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University of Manchester and Syracuse University

The reflected process of a random walk or Lévy process arises in many
areas of applied probability, and a question of particular interest is how the
tail of the distribution of the heights of the excursions away from zero be-
haves asymptotically. The Lévy analogue of this is the tail behaviour of the
characteristic measure of the height of an excursion. Apparently, the only
case where this is known is when Cramér’s condition hold. Here, we estab-
lish the asymptotic behaviour for a large class of Lévy processes, which have
exponential moments but do not satisfy Cramér’s condition. Our proof also
applies in the Cramér case, and corrects a proof of this given in Doney and
Maller [Ann. Appl. Probab. 15 (2005) 1445–1450].

1. Introduction. The reflected process R = (Rn,n ≥ 0) formed from a ran-
dom walk S = (Sn, n ≥ 0) by setting

Rn = Sn − In where In = min
i≤n

Si, n ≥ 0,

arises in many areas of applied probability, including queuing theory, risk theory
and mathematical genetics. In all these areas, the i.i.d. sequence of random vari-
ables defined by

hi = max
0≤n<T̂i−T̂i−1

{ST̂i−1+n − ST̂i−1
}, i = 1,2, . . . ,

where T̂0 = 0 and T̂i = min{k : Sk < STi−1}, i ≥ 1 are the strict descending ladder
times, is of central importance. These random variables give the heights of the
excursions of R away from 0, or equivalently the heights of the excursions of
S above its minimum. Our main focus will be on the asymptotic behaviour of
P(h1 > x), which among other things is useful in the study of the point process of
excursion heights.

In continuous time, we replace the random walk by a Lévy process X = (Xt , t ≥
0) and study R = (Rt , t ≥ 0) where

Rt = Xt − Xt and Xt = inf
s≤t

Xs.
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In mathematical finance, R is called the drawup. When indexed by local time at
the infimum, the excursions of R away from 0 form a Poisson point process whose
characteristic measure we denote by n̂. If h denotes the height of a generic ex-
cursion, then n̂(h > x), which is the expected number of excursions whose height
exceeds x in unit local time, is the Lévy analogue of P(h1 > x).

Our main interest is in the Lévy process case, but we start by reviewing some
discrete time results where we make the following assumption.

ASSUMPTION S. Without loss of generality we will treat only the case of
nonlattice random walks, or the case that S takes values on the integers, and is
aperiodic, which we refer to as the lattice case.

A classical case where the asymptotic behaviour of P(h1 > x) is known is when
S satisfies Cramér’s condition, namely E(eγS1) = 1 for some γ ∈ (0,∞). Then
eγSn is a nonnegative martingale, which necessarily converges, and this forces
Sn → −∞ a.s. Thus for x > 0, the first time passage τx = inf{n : Sn > x} of S

to (x,∞) is defective and by Cramér’s estimate satisfies

(1.1) lim
x→∞ eγ xP (τx < ∞) = �,

where � is a known nonnegative constant. Here, in the lattice case, the limit is
taken through the integers. It then follows immediately from the identity

(1.2) P(τx < ∞) = P(h1 > x) +
∫ ∞

0
P(h1 ≤ x, Ĥ1 ∈ dy)P (τx+y < ∞),

where Ĥ1 = |ST̂1
| is the first strict descending ladder height, that

(1.3) lim
x→∞ eγ xP (h1 > x) = �

{
1 − E

(
e−γ Ĥ1

)}
.

This argument is due to Iglehart [10].
An obvious question is whether one can find a larger class of random walks with

exponentially small tails for which something similar to (1.3) holds. To see that this
is the case, we make the following definitions. For any nonnegative function f , let
us say that f ∈ L(α), α ≥ 0, if

(1.4) lim
x→∞

f (x + y)

f (x)
= e−αy for all y.

In the nonlattice case, Z ∈ L(α) means P(Z > x) ∈ L(α), and in the lattice case
it means that (1.4) holds when x and y are restricted to the integers. For α > 0,
the assumption Z ∈ L(α) is equivalent to a local statement, specifically that the
measure P(Z ∈ x + dy)/P (Z > x) converges weakly to the Exp(α) distribution,
or the Geom(e−α) distribution in the lattice case. This does not extend to L(0),
the class of long-tailed distributions. For a measure, μ ∈ L(α) means that μ(x) :=
μ((x,∞)) ∈ L(α). So for a random walk which satisfies the Cramér condition
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above, if � �= 0, then P(τx < ∞) ∈ L(γ ), h1 ∈ L(γ ), and the ratio of P(h1 > x) to
P(τx < ∞) converges to the constant 1 − E(e−γ Ĥ1). Our first result extends this
as follows.

THEOREM 1.1. Fix α > 0. For any random walk S,

P(τx < ∞) ∈ L(α)

if and only if

P(h1 > x) ∈ L(α),

in which case

lim
x→∞

P(h1 > x)

P (τx < ∞)
= 1 − E

(
e−αĤ1

)
.

In the Cramér case, we know the asymptotic behaviour of P(τx < ∞), but in the
general case more work is required to obtain a useful asymptotic estimate. The first
step is to connect the distributions of S and H = (Hn,n ≥ 0), the weak increas-
ing ladder height process, which is defective when Sn → −∞. This is defined by
Hn = STn , where T0 = 0 and Tn = min{k : Sk ≥ STn−1}, n ≥ 1. If Tn = ∞, we set
Hn equal to some cemetery state, in which case probabilities and expectation are
understood to be taken over only noncemetery values. The following result, which
is Lemma 1 in [3], gives the required connection between S and H . Assume α > 0:
then

(1.5) S1 ∈ L(α) ⇐⇒ H1 ∈ L(α),

and when this happens

(1.6)
P(S1 > x)

P (H1 > x)
→ 1 − E

(
e−αĤ1

)
.

