let P2(E) be the set of all probability distributions (mea-
sures) on the separable vector space E with finite second orders. Endow this set
with two operators called addition +P2 : P2(E) × P2(E) → P2(E) and scalar
multiplication ×P2 : Rd × P2(E) → P2(E) such that ∀μ,ν ∈ P2(E), c ∈ R

d and
A ⊂ E we have

(μ +P2 ν)[A] =
∫
E

μ(y − A)ν(dy) and (c ×P2 μ)[A] = μ

[
A

c

]
.

These operators satisfy the vector axioms and so they form a vector space.

These vector operators are more intuitive if one thinks of the set of probability
distributions as the set of all random variables on E. These measure operators
represent addition and scalar multiplication of independent random variables with
respect to the vector operators within the space E. This vector space, like all vector
spaces, has a 0 element. This is the delta distribution centered at the 0 element of
E, δ0. The convolution of the delta distribution with any other measure is that
measure and it remains constant under stretches and compressions of the domain
centered around 0.

The next result is a simple computation which we evaluate for the benefit of the
reader.

LEMMA 2.3. Take δ0. Then for any μ ∈ P2(E) we have W(2)(μ, δ0) =
(
∫
E y2μ(dy))1/2.

PROOF. Consider a random variable with law δ0. We have X : 
 → E with
P[X ∈ A] = δ0(A) for any A ⊂ E. The σ -algebra generated by X is just {
,∅}.
Let μ ∈ P2[E] be the law of a random variable Y : 
 → E which generates a σ -
algebra that X will be measurable with respect to. For any B ∈ σ(Y ), we have that
P[
 ∩ B] = P[B] = 1P[B] = P[
]P[B] and P[B ∩ ∅] = P[∅] = 0 = P[B]P[∅].
Hence σ(X) and σ(Y ) are independent. Therefore, we have that the joint density
function of X and Y is just μ(dy)δ0(dx) and the conclusion follows. �

3. McKean–Vlasov equations with locally Lipschiz coefficients.

3.1. Existence and uniqueness of solutions. We start with a slight generaliza-
tion of the existence and uniqueness result under Lipschitz conditions in [7], The-
orem 1.7. Let W be a d ′-dimensional Brownian motion and take the progressively
measurable maps b : [0, T ] × 
 ×R

d ×P2(R
d) →R

d and σ : [0, T ] × 
 ×R
d ×

P2(R
d) →R

d×d ′
.



1496 G. DOS REIS, W. SALKELD AND J. TUGAUT

We introduce, for 0 ≤ t ≤ T < ∞ the dynamics of a process Y as

dY (t) = b
(
t, Y (t),LY

t

)
dt + σ

(
t, Y (t),LY

t

)
dW(t),(3.1)

for Y(0) ∈ Lp(F0;Rd;P) and where LY
t denotes the law of Y(t).

THEOREM 3.1. Suppose that b and σ are integrable in the sense that

E

[(∫ T

0

∣∣b(t,ω,0, δ0)
∣∣dt

)2]
< ∞ and E

[∫ T

0

∣∣σ(t,ω,0, δ0)
∣∣2 dt

]
< ∞,

and Lipschitz in the sense that ∃L > 0 such that ∀t ∈ [0, T ], ∀ω ∈ 
, ∀x, x′ ∈ R
d

and ∀μ,μ′ ∈ P2(R
d) we have that∣∣b(t,ω, x,μ) − b

(
t,ω, x′,μ′)∣∣+ ∣∣σ(t,ω, x,μ) − σ

(
t,ω, x′,μ′)∣∣

≤ L
(∣∣x − x′∣∣+ W(2)(μ,μ′)).

Suppose further that X(0) ∈ L2(
,F0,P;Rd) is a square integrable random vari-
able which is independent of the Brownian motion. Then there exists a unique so-
lution for Y ∈ S2([0, T ];Rd) to the MV-SDE (3.1) and LY

0 ∈ P2(R
d) where LY

t is
the probability distribution of the random variable Y(t).

PROOF. For b(·,0, δ0) satisfying E[∫ T
0 |b(t,ω,0, δ0)|2 dt] < ∞, the result is

known, for example, [7], Theorem 1.7. A close inspection of that proof shows that
this condition is not sharp. In particular, the result holds with the slightly weaker
integrability condition found in the statement of the theorem we present here. The
verification is straightforward and we do not carry it out. �

We extend the previous result to the locally Lipschitz case; see [32] for other
results. We work with general monotonicity assumptions without imposing coer-
civity restrictions. We also sharpen the integrability assumptions and leave it to the
reader to verify that the proof in [7] can be sharpened.

ASSUMPTION 3.2. Let p ≥ 2. The progressively measurable maps b :
[0, T ] × 
 × R

d × P2(R
d) → R

d and σ : [0, T ] × 
 × R
d × P2(R

d) → R
d×d ′

satisfy that ∃L > 0 such that:

1. Y(0) ∈ Lp(F0;Rd;P) be independent of the Brownian motion.
2. Integrability: b and σ satisfy

E

[(∫ T

0

∣∣b(t,0, δ0)
∣∣dt

)p]
,E

[∫ T

0

∣∣σ(t,0, δ0)
∣∣2 dt)

p
2

]
< ∞,

3. σ is Lipschitz: ∀t ∈ [0, T ], ∀x, x′ ∈ R
d and ∀μ,μ′ ∈ P2(R

d) we have∣∣σ(t, x,μ) − σ
(
t, x′,μ′)∣∣≤ L

(∣∣x − x′∣∣+ W(2)(μ,μ′)),
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4. b satisfies the monotone growth condition in x and is Lipschitz in μ: ∀t ∈
[0, T ], ∀x, x ′ ∈ R

d and ∀μ,μ′ ∈ P2(R
d) we have that〈

x − x′, b(t, x,μ) − b
(
t, x′,μ

)〉
Rd ≤ L|x − y|2 and∣∣b(t, x,μ) − b

(
t, x,μ′)∣∣≤ LW(2)(μ,μ′),

5. b is Locally Lipschitz with polynomial growth in x: ∃q ∈ N such that q > 1
and ∀t ∈ [0, T ], ∀μ ∈ P2(R

d), ∀x, x′ ∈ R
d we have∣∣b(t, x,μ) − b

(
t, x′,μ

)∣∣≤ L
(
1 + |x|q−1 + ∣∣x′∣∣q−1)∣∣x − x′∣∣.

THEOREM 3.3. Let p ≥ 2. Recall the dynamics of Y given by (3.1), where the
drift and diffusion coefficients b, σ and initial RV Y(0) satisfy Assumption 3.2 with
p ≥ 2. Then there exists a unique solution Y ∈ Sp ∩ S2 to (3.1) and ∃C > 0 such
that

E

[
sup

t∈[0,T ]
∣∣Y(t)

∣∣p]≤ C

(
E
[∣∣Y(0)

∣∣p]+E

[(∫ T

0

∣∣b(t,0, δ0)
∣∣dt

)p]

+E

[(∫ T

0

∣∣σ(s,0, δ0)
∣∣2 ds

)p
2
])

eCT .

PROOF. Consider the operator

� : P2
(
C
([0, T ],Rd))→ P2

(
C
([0, T ],Rd)),

where �(μ) = LYμ
denotes the law of the SDE’s solution Yμ with dynamics

dYμ(t) = b
(
t, Yμ(t),μt

)
dt + σ

(
t, Yμ(t),μt

)
dW(t), Yμ(0) = Y(0).

We start by showing that given some μ, a solution to the above SDE exists. Let
μ ∈ P2(C([0, T ],Rd)). Define

b̂μ(t, x) = b(t, x,μt), σ̂ μ(t, x) = σ(t, x,μt).

Then we have

E

[(∫ T

0

∣∣b̂μ(t,0)
∣∣dt

)p]

≤ E

[(∫ T

0

∣∣b(t,0, δ0)
∣∣+ L · W(2)(μt , δ0) dt

)p]

≤ 2p−1
E

[(∫ T

0

∣∣b(t,0, δ0)
∣∣dt

)p]
+ 2p−1LpT p · W(2)(μ, δ0)

p < ∞,

and similarly

E

[(∫ T

0

∣∣σ̂ μ(t,0)
∣∣2 dt

)p
2
]

≤ 2p−1
E

[(∫ T

0

∣∣σ(t,0, δ0)
∣∣2 dt

)p
2
]

+ 2p−1LpT p · W(2)(μ, δ0)
p < ∞.
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Also we have that b̂μ(t, x) is locally Lipschitz, satisfies a monotone growth con-
dition and σ̂ μ(t, x) has Lipschitz growth in its spacial variables. Therefore, by the
methods in [28], Theorem 3.6, we have that a unique solution exists in Sp([0, T ]).
Since p ≥ 2, we can conclude that LYμ ∈ P2(C([0, T ],Rd)).

Using Itô’s formula, we have that

W(2)(�(μ),�(ν)
)2

≤ E

[
sup

t∈[0,T ]
∣∣Yμ(t) − Y ν(t)

∣∣2]

≤ 2E
[∫ T

0

∣∣〈Yμ(s) − Y ν(s), b
(
s, Yμ(s),μs

)− b
(
s, Y ν(s), νs

)〉∣∣ds

]
(3.2)

+ 2E
[

sup
t∈[0,T ]

∫ t

0

〈
Yμ(s) − Y ν(s),(3.3)

[
σ
(
s, Yμ(s),μs

)− σ
(
s, Y ν(s), νs

)]
dW(s)

〉]

+E

[∫ T

0

∣∣σ (s, Yμ(s),μs

)− σ
(
s, Y ν(s), νs

)∣∣2 ds

]
.(3.4)

First, we apply the monotonicity and Lipschitz properties to get

(3.2) ≤ 2LE

[∫ T

0

∣∣Yμ(s) − Y ν(s)
∣∣2 ds

]

+ 2LE

[∫ T

0

∣∣Yμ(s) − Y ν(s)
∣∣W(2)(μs, νs) ds

]

≤ 2L

∫ T

0
E
[∥∥Yμ − Y ν

∥∥∞,s

]
ds + E[‖Yμ − Y ν‖2∞]

3

+ 3L2
∫ T

0
W(2)(μs, νs)

2 ds.

Second, we use the Burkholder–Davis–Gundy inequality and Lipschitz proper-
ties,

(3.3) ≤ 2E
[(∫ T

0

∣∣(Yμ(s) − Y ν(s)
)T (

σ
(
s, Yμ(s),μs

)− σ
(
s, Y ν(s), νs

))∣∣2 ds

) 1
2
]

≤ 2E
[∥∥Yμ − Y ν

∥∥∞
(∫ T

0

∣∣σ (s, Yμ(s),μs

)− σ
(
s, Y ν(s), νs

)∣∣2 ds

) 1
2
]

≤ E[‖Yμ − Y ν‖2∞]
3

+ 6L2
∫ T

0
E
[∥∥Yμ − Y ν

∥∥2
∞,s

]
ds

+ 6L2
∫ T

0
W(2)(μs, νs)

2 ds.
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Third, using the Lipschitz properties again we get

(3.3) ≤ 2L2
∫ T

0
E
[∥∥Yμ − Y ν

∥∥2
∞,s

]
ds + 2L2

∫ T

0
W(2)(μs, νs)

2 ds.

Combining (3.2), (3.3) and (3.4) gives that

E[‖Yμ − Y ν‖2∞]
3

≤ (
8L2 + 2L

) ∫ T

0
E
[∥∥Yμ − Y ν

∥∥2
∞,s

]
ds

+ 11L2
∫ T

0
W(2)(μs, νs)

2 ds.

Applying Grönwall to this yields a control to the initial inequality

W(2)(�(μ),�(ν)
)2 ≤E

[∥∥Yμ − Y ν
∥∥2
∞
]≤ K

∫ T

0
W(2)

s (μ, ν)2 ds,

where K = 11L2e(24L2+6L)T . Applying � inductively j times yields

W(2)(�j(μ),�j (ν)
)2 ≤ Kj

∫ T

0

∫ t1

0
· · ·

∫ tj−1

0
W

(2)
tj

(μ, ν)2 dt1 · · ·dtj

≤ Kj
∫ T

0

(T − tj )
j−1

(j − 1)! W
(2)
tj

(μ, ν)2 dtj

≤ KjT j

j ! W(2)(μ, ν)2.

Choosing j large enough ensures that �j is a contraction operator. Therefore, �

has a unique fixed point. Hence we conclude that the Picard sequence of random
processes Y 0(t) = Y(0) and

dYn(t) = b
(
t, Y n(t),LYn−1

t

)
dt + σ

(
t, Y n(t),LYn−1

t

)
dW(t),

converges in S2 and the limit solves the MV-SDE (3.1). From this we conclude
that a unique solution exists.

