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VERIFICATION THEOREMS FOR STOCHASTIC OPTIMAL
CONTROL PROBLEMS IN HILBERT SPACES BY MEANS OF

A GENERALIZED DYNKIN FORMULA

BY SALVATORE FEDERICO AND FAUSTO GOZZI

Università di Siena and LUISS University

Verification theorems are key results to successfully employ the dy-
namic programming approach to optimal control problems. In this paper,
we introduce a new method to prove verification theorems for infinite di-
mensional stochastic optimal control problems. The method applies in the
case of additively controlled Ornstein–Uhlenbeck processes, when the asso-
ciated Hamilton–Jacobi–Bellman (HJB) equation admits a mild solution (in
the sense of [J. Differential Equations 262 (2017) 3343–3389]). The main
methodological novelty of our result relies on the fact that it is not needed to
prove, as in previous literature (see, e.g., [Comm. Partial Differential Equa-
tions 20 (1995) 775–826]), that the mild solution is a strong solution, that
is, a suitable limit of classical solutions of approximating HJB equations. To
achieve the goal, we prove a new type of Dynkin formula, which is the key
tool for the proof of our main result.

1. Introduction. In this paper, we introduce a new technique, based on a gen-
eralized Dynkin formula, to prove verification theorems for stochastic optimal con-
trol problems over infinite horizon in Hilbert spaces.

Verification theorems are key results to enable to solve in a closed way optimal
control problems through the dynamic programming approach. Once a solution (in
some sense to be precised) of the associated HJB equation is known to exists, the
verification theorem provides a sufficient (sometimes also necessary) condition of
optimality, which can be used to find optimal controls in feedback forms through
the so-called closed loop equation. In the stochastic case, when the solution v is
sufficiently smooth, the proof of such theorem is substantially based on an applying
the Dynkin formula to the function v and to the state process. In our framework of
discounted time-homogeneous infinite horizon problems, the dependence on time
is known, so the HJB equation is elliptic and v only depends on the state variable.
Hence, in the finite dimensional case, to employ the classical Dynkin formula, it
is needed to know that v ∈ C2. Fortunately, in the finite dimensional case, due to
the presence of a powerful regularity theory (at least for nondegenerate second-
order HJB equations) there is a wide class of problems for which actually v is
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known to enjoy this regularity, hence the classical Dynkin formula applies and the
verification theorem can be proved. On the other hand, if v is not known to be
sufficiently smooth (e.g., when v is known to be only a viscosity solution), still in
the finite dimensional case, other techniques have been developed to overcome the
fact that the classical Dynkin formula is not applicable. We mention the following
techniques:

– The technique developed in [33], dealing with viscosity solutions. In this case,
the classical Dynkin formula is applied to test functions and only some weak
results are obtained.

– The technique developed in [41]. Here, a solution v ∈ C1 is obtained through the
solution of a suitable backward SDE (BSDE). This technique applies to semi-
linear HJB equations and provides the verification theorem as a byproduct of
the construction itself of the solution v. The latter feature is particularly mean-
ingful, as it allows to completely bypass the problem of second-order regularity
of v and the application of the classical Dynkin formula. On the other hand, the
powerfulness of this approach is partly limited by the fact that it can be applied
only when a structural condition is verified by the control operator.

– The technique developed in [32]: here, v is studied and treated as a strong solu-
tion, that is, as a suitable limit of classical solutions.

When the state space H is infinite dimensional the situation is much worse.
First of all, the regularity needed to apply the classical Dynkin formula (see, e.g.,
[10], Section 4.4) is very demanding and does not allow to deal with many applied
examples proposed and only partly studied in the literature. This is partly due
to additional regularity assumptions on the coefficients needed in infinite dimen-
sion, partly due to the lack of a satisfactory regularity theory in infinite dimension.
Hence, elaborating alternative methods is considerably more important than in the
finite dimensional case. Clearly, the first attempt consists in trying to extend the
techniques developed in the finite dimensional case to infinite dimensional one.
On this side, so far the state of the art can be basically depicted as follows:

(a) There are no results concerning the case when v is a viscosity solution.
(b) Results with the BSDE approach have been elaborated in various papers

(see, e.g., [21] in the infinite horizon case), but always under the structural con-
dition. The latter requirement leaves out the treatments of important cases like
boundary control of stochastic PDEs or delayed control of SDEs.