Provided that Sn
a.s.→ −∞ the connection between P(τx < ∞) and P(H1 > x) is

implicit in the relationship

P(τx < ∞) = e−B
∞∑
1

P(Hn > x),

where B = ∑∞
1 n−1P(Sn ≥ 0) < ∞; see equation (20) of [3]. Since Hn is the

sum of n i.i.d. copies of H1 it is clear that to go further we need to study a sub-
class of L(α)which is closed under convolution powers. The appropriate class is
S(α), the convolution equivalent class of parameter α > 0. We say a (possibly
defective) random variable Z ∈ S(α) if Z ∈ L(α) and additionally, when Z1,Z2 are
independent copies of Z,

(1.7) lim
x→∞

P(Z1 + Z2 > x)

P (Z1 > x)
∈ (0,∞).
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It is easily seen that Z ∈ L(α) implies E(eθZ) < ∞ for θ < α, and E(eθZ) = ∞ for
θ > α, but when θ = α the expectation can be finite or infinite. If in addition Z ∈
S(α) then E(eαZ) < ∞ and the limit in (1.7) is given by 2E(eαZ): see for example
the discussion in Section 5 of [14]. Observe that if Sn → −∞ and E(eαS1) ≥ 1
then ∃γ ∈ (0, α] with E(eγS1) = 1 and so we are back in the Cramér setting. This
explains the second assumption in the following, which is Theorem 1 in [3]; for
α > 0 if

(1.8) S1 ∈ S(α) and E
(
eαS1

)
< 1

then

P(τx < ∞) ∈ S(α),

and furthermore,

lim
x→∞

P(τx < ∞)

P (S1 > x)
= e−B

(1 − E(e−αS1))(1 − E(eαH1))
:= C ∈ (0,∞).

Combining these results, we see that (1.8) is a sufficient condition for P(h1 >

x),P (S1 > x),P (H1 > x) and P(τx < ∞) to all have the same asymptotic be-
haviour, modulo constants. However, this leaves open the possibility that this could
also happen when S1 ∈ L(α)\S(α): in fact, this is not the case.

THEOREM 1.2. Assume α > 0, S1 ∈ L(α) and E(eαS1) < 1. Then

P(τx < ∞)

P (S1 > x)
→ L ∈ (0,∞) ⇐⇒ S1 ∈ S(α)

in which case, necessarily, L = C.

REMARK 1.1. This result is actually a statement about the defective renewal
process H = (Hn,n ≥ 1). To see this, we require the Wiener–Hopf factorisation

(1.9) 1 − E
(
e−αS1

) = (
1 − E

(
eαH1

))(
1 − E

(
e−αĤ1

))
.

Then note that the assumptions in Theorem 1.2 are equivalent to P(H1 > x) ∈ L(α)

[by (1.5)] and E(eαH1) < 1 [by (1.9)]. The conclusion is equivalent to

lim
x→∞

P(τH
x < ∞)

P (H1 > x)
= L′ ∈ (0,∞) ⇐⇒ H1 ∈ S(α),

where necessarily

L′ = e−B

(1 − E(eαH1))2 .
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Here, τH
x is the first passage time of H to (x,∞), and clearly P(τH

x < ∞) =
P(τx < ∞). Moreover, since S(α) is closed under asymptotic tail-equivalence,
S1 ∈ S(α) ⇔ H1 ∈ S(α), by (1.6). Finally, again by (1.6),

L′ = L
(
1 − E

(
e−αĤ1

)) = e−B

(1 − E(eαH1))2 .

In fact, our proof shows that this version of the result holds for any defective sub-
ordinator.

The Lévy version of Cramér’s condition is that E(eγX1) = 1 for some γ > 0,
and assuming this Bertoin and Doney [2] proved the following analogue of (1.1);
if X1 is nonlattice then

(1.10) lim
x→∞ eγ xP (τx < ∞) = �∗,

where τx = inf{t : Xt > x} is now the first passage time of X to (x,∞) and �∗ is
a known nonnegative constant. The analogue of (1.3) now becomes

(1.11) lim
x→∞ eγ xn̂(h > x) = κ̂(γ )�∗,

where κ̂ is the Laplace exponent of the strictly decreasing ladder height process.
A proof of this result was given in [7], but there is a problem with the argument
presented there. Specifically, equation (15) therein is not correct, the problem being
that the conditions required to employ the compensation formula are not satisfied.
So our first aim is to rectify this, and we do so by using a different approach which
applies to a much more general situation.

THEOREM 1.3. Fix α > 0. For any Lévy process X,

(1.12) P(τx < ∞) ∈ L(α)

if and only if

(1.13) n̂(h > x) ∈ L(α),

in which case

(1.14) lim
x→∞

n̂(h > x)

P (τx < ∞)
= κ̂(α).

Thus in particular, (1.11) is now proved provided �∗ �= 0. (If �∗ = 0, (1.11)
continues to hold; see Remark 4.1.)

As in the random walk case, to deduce useful results about n̂(h > x) we need
to investigate how the asymptotic behaviour of P(τx < ∞) is related to that of
�X(x) = �X((x,∞)), where �X(dy) denotes the Lévy measure of our Lévy
process X. We will give a complete answer to this under the natural assump-
tion that �X ∈ L(α), but first we consider the situation that �X ∈ S(α), the class
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of α-convolution equivalent functions, for some α > 0. By this, we mean that
the probability distribution defined by G(dy) = �X(dy)1{y>1}/�X(1) is in S(α).
Thus in particular,

(1.15) lim
x→∞

G ∗ G(x)

2G(x)
=

∫ ∞
1

eαyG(dy) < ∞.

In this scenario, E(eαX1) < ∞ by Theorem 25.3 of Sato [13], and since (1.12)
implies Xt → −∞ a.s., we can then assume, without loss of generality, that
E(eαX1) < 1. This is because if not there exists a γ ∈ (0, α] such that E(eγX1) = 1,
so we are back in the Cramér situation. When �X ∈ S(α) and E(eαX1) < 1, it has
been shown in Klüppelberg, Kyprianou and Maller [11], Lemma 3.5, that

(1.16) lim
x→∞

P(τH
x < ∞)

�H(x)
= q

κ(−α)2 ,

where �H is the Lévy measure and τH
x the first passage time for the increasing

ladder height process H , and κ and q are the Laplace exponent and killing rate
of H respectively. Since P(τH

x < ∞) = P(τx < ∞) and it was also claimed in
Proposition 5.3 of [11] that �X ∈ L(α) if and only if �H ∈ L(α) and then �X(x) ∼
κ̂(α)�H(x), (1.16) is apparently equivalent to

lim
x→∞

P(τx < ∞)

�X(x)
= q

κ̂(α)κ(−α)2 .

Together with our Theorem 1.3, this would solve the problem in this convolution
equivalent case. However, there is a problem with the proof of the claimed equiv-
alence of �X and �H , specifically in display (7.18) of [11], where an unjustified
change of limit operations is used. We circumvent this problem in proving

THEOREM 1.4. Fix α > 0. For any Lévy process X,

(1.17) �X ∈ L(α)

if and only if

(1.18) �H ∈ L(α)

in which case

(1.19) lim
x→∞

�X(x)

�H(x)
= κ̂(α).

REMARK 1.2. Note that, unlike Proposition 5.3 of [11], we do not require the
assumption that Xt → −∞ a.s. in this result.