Step 2: Moment calculations. Recall the dynamics of Y from (3.1). By Itô’s
formula, we have∣∣Y(t)

∣∣p = ∣∣Y(0)
∣∣p + p

∫ t

0

∣∣Y(s)
∣∣p−2〈

Y (s), b
(
s, Y (s),LY

s

)〉
ds

+ p

∫ t

0

∣∣Y(s)
∣∣p−2〈

Y (s), σ
(
s, Y (s),LY

s

)
dW(s)

〉
+ p

2

∫ t

0

∣∣Y(s)
∣∣p−2∣∣σ (s, Y (s),LY

s

)∣∣2 ds

+ p(p − 2)

2

∫ t

0

∣∣Y(s)
∣∣p−4 · ∣∣Y(s)T σ

(
s, Y (s),LY

s

)∣∣2 ds.
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Therefore,

E
[‖Y‖p∞

]= E
[∣∣Y(0)

∣∣p]
+ pE

[∫ T

0

∣∣Y(s)
∣∣p−2∣∣〈Y (s), b

(
s, Y (s),LY

s

)〉∣∣ds

]
(3.5)

+ pE

[
sup

0≤t≤T

∫ t

0

∣∣Y(s)
∣∣p−2〈

Y (s), σ
(
s, Y (s),LY

s

)
dW(s)

〉]
(3.6)

+ p

2
E

[∫ T

0

∣∣Y(s)
∣∣p−2∣∣σ (s, Y (s),LY

s

)∣∣2 ds

]
(3.7)

+ p(p − 2)

2
E

[∫ T

0

∣∣Y(s)
∣∣p−4 · ∣∣Y(s)T σ

(
s, Y (s),LY

s

)∣∣2 ds

]
.(3.8)

By the triangle property, we have

(3.5) ≤ pE

[∫ T

0

∣∣Y(s)
∣∣p−2〈

Y (s), b
(
s, Y (s),LY

s

)− b
(
s,0,LY

s

)〉
ds

]
(3.9)

+ pE

[∫ T

0

∣∣Y(s)
∣∣p−2〈

Y (s), b
(
s,0,LY

s

)− b(s,0, δ0)
〉
ds

]
(3.10)

+ pE

[∫ T

0

∣∣Y(s)
∣∣p−2〈

Y (s), b(s,0, δ0)
〉
ds

]
.(3.11)

Using the monotone property of b yields (3.9) ≤ pL
∫ T

0 E[‖Y‖p∞,s]ds. Using the
Lipschitz property of b in the distribution variable and Lemma 2.3 yields

(3.10) ≤ pL

∫ T

0
E
[‖Y‖p−1∞,s

]
E
[‖Y‖2∞,s

] 1
2 ds

≤ pL

∫ T

0

(
(p − 1)E[‖Y‖p−1∞,s ] p

p−1

p
+ E[‖Y‖2∞,s]

p
2

p

)
ds

≤ pL

∫ T

0
E
[‖Y‖p∞,s

]
ds.

Using the integrability properties of b yields

(3.11) ≤ E

[
‖Y‖p−1∞

∫ T

0

∣∣b(s,0, δ0)
∣∣ds

]

≤ E[‖Y‖p∞]
n

+ np−1(p − 1)p−1
E

[(∫ T

0

∣∣b(s,0, δ)
∣∣ds

)p]
,

where n ∈ N which will be chosen later.
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By the Burkholder–Davis–Gundy inequality, the Lipschitz properties and
Lemma 2.3 we have

(3.6) ≤ pC1E

[(∫ T

0

∣∣Y(s)
∣∣2p−4∣∣Y(s)T σ

(
s, Y (s),LY

s

)∣∣2 ds

) 1
2
]

≤ pC1E

[
‖Y‖

p
2∞,s

(∫ T

0

∣∣Y(s)
∣∣p−2 · ∣∣σ (s, Y (s),LY

s

)∣∣2 ds

) 1
2
]

≤ E[‖Y‖p∞,s]
n

+ p2C2
1nE

[∫ T

0

∣∣Y(s)
∣∣p−2 · ∣∣σ (s, Y (s),LY

s

)∣∣2 ds

]

≤ E[‖Y‖p∞,s]
n

+ 3p2C2
1nL2

(∫ T

0
E
[‖Y‖p∞,s

]
ds

+
∫ T

0
E
[‖Y‖p−2∞,s

] ·E[‖Y‖2∞,s

]
ds

)(3.12)

+ 3p2C2
1nE

[∫ T

0

∣∣Y(s)
∣∣p−2∣∣σ(s,0, δ0)

∣∣2 ds

]
.(3.13)

Terms (3.12) are dealt with in the same way as terms (3.9) and (3.10). For (3.13),
we proceed as follows:

(3.13) ≤ E

[
‖Y‖p−2∞

(
3p2C2

1n

∫ T

0

∣∣σ(s,0, δ0)
∣∣2 ds

)]

≤ E[‖Y‖p∞]
n

+ 2 · 3
p
2 · np−1C

p
1 (p − 2)

p−2
2 p

p
2 E

[(∫ T

0

∣∣σ(s,0, δ0)
∣∣2 ds

)p
2
]
.

Third, we have

(3.7) + (3.8) ≤ p(p − 1)

2
E

[∫ T

0

∣∣Y(s)
∣∣p−2∣∣σ (s, Y (s),LY

s

)∣∣2 ds

]

≤ 3p(p − 1)L2

2

(∫ T

0
E
[‖Y‖p∞,s

]
ds

+
∫ T

0
E
[‖Y‖p−2∞,s

] ·E[‖Y‖2∞,s

]
ds

)

+ 3p(p − 1)

2
E

[
‖Y‖p−2∞

∫ T

0

∣∣σ(s,0, δ0)
∣∣2 ds

]
(3.14)

and

(3.14) ≤ E[‖Y‖p∞]
n

+
(

n(p − 2)

2

)p−2
2

· (3(p − 1)
)p

2 E

[(∫ T

0

∣∣σ(s,0, δ0)
∣∣2 ds

)p
2
]
.
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Hence we choose n = 5 and this can all be rearranged to get

E[‖Y‖p∞]
5

≤ E
[|Y(0|p]+ C̃1E

[(∫ T

0

∣∣σ(s,0, δ0)
∣∣2 ds

)p
2
]

+ C̃2E

[(∫ T

0

∣∣b(s,0, δ0)
∣∣ds

)p]
+ C̃3

∫ T

0
E
[‖Y‖p∞,s

]
ds,

where the constants C̃1, C̃2 and C̃3 are dependent only on p and L. Applying
Grönwall’s lemma provides us with the p moment upper bound

E
[‖Y‖p∞

]≤ 5
(
E
[|Y(0|p]+ C̃1E

[(∫ T

0

∣∣σ(s,0, δ0)
∣∣2 ds

)p
2
]

+ C̃2E

[(∫ T

0

∣∣b(s,0, δ0)
∣∣ds

)p])
eC̃3T . �

3.2. Continuity in time behavior. We next give results describing time-
continuity for the process and its law in the appropriate topologies.

PROPOSITION 3.4. Let Y be the solution of (3.1) satisfying Assumption 3.2
where q ∈ N is the order of the polynomial growth of b. Let n ∈ N and n ≥ 2 and
additionally assume that

E

[
sup

t∈[0,T ]
∣∣b(t,0, δ0)

∣∣nq
]
,E

[
sup

t∈[0,T ]
∣∣σ(t,0, δ0)

∣∣ nq
2
]
< ∞.

Then for every t, s ∈ [0, T ]
W(n)(LY

t ,LY
s

)≤ E
[∣∣Y(t) − Y(s)

∣∣n] 1
n � |t − s| 1

2 .

PROOF. The proposition’s conditions mean that by the arguments in the proof
of Theorem 3.3 we have E[supt∈[0,T ] |Y(t)|nq ] < ∞. Take 0 ≤ s ≤ t ≤ T < ∞ and
a natural number n ≥ 2. We have∣∣Y(t) − Y(s)

∣∣n ≤
∣∣∣∣∫ t

s
b
(
r, Y (r),LY

r

)
dr +

∫ t

s
σ
(
r, Y (r),LY

r

)
dW(r)

∣∣∣∣n.
We use the growth condition of b and the Lipschitz property of σ and apply the
Minkowski inequality to get

E
[∣∣Y(t) − Y(s)

∣∣n] 1
n

≤ E

[∣∣∣∣∫ t

s
b
(
r, Y (r),LY

r

)
dr

∣∣∣∣n] 1
n +E

[∣∣∣∣∫ t

s
σ
(
r, Y (r),LY

r

)
dW(r)

∣∣∣∣n] 1
n

≤ E

[∣∣∣∣∫ t

s
|b(r, Y (r),LY

r

)
dr

∣∣∣∣n] 1
n +E

[∣∣∣∣∫ t

s

∣∣σ (r, Y (r),LY
r

)∣∣2 dr

∣∣∣∣ n
2
] 1

n
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≤ |t − s|E[(∥∥b(·,0, δ0)
∥∥∞ + L‖Y‖q∞ +E

[‖Y‖2] 1
2
)n] 1

n

+ |t − s| 1
2E
[(∥∥σ(·,0, δ0)

∥∥∞ + L‖Y‖∞ +E
[‖Y‖2∞

] 1
2
)n] 1

n

� |t − s| 1
2 .

From the first part of the proposition, we have E[|Y(t) − Y(s)|2p] � |t − s|p .
The results now follow by applying Kolmogorov’s continuity criterion in a stan-
dard fashion. �

COROLLARY 3.5. Let Y be the solution of (3.1) under Assumption 3.2 and
suppose additionally that ∀n ∈ N we have

E
[∥∥b(·,0, δ0)

∥∥n
∞
]
< ∞,E

[∥∥σ(·,0, δ0)
∥∥n
∞
]
< ∞.

Then there is a modification of Y(·), Ỹ (·), which is sample-continuous, almost
surely equal to Y(·) and α-Hölder continuous for α < 1/2.

PROOF. Under these stronger conditions, we have ∀n ∈ N that E[|Y(t) −
Y(s)|n] � |t − s|n/2. Therefore, we apply the Kolmogorov continuity criterion
from [33], Theorem 2.2.3, and conclude. �

The final result concerns C1-regularity (in time) of the expected value of maps
of the MV-SDE’s solution.

PROPOSITION 3.6 (Regularity in time). Let φ ∈ C1,2([0, T ] × R
d) and sup-

pose that φ, its first derivative, ∇xφ(·, ·), and Hessian, H [φ](·, ·), have polynomial
growth such that for some r > 0 and some K > 0,

max
{∣∣∣∣∂φ

∂t
(t, y)

∣∣∣∣, ∣∣∇xφ(t, y)
∣∣, ∣∣H [φ](t, y)

∣∣}≤ K
(
1 + |y|r).

Suppose that Y is the solution to (3.1) under Assumptions 3.2 with p := max{r +q,

2r + 2} (q is the polynomial growth of b) and hence Y ∈ Sp .
Then t �→ E[φ(t, Y (t))] ∈ C1 and

∂tE
[
φ
(
t, Y (t)

)]= E

[
∂φ

∂t

(
t, Y (t)

)]+E
[∇φ

(
t, Y (t)

)T · b(t, Y (t),LY
t

)]
+E

[
Tr
(
σ
(
t, Y (t),LY

t

)T · H [φ](t, Y (t)
) · σ (t, Y (t),LY

t

))]
.

PROOF. Use Itô’s formula on φ(t, Y (t)), integrate over [0, t] and take ex-
pectations. By the integrability/growth assumptions on b and σ , we have Y ∈
Sp and in particular Y ∈ S2r+2. Combining with the polynomial growth of
∇φ(·, ·) in its spatial variable, we easily conclude that the stochastic integral
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0 ∇φ(s, Y (s))σ (s, Y (s),LY

s )) dW(s) is a square-integrable martingale, and hence
it vanishes under the expectation.

In the previous results, we have shown continuity in time of Y and LY in the
appropriate metrics. This, combined with the continuity of b and σ in their vari-
ables plus the integrability results, allows to apply Fubini and swap expectations
and integrals. Lastly, using the continuity/integrability properties of the involved
terms again (notice that here one requires Y ∈ Sr+q ), one can compute the time
derivative of t �→ E[φ(t, Y (t))] via the Leibniz differentiation rule for integrals.
This yields the lemma’s formula. �

4. Large deviations principle. In this section, we investigate the family of
d-dimensional MV-SDEs indexed to a parameter ε > 0,

Xx
ε (t) = x +

∫ t

0
bε

(
s,Xx

ε (s),LXx
ε

s

)
ds

+ √
ε

∫ t

0
σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s).

(4.1)

We derive two types of LDP for the above SDE. The first is an LDP for the supre-
mum norm while the second is an LDP for the Hölder-norm. Throughout we make
use of several known sources: [16], [27] and [3]. The main contribution of this
section apart from the LDPs themselves, are the techniques needed to deal directly
with the law of the solution process inside the coefficients avoiding measure argu-
ments; time dependency of the coefficients is included. For technical convenience,
we work on the time interval [0,1]. The extension to the interval [0, T ] is straight-
forward.

ASSUMPTION 4.1. Let ε > 0. Let b, bε : [0,1] ×R
d ×P2(R

d) → R
d , σ,σε :

[0,1] ×R
d ×P2(R

d) →R
d×d ′

(deterministic maps) and x ∈ R
d .

As ε ↘ 0, let the maps bε converge uniformly to b and σε converge uniformly
to σ . Let b and σ satisfy Assumption 3.2 with the additional restrictions that there
exists M > 0 such that σ is bounded by M and that there exists β ∈ (0,1] such
that for any s, s ′ ∈ [0,1], for any y ∈ R

d and for all μ ∈ P2(R
d), we have∣∣σ(s, y,μ) − σ

(
s′, y,μ

)∣∣≤ L
∣∣s − s′∣∣β,

∣∣b(s, y,μ) − b
(
s′, y,μ

)∣∣≤ L
∣∣s − s′∣∣β.

REMARK 4.2. For this section, we only worry about the conditions on the
coefficients b and σ . However, we will additionally assume that bε and σε have
adequate conditions to ensure the existence and uniqueness of a solution to the
McKean–Vlasov SDE.

4.1. Large deviations principle with the supremum norm. To study (4.1) and
establish an LDP in the supremum norm for (4.1), we will need to consider several
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approximations for it. We start by considering the following ordinary differential
equation:

(4.2) ψ̇(t) = b
(
t,ψ(t), δψ(t)

)
, ψ(0) = x.