(c) Results dealing with strong solutions are available in [5, 26, 31].

The results we provide here are closer, in the conclusions, to the results mentioned
in item (c) above. With respect to them, ours have a larger range of applicabil-
ity and, not only in this sense, can be seen as a significant improvement of this
technique, as we will comment more precisely afterwards.

We stress the fact that our method to prove the verification theorem is a novelty
also in finite dimension: our results may be useful to treat also finite dimensional
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problems where only partial regularity properties of the value function are known.
Here, we focus on the infinite dimensional case where the application is more
meaningful.

We now illustrate the results and the novelties of our paper. We consider a class
of stochastic optimal control problems in a real separable Hilbert space H , where
the noise is additive and the control only appears in an additive form in the drift
term. More precisely, the state equation is

(1.1) dX(t) = [
AX(t) + GL

(
u(t)

)]
dt + σ dW(t),

where A : D(A) ⊆ H → H , G : K → H , L : � → K , σ : � → H are suitable
operators, with K,� being other real separable Hilbert spaces and � being a Polish
space; W is a �-valued cylindrical Browian motion; u is the control process taking
values in �; X is the state process taking values in the Hilbert space H . The
stochastic control problem consists in minimizing, over a set of admissible control
processes, a cost functional in the form

E

[∫ ∞
0

e−λsl
(
X(s), u(s)

)
ds

]
,

where λ > 0 is a discount factor and l is a suitable real valued function. In this
case, the associated HJB equation is an elliptic semilinear PDE in the space H :

λv(x) − 1

2
Tr

[
σσ ∗D2v(x)

] − 〈
Ax,Dv(x)

〉
H − F0

(
x,DGv(x)

) = 0,

where

F0
(
x,DGv(x)

) = inf
u∈�

{〈
L(u),DGv(x)

〉
K + l(x, u)

}
,

where DGv denotes the G-gradient of a function v : H → R (see Section 2.2).
Under reasonable assumptions, it is proved in [16] that such HJB equation ad-
mits a unique mild solution, that is, a solution of a suitable integral form of the
above equation. Such solution admits G-gradient, that is, verifies the minimal dif-
ferentiability requirement to give sense to the nonlinear Hamiltonian term F0 in
HJB above. Once one proves the existence of a mild solution v to the associated
HJB equation, the approach of item (c) would require three nontrivial technical
steps: first, proving that such a mild solution is indeed a strong solution (limit, in
a suitable sense, of classical solutions of approximating HJB equations); second,
applying Dynkin formula to the approximating classical solutions; third, passing
to the limit the Dynkin formula. As one may expect, passing through all these
steps requires additional hypotheses that may be nontrivial to check in practice
(see, e.g., [31]). Our goal here is to bypass these steps through an alternative path.
In fact, we show that the role of strong solutions is not essential. Indeed, relying
on the theory of π -semigroups (see, e.g., [14], Appendix B and [43]), we prove a
generalized (abstract) Dynkin formula—deserving interest in itself—which can be
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directly applied to mild solutions. The proof is quite involved and this is the rea-
son why we consider here the case of stochastic control of equation of type (1.1),
where the uncontrolled part of the state equation is of Ornstein–Uhlenbeck type.1

Then, relying on this formula, we straightly prove a verification theorem. The new
results on G-derivatives provided in [16] (see also [14], Chapter 4) enable us to
apply our method to more general examples than the ones treated by the current
literature; in particular, to cases where the structural condition required at item (b)
above is not verified (see Section 6).