Our last main result addresses the possibility that there are situations where
�X ∈ L(α)\S(α) and P(τx < ∞) [and hence n̂(h > x)] has the same asymptotic
behaviour as �X(x).
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THEOREM 1.5. Assume α > 0, �X ∈ L(α) and E(eαX1) < 1. Then

(1.20) lim
x→∞

P(τx < ∞)

�X(x)
= L ∈ (0,∞)

if and only if �X ∈ S(α), in which case case L = q

κ̂(α)κ(−α)2 .

This result may be reformulated in terms of �H rather than �X , and this is the
form in which we will prove it. In fact, our proof shows that this version of the
result holds for any defective subordinator.

THEOREM 1.6. Assume α > 0, �H ∈ L(α) and E(eαH1) < 1. Then

(1.21) lim
x→∞

P(τH
x < ∞)

�H(x)
= L′ ∈ (0,∞)

if and only if �H ∈ S(α), in which case case L′ = q

κ(−α)2 .

REMARK 1.3. To see the equivalence of Theorems 1.5 and 1.6, note that
by Theorem 1.4, �X ∈ L(α) ⇔ �H ∈ L(α), �X ∈ S(α) ⇔ �H ∈ S(α) and L′ =
κ̂(α)L. Finally, E(eαX1) < 1 ⇔ E(eαH1) < 1 by the Wiener–Hopf factorisation;
see, for example, Proposition 5.1 of [11].

REMARK 1.4. Note that, in particular, our results show that when α > 0,
�X ∈ S(α) and E(eαX1) < 1, the quantities �H(x),P (τx < ∞) and n̂(h > x) all
have the same asymptotic behaviour as �X(x) modulo a constant. This contrasts
with the Cramér case, when P(τx < ∞) and n̂(h > x) are comparable to each
other but not to �X(x) since then, by Theorem 25.3 of [13], �X(x) = o(e−γ x).

REMARK 1.5. If �X ∈ L(α) the limit in (1.20) cannot be 0 but it can be ∞.
This does not preclude the possibility that the limit may not exist. See the discus-
sion at the end of Section 4.

We conclude this section by remarking that our techniques yield some results
for the case α = 0. These can be found in Section 5.

2. Proofs in the random walk case. Condition (1.4) in the definition of L(α)

can be replaced by the apparently weaker condition

(2.1) lim
x→∞

f (x + y)

f (x)
exists finitely for all y > 0.

This is because (2.1) implies that g(x) = f (lnx) is regularly varying at infinity.
Exploiting this connection with regularly varying functions further, a very useful
bound for the ratio in (2.1) can be obtained from Potter’s theorem.
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LEMMA 2.1. Suppose that f ∈ L(α) with α > 0, and f is bounded away from
0 and ∞ on compact subsets of [1,∞). Then for every ε > 0 there exists an A = Aε

such that

(2.2)
f (x + y)

f (x)
≤ A

(
e−(α−ε)y ∨ e−(α+ε)y)

for all x ≥ 1, y ≥ 1 − x.

PROOF. This follows immediately by applying Potter’s theorem (Theo-
rem 1.5.6(ii) of [4]) to the slowly varying function h(x) = (x ∨ e)αf (ln(x ∨ e)).

�

PROOF OF THEOREM 1.1. In the nonlattice case, on the assumption that
P(τx < ∞) ∈ L(α), we can divide (1.2) by P(τx < ∞) to see that

P(h1 > x)

P (τx < ∞)
= 1 −

∫ ∞
0

P(h1 ≤ x, Ĥ1 ∈ dy)
P (τx+y < ∞)

P (τx < ∞)

→ 1 −
∫ ∞

0
P(Ĥ1 ∈ dy)e−αy = 1 − E

(
e−αĤ1

)
.

To argue the other way, recalling that T̂r is the r th strict descending ladder time
and writing ST̂r

= Ĥr , we note the decomposition

P(τx < ∞) =
∞∑

k=1

∫ ∞
0

P
(

sup
m≤T̂k−1

Sm ≤ x, Ĥk−1 ∈ dy
)
P(hk > x + y).

Assuming that P(h1 > x) ∈ L(α), dividing through by P(h1 > x) and using (2.2)
to bound the ratio P(h1 > x + y)/P (h1 > x), dominated convergence gives

P(τx < ∞)

P (h1 > x)
=

∞∑
k=1

∫ ∞
0

P
(

sup
m≤T̂k−1

Sm ≤ x, Ĥk−1 ∈ dy
)P(h1 > x + y)

P (h1 > x)

→
∞∑

k=1

∫ ∞
0

P(Ĥk−1 ∈ dy)e−αy

=
∞∑

k=1

E
(
e−αĤ1

)k−1 = (
1 − E

(
e−αĤ1

))−1
,

as required. In the lattice case, the same argument works by restricting x to integer
values. �

PROOF OF THEOREM 1.2. We prove the equivalent version given in Re-
mark 1.1, so assume we are in the nonlattice case, P(H1 > x) ∈ L(α), E(eαH1) < 1
and

(2.3) lim
x→∞

P(τH
x < ∞)

P (H1 > x)
= L′ ∈ (0,∞).
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Then for x > 0,

P(τH
x < ∞)

P (H1 > x)
= 1 +

∫ x

0
P(H1 ∈ dy)

P (τH
x−y < ∞)

P (H1 > x)
,

and so

lim
x→∞

∫ x

0
P(H1 ∈ dy)

P (τH
x−y < ∞)

P (H1 > x)
exists.

By bounded convergence followed by monotone convergence,

lim
K→∞ lim

x→∞

∫ K

0
P(H1 ∈ dy)

P (τH
x−y < ∞)

P (H1 > x)
= lim

K→∞

∫ K

0
P(H1 ∈ dy)L′eαy

= L′E
(
eαH1

)
.

Next, let H∞ = supn Hn. Then P(τH
x < ∞) = P(H∞ > x), and so by (2.3) and

E(eαH1) < ∞, we have E(eαH∞) < ∞. Thus

lim
K→∞ lim

x→∞

∫ x

x−K
P (H1 ∈ dy)

P (τH
x−y < ∞)

P (H1 > x)

= lim
K→∞ lim

x→∞

∫ K

0

P(H1 ∈ x − dy)

P (H1 > x)
P

(
τH
y < ∞)

= lim
K→∞

∫ K

0
αeαyP (H∞ > y)dy

= E
(
eαH∞)

< ∞.