Indeed, informally, when ε ↘ 0 in (4.1), the diffusion term vanishes and we have

Xx
0 (t) = x +

∫ t

0
b
(
s,Xx

0 (s),LXx
0

s

)
ds.

Of course, since x is deterministic, we deduce that LXx
0· is a Dirac measure cen-

tered on the path Xx
0 (·). Thus, the ordinary differential equation (4.2) is, from a

heuristically standpoint, a good approximation of the stochastic differential equa-
tion (4.1) as ε is small. Moreover, the law of XX

ε (t) can be approximated by δψ(t).
We thus define the following equation (which is closer to a standard SDE):

(4.3) Yx
ε (t) = x +

∫ t

0
b
(
s, Y x

ε (s), δψ(s)

)
ds + √

ε

∫ t

0
σ
(
s, Y x

ε (s), δψ(s)

)
dW(s).

However, (4.3) has a diffusion coefficient which is not constant. As a consequence,
we need to discretize

Yx
ε,m(t) = x +

∫ t

0
b

(�ms�
m

,Yx
ε

(�ms�
m

)
, δ

ψ(
�ms�
m

)

)
ds

+ √
ε

∫ t

0
σ

(�ms�
m

,Yx
ε

(�ms�
m

)
, δ

ψ(
�ms�
m

)

)
dW(s),

(4.4)

where m ∈ N and will go to infinity. Here, �ms� stands for the floor of ms. Lastly,
we state a simple result concerning the solvability of (4.2).

LEMMA 4.3. Under Assumption 4.1, there exists a unique solution ψ ∈
C([0,1]) to (4.2). Moreover, the map t → ψ(t) is Lipschitz continuous.

PROOF. Existence of a local solution comes from the Peano existence theo-
rem. Uniqueness follows from the monotonicity and Lipschitz/locally Lipschitz
properties. In order to get a global solution, we consider the square of the solution,
use the monotonicity condition and Grönwall to argue

sup
t∈[0,T ]

∣∣ψ(t)
∣∣= |x| + 2 sup

t∈[0,T ]

∫ t

0

〈
ψ(s), b

(
s,ψ(s), δψ(s)

)〉
ds

≤ |x| +
∫ T

0

(
2L2‖ψ‖∞,s + ∣∣b(s,0, δ0)

∣∣)ds

≤
(
|x| +

∫ T

0

∣∣b(s,0, δ0)
∣∣ds

)
e2LT .
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From this we see∣∣ψ(t) − ψ(s)
∣∣≤ ∫ t

s

(∥∥b(·,0, δ0)
∥∥∞ + L

(
1 + ‖ψ‖q∞

)+ L‖ψ‖∞
)
dr

≤ O
(|t − s|),

which yields the Lipschitz continuity. �

4.1.1. The main result. We now state the main theorem concerning a LDP for
(4.1) in the topology of the uniform norm and prove it in the remaining subsections.

THEOREM 4.4. Under the hypotheses of the section, the diffusion XX
ε satisfies

a large deviations principle in C([0,1]) equipped with the topology of the uniform
norm with the good rate function

I x(f ) := inf
1

2

∫ t

0

∣∣ġ(t)
∣∣2 dt,

the infimum is taken over the set{
g ∈ H⊗d ′ : f (t) = x +

∫ t

0
b
(
s, f (s), δψ(s)

)
ds +

∫ t

0
σ
(
s, f (s), δψ(s)

)
ġ(s) ds

}
,

and where ψ is the solution to (4.2).

The ODE appearing in the infimum is easily recognizable as the skeleton of
SDE (4.3). Lastly, if σ is a square matrix and if a := σσT is uniformly strictly
positive, the preceding formula for the rate function simplifies into

I x(ϕ) := 1

2

∫ t

0

(
ϕ̇(t) − b

(
t, ϕ(t), δψ(t)

))T
× a−1(t, f (t), δψ(t)

)(
ϕ̇(t) − b

(
t, ϕ(t), δψ(t)

))
dt.

Methodology. From a methodological point of view, to show that the family
(XX

ε )ε>0 satisfies a LDP in the supremum norm topology, we first show that the
approximation (Y x

ε,m)ε>0,m∈N given in (4.4) satisfies a LDP with the good rate
function I x [defined below in (4.5)]. Then we prove that (Y x

ε,m)ε>0,m∈N is expo-
nentially equivalent to (Y x

ε )ε>0 as m goes to infinity and ε goes to zero and since
LDPs do not distinguish between exponentially equivalent families (see, e.g., [26],
Theorem 2.21), we deduce that (Y x

ε )ε>0 satisfies a LDP with the good rate func-
tion I x . Finally, we show that (Xx

ε )ε>0 and (Y x
ε )ε>0 are exponentially equivalent

as ε goes to zero. This implies, via the same argument, that (Xx
ε )ε>0 satisfies a

LDP with the good rate function I x . We make use of standard results from [16],
some of which are recalled in the Appendix below.
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4.1.2. Large deviations principle for Yx
ε . We follow [16] plus the techniques

used in [27] for having a drift coefficient which is only locally Lipschitz, but ade-
quately adapted to the current setting MV-SDE setting.

PROPOSITION 4.5. Under the hypotheses of the section, the family of diffu-
sions (YX

ε )ε>0 satisfies a large deviations principle in C([0,1]) equipped with the
topology of the uniform norm with the good rate function

I x(f ) := inf
{g∈H⊗d′ :f (t)=x+∫ t

0 b(s,f (s),δψ(s)) ds+∫ t
0 σ(s,f (s),δψ(s))ġ(s) ds}

1

2

×
∫ 1

0

∣∣ġ(t)
∣∣2 dt,

(4.5)

ψ is the unique solution to (4.2).

Before proving Proposition 4.5, we first show that the approximation
(Yε,m)ε>0,m∈N satisfies a large deviation principle with the good rate function I x

m

defined as

I x
m(f ) := inf

1

2

∫ 1

0

∣∣ġ(t)
∣∣2 dt,

where the infimum is taken over the set{
g ∈ H⊗d ′ : f (t) = x +

∫ t

0
b

(�ms�
m

,f

(�ms�
m

)
, δ

ψ(
�ms�
m

)

)
ds

+
∫ t

0
σ

(�ms�
m

,f

(�ms�
m

)
, δ

ψ(
�ms�
m

)

)
ġ(s) ds

}
.

This is an easy exercise using the contraction principle (see [16]) so the proof
is omitted. Let us just note that we need to introduce the map Fm defined via
h = Fm(g), where

h(t) = h

(
k

m

)
+ b

(
k

m
,h

(
k

m

)
, δ

ψ( k
m

)

)(
t − k

m

)
+ σ

(
k

m
,h

(
k

m

)
, δ

ψ( k
m

)

)(
g(t) − g

(
k

m

))
,

for t ∈ [ k
m

, k+1
m

], 0 ≤ k ≤ m − 1, and h(0) = x.
Proposition 4.5 follows by showing exponential equivalence as ε goes to 0 and

m goes to infinity of the the families (YX
ε )ε>0 and (Y x

ε,m)ε>0,m∈N.

LEMMA 4.6. For any δ > 0, we have

lim
m→+∞ lim sup

ε→0
ε log

(
P
[∥∥Yx

ε − Yx
ε,m

∥∥∞ > δ
])= −∞.
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PROOF. Fix δ > 0. Let zt := Yx
ε,m(t)−YX

ε (t), and for any ρ,R > 0, define the
stopping time

τ := min
{
inf
{
t ≥ 0 : ∣∣Yx

ε,m(t)
∣∣≥ R + 1

}
, inf

{
t ≥ 0 : ∣∣YX

ε (t)
∣∣≥ R + 1

}}
,

then

τ1 := min
{

1, inf
{
t ≥ 0 :

∣∣∣∣Yx
ε

(�mt�
m

)
− Yx

ε (t)

∣∣∣∣≥ ρ

}
, τ

}
.

The process (zt )t∈[0,1] is of the form (A.1), with z0 = 0,

bt := b

(�mt�
m

,Yx
ε

(�mt�
m

)
, δ

ψ(
�mt�
m

)

)
− b

(
t, Y x

ε (t), δψ(t)

)
,

σt := σ

(�mt�
m

,Yx
ε

(�mt�
m

)
, δ

ψ(
�mt�
m

)

)
− σ

(
t, Y x

ε (t), δψ(t)

)
.

Thus, by the local Lipschitz continuity of b, by the global Lipschitz continuity of
σ and the definition of τ1, it follows that Lemma A.1 is applicable here. Indeed,
we have

|σt | =
∣∣∣∣σ(�mt�

m
,YX

ε

(�mt�
m

)
, δ

ψ(
�mt�
m

)

)
− σ

(
t, YX

ε (t), δψ(t)

)∣∣∣∣
≤
∣∣∣∣σ(�mt�

m
,YX

ε

(�mt�
m

)
, δ

ψ(
�mt�
m

)

)
− σ

(�mt�
m

,YX
ε

(�mt�
m

)
, δψ(t)

)∣∣∣∣
+
∣∣∣∣σ(�mt�

m
,YX

ε

(�mt�
m

)
, δψ(t)

)
− σ

(�mt�
m

,YX
ε (t), δψ(t)

)∣∣∣∣
+
∣∣∣∣σ(�mt�

m
,YX

ε (t), δψ(t)

)
− σ

(
t, YX

ε (t), δψ(t)

)∣∣∣∣
≤ L

∣∣∣∣ψ(�mt�
m

)
− ψ(t)

∣∣∣∣+ L

mβ
+ L|zt |

≤ M
(
ρ(m)2 + |zt |2) 1

2 ,

with M large enough and ρ(m) := max{supt∈[0,1] |ψ(
�mt�
m

) − ψ(t)|, 1
mβ } which,

using the continuity of ψ , goes to 0 as m goes to infinity.
We argue as follows for the drift coefficient |bt |:

|bt | =
∣∣∣∣b(�mt�

m
,YX

ε

(�mt�
m

)
, δ

ψ(
�mt�
m

)

)
− b

(
t, YX

ε (t), δψ(t)

)∣∣∣∣
≤
∣∣∣∣b(�mt�

m
,YX

ε

(�mt�
m

)
, δ

ψ(
�mt�
m

)

)
− b

(�mt�
m

,YX
ε

(�mt�
m

)
, δψ(t)

)∣∣∣∣
+
∣∣∣∣b(�mt�

m
,YX

ε

(�mt�
m

)
, δψ(t)

)
− b

(�mt�
m

,YX
ε (t), δψ(t)

)∣∣∣∣
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+
∣∣∣∣b(�mt�

m
,YX

ε (t), δψ(t)

)
− b

(
t, YX

ε (t), δψ(t)

)∣∣∣∣
≤ L

∣∣∣∣ψ(�mt�
m

)
− ψ(t)

∣∣∣∣+ L

mβ
+ LR+1|zt |

≤ BR

(
ρ(m)2 + |zt |2) 1

2 ,

with BR large enough. This yields for any δ > 0 and any 0 < ε ≤ 1,

ε log
(
P

[
sup

t∈[0,τ1]
∣∣Yx

ε,m(t) − YX
ε (t)

∣∣≥ δ
])

≤ KR + log
(

ρ(m)2

ρ(m)2 + δ2

)
.

Hence, by considering first ε → 0 and then m → +∞,

lim
m→+∞ lim sup

ε→0+
ε log

(
P

[
sup

t∈[0,τ1]
∣∣Yx

ε,m(t) − YX
ε (t)

∣∣≥ δ
])

= −∞.

Now, since

(4.6)
{∥∥Yx

ε,m − YX
ε

∥∥∞ > δ
}⊂ {τ1 < 1} ∪

{
sup

t∈[0,τ1]
∣∣Yx

ε,m(t) − YX
ε (t)

∣∣≥ δ
}
,

the lemma is proved as soon as we show that for all ρ > 0 and for any R > 0,

lim
m→∞ lim sup

ε→0
ε log

(
P[τ1 < 1])= −∞.

To this end, observe first that for t ≤ τ1∣∣∣∣YX
ε

(�mt�
m

)
− YX

ε (t)

∣∣∣∣
≤ CR

[
1

m
+ √

ε max
0≤k≤m−1

sup
0≤s≤ 1

m

∣∣∣∣W(
k

m
+ s

)
− W

(
k

m

)∣∣∣∣],
where CR is the maximum between the uniform bound of σ , the local bound (on
the ball of center zero and radius R + 1) of b and the uniform bound of b and σ

for the measure variable. Therefore, for all m > 4C(R)/ρ,

P

[
sup

0≤t≤τ1

∣∣∣∣YX
ε

(�mt�
m

)
− YX

ε (t)

∣∣∣∣≥ ρ

2

]
≤ mP

[
sup

0≤s≤ 1
m

∣∣W(s)
∣∣≥ ρ

2 − CR
m√

εCR

]

≤ 4dm exp
(
−m

(
ρ
2 − CR

m
)2

2dεC2
R

)
,

where the second inequality is the bound of Lemma A.2.
By taking δ sufficiently small, if YX

ε exits the ball of center 0 and of radius
R + 1, then, with high probability [quantified by the limit (4.6)], the process Yx

ε,m

exits the ball of center 0 and of radius R. Consequently, to close the proof it is
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sufficient to prove that the probability that Yx
ε,m leaves the ball of center 0 and

radius R is very small as ε goes to zero.
Recall that (Y x

ε,m)ε>0 satisfies a large deviations principle with the good rate
function I x

m defined previously, and hence we can quantify the probability of exit-
ing from aforementioned ball. We remark that the infimum of I x

m on the set of paths
exiting from the ball of center 0 and radius R goes to infinity as R goes to infinity
provided that m is sufficiently large. This remark can be obtained as follows. We
consider f0 := Fm(0) and f which is a path starting from x and exiting from the
ball of center 0 and radius R. By g, we denote the function such that f = Fm(g).
We dominate |f (t) − f0(t)| as follows:∣∣f (t) − f0(t)

∣∣� ∫ t

0

(
1 + ∣∣f (s)

∣∣q + ∣∣f0(s)
∣∣q)∣∣f (s) − f0(s)

∣∣∣∣ġ(s)
∣∣ds

+
∫ t

0

∣∣f (s) − f0(s)
∣∣∣∣ġ(s)

∣∣ds

+
∫ t

0

∣∣∣∣σ(�ms�
m

,f0

(�ms�
m

)
, δ

ψ(
�ms�
m

)

)∣∣∣∣∣∣ġ(s)
∣∣ds,

by using the properties on b (locally Lipschitz with polynomial growth) and σ

(uniformly Lipschitz). However, the last quantity in the integral can be bounded
by C|ġ(s)| where C only depends on the function f0. In the same vein, we obtain∣∣f (t) − f0(t)

∣∣� ∫ t

0

(
1 + ∣∣f (s) − f0(s)

∣∣q)∣∣f (s) − f0(s)
∣∣∣∣ġ(s)

∣∣ds +
∫ t

0

∣∣ġ(s)
∣∣ds.