The main results of the paper are the abstract Dynkin formula (Theorem 4.8);
the verification theorem (Theorem 5.6); the consequent Corollary 5.7 on sufficient
conditions for the existence of optimal control processes in feedback form. More-
over, since the existence of optimal feedback controls might be easier to obtain
when the optimal control problem is considered in the weak formulation, we also
provide Corollary 5.8 in this direction. We underline that we do not provide gen-
eral results on the existence of optimal control processes in feedback form, as
such results strongly depend on the specific case at hand. To this regard, in Sec-
tion 6—where we deal with two specific applications: optimal boundary control
(of Neumann type) of the stochastic heat equation and optimal control of SDEs
with delay in the control variable—we provide for the first example some results
and comments on the existence of optimal feedback control processes.

The paper is organized as follows. After some preliminaries in Section 2 on
spaces, notation and the notion of G-derivative recently extended in [16], we in-
troduce our family of control problems in Section 3. Section 4 is devoted to prove
our new Dynkin formula (Theorem 4.8), the methodological core of the paper.
In Section 5, we prove our main results on the control problem: in Section 5.1,
the verification theorem (Theorem 5.6); in Section 5.2, Corollary 5.7 on optimal
feedbacks. Section 6 is devoted to illustrate the applications of our results to the
aforementioned examples. Finally, the Appendix is devoted to prove few technical
results needed to prove our Dynkin formula.

2. Preliminaries. In this section, we provide some preliminaries about spaces
and notation used in the rest of the paper and recall from [16] the notion of G-
derivative. We restrict the treatment of G-derivative to the case of real valued
functions defined on Hilbert spaces and to constant operator maps G. This will
be enough for the purposes of the present paper. For a more general theory and
more details, we refer to the aforementioned paper [16].

1It is worth to stress that, even if in the case of Ornstein–Uhlenbeck dynamics the approach of
strong solutions has already been successfully applied (see [31]), the method used here, other than
being original, seems to be extendable to more general structures of state equations, where the strong
solution approach would fail.
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2.1. Spaces and notation. Measurable bounded and continuous functions. All
the topological spaces are intended endowed with their Borel σ -algebra, denoted
by B. By measurable set (function), we always intend a Borel measurable set (func-
tion). If U is a topological space and V is a topological vector space, we denote by
Bb(U,V ) the set of bounded measurable functions from U to V and by Cb(U,V )

the set of bounded continuous functions from U to V . If V = R, we drop it in the
latter notation. If V is complete, the spaces Bb(U,V ) and Cb(U,V ) are Banach
spaces when endowed with the norm

(2.1) |ϕ|∞ = sup
x∈U

∣∣ϕ(x)
∣∣
V .

Hilbert spaces. Let H be a Hilbert space. We denote its norm by | · |H and its
inner product by 〈·, ·〉H . We omit the subscript if the context is clear and if H = R.
If a sequence (xn)n∈N ⊆ H , converges to x ∈ U in the norm (strong) topology, we
write xn → x.

We denote by H ∗ the topological dual of H , that is, the space of all continu-
ous linear functionals defined on H . We always identify H ∗ with H through the
standard Riesz identification.

Linear operators. Let H,K be real separable Hilbert spaces. We denote by
L(H,K) the set of all bounded (continuous) linear operators T : H → K with
norm |T |L(H,K) := supx∈H,x 	=0

|T x|K|x|H , using for simplicity the notation L(H) when
H = K . Moreover, we denote by Lu(H,K) the space of closed densely defined
and possibly unbounded linear operators T : D(T ) ⊆ H → K , where D(T ) de-
notes the domain. We recall that D(T ) is a Hilbert space when endowed with the
graph norm |x|D(T ) = |x|H + |T x|K . The range of an operator T ∈ Lu(H,K) is
denoted by R(T ). Clearly, L(H,K) ⊆ Lu(H,K). Given T ∈ Lu(H,K), we de-
note its adjoint operator by T ∗ : D(T ∗) ⊆ K → H .