Hence

lim
K→∞ lim

x→∞

∫ x−K

K
P (H1 ∈ dy)

P (τH
x−y < ∞)

P (H1 > x)
exists,

and so by (2.3)

(2.4) lim
K→∞ lim

x→∞

∫ x−K

K
P (H1 ∈ dy)

P (H1 > x − y)

P (H1 > x)
exists.

Now let Z1 and Z2 be independent copies of H1. Display (1) of [8] gives∫ x−K

K
P (Z1 ∈ dy)

P (Z1 > x − y)

P (Z1 > x)

= P(Z1 + Z2 > x)

P (Z1 > x)
− 2

∫ K

0

P(Z1 > x − y)

P (Z1 > x)
P (Z1 ∈ dy)

− P(Z1 > x − K)P (Z1 > K)

P (Z1 > x)

∼ P(Z1 + Z2 > x)

P (Z1 > x)
− 2

∫ K

0
eαyP (Z1 ∈ dy) − eαKP (Z1 > K)
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as x → ∞. Thus letting K → ∞, we obtain

lim
x→∞

P(Z1 + Z2 > x)

P (Z1 > x)
= lim

K→∞ lim
x→∞

∫ x−K

K
P (Z1 ∈ dy)

P (Z1 > x − y)

P (Z1 > x)

+ 2EeαZ1

which exists by (2.4). This means that H1 ∈ S(α). The converse holds by Lemma 1
and Theorem 1 of [3], where the value of L′ is also calculated.

The proof in the lattice case consists of restricting x to integer values and re-
placing integrals by sums. This shows condition (1.7) holds when x is restricted
to the integers. But this trivially implies (1.7) without this restriction, in the lattice
case. �

REMARK 2.1. A compound Poisson process with zero drift is a time-change
of a random walk, so we have essentially proved the Lévy process results in this
case. The only thing that needs checking is the value of the constants. So in the
remainder of the paper we need only deal with Lévy processes which are either
compound Poisson with nonzero drift or have �X(R) = ∞. Note that such pro-
cesses cannot take values on a lattice.

3. Preliminaries in the Lévy case. We briefly collect the pertinent properties
of a Lévy process to be used in this paper. Further details can be found, for exam-
ple, in [1, 6, 12] and [13]. Let (L−1

s ,Hs)s≥0 denote the weakly ascending bivariate
ladder process of X. When Xt → −∞ a.s., (L−1,H) is defective and may be ob-
tained from a nondefective process by exponential killing at some appropriate rate
q > 0. When the process is killed, it is sent to some cemetery state, in which case
probabilities and expectation are understood to be taken over only noncemetery
values. The renewal function of H is

V (x) =
∫ ∞

0
P(Hs ≤ x)ds.

Note that V (∞) := limx→∞ V (x) = q−1. The Laplace exponent κ of H , defined
by e−κ(λ) = Ee−λH1 for values of λ ∈ R for which the expectation is finite, satisfies

κ(λ) = q + dλ +
∫ ∞

0

(
1 − e−λx)

�H(dx).

Observe that ∫
y≥0

e−λyV (dy) = 1

κ(λ)

for all λ ∈ R with κ(λ) > 0.
Let X̂t = −Xt , t ≥ 0, denote the dual process, and (L̂−1, Ĥ ) the corresponding

strictly ascending bivariate ladder processes of X̂. All quantities relating to X̂ will
be denoted in the obvious way, for example, κ̂, d̂,�Ĥ and V̂ . We may assume
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the normalisations of L and L̂ are chosen so that the constant in the Wiener–Hopf
factorisation is 1; see (4) in Section VI.2 of [1]. L̂ is a local time at 0 for the
reflected process R, and the excursion et of R at local time t is given by

et (s) = X
(L̂−1

t− +s)∧L̂−1
t

− X
L̂−1

t−
.

If et �≡ 0, that is �L̂−1
t > 0, then et takes values in the space of excursions

E = {
ε ∈ D : ε(s) ≥ 0 for all 0 ≤ s < ζ, ζ > 0

}
,

where D is the Skorohod space of cadlag functions and ζ = ζ(ε) = inf{s : ε(u) =
ε(v) all u, v ≥ s} is the lifetime of the excursion. Furthermore, {(t, et ) : et ∈ E} is
a Poisson point process with intensity (excursion) measure n̂.

For ε ∈ E , let h = h(ε) = sups≥0 ε(s) be the height of the excursion ε. Note that
n̂(h = 0) > 0 if and only if X is compound Poisson. Set |n̂| = n̂(E) = n̂(h ≥ 0). It
might seem that the major technical problems will be in the case |n̂| = ∞, when
there is no first excursion. But when |n̂| < ∞, so that there is a first excursion,
the fact that it may not start at 0 also creates problems. It is therefore important to
know when n̂ is finite, and since we could not find this in the literature we include
the following result.

PROPOSITION 3.1. The excursion measure n̂ is finite if and only if one of the
following two conditions hold:

0 is irregular for [0,∞) and �X(0,∞) < ∞;
0 is irregular for (−∞,0).

PROOF. Excursion intervals are precisely the nonempty intervals of the form
(L̂−1

t− , L̂−1
t ). Let

T = inf
{
t : �L̂−1

t > 0
}
.

Then |n̂| = ∞ iff T = 0 a.s. We consider the three possible cases:
Case I: 0 is regular for both [0,∞) and (−∞,0):
Then there are excursion intervals with end points arbitrarily close to 0, that

is, there exist tn ↓ such that �L̂−1
tn > 0 and L̂−1

tn → 0. If tn ↓ s > 0 then by right
continuity, L̂−1

s = 0. This implies L̂−1 is compound Poisson which is impossible
when 0 is regular for (−∞,0). Thus T = 0 and so |n̂| = ∞.

In the two remaining cases, 0 is irregular for exactly one of [0,∞) or (−∞,0).
In particular, this implies X has bounded variation and so Xt = Yt −Zt + ct where
Y and Z are pure jump subordinators.

Case II: 0 is irregular for [0,∞):
In this case, c ≤ 0 and L̂−1 is not compound Poisson. Let

S = inf{s : �Xs > 0}.
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Then S = L̂−1
T − where L̂−1

0− = 0. By right continuity of L̂−1, |n̂| < ∞ precisely
when S > 0 a.s. which in turn is equivalent to �X(0,∞) < ∞.