As ab ≤ 1
2a2 + 1

2b2, we get∣∣f (t) − f0(t)
∣∣� ∫ t

0

(
1 + ∣∣f (s) − f0(s)

∣∣2q)∣∣f (s) − f0(s)
∣∣2 ds +

∫ t

0

∣∣ġ(s)
∣∣2 ds,

since we work on a finite time interval. However, if ||f ||∞ ≥ R, then we have that
||f − f0||∞ ≥ ξ(R) with ξ(+∞) = +∞. A Grönwall argument suffices to prove
that it implies

∫ t
0 |ġ(s)|2 ds ≥ ζ(R) with ζ(+∞) = +∞. �

We now are able to prove Proposition 4.5.

PROOF OF PROPOSITION 4.5. Let F be defined on the space H⊗d ′
such that

f = F(g) is the unique solution of the integral equation

f (t) = x +
∫ t

0
b
(
s, f (s), δψ(s)

)
ds +

∫ t

0
σ
(
s, f (s), δψ(s)

)
ġ(s) ds.

The existence and the uniqueness of a continuous solution is a consequence of the
assumptions on b and σ and is standard.2 In view of Lemma 4.6, the proof of the

2Local existence of a solution to this ODE comes from Carathéodory’s existence theorem. Unique-
ness comes from the monotonicity and Lipschitz/locally Lipschitz properties. Finally, global exis-
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theorem is completed by combining Schilder’s theorem and Proposition A.3, as
soon as we show that for every α < ∞,

(4.7) lim
m→∞ sup

g:‖g‖
H⊗d′ ≤α

∥∥Fm(g) − F(g)
∥∥∞ = 0.

To this end, fix α < ∞ and g ∈ H⊗d ′
such that ||g||

H⊗d′ ≤ α. Let h = Fm(g),
f = F(g), and e(t) := |f (t) − h(t)|2. Then for all t ∈ [0,1],

h(t) = x +
∫ t

0
b

(�ms�
m

,h

(�ms�
m

)
, δ

ψ(
�ms�
m

)

)
ds

+
∫ t

0
σ

(�ms�
m

,h

(�ms�
m

)
, δ

ψ(
�ms�
m

)

)
ġ(s) ds.

By the Cauchy–Schwarz inequality and the local Lipschitz property on b and the
global Lipschitz property on σ ,

(4.8) sup
0≤t≤1

∣∣∣∣h(t) − h

(�mt�
m

)∣∣∣∣≤ (α + 1)Lαδ(m),

where δ(m) is independent of g for any m, and converges to zero as m goes to
infinity. To prove the existence of the constant Lα , we remark that {g : ‖g‖

H⊗d′ ≤
α} is a compact.

Applying the Cauchy–Schwarz inequality again, it follows by the β-Hölder time
continuity of b, σ , the Lipschitz and local Lipschitz continuity of b and the global
Lipschitz continuity of σ that

∣∣f (t) − h(t)
∣∣≤ Lα(α + 1)

√∫ t

0

∣∣∣∣f (s) − h

(�ms�
m

)∣∣∣∣2 ds

+ L

√∫ t

0

∣∣∣∣ψ(s) − ψ

(�ms�
m

)∣∣∣∣2 ds + Lα(α + 1) + L

mβ
.

Thus, due to (4.8) and the continuity of ψ ,∣∣f (t) − h(t)
∣∣2 = e(t) ≤ Kα

∫ t

0
e(s) ds + Kαδ(m),

with e(0) = Kαδ(m). Hence, by Grönwall’s lemma, e(t) ≤ Kαδ(m)2eKαt , and
consequently ∥∥F(g) − Fm(g)

∥∥∞ ≤√
Kαδ(m)e

Kα
2 ,

which establishes (4.7) and completes the proof. �

tence comes from considering the square of the solution and using the monotonicity condition to
obtain a linear growth upper bound condition which ensures the solution does not explode. The func-
tion f is 1/2-Hölder continuous.
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4.1.3. (YX
ε )ε>0 and (XX

ε )ε>0 are exponentially equivalent. In order to show
that (XX

ε )ε>0 satisfies a large deviations principle for the uniform norm with the
good rate function I x , it now is sufficient to prove that the two families of processes
(XX

ε )ε>0 and (YX
ε )ε>0 are exponentially equivalent.

PROPOSITION 4.7. For any δ > 0, we have

lim sup
ε→0

ε log
(
P

[
sup

0≤t≤1

∣∣XX
ε (t) − YX

ε (t)
∣∣≥ δ

])
= −∞.

PROOF. The proof is similar to the one of Proposition 4.6 and is also inspired
by the proof of [27], Theorem 3.4.

Without loss of generality, we may choose R > 0 such that x is in the ball of
center 0 and radius R + 1. We also assume that ψ(t) does not leave this ball up
to time 2. By σ ′

R , we denote the first time at which XX
ε or YX

ε exits from the
ball, then we put σR := min{1, σ ′

R}. We consider zt := XX
ε (t) − YX

ε (t). This new
process satisfies the following equation:

zt =
∫ t

0
bs ds + √

ε

∫ t

0
σs dW(s),

with

bt := b
(
t,XX

ε (t),LXX
ε

t

)− b
(
t, YX

ε (t), δψ(t)

)
,

σt := σ
(
t,XX

ε (t),LXX
ε

t

)− σ
(
t, YX

ε (t), δψ(t)

)
.

Both bt and σt are progressively measurable processes. We now assume that t ≤
σR . Then, b and σ are Lipschitz in the spatial variable

|bt | =
∣∣b(t,XX

ε (t),LXX
ε

t

)− b
(
t, YX

ε (t), δψ(t)

)∣∣
≤ ∣∣b(t,XX

ε (t),LXX
ε

t

)− b
(
t,XX

ε (t), δψ(t)

)∣∣
+ ∣∣b(t,XX

ε (t), δψ(t)

)− b
(
t, YX

ε (t), δψ(t)

)∣∣
≤ L

√
E
[∣∣XX

ε (t) − ψ(t)
∣∣2]+ LR

∣∣XX
ε (t) − YX

ε (t)
∣∣

≤ BR

√
ρ(ε)2 + ∣∣z2

t

∣∣,
where BR depends only on R and ρ(ε) := supt∈[0,T ]E{|XX

ε (t) − ψ(t)|2} goes to
0 as ε goes to 0. Indeed, we can proceed as in [27], Lemma 3.1, to show that ρ(ε)

is small as ε goes to 0.
In the same vein, where M is a constant which does not depend on R, we have

|σt | ≤ M

√
ρ(ε)2 + ∣∣z2

t

∣∣.
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Thus, Lemma A.1 is applicable and for any δ, ρ > 0 and for any ε small enough,
we have

ε log
(
P

[
sup

0≤t≤σR

|zt | ≥ δ
])

≤ BR + M2
(

1 + d

2

)
+ 1

2
log

(
ρ2

ρ2 + δ2

)
.

As ρ(ε) converges to 0 as ε ↘ 0, we deduce that

lim sup
ε→0

ε log
(
P

[
sup

0≤t≤σR

|zt | ≥ δ
])

= −∞.

Now, since{∥∥XX
ε − YX

ε

∥∥∞ ≥ δ
}⊂ {σR < 1} ∪

{
sup

0≤t≤σR

∣∣XX
ε (t) − YX

ε (t)
∣∣≥ δ

}
,

we can conclude as soon as we show that

lim
R→+∞ lim sup

ε→0
ε log

(
P[σR < 1])= −∞.

By τR , we denote the first time that Yε exits from the ball of center 0 and radius R.
If, YX

ε (σR) is not in the ball of center 0 and radius R+1, then we have immediately
τR < 1. Conversely, if XX

ε (σR) is not in the ball of center 0 and radius R + 1, by
taking δ < 1

2 , we know that with high probability YX
ε (σR) is not in the ball of

center 0 and radius R, which means again τR < 1.
However, YX

ε satisfies a large deviations principle for the uniform norm with
the good rate function I x . As a consequence,

lim sup
ε→0

ε log
(
P[σR < 1])= lim sup

ε→0
ε log

(
P[τR < 1])

≤ − inf
{g∈H⊗d′ :f (t)=F(g),||f ||∞≥R}

1

2

∫ 1

0
|ġ|2 dt.

It is not difficult to see that the latter expression approaches −∞ as R goes to ∞ by
using the same arguments as those used from the end of the proof of Lemma 4.6.

�

Theorem 4.4 now follows easily.

PROOF OF THEOREM 4.4. Following the methodology described in Sec-
tion 4.1.1 and the above results in combination with [26], Theorem 2.21, our main
Theorem 4.4 follows. �

4.2. Large deviations principle in the Hölder topology for Xε .

4.2.1. The main result. Recall the Stochastic process (4.1). We introduce the
so-called Skeleton operator 
 for the MV-SDE (4.1) on the Cameron–Martin
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space H . In other words, 
 : H⊗d ′ → C([0,1]),


x(h)(t) = x +
∫ t

0
b
(
s,
x(h)(s), δ
x(0)(s)

)
ds

+
∫ t

0
σ
(
s,
x(h)(s), δ
x(0)(s)

)
ḣ(s) ds.

(4.9)

The operator 
 for each h ∈ H outputs the unique solution to the above ODE. For
existence and uniqueness of a solution, see footnote 2.

Following the same method as in Lemma 4.3 and using the Hölder inequality,
one can see that∣∣
x(h)(t) − 
x(h)(s)

∣∣
≤ O

(|t − s|)+ M|t − s| 1
2

√∫ T

0

∣∣ḣ(r)
∣∣2 dr ≤ O

(|t − s| 1
2
)
,

so 
(h) ∈ C
1
2 ([0, T ]). We are now able to state the two main results of this section.

THEOREM 4.8. Let α ∈ (0,1/2). Let A be a Borel set of the space of Rd -
valued continuous paths over [0,1] in the Hölder topology of Cα([0,1]). Let
�(A) := inf{‖ḣ‖2

2/2;h ∈ H⊗d ′
,
x(h)(·) ∈ A}. Then

−�(Å) ≤ lim inf
ε→0

ε logP
[
Xx

ε ∈ A
]≤ lim sup

ε→0
ε logP

[
Xx

ε ∈ A
]≤ −�(Ā),

where Å and Ā are the interior and closure of the set A with respect to the topology
generated by the Hölder norm.

In order to prove the Theorem 4.8, we first prove another LDP-type result [com-
pare with (1.5)].

PROPOSITION 4.9. Let h ∈ H⊗d ′
. Take ∀R,ρ > 0, ∃δ, ν > 0 such that ∀0 <

ε < ν,

P
[∥∥Xx

ε − 
x(h)
∥∥
α ≥ ρ,‖√εW − h‖∞ ≤ δ

]
� exp

(
−R

ε

)
.

Intuitively, Proposition 4.9 (proof given below) quantifies the probability of a
highly varying process (in ‖ · ‖α-norm) when the equation’s input signal is small
(in ‖ · ‖∞) [see (1.5)].

4.2.2. LDP using a decoupling argument. In this section, we discuss another
method for proving the LDP results for X the solution process to (4.1), called a de-
coupling argument. The main idea is to freeze the law of X in the original MV-SDE



FREIDLING–WENTZELL LDPS IN PATH SPACE FOR MV-SDES 1515

and understand the outcome as a standard SDE, with solution X̂, where the coeffi-
cients b̂ε(t, x) := bε(t, x,LXx

ε
t ) and σ̂ε(t, x) := σε(t, x,LXx

ε
t ) are just functions of

time and space that have no measure dependency. Observe that by Proposition 3.4,
the time regularity will not be affected by the measure dependency since we as-
sume β-Hölder continuity in time for β < 1

2 ; see Assumption 4.1.
One can prove that LXx

ε → δψx in distribution as ε ↘ 0 [where ψ solves (4.2)].
The LDP in the uniform topology for the MV-SDE would now follow from a sim-
ilar LDP under our core conditions for the SDE of X̂. To the best of our knowl-
edge, we were unable to find LDP results in Hölder topologies for SDEs with
coefficients which allow for time dependency or monotone growth in the spacial
variables. Such LDPs do exist, for example, [3], present the right LDP but under
assumptions of uniform Lipschitzness and uniformly boundedness of b and σ plus
no time dependency.