We denote by L1(H) the set of trace class operators, that is, the operators T ∈
L(H) such that, given an orthonormal basis {ek}k∈N of H , the quantity

|T |L1(H) :=
∞∑

k=1

〈(
T ∗T

)1/2
ek, ek

〉
H

is finite (see [45], Section VI.6). The latter quantity is independent of the basis
chosen and defines a norm making L1(H) a separable Banach space. The trace
of an operator T ∈ L1(H) is denoted by Tr[T ], that is, Tr[T ] := ∑∞

k=0〈T ek, ek〉U .
The latter quantity is finite and, again, independent of the basis chosen. We denote
by L+

1 (U) the subset of L1(H) of self-adjoint nonnegative (trace class) operators
on H . Note that, if T ∈ L+

1 (H), then Tr[T ] = |T |L1(U).
We denote by L2(H,K) [subset of L(H,K)] the space of Hilbert–Schmidt op-

erators from H to K , that is, the spaces of operators such that, given an orthonor-
mal basis {ek}k∈N of H , the quantity

|T |L2(H) :=
( ∞∑

k=0

|T ek|2K
)1/2
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is finite (see [45], Section VI.6). The latter quantity is independent of the basis
chosen and defines a norm making L2(H) a Banach space. It is actually a Hilbert
space with the scalar product

〈T ,S〉L2(H,K) :=
∞∑

k=0

〈T ek, Sek〉K,

where {ek}k∈N is any orthonormal basis of H .
Stochastic processes. Let (�,F, (Ft )t≥0,P) be a filtered probability space sat-

isfying the usual conditions. Given p ∈ [1,+∞), T > 0, and a Hilbert space U ,
we denote by Mp,T

P (U) the set of all (equivalence classes of) progressively mea-
surable processes X : [0, T ] × � → U such that

|X|Mp,T

P (U)
:=

(∫ T

0
E
[∣∣X(s)

∣∣p
U

]
ds

)1/p

< ∞.

This is a Banach space with the norm | · |Mp,T

P (U)
. Next, we denote by Mp,loc

P (U)

the space of all (equivalence classes of) progressively measurable processes
X ∈ Mp,T

P (U) such that X|[0,T ]×� ∈ Mp,T
P (U) for every T > 0. We denote by

Kp,T
P (U) the set of all (equivalence classes of) progressively measurable processes

X ∈ Mp,T
P (U) such that

[0, T ] → Lp(�,U), t �→ X(t)

is continuous. This is a Banach space with the norm

|X|Kp,T

P (U)
:= sup

s∈[0,T ]
(
E
∣∣X(s)

∣∣p
U

)1/p
.

Next, we denote by Kp,loc
P (U) the space of all (equivalence classes of) pro-

gressively measurable processes X : [0,+∞) × � → U such that X|[0,T ]×� ∈
Kp,T

P (U) for every T > 0. We also say that elements of Kp,T
P (U) and Kp,loc

P (U)

are “p-mean continuous.”

2.2. G-derivative. Here, we provide the notion of G-derivative for functions
f : H → R, where H is a Hilbert space. The latter notion is considered in [16]
when G is a map G : U → Lu(Z,U), with U,Z Banach spaces. Here, we restrict
to the case of constant G.

Recall that, if f : H → R, the Fréchet derivative of f at x (if it exists) is the
(unique) linear functional Df (x) ∈ H ∗ ∼= H such that

lim|h|H →0

|f (x + h) − f (x) − 〈Df (x),h〉H |
|h|H = 0.
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DEFINITION 2.1 (G-derivative). Let H,K be Hilbert spaces, let f : H → R

and G ∈ Lu(K,H). We say that f is continuously G-Fréchet differentiable at x ∈
H (briefly, G-differentiable at x ∈ H ) if there exists DGf (x) ∈ K∗ ∼= K (clearly,
if it exists, then it is unique), called the G-derivative of f at x, such that

(2.2) lim
k∈D(G),|k|K→0

|f (x + Gk) − f (x) − 〈DGf (x), k〉K |
|k|K = 0.