Case III: 0 is irregular for (−∞,0):
In this case, L̂−1 is compound Poisson by construction (see page 24 of [6]), and

so T > 0. Thus |n̂| < ∞. �

4. Proofs in the Lévy case. Applying Corollary 4.1 of [9] to the dual process
X̂, the Lévy measure of Ĥ is related to n̂ by the formula

(4.1) �Ĥ (dx) = n̂
(∣∣ε(ζ )

∣∣ ∈ dx
) + dL̂−1�

−
X(dx), x > 0,

where �−
X((x,∞)) = �X((−∞,−x)) for x > 0 and dL̂−1 is the drift of L̂−1. The

final term on the right-hand side allows for the possibility of X jumping down from
a strict current minimum. It is only present when dL̂−1 > 0, which in turn implies
X has bounded variation. The Poisson point process of excursions can be extended
to include these downward jumps from strict minima as follows. Let x denote the
path x(t) = x for all t ≥ 0 and let

Ẽ = E ∪ {x : x < 0}.
Define

ẽt =
{
et if et ∈ E,

x if �L̂−1
t = 0 and �X

L̂−1
t

= x < 0.

Then {(t, ẽt ) : ẽt ∈ Ẽ} is a Poisson point process with characteristic measure ñ

given by

ñ(A) = n̂(A ∩ E) + dL̂−1�
−
X

({x : x ∈ A}).
The properties of Poisson point processes used below can be found in Proposi-

tion 0.2 of [1]. For δ ≥ 0, let

Aδ = {
ε ∈ E : h(ε) > δ

}
and Ac

δ = Ẽ \ Aδ . Set

Tδ = inf{t : et ∈ Aδ},
and

(4.2) h(δ) = h(eTδ ), Z(δ) = ĤTδ− and D(δ) = ∣∣eTδ (ζ )
∣∣.

The case δ = 0 will only be considered when |n̂| < ∞. Since the Poisson point
processes {(t, et ) : et ∈ Aδ} and {(t, ẽt ) : ẽt ∈ Ac

δ} are independent, we can write Ĥ

as the sum of two independent subordinators Ĥ = J (δ) + K(δ) where

K
(δ)
t = ∑

s≤t

∣∣es(ζ )
∣∣I (es ∈ Aδ)
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is the sum of the jumps of Ĥ that correspond to the ends of excursions for which
h > δ, and J (δ) = Ĥ − K(δ). Using (4.1), their Laplace exponents are given by

(4.3)
κJ (δ)

(λ) = d̂λ +
∫ ∞

0

(
1 − e−λx){

n̂
(
h ≤ δ,

∣∣ε(ζ )
∣∣ ∈ dx

) + dL̂−1�
−
X(dx)

}
,

κK(δ)

(λ) =
∫ ∞

0

(
1 − e−λx)

n̂
(
h > δ,

∣∣ε(ζ )
∣∣ ∈ dx

)
,

respectively. Here, we are assuming q̂ = 0 which will be the case below. Clearly,
Ĥt = J

(δ)
t for t < Tδ and J (δ) does not jump at time Tδ , so Z(δ) = J

(δ)
Tδ

. Further,

J (δ) is independent of (Tδ, eTδ ) and eTδ is independent of Tδ , thus both h(δ) and
D(δ) are independent of Z(δ). Additionally, Tδ has an exponential distribution with
parameter n̂(h > δ), hence

(4.4) Ee−λZ(δ) =
∫ ∞

0
n̂(h > δ)e−n̂(h>δ)t e−κJ(δ)

(λ)t dt = n̂(h > δ)

n̂(h > δ) + κJ (δ)
(λ)

.

Since, by (4.3) and dominated convergence,

(4.5)

lim
δ→0

κJ (δ)

(λ) = d̂λ

+
∫ ∞

0

(
1 − e−λx){

n̂
(
h = 0,

∣∣ε(ζ )
∣∣ ∈ dx

) + dL̂−1�
−
X(dx)

}
,

it follows from (4.4) that Z(δ) P−→ 0 if either n̂(h > 0) = ∞, or d̂ = 0, n̂(h = 0) =
0 and dL̂−1 = 0. Recall the condition n̂(h = 0) = 0 is equivalent to X not being
compound Poisson.

PROOF OF THEOREM 1.3. Assume (1.12). Since we have dealt with the com-
pound Poisson case, we need to consider two cases.

Case I: n̂(h > 0) = ∞, or d̂ = dL̂−1 = 0 and X is not compound Poisson.
Recalling (4.2), for any x > δ > 0 we have

P(τx < ∞) = P
(
h(δ) > x + Z(δ))

+
∫ ∞

0
P

(
h(δ) ≤ x + Z(δ),Z(δ) + D(δ) ∈ dy

)
P(τx+y < ∞).

Dividing by P(τx < ∞) and taking limits gives

lim
x→∞

P(h(δ) > x + Z(δ))

P (τx < ∞)
= 1 −

∫ ∞
0

e−αyP
(
Z(δ) + D(δ) ∈ dy

)
= E

(
1 − e−α(Z(δ)+D(δ))).

Since h(δ) and Z(δ) are independent and h(δ) has distribution given by

P
(
h(δ) ∈ ·) = n̂(h ∈ ·, h > δ)

n̂(h > δ)
,
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it then follows that

lim
x→∞

E[n̂(h > x + Z(δ))]
n̂(h > δ)P (τx < ∞)

= E
(
1 − e−α(Z(δ)+D(δ))).

Now for any c > 0

n̂(h > x + c)P
(
Z(δ) ≤ c

) ≤ E
[
n̂
(
h > x + Z(δ))] ≤ n̂(h > x),

hence

n̂(h > δ)E
(
1 − e−α(Z(δ)+D(δ))) ≤ lim inf

x→∞
n̂(h > x)

P (τx < ∞)

≤ lim sup
x→∞

n̂(h > x)

P (τx < ∞)

≤ eαcn̂(h > δ)

P (Z(δ) ≤ c)
E

(
1 − e−α(Z(δ)+D(δ))),

where the last inequality again uses (1.12). Let δ → 0 then c → 0 to obtain

lim sup
δ→0

n̂(h > δ)E
(
1 − e−α(Z(δ)+D(δ)))

≤ lim inf
x→∞

n̂(h > x)

P (τx < ∞)

≤ lim sup
x→∞

n̂(h > x)

P (τx < ∞)

≤ lim inf
δ→0

n̂(h > δ)E
(
1 − e−α(Z(δ)+D(δ))).

Thus both limits exist, though possibly infinite, and

(4.6) lim
x→∞

n̂(h > x)

P (τx < ∞)
= lim

δ→0
n̂(h > δ)E

(
1 − e−α(Z(δ)+D(δ))).

To evaluate the limit observe that since Z(δ) and D(δ) are independent

E
(
1 − e−α(Z(δ)+D(δ))) = E

(
1 − e−αZ(δ)) + E

(
1 − e−αD(δ))

− E
(
1 − e−αZ(δ))

E
(
1 − e−αD(δ))

.