Hence the methods and results we present contribute to the MV-SDE literature,
but also they are of general interest for the literature on classical SDEs.

4.2.3. Proofs. PROOF OF PROPOSITION 4.9. Let t ∈ [0,1]. Fix R,ρ > 0. In
order to progress with a Local Lipschitz condition, we first need to consider the
function 
x(h)(·) [recall (4.9)] for h ∈ H . This is a continuous solution of an ODE
on the compact interval [0,1]. Therefore, it is bounded and we can say that ∃N > 0
such that ‖
(h)‖∞ < N .

We condition on the event that the process Xx
ε (·) remains in the ball of radius

N and we see

P
[∥∥Xx

ε − 
x(h)
∥∥
α ≥ ρ,‖√εW − h‖∞ ≤ δ

]
≤ P

[∥∥Xx
ε − 
x(h)

∥∥
α ≥ ρ,‖√εW − h‖∞ ≤ δ,

∥∥Xx
ε

∥∥∞ < N
]

+ P
[∥∥Xx

ε

∥∥∞ ≥ N
]
.

We use that we have the LDP result for Xx
ε in a supremum norm and choose N

large enough so that

P
[∥∥Xx

ε

∥∥∞ ≥ N
]
< exp

(
−R

ε

)
.

We also introduce a step function approximation to discretize the process Xx
ε in

(4.1) as, for l ∈ N,

Xx,l
ε (t) = Xx

ε

(
j

l

)
on the interval t ∈

(
j

l
,
j + 1

l

]
,with Xx,l

ε (0) = x.

Step 1. Analysis of the diffusion term for h = 0. Consider

P

[∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥
α

≥ ρ,‖√εW‖∞ ≤ δ,
∥∥Xx

ε

∥∥∞ < N

]
≤ P

[∥∥∥∥√ε

∫ ·
0

[
σε

(
s,Xx

ε (s),LXx
ε

s

)− σε

(�sl�
l

,Xx,l
ε ,LXx

ε
�sl�

l

)]
dW(s)

∥∥∥∥
α

(4.10)
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≥ ρ

2
,

1

lβ
+ ∥∥Xx

ε − Xx,l
ε

∥∥∞ +E
[∥∥Xx

ε − Xx,l
ε

∥∥2
∞
]1/2 ≤ γ

]
(4.11)

+ P

[
1

lβ
+ ∥∥Xx

ε − Xx,l
ε

∥∥∞ +E
[∥∥Xx

ε − Xx,l
ε

∥∥2
∞
]1/2

> γ,

(4.12) ∥∥Xx
ε

∥∥∞ < N

]
+ P

[∥∥∥∥√ε

∫ ·
0

σε

(�sl�
l

,Xx,l
ε (s),LXx

ε
�sl�

l

)
dW(s)

∥∥∥∥
α

≥ ρ

2
,

(4.13)

‖√εW‖∞ ≤ δ

]
.

We analyze each term in the RHS separately. First, consider the term (4.11). We
denote

ηε = sup
s,y,μ

{∣∣b(s, y,μ) − bε(s, y,μ)
∣∣, ∣∣σ(s, y,μ) − σε(s, y,μ)

∣∣}.
By uniform convergence of bε to b and σε to σ , we have that limε→0 ηε = 0. We
choose ε small enough so that ηε ≤ Lγ

4 . Then

(4.11) ≤ P

[∥∥∥∥∫ ·
0

2[σε(s,X
x
ε (s),LXx

ε
s ) − σε(

�sl�
l

,Xx,l
ε (s),LXx

ε
�sl�

l

)]
Lγ

dW(s)

∥∥∥∥
α

≥ ρ√
εLγ

,
2‖σε(·,Xx

ε (·),LXx
ε· ) − σε(

�·l�
l

,Xx,l
ε (·),LXx,l

ε· )‖∞
Lγ

≤ 1
]

≤ C′ exp
( −ρ2

C′L2γ 2ε

)
,

using Lemma A.5. Thus choose γ such that ρ2

C′L2R
≥ γ 2.

Second, consider the term (4.12). We take ε small enough so that ηε < 1. Ap-
plying Itô’s formula to |Xx

ε (t)|2 gives∣∣Xx
ε (t)

∣∣2 = |x|2 + 2
√

ε

∫ t

0

〈
Xx

ε (s), σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

〉
+ 2

∫ t

0

〈
Xx

ε (s), bε

(
s,Xx

ε (s),LXx
ε

s

)〉
ds

+ ε

∫ t

0
Tr
(
σε

(
s,Xx

ε (s),LXx
ε

s

)
σε

(
s,Xx

ε (s),LXx
ε

s

)T )
ds.

Following the estimation methods used to prove Theorem 3.3, we have

E
[∥∥Xx

ε

∥∥2
∞
]≤ K

(|x|2 +E
[∥∥b(·,0, δ0)

∥∥2
∞
])

exp
(
K +E

[∥∥b(·,0, δ0)
∥∥2
∞
])

< ∞.
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In the same way, we can additionally prove E[‖Xx
ε ‖2q∞] < ∞. Let j = �t l�. We can

rewrite our SDE, for t ∈ [j/ l, (j + 1)/ l], as

Xx
ε (t) − Xx

ε (j/ l) = √
ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s) +

∫ t

j
l

bε

(
s,Xx

ε (s),LXx
ε

s

)
ds.

We evaluate the strong error term in the same way as above to see that

sup
t∈[0,1]

∣∣Xx
ε (t) − Xx,l

ε (t)
∣∣2 ≤ 2 sup

t∈[ j
l
,
j+1

l
]

∣∣∣∣∫ t

j
l

bε

(
s,Xx

ε (s),LXx
ε

s

)
ds

∣∣∣∣2

+ 2 sup
t∈[ j

l
,
j+1

l
]

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∣∣∣∣2.
Taking expectations yields

E
[∥∥Xx

ε − Xx,l
ε

∥∥2
∞
]

≤ 2E
[

sup
t∈[ j

l
,
j+1

l
]

∣∣∣∣∫ t

j
l

bε

(
s,Xx

ε (s),LXx
ε

s

)
ds

∣∣∣∣2]

+ 2E
[

sup
t∈[ j

l
,
j+1

l
]

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∣∣∣∣2]

≤ 1

l2

(
4ηε + 32L2

E
[∥∥Xx

ε

∥∥2q
∞
]+ 8L24E

[∥∥Xx
ε

∥∥2
∞
]+ 4

∥∥b(·,0, δ0)
∥∥2
∞
)

+ 8εM2

l

� 1

l
,

and we write E[‖Xx
ε − Xx,l

ε ‖2∞]1/2 ≤ K1/
√

l. In the same way we also have that∥∥Xx
ε − Xx,l

ε

∥∥∞

= sup
j=0,...,l−1

sup
t∈[ j

l
,
j+1

l
]

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(r)

∣∣∣∣
+ sup

j=0,...,l−1
sup

t∈[ j
l
,
j+1

l
]

∣∣∣∣∫ t

j
l

bε

(
s,Xx

ε (s),LXx
ε

s

)
dr

∣∣∣∣
≤ sup

j,t

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∣∣∣∣
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+ sup
j,t

∫ t

j
l

[
ηε + L

(
1 + ‖X‖q∞

)+ LE
[‖X‖2∞

]1/2 + sup
r∈[0,1]

∣∣b(r,0, δ0)
∣∣]ds

≤ sup
j,t

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∣∣∣∣+ K2
1 + ‖Xx

ε ‖q∞
l

.

Hence we have for term (4.12) that

P

[
1

lβ
+ ∥∥Xx

ε − Xx,l
ε

∥∥∞ +E
[∥∥Xx

ε − Xx,l
ε

∥∥2
∞
]1/2

> γ,
∥∥Xx

ε

∥∥∞ < N

]
≤ P

[
sup
j,t

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∣∣∣∣
+ K2

1 + ‖Xx
ε ‖q∞

l
+ K1√

l
+ 1

lβ
> γ,

∥∥Xx
ε

∥∥∞ < N

]

≤ P

[
sup
j,t

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∣∣∣∣> γ − K3

l
1
2 ∧β

]
,

where K3 = K1 + K2(1 + Nq) + 1.

Therefore, using Chernoff’s inequality,

(4.12) ≤ P

[
sup
j,t

exp
(
λ sup

j,t

∣∣∣∣√ε

∫ t

j
l

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∣∣∣∣)

> exp
(

λ

l
1
2 ∧β

(
γ l

1
2 ∧β − K3

))]

≤
supj,t E[exp(λ|√ε

∫ t
j
l

σε(s,X
x
ε (s),LXx

ε
s ) dW(s)|)1‖Xx

ε ‖∞<N ]
exp( λ

l
1
2 ∧β

(γ l
1
2 ∧β − K3))

� exp
(
λ2ε

M

2l
− λ

l
1
2 ∧β

(
γ l

1
2 ∧β − K3

))

� exp
(−(γ l

1
2 ∧β − K3)

2

2εM

l

l
1
2 ∧β

)
,

by optimizing over the arbitrary choice of λ. We can now choose the constant l

such that (γ l
1
2 ∧β−K3)

2

2M
l1−(1∧2β) > R.
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Finally, to evaluate equation (4.13), we first consider σε(X
x,l
ε (·),LXx

ε
�·l�
l

). This

process is constant over the interval (
j
l
,

j+1
l

]. Then taking the Hölder norm we get∥∥∥∥∫ ·
0

σε

(�ls�
l

,Xx,l
ε (s),LXx

ε
�sl�

l

)
dW(s)

∥∥∥∥
α

=
∥∥∥∥∥

l−1∑
j=0

σε

(
j

l
,Xx,l

ε

(
j

l

)
,LXx

ε
j
l

)[
W

(
j + 1

l
∧ ·

)
− W

(
j

l
∧ ·

)]∥∥∥∥∥
α

≤ 2lM‖W‖α,

using ‖σε‖∞ ≤ M and the triangle inequality. Then

P

[∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx,l

ε (s),LXx,l
ε

s

)
dW(s)

∥∥∥∥
α

≥ ρ

2
,‖√εW‖∞ ≤ δ

]
≤ P

[
‖W‖α ≥ ρ

4
√

εlM
,‖W‖∞ ≤ δ√

ε

]

≤ C max
(

1,

(
ρ

4Mlδ

)1/α)
exp

(−1

ε

1

C

(
ρ

4Mlδ

)1/α

δ2
)
,

where we applied Lemma A.4 and chose δ such that ρ
Rα4MlCα ≥ δ1−2α .

Injecting these three results in (4.10) gives us that

P

[∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

�sl�
l

)
dW(s)

∥∥∥∥
α

≥ ρ,

‖√εW‖∞ ≤ δ,
∥∥Xx

ε

∥∥∞ < N

]
� exp

(
−R

ε

)
.

(4.14)

Step 2. The Hölder norm of the whole process when h = 0. We have∥∥Xx
ε − 
x(0)

∥∥
α,t

≤
∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥
α,t

(4.15)

+
∥∥∥∥∫ ·

0

[
bε

(
s,Xx

ε (s),LXx
ε

s

)− b
(
s,Xx

ε (s),LXx
ε

s

)]
ds

∥∥∥∥
α,t

(4.16)

+
∥∥∥∥∫ ·

0

[
b
(
s,Xx

ε (s),LXx
ε

s

)− b
(
s,
x(0)(s), δ
x(0)(s)

)]
ds

∥∥∥∥
α,t

.(4.17)

Equation (4.15) is the term in (4.14) that we desire. Equation (4.16) is bounded
above by ηε . We only consider the cases when ‖Xx

ε ‖∞,‖
x(0)‖∞ < N since we
know that 
x(0)(t) remains in this ball and we conditioned on Xx

ε (t) remaining
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in the same ball. This means that by the locally Lipschitz condition, we can say
that b(t, x,μ) is Lipschitz in the spacial variable with constant LN . Therefore, for
(4.17) we have∥∥∥∥∫ ·

0
b
(
s,Xx

ε (s),LXx
ε

s

)− b
(
s,
x(0)(s), δ
x(0)(s)

)
ds

∥∥∥∥
α,t

≤ sup
p,q∈[0,t]

∫ q
p |b(s,Xx

ε (s),LXx
ε

s ) − b(s,
x(0)(s), δ
x(0)(s))|
|q − p|α

≤ sup
p,q∈[0,t]

LN

|q − p|α
∫ q

p

∣∣Xx
ε (s) − 
x(0)(s)

∣∣ds

+ L

|q − p|α
∫ q

p
E
[∣∣Xx

ε (s) − 
x(0)(s)
∣∣2]1/2

ds

≤ LN

∥∥Xx
ε (·) − 
x(0)(·)∥∥∞,t + LN

∫ t

0

∥∥Xx
ε (·) − 
x(0)(·)∥∥α,s ds

(4.18)

+ LE
[∥∥Xx

ε − 
x(0)
∥∥2
∞
]1/2

,

(4.19)

using Lemma 2.3.
Next, we want to show that the strong error E[‖Xx

ε −
(0)‖2∞] can be controlled
by ε. Using that

d
(
Xx

ε − 
x(0)
)
(t) = σε

(
t,Xx

ε (t),LXx
ε

t

)
dW(t)

+ (
bε

(
t,Xx

ε (t),LXx
ε

t

)− b
(
t,Xx

ε (t),LXx
ε

t

))
dt

+ (
b
(
t,Xx

ε (t),LXx
ε

t

)− b
(
t,
x(0)(t), δ
x(0)(t)

))
dt,

and Itô’s formula for f (x) = |x|2 with Xx
ε (0) − 
x(0)(0) = 0 gives that∥∥Xx

ε − 
x(0)
∥∥2
∞,t

≤ 2
√

ε sup
0≤s≤t

∣∣∣∣∫ s

0

〈
Xx

ε (r) − 
x(0)(r), σε

(
r,Xx

ε (r),LXx
ε

r

)
dW(r)

〉∣∣∣∣
+ εM2td +

∫ t

0
2ηε

∣∣Xx
ε (r) − 
x(0)(r)

∣∣dr

+ 2
∫ t

0

∣∣〈Xx
ε (r) − 
x(0)(r), b

(
r,Xx

ε (r),LXx
ε

r

)
− b

(
r,
x(0)(r), δ
x(0)(r)

)〉∣∣dr.
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Squaring and taking expectations give

E
[∥∥Xx

ε − 
x(0)
∥∥4
∞,t

]
≤ 64pM2ε

∫ t

0

(
E
[∥∥Xx

ε − 
x(0)
∥∥4
∞,r

]+ 1
)
dr + 4ε2M4t2

+ 16tηε

∫ t

0

(
E
[∥∥Xx

ε − 
x(0)
∥∥4
∞,r

]+ 1
)
dr

+ 16t

∫ t

0
4L2

E
[∥∥Xx

ε − 
x(0)
∥∥4
∞,r

]
dr.