By (4.4) and (4.5),

lim
δ→0

n̂(h > δ)E
(
1 − e−αZ(δ)) = lim

δ→0

n̂(h > δ)κJ (δ)
(α)

n̂(h > δ) + κJ (δ)
(α)

= d̂α +
∫ ∞

0

(
1 − e−αz)dL̂−1�

−
X(dz).
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Next, since

P
(
D(δ) ∈ dz

) = n̂(h > δ, |ε(ζ )| ∈ dz)

n̂(h > δ)
,

we have by monotone convergence

(4.7)

n̂(h > δ)E
(
1 − e−αD(δ)) = n̂(h > δ)

(
1 −

∫ ∞
0

e−αz n̂(h > δ, |ε(ζ )| ∈ dz)

n̂(h > δ)

)
=

∫ ∞
0

(
1 − e−αz)n̂(

h > δ,
∣∣ε(ζ )

∣∣ ∈ dz
)

→
∫ ∞

0

(
1 − e−αz)n̂(∣∣ε(ζ )

∣∣ ∈ dz
)
.

Finally, by (4.7) and Z(δ) P−→ 0,

n̂(h > δ)E
(
1 − e−αZ(δ))

E
(
1 − e−αD(δ)) → 0.

Since (1.12) implies Xt → −∞ a.s., this means q̂ = 0 and so by (4.1), the limit in
(4.6) is κ̂(α). This proves (1.14) which in turn implies (1.13).

Case II: n̂(h > 0) < ∞ and d̂ > 0 or dL̂−1 > 0.
If 0 is irregular for (−∞,0), then (L̂−1, Ĥ ) is bivariate compound Poisson, so

d̂ = dL̂−1 = 0. Thus by Proposition 3.1, it is necessarily the case that 0 is irregular
for [0,∞) and �X(0,∞) < ∞. In particular, X is of bounded variation but not
compound Poisson. Hence Xt = Yt −Ut where Y is a spectrally positive compound
Poisson process and U is an independent subordinator which is not compound
Poisson. If dU is the drift of U , then its Laplace exponent is

κU(λ) = dUλ +
∫ ∞

0

(
1 − e−λx)

�−
X(dx).

Since 0 is irregular for [0,∞), it suffices to prove the result when L̂ is given by

L̂t =
∫ t

0
I (Xs = Xs) ds.

In this case, we have L̂−1
t = t until the time of the first jump of Y , at which time

L̂−1 also jumps. Thus dL̂−1 = 1, d̂ = dU and

T = inf{t : �Yt > 0} = inf{t : et ∈ E}
has an exponential distribution with parameter �X(0,∞) = |n̂|. Setting δ = 0 in
the discussion preceding the proof of Theorem 1.3, we can write Ĥ = J + K

where, since dL̂−1 = 1,

κJ (λ) = d̂λ +
∫ ∞

0

(
1 − e−λx)

�−
X(dx),

κK(λ) =
∫ ∞

0

(
1 − e−λx)

n̂
(∣∣ε(ζ )

∣∣ ∈ dx
)
.
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Thus J has the same distribution as U , but J �= U . However, Js = Us for s ≤ T .
Let h1 = h(eT ) be the height and D1 = |eT (ζ )| the overshoot of the first excursion.
Then, since P(D1 ∈ dz) = |n̂|−1n̂(|ε(ζ )| ∈ dz),

(4.8) E
(
1 − e−λD1

) = 1

|n̂|
∫ ∞

0

(
1 − e−λz)n̂(∣∣ε(ζ )

∣∣ ∈ dz
) = κK(λ)

|n̂| .

Also, as noted previously, J is independent of (T , eT ) (this would not be true if J

were replaced by U ), and eT is independent of T . In what follows, it will some-
times be convenient to write P(τx < ∞) as P(X∞ > x) where Xt = sups≤t Xs .
We also write S for the right-hand endpoint L̂−1

T of the first excursion interval.
Then for any t > 0, since Js = Us for s ≤ T ,

P(τx < ∞) = P(T ≤ t, h1 > x + JT )

+ P
(
T ≤ t, h1 ≤ x + JT , sup

r≥0
(XS+r − XS) > x + JT + D1

)
+ P

(
T > t, sup

r≥0
(Xt+r − Xt) > x + Jt

)
=

∫ t

0
P(T ∈ ds)P (h1 > x + Js) +

∫ t

0
P(T ∈ ds)Efx(h1,D1, Js)

+ P(T > t)Egx(Jt ),

where

fx(y, z,w) = I (y ≤ x + w)P (X∞ > x + w + z) and

gx(w) = P(X∞ > x + w).

Thus dividing by P(τx < ∞) and letting x → ∞, we obtain

lim
x→∞

∫ t

0
P(T ∈ ds)

P (h1 > x + Js)

P (τx < ∞)
= 1 − P(T > t)Ee−αJt

−
∫ t

0
P(T ∈ ds)Ee−α(Js+D1)

= 1 − e−(|n̂|+κJ (α))t

− |n̂|Ee−αD1

∫ t

0
e−(|n̂|+κJ (α))s ds.

Now divide by t , let t → 0, and use (4.8) to get

(4.9)

lim
t→0

lim
x→∞

∫ t

0
P(T ∈ ds)

P (h1 > x + Js)

tP (τx < ∞)

= |n̂| + κJ (α) − |n̂|
(

1 − κK(α)

|n̂|
)

= κ̂(α).
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Since

P(h1 > x + Jt ) ≤ P(h1 > x + Js) ≤ P(h1 > x)

for 0 ≤ s ≤ t and Jt
P−→ 0, it then easily follows from (4.9) that

lim
x→∞

|n̂|P(h1 > x)

P (τx < ∞)
= κ̂(α).

This is equivalent to (1.14), which then implies (1.13).
In the converse direction, assume (1.13). By the compensation formula,

(4.10)

P(τx < ∞) = E
∑
t

I
(
X

L̂−1
t− − ≤ x,h(et ) > x + |X

L̂−1
t−

|)
= E

∫ ∞
0

dtI (X
L̂−1

t− − ≤ x)n̂
(
h > x + |X

L̂−1
t−

|)
=

∫ ∞
0

dt

∫
y≥0

P
(
X

L̂−1
t− − ≤ x, |X

L̂−1
t−

| ∈ dy
)
n̂(h > x + y).

By (2.2), for any ε ∈ (0, α) there exists a constant A such that

n̂(h > x + y)

n̂(h > x)
≤ Ae−(α−ε)y for all x ≥ 1, y ≥ 0.

Thus for x ≥ 1∫ ∞
0

dt

∫
y≥0

P
(
X

L̂−1
t− − ≤ x, |X

L̂−1
t−

| ∈ dy
) n̂(h > x + y)

n̂(h > x)

≤ A

∫ ∞
0

dt

∫
y≥0

P
(|X

L̂−1
t−

| ∈ dy
)
e−(α−ε)y

≤ A

∫ ∞
0

dtEe−(α−ε)Ĥt

= A

κ̂(α − ε)
< ∞.

Hence, dividing (4.10) by n̂(h > x) and applying dominated convergence we
obtain

lim
x→∞

P(τx < ∞)

n̂(h > x)
=

∫ ∞
0

dt

∫
y≥0

P
(|X

L̂−1
t−

| ∈ dy
)
e−αy = 1

κ̂(α)
.

Thus (1.14) holds, and hence also (1.12). �

REMARK 4.1. If �∗ = 0 in (1.10), then a simpler version of the above proof
where dividing by P(τx < ∞) is replaced by dividing by e−γ x shows that the limit
in (1.11) is also 0.
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PROOF OF THEOREM 1.4. Assume �H ∈ L(α). By Vigon’s équation amicale
(see (5.3.3) of [6]), for any t > 0,

�X(t) =
∫ ∞

0
�H(t + dy)�Ĥ (y) + d̂�′

H(t) + q̂�H (t),

where �′
H denotes the cadlag version of the density of �H , which exists when

d̂ > 0. By Fubini’s theorem,

�X(t) =
∫ ∞

0

(
�H(t) − �H(t + y)

)
�Ĥ (dy) + d̂�′

H(t) + q̂�H (t),

thus

(4.11)

1

�H(x)

∫ ∞
x

�X(t) dt =
∫ ∞

0
�Ĥ (dy)

∫ y

0

�H(x + t)

�H (x)
dt + d̂

+ q̂

�H (x)

∫ ∞
x

�H(t) dt.

Fix ε ∈ (0, α). By (2.2), for some A and all x ≥ 1, y ≥ 0,∫ y

0

�H(x + t)

�H (x)
dt ≤ A

∫ y

0
e−(α−ε)t dt = A(1 − e−(α−ε)y)

α − ε
.

This final expression is integrable over (0,∞) with respect to �Ĥ (dy), hence we
may apply dominated convergence to conclude

(4.12)
∫ ∞

0
�Ĥ (dy)

∫ y

0

�H(x + t)

�H (x)
dt →

∫ ∞
0

�Ĥ (dy)
(1 − e−αy)

α
.

Similarly, another appeal to (2.2) together with dominated convergence gives

(4.13)
q̂

�H (x)

∫ ∞
x

�H(t) dt = q̂

∫ ∞
0

�H(x + t)

�H (x)
dt → q̂

α
.

Thus by (4.11), (4.12) and (4.13)

1

�H(x)

∫ ∞
x

�X(t) dt → κ̂(α)

α
.

Now fix a > 0. Then

a�X(x)

�H(x)
≤ 1

�H(x)

∫ x

x−a
�X(t) dt

= �H(x − a)

�H(x)

1

�H(x − a)

∫ ∞
x−a

�X(t) dt − 1

�H(x)

∫ ∞
x

�X(t) dt

→ κ̂(α)

α

(
eαa − 1

)
.
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Divide by a and let a → 0 to obtain

lim sup
x→∞

�X(x)

�H(x)
≤ κ̂(α).

Integrating over [x, x + a] gives the corresponding lower bound. Hence (1.19)
holds and consequently �X ∈ L(α).

The opposite direction is straightforward. Assume �X ∈ L(α). By Vigon’s equa-
tion amicale inversée (see (5.3.4) of [6]), for x > 0,

(4.14)
�H(x)

�X(x)
=

∫ ∞
0

V̂ (dy)
�X(x + y)

�X(x)
.

To take the limit inside the integral, we again we use (2.2) and observe∫ ∞
0

V̂ (dy)Ae−(α−ε)y =
∫ ∞

0
V̂ (y)A(α − ε)e−(α−ε)y dy < ∞

since V̂ (y) ≤ Cy for y ≥ 1 by Proposition III.1 of [1]. Thus by dominated conver-
gence,

�H(x)

�X(x)
→

∫ ∞
0

V̂ (dy)e−αy = 1

κ̂(α)
.

Hence (1.19) holds, and consequently, �H ∈ L(α). �

PROOF OF THEOREM 1.6. Assume �H ∈ L(α), E(eαH1) < 1 and (1.21) hold.
Let Z = Hτ1 if τ1 < ∞ and set Z equal to some cemetery state otherwise. Then by
Proposition III.2 of [1],

(4.15) lim
x→∞

P(Z > x)

�H(x)
= lim

x→∞

∫ 1

0
V (dz)

�H(x − z)

�H(x)
=

∫ 1

0
eαzV (dz).

Hence P(Z > x) ∈ L(α). Further, since EeαH1 < ∞ implies
∫ ∞

1 eαy�H(dy) < ∞
by Theorem 25.3 of [13], which in turn is equivalent to

(4.16)
∫ ∞

1
�H(y)αeαy dy < ∞,

we have

(4.17) EeαZ =
∫ ∞

0
P(Z > y)αeαy dy < ∞.

Now for x > 1,

(4.18)
P(τH

x < ∞)

�H(x)
= P(Z > x)

�H(x)
+

∫ x

0
P(Z ∈ dy)

P (τH
x−y < ∞)

�H(x)
.
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By (1.21), bounded convergence, then monotone convergence

(4.19)
lim

K→∞ lim
x→∞

∫ K

0
P(Z ∈ dy)

P (τH
x−y < ∞)

�H(x)
= lim

K→∞

∫ K

0
P(Z ∈ dy)L′eαy

=
∫ ∞

0
P(Z ∈ dy)L′eαy < ∞

by (4.17), while

(4.20)

lim
K→∞ lim

x→∞

∫ x

x−K
P (Z ∈ dy)

P (τH
x−y < ∞)

�H(x)

= lim
K→∞ lim

x→∞

∫ K

0
P

(
τH
y < ∞)P(Z ∈ x − dy)

P (Z > x)

P (Z > x)

�H(x)

= lim
K→∞

∫ K

0
P

(
τH
y < ∞)

αeαy dy

∫ 1

0
eαzV (dz)

=
∫ ∞

0
P

(
τH
y < ∞)

αeαy dy

∫ 1

0
eαzV (dz) < ∞

by (1.21) and (4.16). Thus by (1.21), (4.18), (4.19) and (4.20),

lim
K→∞ lim

x→∞

∫ x−K

K
P (Z ∈ dy)

P (τH
x−y < ∞)

�H(x)
exists.