Refining, we then obtain E[‖Xx
ε − 
x(0)‖2∞]1/2 ≤ K(η

1/4
ε ∨ ε1/4)eK . We have

shown that this expectation is of order ε1/4. Now we consider ‖Xx
ε − 
x(0)‖∞.

Since the supremum norm can be made to appear inside the integrals, we have∥∥Xx
ε − 
x(0)

∥∥∞,t

≤
∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥∞,t

+ ηεt

+
∫ t

0
LN

∥∥Xx
ε − 
(0)

∥∥∞,r dr + LtE
[∥∥Xx

ε − 
x(0)
∥∥2
∞
]1/2

,

and by using Grönwall, we get∥∥Xx
ε − 
x(0)

∥∥∞,t

≤
(∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥∞,t

+ (
ηε +E

[∥∥Xx
ε − 
x(0)

∥∥2
∞
]1/2))

eLN t

≤
(∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥
α,t

+ (
ε1/4 ∨ η1/4

ε

)
K ′
)
)eK ′t .

(4.20)

Combining equation (4.18), equation (4.19) and equation (4.20) give

∥∥Xx
ε − 
x(0)

∥∥
α ≤

∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥
α

(
1 + LNeK ′)

eLN

+ (
η1/4

ε ∨ ε1/4)(1 + LNK ′eK ′ + KLeK)eLN

≤
[∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥
α

+ (
η1/4

ε ∨ ε1/4)]K4.
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Thus for any choice of ρ we see that

P
[∥∥Xx

ε − 
x(0)
∥∥
α ≥ ρ,

∥∥Xx
ε

∥∥∞ < N
]

≤ P

[(∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥
α

+ (
η1/4

ε ∨ ε1/4))K4 ≥ ρ,

∥∥Xx
ε

∥∥∞ < N

]
and by choosing ε small enough such that (η

1/4
ε ∨ ε1/4) <

ρ
2K4

we get

P
[∥∥Xx

ε − 
x(0)
∥∥
α ≥ ρ,‖√εW‖∞ ≤ δ,

∥∥Xx
ε

∥∥∞ < N
]

≤ P

[∥∥∥∥√ε

∫ ·
0

σε

(
s,Xx

ε (s),LXx
ε

s

)
dW(s)

∥∥∥∥
α

≥ ρ

2K4
,

‖√εW‖∞ ≤ δ,
∥∥Xx

ε

∥∥∞ < N

]
� exp

(
−R

ε

)
,

since in equation (4.14) the choice of ρ is arbitrary.
Step 3. The case when h �= 0. For the final step, we use the same method as in

[3] to extend the results to Wiener processes with drift. Using a Girsanov transfor-
mation, we have that there is a measure P̃ absolutely continuous to the standard
probability measure P.

Note that the law of the stochastic process is not changed by perturbing the path
of the Brownian motion by some element of the Cameron–Martin space. When
solving a McKean–Vlasov equation (unlike classical SDEs), one has to fix the law
of the probability space in order to define LX = P ◦ X−1. Hence the law is not
changed when one considers a different driving noise for the SDE. This is most
obvious in expression (4.9) where the delta distribution follows the path of the
skeleton with input h = 0.

We rewrite the SDE and skeleton process

Xx
ε (t) = x +

∫ t

0
bε

(
s,Xx

ε (s),P ◦ [Xx
ε (s)

]−1)
ds

+
∫ t

0
σε

(
s,Xx

ε (s),P ◦ [Xx
ε (s)

]−1)
ḣ(s) ds

+ √
ε

∫ t

0
σε

(
s,Xx

ε (s),P ◦ [Xx
ε (s)

]−1)
dW̃(s),


x(h)(t) = x +
∫ t

0
b
(
s,
x(h)(s), δ
x(0)(s)

)
ds

+
∫ t

0
σ
(
s,
x(h)(s), δ
x(0)(s)

)
ḣ(s) ds,
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where W̃ = W − h/
√

ε, P̃ is the measure where W̃ is a Brownian motion and

P ◦ [Xx
ε (t)]−1 = LXx

ε
t . The drift term bε + σεḣ satisfies the properties from before

and matches the skeleton process 
x(h).
Also note that

W(2)(
P ◦ [Xx

ε (t)
]−1

, δ
x(0)(t)

)= E
P
[∣∣Xx

ε (t) − 
(0)(t)
∣∣2] 1

2 ,

which we have already showed to go to 0 as ε → 0. Thus we argue in the same
way as in Step 2 and conclude

P
[∥∥Xx

ε − 
x(h)
∥∥
α ≥ ρ,‖√εW − h‖∞ ≤ δ

]
� P̃

[∥∥X̃x
ε − 
x(0)

∥∥
α ≥ ρ,‖√εW̃‖∞ ≤ δ

]
� exp

(
−R

ε

)
. �

We are now in position to prove our second main result, Theorem 4.8.

PROOF OF THEOREM 4.8. Proving the upper bound. First, consider the case
where 0 /∈ A and A is closed in the Hölder topology. Then there exists a r such
that �(A) > r > 0. Let us consider the ball in the Cameron–Martin space H{

h ∈ H⊗d ′ : h(t) =
∫ t

0
ḣ(s) ds,

‖ḣ‖2
2

2
≤ r

}
.

Recall that if h ∈ H⊗d ′
then h ∈ C

1
2 ([0,1];Rm) and is bounded and, moreover,

that ‖h‖∞ ≤ ‖h‖ 1
2

≤ ‖ḣ‖2. Therefore, we can apply the Arzelà–Ascoli theorem
[19] to get that this set is compact. Hence we can find a finite open cover of this
set and we can restrict the radius of the open balls. We write{

h ∈ H⊗d ′ : h(t) =
∫ t

0
ḣ(s) ds,

‖ḣ‖2
2

2
≤ r

}
⊂

N⋃
i=1

B∞(hi, δhi
) = U.

These balls are in the uniform topology and the elements hi are all have
‖ḣ‖2

2/2 < r . By this property, 
(hi) /∈ A. If it were, ‖ḣ‖2
2/2 > �(A). The set

A is closed in the Hölder topology so Ac is open in the Hölder topology. There-
fore, there exists a ρhi

such that in the Hölder topology Bα(
(hi), ρhi
) is in Ac

and, therefore, does not intersect with A. Hence when Xx
ε ∈ A, we can say that

‖Xx
ε − 
x(hi)‖α ≥ ρhi

. Finally, we can estimate

P
[
Xx

ε ∈ A
]

= P
[
Xx

ε ∈ A,
√

εW /∈ U
]+ P

[
Xx

ε ∈ A,
√

εW ∈ U
]

≤ P[√εW /∈ U ] + P
[
Xx

ε ∈ A,
√

εW ∈ U
]
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≤ P[√εW /∈ U ] +
N∑

i=1

P
[∥∥Xx

ε − 
x(hi)
∥∥
α ≥ ρhi

,‖√εW − hi‖∞ ≤ δhi

]
≤ P[√εW /∈ U ] + N exp

(
−2r

ε

)
,

where for the last line we apply Proposition 4.9, with δhi
and ε chosen sufficiently

small for the given ρhi
. The δhi

are dependent on our choice of open cover for the
compact set, so we can make them as small as required. We already have a large
deviation principle for a Wiener process on the uniform norm by [26]. Hence we
have for ε sufficiently small that

P[√εW /∈ U ] ≤ exp
(
−�(Uc)

ε

)
.

If h /∈ U , then we have that
‖ḣ‖2

2
2 > r and consequently P[√εW /∈ U ] ≤

exp(−2r/ε). Combining all of this together, we get

lim sup
ε→0

ε log
(
P
[
Xx

ε ∈ A
])≤ −r,

where r was chosen arbitrarily so that r < �(A) where A is closed. We optimize
for our choice of r and get

lim sup
ε→0

ε log
(
P
[
Xx

ε ∈ A
])≤ −�(A),

which is the upper inequality for the theorem.

Proving the lower bound. Now consider A to be an open set in the Hölder topol-
ogy and let h ∈ H⊗d ′

such that 
x(h) ∈ A. There exists a ρ > 0 such that the
Hölder ball Bα(
x(h), ρ) ⊂ A. Also we have that

P
[‖√εW − h‖∞ < δ

]
≤ P

[∥∥Xx
ε − 
x(h)

∥∥
α ≥ ρ,‖√εW − h‖∞ ≤ δ

]+ P
[∥∥Xx

ε − 
x(h)
∥∥
α < ρ

]
.

Hence

P
[
Xx

ε ∈ A
]

≥ P
[∥∥Xx

ε − 
x(h)
∥∥
α < ρ

]
≥ P

[‖√εW − h‖∞ < δ
]− P

[∥∥Xx
ε − 
x(h)

∥∥
α ≥ ρ,‖√εW − h‖∞ ≤ δ

]
≥ P

[‖√εW − h‖∞ < δ
]− exp

(
−R

ε

)
.

Applying the LDP for the Brownian motion (see Lemma A.2) and using that
‖ḣ‖2

2
2 ≥ �(B∞(h, δ)), we see that

P
[‖√εW − h‖∞ < δ

]≥ exp
(
−‖ḣ‖2

2

2ε

)
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and hence

P
[
Xx

ε ∈ A
]≥ exp

(
−‖ḣ‖2

2

2ε

)
− exp

(
−R

ε

)
,

where we can choose R to take any value. Choosing R = ‖ḣ‖2
2 and rearranging,

we get

P
[
Xx

ε ∈ A
]≥ exp

(
−‖ḣ‖2

2

2ε

)(
1 − exp

(
−‖ḣ‖2

2

2ε

))
.

Hence

lim inf
ε→0

ε log
(
P
[
Xx

ε ∈ A
])≥ lim inf

ε→0
ε log

(
1 − exp

(
−‖ḣ‖2

2

2ε

))
− ‖ḣ‖2

2

2
.

The limit goes to 0 for any choice of h ∈ H⊗d ′
. Finally, as h was arbitrarily chosen

in A, we take the infimum over h and get

lim inf
ε→0

ε log
(
P
[
Xx

ε ∈ A
])≥ −�(A).

This completes the proof of the theorem. �

5. Functional iterated logarithm law. Strassen’s law, or the law of iterated
logarithm describes the magnitude of the fluctuations of a Brownian motion. It
was first proved in [36]. Observe that for a Brownian motion W(t), we have that
X

(1)
n (t) = W(nt)/n → 0 as n → ∞ both in probability and almost surely. How-

ever, X
(2)
n (t) = W(nt)/

√
n is also a Brownian motion for any choice of n. There-

fore, something is happening between n and
√

n which is turning a stochastic
process into a deterministic constant in the limit as n → ∞. Strassen’s law says
that

X(3)
n (t) = W(nt)√

n log log(n)
,

converges to 0 in probability but does not converge almost surely. In particular,

lim sup
n→∞

X(3)
n (1) = √

2, almost surely.

In this section, we are interested in studying whether stochastic processes have a
similar type of property. We will consider the solution of the SDE run over a large
time interval of order n and rescaled to order

√
n log(log(n)). Similar to the proof

of Strassen’s law, we will show that the set of rescaled paths is relatively compact
in the Hölder topology but that the set of limit points of this set is uncountable
which implies the failure of almost sure convergence.

In [1], Baldi proves a law of iterated logarithm for classical SDEs for the uni-
form topology. This was then extended in [20] and later [21] to other coarser
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pathspace topologies. Standard LDP results easily give us convergence in prob-
ability. We calculate the set of possible limit points of the scaled diffusions which
for a classical SDE are{


x(h) : d
x(h)(t) = b
(

x(h)(t)

)
dt + σ

(

x(h)(t)

)
ḣ(t) dt,


x(h)(0) = x and ‖ḣ‖2 ≤ √
2
}
.

We show below, that similarly for a McKean–Vlasov SDE these are{

x(h) : d
x(h)(t) = b

(

x(h)(t), δ
x(0)(t)

)
dt + σ

(

x(h)(t), δ
x(0)(t)

)
ḣ(t) dt,


x(h)(0) = x and ‖ḣ‖2 ≤ √
2
}
.