By (1.21) and (4.15), it then follows that

lim
K→∞ lim

x→∞

∫ x−K

K
P (Z ∈ dy)

P (Z > x − y)

P (Z > x)
exists.

We can now repeat the random walk argument following (2.4), with Z replacing
H1, to see that that Z ∈ S(α). Since S(α) is closed under tail equivalence, this in
turn implies �H ∈ S(α).

The converse holds by Lemma 3.5 of [11], where the value of L′ is also calcu-
lated. �

We conclude this section by discussing other possible values of the the limit
in (1.20) under the assumption �X ∈ L(α), which will remain in place for the
remainder of this section. Fix x > 0, t > 0 and write X = Y + Z where Y is the
sum of the jumps of X which are larger than x. Then choose K > 0 large enough
that P(inf0≤s≤t Zs ≥ −K) = c > 0. Then

P(Xt > x) ≥ P
(
Yt > x + K, inf

0≤s≤t
Zs ≥ −K

)
≥ ct�X(x + K).

Thus

(4.21) lim inf
x→∞

P(τx < ∞)

�X(x)
≥ lim inf

x→∞
P(Xt > x)

�X(x)
≥ cte−αK,

and so the limit in (1.20) can not be 0.
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If EeαX1 < 1, the limit in (1.20) is finite and nonzero precisely when �X ∈ S(α)

by Theorem 1.5. This does not preclude the possibility that the limit does not exist
when �X ∈ L(α) \S(α) and EeαX1 < 1. We should note that while it is possible to
have a random variable Z ∈ L(α) \S(α) with EeαZ < ∞, by far the most frequently
encountered case is when EeαZ = ∞. For example, if

P(Z > x) ∼ xβe−αx,

then Z ∈ S(α) if β < −1 and Z ∈ L(α) \ S(α) if β ≥ −1. In the case that EeαX1 =
∞, the limit in (1.20) is ∞. To see this, we first calculate the limit in (1.15). By
Fatou,

lim inf
x→∞

G ∗ G(x)

2G(x)
= lim inf

x→∞

∫ x

0

G(x − y)

G(x)
G(dy) ≥

∫ ∞
0

eαyG(dy) = ∞,

since EeαX1 = ∞ implies
∫ ∞

1 eαy�X(dy) = ∞. Thus by Braverman [5]

lim
x→∞

P(Xt > x)

P (Xr > x)
= 0 for all 0 < t < r.

Hence by (4.21), if 0 < t < r ,

lim inf
x→∞

P(τx < ∞)

�X(x)
≥ lim inf

x→∞
P(Xr > x)

�X(x)
≥ cte−αK lim inf

x→∞
P(Xr > x)

P (Xt > x)
= ∞.

There remains the possibility that EeαX1 ∈ [1,∞). If EeαX1 = 1 then from
(1.10), if �∗ > 0, the limit in (1.20) is ∞ since �X(x) = o(e−αx). If �∗ = 0,
we are unable to say anything. For the remaining case, EeαX1 ∈ (1,∞), we may
assume Xt → −∞ else the limit in (1.20) is trivially ∞. Then there exists γ ∈
(0, α) such EeγX1 = 1. Thus from (1.10) the limit in (1.20) is again ∞, since
�∗ > 0 in this case.

5. The case α = 0. The definitions of L(α) and S(α) are valid for α = 0, in
which case they are called the long-tailed and subexponential classes respectively.
Our methods give some partial results in this case, and here we describe them for
the Lévy case.

REMARK 5.1. When α = 0, (1.17) implies (1.19) and (1.18) implies (1.19),
but (1.17) and (1.18) are not necessarily equivalent since it is possible that κ̂(0) =
0. To see this, by (4.14) for any x > 0 without any assumptions on �X or �H ,

�H(x)

�X(x)
≤ V̂ (∞) = 1

κ̂(0)
.

If �X ∈ L(0), then applying Fatou to (4.14) proves (1.19). If �H ∈ L(0), then for
any K > 0,

�H(x)

�H(x + K)
≥

∫ K

0
V̂ (dy)

�X(x + y)

�H(x + K)
≥ V̂ (K)

�X(x + K)

�H(x + K)
.

Letting x → ∞ and then K → ∞ proves (1.19).
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REMARK 5.2. If Xt � −∞ a.s., then P(τx < ∞) = 1 for all x ≥ 0, so (1.12)
trivially holds when α = 0. Since this provides no useful information about the
asymptotic behaviour of P(τx < ∞), we must also include the condition Xt →
−∞ when considering (1.12) in the α = 0 case. In that case, the proof for α > 0 is
easily modified, and is in fact much simpler, to show that (1.14) holds with α = 0,
the limit being κ̂(0) = 0 since Xt → −∞. However, this does not enable us to
conclude anything about (1.13). Conversely, if (1.13) holds with α = 0, then we
can divide through (4.10) by n̂(h > x) and apply Fatou to obtain

lim inf
x→∞

P(τx < ∞)

n̂(h > x)
≥

∫ ∞
0

dt

∫
y≥0

P
(|X

L̂−1
t

| ∈ dy
) = V̂ (∞) = 1

κ̂(0)
.

Again using (4.10), the corresponding upper bound holds trivially for every x >

0 without taking the limit. Thus (1.14) holds with α = 0, but we are unable to
conclude anything about (1.12) unless q̂ > 0. In this direction, there is no need
to assume Xt → −∞ a.s. If Xt � −∞ a.s., then (1.14) simply reduces to n̂(h =
∞) = q̂ .

REMARK 5.3. Theorem 1.6 continues to hold when α = 0 with the interpreta-
tion that EeαH1 < 1 means H is defective. The proof is an obvious modification of
the proof in the α > 0 case. Theorem 1.5 as stated does not hold for α = 0, where
we interpret EeαX1 < 1 to mean Xt → −∞. This is because when �X ∈ L(0) one
can show

lim inf
x→∞

n̂(h > x)

�X(x)
≥ 1

q
.

Thus if in addition (1.20) holds, then P(τx < ∞) ∈ L(0) and Xt → −∞, hence by
Remark 5.2,

lim
x→∞

n̂(h > x)

P (τx < ∞)
= 0.

This then implies

lim
x→∞

P(τx < ∞)

�X(x)
= ∞,

which contradicts (1.20).
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