We will follow the methods of [1], [20] and [21] to extend the LDP results to prove
an iterated logarithm law for the class of McKean–Vlasov SDEs in Theorem 3.3.
It seems possible to use microscopic rescaling of the Brownian motion such as in
[23] to provide an alternative proof of our result, however, we do not pursue this
point.

REMARK 5.1 (Decoupling argument). In this section, we are unable to use a
decoupling argument as highlighted in Section 4.2.2.

To the best of our knowledge, there are no results proving a Strassen-type law
for SDEs with coefficients which can vary in time and we were unable to establish
any such results while working on this paper. The conditions that we require on
the measure dependency are similar to those of the spacial dependency and do not
naturally translate into conditions for time dependency. Therefore, proving that
they are satisfied is much easier in the MV-SDE setting when they are written
as properties on the measure dependency than for some general time dependent
coefficient.

Functional iterated logarithm law for McKean–Vlasov SDEs. First, we need
to define in what sense we will be rescaling our MV-SDE.

DEFINITION 5.2. Let α ∈ R
+. A family of continuous bijections �α : Rd →

R
d is said to be a system of contractions centered at x if:

1. �α(x) = x for every α ∈ R
+.

2. If α ≥ β , then |�α(y1)−�α(y2)−�α(z1)+�α(z2)| ≤ |�β(y1)−�β(y2)−
�β(z1) + �β(z2)| for every y1, y2, z1, z2 ∈ R

d .
3. �1 is the identity and (�α)−1 = �α−1 .
4. For every compact set K ⊂ Cα([0,1];Rd), f ∈ K and ε > 0, ∃δ > 0, such

that |pq − 1| < δ implies∥∥�p ◦ �q(f ) − f
∥∥
α <

√
ε, ∀p,q ∈ R

+.
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The simplest example of such a system of contractions is �α(y) = y
α

centered
at x = 0. Indeed this is the specific operator used when proving Strassen’s law for
Brownian motion. Also note that we only really care about �α for α > 1. It is clear
that for α < 1, the operators �α will not be contraction operators.

EXAMPLE 5.3. In fact, a linear contraction operator with a transformation will
satisfy these conditions. Consider, for example, �α(y) = (y−x)

α
+ x and naturally,

�α(x) = x. Similarly, for α ≥ β ,

�α(y1) − �α(y2) − �α(z1) + �α(z2)

= y1 − x

α
+ x − y2 − x

α
− x − z1 − x

α
− x + z2 − x

α
+ x

≤ y1 − y2 − z1 + z2

β
= �β(y1) − �β(y2) − �β(z1) + �β(z2).

Finally, for |pq − 1| < δ, we have

∥∥�p ◦ �q(f ) − f
∥∥
α = sup

s,t∈[0,1]
|�p ◦ �q(f (t)) − f (t) − �p ◦ �q(f (s)) + f (s)|

|t − s|α

= sup
s,t∈[0,1]

|[f (t)
pq

− f (t)] − [f (s)
pq

− f (s)]|
|t − s|α

=
∣∣∣∣ 1

pq
− 1

∣∣∣∣ sup
s,t∈[0,1]

|f (t) − f (s)|
|t − s|α ≤ δ

2
‖f ‖α.

These conditions are slightly stronger than those of [1] and are used in [21].
Condition 2. in Definition 5.2 needs to be strengthened to allow it to be applied to
Hölder norms rather than just supremum norms. Observe that by choosing y2 =
z2 = x, one gets ∣∣�α(y1) − �α(z1)

∣∣≤ ∣∣�β(y1) − �β(z1)
∣∣.

This stronger condition still allows for the example of linear contractions up to a
transformation. For s ∈R

+, define

φ(s) =
√

s log
(
log(s)

)
.

Let b : Rd ×P2(R
d) →R

d and σ : Rd ×P2(R
d) → R

d×m be progressively mea-
surable functions such that there is a unique solution to

dY (t) = b
(
Y(t),LY

t

)
dt + σ

(
Y(t),LY

t

)
dW(t), Y (0) = x ∈ R

d .
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DEFINITION 5.4. Let u > 3. Let σ̂u : Rd × P2(R
d) → R

d×d ′
and b̂u : Rd ×

P2(R
d) →R

d be such that

σ̂u(y,μ) = φ(u)∇[�φ(u)](�φ(u)−1(y)
)T

σ
(
�φ(u)−1(y),μ ◦ �φ(u)

)
,

b̂u(y,μ) = uL(y,μ)[�φ(u)](�φ(u)−1(y)
)
,

where for ã = σT σ the operator L(·, ·)[·] is given as

L(y,μ)[f ](z) =
d∑

i=1

∂f

∂yi

(
�φ(u)−1(z)

)
bi

(
�φ(u)−1(y),μ ◦ �φ(u)

)

+ 1

2

d∑
i,j=1

ãi,j

(
�φ(u)−1(y),μ ◦ �φ(u)

) ∂2f

∂yi∂yj

(
�φ(u)−1(z)

)
.

ASSUMPTION 5.5. Throughout, we assume that �u is twice differentiable for
all u > 3 and that ∀y ∈ R

d , ∀μ ∈ P2(R
d) we have for some σ̂ : Rd × P2(R

d) →
R

d×d ′
and b̂ : Rd ×P2(R

d) →R
d ,

lim
u→∞ σ̂u(y,μ) = σ̂ (y,μ) and lim

u→∞ b̂u(y,μ) = b̂(y,μ),

where σ̂ and b̂ satisfy Assumption 3.2 with the addition that σ̂ is bounded by
constant M .

For t, u ∈ R
+ define

Zu(t) = �φ(u)

(
Y(ut)

)
,

and recall that since Y(0) = x and �u(x) = x, by assumption Zu(0) = x. We use
Itô’s formula on Zu(t) by assuming twice differentiability of �φ(u)(·),

dZu(t) = d(�φ(u)

(
Y(ut)

)
= ∇[�φ(u)](Y(ut)

)T
dY (ut) + dY (ut)T

2
H [�φ(u)](Y(ut)

)
dY (ut).

Rewriting Y(ut) = �φ(u)−1(Zu(t)) and substituting in gives

dZu(t) = u

d∑
i=1

∂�
(u)

∂yi

(
�φ(u)−1

(
Zu(t)

))
bi

(
�φ(u)−1

(
Zu(t)

)
,LZu

t

) ◦ �φ(u)) dt

+ u

2

d∑
i,j=1

∂2�
(u)

∂yi∂yj

(
�φ(u)−1

(
Zu(t)

))

×
d ′∑

k=1

σk,iσj,k

(
�φ(u)−1

(
Zu(t)

)
,LZu

t

) ◦ �φ(u)) dt
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+
d∑

i=1

∂�
(u)

∂yi

(
�φ(u)−1

(
Zu(t)

))

×
d ′∑

k=1

σi,k

(
�φ(u)−1

(
Zu(t)

)
,LZu

t

) ◦ �φ(u)) dWk(ut).

Next, using that Wu(t) = W(ut)√
u

is a Brownian motion, we can rewrite all of this as
the SDE with initial condition Zu(0) = x,

dZu(t) = 1√
log log(u)

σ̂u

(
Zu(t),LZu

t

)
) dWu(t) + b̂u

(
Zu(t),LZu

t

)
) dt.

Under Assumption 5.5 and using Theorem 4.8, we get

−�(Å) ≤ lim inf
u→∞

1

log log(u)
logP(Zu ∈ A)

≤ lim sup
u→∞

1

log log(u)
logP(Zu ∈ A) ≤ −�(Ā)

(5.1)

for every Borel set A induced by the α-Hölder topology with α < 1/2. Recall the
definition of the rate function �(A) := inf{‖ḣ‖2

2/4;h ∈ H⊗d ′
,
x(h)(·) ∈ A} with

the skeleton process,


x(h)(t) = x +
∫ t

0
b̂
(

x(h)(s), δ
x(0)(s)

)
ds +

∫ t

0
σ̂
(

x(h)(s), δ
x(0)(s)

)
ḣ(s) ds.

We can now state the main result of this section.

THEOREM 5.6. With probability 1, the set of paths {Zu;u > 3} is relatively
compact on the Hölder topology and its set of limit points coincides with K =
{
(h) : ‖ḣ‖2

2
2 ≤ 1}.

We first prove some technical lemmas.

LEMMA 5.7. ∀c > 1 and ∀ε > 0 there exists a positive integer j0(ω) almost
surely finite such that ∀j > j0,

dα(Zcj ,K) <
√

ε, where dα(x,A) = inf
{‖x − y‖α : y ∈ A

}
.

PROOF. Start by considering the set of α-Hölder continuous paths Cε :=
{g;dα(g,K) ≥ √

ε}. By definition, we have that �(Cε) > 1, so there exists a real
number δ > 0 such that �(Cε) > 1 + δ. Using the LDP results in (5.1), we can
rearrange this to get

P[Zcj ∈ Cε] ≤ exp
(−(1 + δ) log log

(
cj ))� 1

j1+δ
.
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Clearly,
∑∞

j=1 P[Zcj ∈ Cε] < ∞ and by a direct application of Borel–Cantelli we
have P[dα(Zcj ,K) >

√
ε i.o.] = 0. �

LEMMA 5.8. ∀ε > 0 ∃cε > 1 such that for 1 < c < cε , there exists an almost
surely finite integer j0(ω) such that ∀j > j0, Aj,c ≤ √

ε.

PROOF. For notational convenience define, for c > 1 and for every positive
integer j , the quantity

Aj,c = sup
cj−1≤u≤cj

∥∥Zu − �φ(u) ◦ �φ(cj )−1(Zcj )
∥∥
α.

Start by observing that the set K is relatively compact in the α-topology, so it is
bounded. Therefore, by Lemma 5.7, we have that ∀j > j0 that ‖Zcj ‖α < C. We
want to show that∑

j≥1

P[Ac,j >
√

ε] < ∞

which is equivalent to
∑
j>j0

P
[
Ac,j >

√
ε,‖Zcj ‖α < C

]
< ∞.

Considering one of these sets, we see{
Aj,c >

√
ε,‖Zcj ‖∞ ≤ C

}
=
{

sup
cj−1≤u≤cj

sup
0≤s,t≤1

(∣∣�φ(u)

(
Y(ut)

)− �φ(u)

(
Y
(
cj t

))
− �φ(u)

(
Y(us) + �φ(u)

(
Y
(
cj s

))∣∣)/(|t − s|α)>
√

ε,

‖Zcj ‖α < C
}
.

Using Definition 5.2, for u ∈ [cj−1, cj+1],∣∣�φ(u)

(
Y(ut)

)− �φ(u)

(
Y
(
cj t

))− �φ(u)(Y (us) + �φ(u)

(
Y
(
cj s

))∣∣
≤ ∣∣�φ(cj−1)

(
Y(ut)

)− �φ(cj−1)

(
Y
(
cj t

))− �φ(cj−1)(Y (us)

+ �φ(cj−1)

(
Y
(
cj s

))∣∣.
Therefore,

{Ac,j >
√

ε}

⊆
{

sup
1
c
≤v≤1

sup
0≤s,t≤1

1

|t − s|α
∣∣�φ(cj−1)

(
Y
(
cjvt

))− �φ(cj−1)

(
Y
(
cj t

))
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− �φ(cj−1)(Y
(
cjvs

)+ �φ(cj−1)

(
Y
(
cj s

))∣∣> √
ε

}

⊆
{

sup
1
c
≤v≤1

sup
0≤s,t≤1

|Zcj (vt) − Zcj (t) − Zcj (vs) + Zcj (s)|
|t − s|α >

√
ε

2

}
,

using that ∃j large enough so that for and δ > 0,

φ(cj−1)

φ(cj )
= 1√

c

√
log log(cj )

log log(cj−1)
≤ 1√

c
(1 − δ),

and choosing c small enough we can make �φ(cj−1)

φ(cj )

within
√

ε
2 of the identity op-

erator using properties from Definition 5.2. Therefore,{
Ac,j >

√
ε,‖Zcj ‖∞ ≤ C

}
⊆
{

sup
1
c
≤v≤1

sup
0≤s,t≤1

|Zcj (vt) − Zcj (t) − Zcj (vs) + Zcj (t)|
|t − s|α >

√
ε

2
,

‖Zcj ‖α ≤ C

}
⊆ {Zcj ∈ bε},

where the set bε is given by

bε =
{
g ∈ Cα([0,1];Rd) : sup

1
c
≤v≤1

sup
0≤s,t≤1

|g(vt) − g(t) − g(vs) + g(t)|
|t − s|α >

√
ε

2
,

‖g‖α ≤ C

}
,

as we would expect. Let h ∈ H⊗d ′
so ‖ḣ‖2 < ∞ such that 
(h) ∈ bε , then

√
ε

2
|t − s|α ≤ ∣∣[
(h)(t) − 
(h)(vt)

]− [

(h)(s) − 
(h)(sv)

]∣∣
≤
∣∣∣∣∫ t

(vt)∨s
d
(h)(r) −

∫ s∧(tv)

vs
d
(h)(r)

∣∣∣∣,
(5.2)

for at least some choice of v ∈ [1
c
,1] and t, s ∈ [0,1].

We know that a solution to the ODE 
(h) exists uniquely and has finite supre-
mum. Therefore, we can easily conclude that there exists constants M1 and M2
such that∣∣∣∣∫ t

s
d
(h)(r)

∣∣∣∣≤ ∣∣∣∣∫ t

s
b
(

(h)(r), δ
(h)(r)

)
dr +

∫ t

s
σ
(

(h)(r), δ
(h)(r)

)
dh(r)

∣∣∣∣
≤ M1

√|t − s|‖ḣ‖2 + M2|t − s|.
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It follows from (5.2) that

‖ḣ‖2 ≥
√

ε
2 |t − s|α − M2(|t − s ∨ (tv)| + |s ∧ (tv) − (sv)|)

M1(|t − s ∨ (tv)| 1
2 + |s ∧ (tv) − (sv)| 1

2 )
.

Let us consider first the case where s < (tv).

‖ḣ‖2 ≥
√

ε
2 |t − s|α − M2|(t + s)(1 − v)|

M1|(√t + √
s)

√
1 − v|

≥
√

ε|1 − 1
c
|α

4M1|
√

1 − 1
c
|
− M2

M1

√
1 − 1

c
,

so for c small enough we have ‖ḣ‖2 ≥ 1 + δ for any choice of δ > 0.
Second, consider the case where s > (tv),

‖ḣ‖2 ≥
√

ε
2 |t (1 − s

t
)|α − M2(|t (1 − s

t
)|(1 + v))

2M1(|t (1 − s
t
)| 1

2 )

≥
√

ε|1 − 1
c
|α

4M1|
√

1 − 1
c
|
− M2

M1

√
1 − 1

c
,

and taking c > 1 small enough as before gives ‖ḣ‖2 ≥ 1 + 2δ.
Therefore, using equation (5.1) we can get

P[Zcj ∈ bε] ≤ exp
(−(�(bε) − δ

)
log log

(
cj ))

≤ exp
(−(1 + δ) log log

(
cj ))� 1

j1+δ
,

and the conclusion of the proof is straightforward by Borel–Cantelli. �

We are now able to prove the main theorem.

PROOF OF THEOREM 5.6. The proof is divided into two parts:
Step 1. Relative Compactness. For any c > 1, there will exist j ∈ N such that

cj−1 < u < cj ,

dα(Zu,K) ≤ dα(Zcj ,K)(5.3)

+ ‖�φ(u) ◦ �φ(cj )−1(Zcj ) − Zcj )‖α

+ ‖Zu − �φ(u) ◦ �φ(cj )−1(Zcj )‖α,
(5.4)

where j is chosen so that cj−1 ≤ u ≤ cj .
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Lemma 5.7 with j large enough ensures that (5.3) is bounded by
√

ε
3 . From

Lemma 5.7, we have that Zcj is bounded, since ∀δ > 0,

1 ≥ φ(u)

φ(cj )
≥ φ(cj−1)

φ(cj )
≥ (1 − δ)√

c
,

for j large enough. Choosing 1 < c small enough, we can use the fourth part of

Definition 5.2 to get that the first term in (5.4) is less than
√

ε
3 . Lemma 5.8 bounds

the second term of (5.4) by
√

ε
3 .

Therefore, we conclude that the set {Zu : u > 3} is relatively compact (and
hence we have convergence in probability).

Step 2. The set of limit points. Let 
(h) ∈ K so that
‖ḣ‖2

2
2 < 1. Then for ε > 0

and β > 0, we define the sets:

Ej =
{∥∥∥∥ Wcj (t)√

log log(cj )
− h

∥∥∥∥∞
≤ β

}
and Fj = {∥∥Zcj − 
(h)

∥∥
α ≤ √

ε
}
.

Using Proposition 4.9, we have that for j large enough and α small enough that

(5.5) P[Ej ] − P[Fj ] = P
[
Ej ∩ Fc

j

]≤ exp
(−2 log log

(
cj ))� 1

j2 .

Strassen’s law tells us that P(lim supEj) = 1; see [36]. Therefore,
∑

j P[Ej ] = ∞.
However, by equation (5.5) we also have∑

j

(
P[Ej ] − P[Fj ])< ∞ ⇒ ∑

j

P[Fj ] = ∞

⇒ P
[∥∥Zcj − 
(h)

∥∥
α <

√
ε i.o.

]= 1,

the latter following from Borel–Cantelli.
Finally, since (c

j
j∈N) is just a subsequence of (m)m∈N, the result can be extended

to the conclusion. �

APPENDIX: A COLLECTION OF AUXILIARY RESULTS

A.1. Classical large deviation principles. The following lemma corresponds
to [16], Lemma 5.6.18.

LEMMA A.1. Let (bt )t , (σt )t be progressively measurable processes. Let

(A.1) dzt = bt dt + √
εσt dW(t) where z0 is deterministic.

Let τ ∈ [0,1] be a stopping time with respect to the filtration of (W(t))t∈[0,1].
Suppose that the coefficients of the diffusion matrix are uniformly bounded, and
for some constants M , B , ρ and any t ∈ [0, τ1],

|σt | ≤ M
(|zt |2 + ρ2) 1

2 , and |bt | ≤ B
(|zt |2 + ρ2) 1

2 .
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Then, for any δ > 0 and any ε ≤ 1,

ε log
(
P

[
sup
[0,τ1]

|zt | ≥ δ
])

≤ B + M2
(

1 + d

2

)
+ log

(
ρ2 + |z0|2
ρ2 + δ2

)
.

In particular, if z0 = 0:

ε log
(
P

[
sup
[0,τ1]

|zt | ≥ δ
])

≤ B + M2
(

1 + d

2

)
+ log

(
ρ2

ρ2 + δ2

)
.

We also need [16], Lemma 5.2.1.

LEMMA A.2. For any dimension d ′, and any τ , ε, δ,

P

[
sup

0≤t≤τ

∣∣√εW(t)
∣∣≥ δ

]
≤ 4d ′ exp

(
− δ2

2dτε

)
.

We also need [16], Theorem 4.2.23.

PROPOSITION A.3. Let {με} be a family of probability measures that satisfies
the LDP with a good rate function I on a Hausdorff topological space X , and for
m ∈ N, let fm be continuous functions from X to Y , where (Y, d) is a metric space.
Assume there exists a measurable map f from X to Y such that for every α < ∞:

lim sup
m→∞

sup
x:I (x)≤α

d
(
fm(x), f (x)

)= 0.

Then any family of probability measures {μ̃ε} for which {με ◦ f −1
m } are expo-

nentially good approximations satisfies the LDP in Y with the good rate function
I ′(y) := inf{I (x) : y = f (x)}.

A.2. Large deviation principles in path space topologies. The following
results are of their own independent interest and can be found in [3], Lemme 1,
page 196, with token proofs. We provide a full proof for the benefit of the reader.
The extension to [0, T ] is straightforward.

LEMMA A.4 ([3]). Let (W(t))t∈[0,1] be a d ′-dimensional Brownian motion.
Then there exists a constant C > 0 which is independent of m such that ∀u, v > 0,

P
[‖W‖α ≥ u,‖W‖∞ ≤ v

]≤ C max
(

1,

(
u

v

)1/α)
exp

(−1

C

u1/α

v(1/α)−2

)
.

PROOF. Consider a Brownian motion W satisfying the constraint ‖W‖∞ ≤ v.
We use methods from [26] to represent the α-Hölder norm in terms of a supremum
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of Fourier coefficients generated by Schauder functions. By direct calculation, one
can dominate the Fourier coefficients

|Wpm| = 2p/2
∣∣∣∣2W

(
2m − 1

2p+1

)
− W

(
m

2p

)
− W

(
m − 1

2p

)∣∣∣∣
≤ 2p/24v,

if we also restrict that ‖W‖α = supp,m |Wpm|2p(α−1/2) ≥ u and search for values
of p and m which do not yield a contradiction. Observe that we require u ≥ 4v2αp .
If we consider a p where this was not true, we would have that Wpm < u. The
supremum of all Wpm is still be greater than u, but this value of p could be re-
moved from the collection over which the supremum is taken over without affect-
ing the measure of the event. Let p0 be the least such relevant p, defined as p0 :=
inf{p ∈ N;2αp ≥ u/(4v)}. Then for an arbitrary choice of λ > 0, we have

P
[‖W‖α ≥ u,‖W‖∞ ≤ v

]
= P

[
sup

p≥p0,m
2p(α−1/2)|Wpm| ≥ u

]

≤ supp≥p0
E[exp(λ2p(α−1/2)|Wpm|)]

exp(λu)

≤ sup
p≥p0

2 exp
(

λ22p(2α−1)

2
− λu

)

≤ 2 exp
(−u22p0(1−2α)

2

)
,

where for the last line we choose λ = u2p(1−2α) to minimize the expression (since
λ is arbitrary). From the definition of p0, we have

2p0(1−2α) ≥
(

u

4v

) 1
α
−2

,

and substituting this in yields the final result. �

The next lemma iterates on the first; see [3], Lemme 2, page 196.

LEMMA A.5. Let (W(t))t∈[0,1] be a d ′-dimensional Brownian motion. There
exists a constant C′ > 0 which is independent of d ′ and α such that ∀u > 0 and
∀K ∈ C([0,1]) such that ‖K‖∞ ≤ 1,

P

[∥∥∥∥∫ ·
0

K(s) dW(s)

∥∥∥∥
α

≥ u,‖K‖∞ ≤ 1
]

≤ C′ exp
(−u2

C′
)
.
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PROOF. Let ‖K‖∞ ≤ 1. In the case where K is deterministic, the stochastic
integral of K is clearly normally distributed and the result is clear. For K not deter-
ministic, it hard to say anything about the probability distribution of the stochastic
integral.

Using the equivalent definition of Hölder norms in terms of a Schauder expan-
sion, we have that

P

[∥∥∥∥∫ ·
0

K(s) dW(s)

∥∥∥∥
α

≥ u,‖K‖∞ ≤ 1
]

= P

[
sup
p,m

∣∣∣∣∫ 1

0
Hpm(s)K(s) dW(s)

∣∣∣∣≥ u,‖K‖∞ ≤ 1
]

≤ E[exp(λ supp,m | ∫ 1
0 Hpm(s)K(s) dW(s)|)]

exp(λu)

≤ sup
p,m

E[exp(λ| ∫ 1
0 Hpm(s)K(s) dW(s)|)]

exp(λu)
,

where the supremum can come outside the expectation by the Beppo–Levi theo-
rem since the random variables are all positive. Temporarily, consider the process
Y(t) = ∫ t

0 Hpm(s)K(s) dW(s). Using Itô’s formula, we get that

E
[∣∣Y(t)

∣∣n]=
∫ t

0
E

[
n(n − 1)

2

∣∣Y(s)
∣∣n−2

Hpm(s)2K(s)2
]
ds.

Y (t) is a martingale, since Hpm and K are bounded, with Y(0) = 0 so E[Y(t)] = 0.
By the Itô isometry, the second moment of Y(t) is

E
[
Y(t)2]= E

[∫ t

0
Hpm(s)2K(s)2 ds

]

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, 0 ≤ t ≤ m − 1

2p
,

2p

(
t − m − 1

2p

)
,

m − 1

2p
< t <

m

2p
,

1,
m

2p
≤ t ≤ 1.

Therefore, by induction on n we see

E
[
Y(t)2n]≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ m − 1

2p
,

(2n)!
n!2n

(
2p)n(t − m − 1

2p

)n

,
m − 1

2p
< t <

m

2p
,

(2n)!
n!2n

,
m

2p
≤ t ≤ 1.
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For the odd moments of |Y(t)|, we first use the Burkholder–Davies–Gundy in-
equality to say

E
[∣∣Y(t)

∣∣]≤ C1E

[(∫ t

0
Hpm(s)2K(s)2 ds

) 1
2
]

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, 0 ≤ t ≤ m − 1

2p
,

C12p/2
(
t − m − 1

2p

)1/2
,

m − 1

2p
< t <

m

2p
,

C1,
m

2p
≤ t ≤ 1,

and by induction on n again we see that

E
[∣∣Y(t)

∣∣2n+1]≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ t ≤ m − 1

2p
,

C1n!2n

(
t − m − 1

2p

) 2n+1
2

2
2n+1

2 ,
m − 1

2p
< t <

m

2p
,

C1n!2n,
m

2p
≤ t ≤ 1.

Hence E[|Y(t)|2n] ≤ (C1 ∨ 1) (2n)!
n!2n and E[|Y(t)|2n+1] ≤ (C1 ∨ 1)n!2n. The upper

bounds for these moments are the same as the moments of a half normal distri-
bution with variance 1 up to a multiplicative constant. Therefore, we can upper
bound the moment generating function of the RV |Y(1)| using the moment gener-
ating function of a half normal random variable. If Z is half normally distributed
with variance a, we have

E
[
exp(λZ)

]=
∫ ∞

0

2√
2πa2

eλx exp
(−x2

2a2

)
dx ≤ 4 exp

(
λa2

2

)
.

Therefore, E[exp(λ| ∫ 1
0 Hpm(s)K(s) dW(s)|)] � exp(λ2

2 ), and hence

P

[∥∥∥∥∫ ·
0

K(s) dW(s)

∥∥∥∥
α

≥ u,‖K‖∞ ≤ 1
]

� exp
(

λ2

2
− λu

)
� exp

(−u2

2

)
,

by choosing λ to minimize the equation since the choice of λ was arbitrary (λ = u).
�

LEMMA A.6. Let ψ ∈ Cα([0,1]) with ψ(0) = 0. Then ‖ψ‖∞ ≤ ‖ψ‖α .

PROOF. Using that t ∈ [0,1], one easily computes

‖ψ‖∞ = sup
t∈[0,1]

∣∣ψ(t)
∣∣= sup

t∈[0,1]
|ψ(t) − ψ(0)| · |t − 0|

|t − 0|

≤ sup
t∈[0,1]

|ψ(t) − ψ(0)|
|t − 0| · sup

t∈[0,1]
|t − 0| ≤ ‖ψ‖α. �
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