We denote by C
1,G
b (H) the space of all maps f : H → R such that f is G-

differentiable over H and DGf : H → K belongs to Cb(H,K). In the special
case K = H and G = I , we simply use the standard notation C1

b(H).

REMARK 2.2. Note that, in the definition of the G-derivative, one consid-
ers only the directions in H selected by the range of G. When K = H and
G = I it reduces to the Fréchet derivative, that is, Df = DGf . Clearly, if f is
G-differentiable at x, then it is also G-Gateaux differentiable at x, in the sense
that

(2.3) lim
t→0

f (x + tGk) − f (x)

t
= 〈

DGf (x), k
〉
K ∀k ∈ D(G);

moreover, the limit above is uniform in k ∈ D(G) ∩ BK(0,R), for every R > 0.
Conversely, if there exists k′ ∈ K such that

lim
t→0

f (x + tGk) − f (x)

t
= 〈

k′, k
〉
K

(2.4)
uniformly in k ∈ D(G) ∩ BK(0,R),∀R > 0,

then f is G-differentiable at x ∈ H and DGf (x) = k′.

The notion of G-derivative allows to deal with functions which are not Gateaux
differentiable, as shown by the following example.

EXAMPLE 2.3. Let f :R2 →R be defined by f (x1, x2) := |x1|x2. Clearly, f

does not admit directional derivative in the direction (1,0) at the point (x1, x2) =
(0,1). On the other hand, if we consider G ∈ L(R2) ∼= R2, defined by G = (0,1),
then f admits G-Fréchet derivative at every (x1, x2) ∈ R2.

REMARK 2.4. Clearly, if f is Fréchet differentiable at some x ∈ H and G ∈
L(K,H), it turns out that f is G-Fréchet differentiable at x and

(2.5) DGf (x) = G∗Df (x).

Also, if f is both Fréchet differentiable and G-differentiable at some x ∈ H , then
Df (x) ∈ D(G∗) and (2.5) holds true. Indeed, we get by Fréchet differentiability

lim
s→0

f (x + sGk) − f (x)

s
= 〈

Df (x),Gk
〉
H ∀k ∈D(G).
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On the other hand, by G-Fréchet differentiability we also have

lim
s→0

f (x + sGk) − f (x)

s
= 〈

DGf (x), k
〉
K ∀k ∈D(G).

Hence∣∣〈Df (x),Gk
〉
H

∣∣ = ∣∣〈DGf (x), k
〉
K

∣∣ ≤ ∣∣DGf (x)
∣∣
K |k|K ∀k ∈ D(G).

It follows what claimed.

If G is unbounded, a function f : H →R may be Fréchet-differentiable at some
x ∈ H and yet not G-Fréchet differentiable there, as shown by the following ex-
ample.

EXAMPLE 2.5. Let H,K be Hilbert spaces, let G : D(G) � K → H be a
closed densely defined unbounded linear operator on H , and let G∗ : D(G∗) �
H → K be its adjoint. Next, let f : U →R be defined by f (x) := 1

2 |x|2H . Clearly,
f is Fréchet differentiable at every x ∈ H and Df (x) = x. On the other hand,
if f was also G-differentiable at every x ∈ H , by Remark 2.4 it would follow
x ∈ D(G∗) for every x ∈ H , that is, D(G∗) = H , a contradiction.

3. Formulation of the stochastic optimal control problem. We are con-
cerned with the optimal control of an Ornstein–Uhlenbeck process valued in a
Hilbert space H . Precisely, let H,K,� three real separable Hilbert spaces, let
(U, | · |U) be a real separable Banach space and let � ⊆ U be measurable and
endowed with the σ -algebra induced by B(U), the Borel σ -algebra of U . Let
(�,F, {Ft}t≥0,P) be a complete filtered probability space satisfying the usual
conditions, let W = (Wt)t≥0 be a �-valued cylindrical Brownian motion (see [10],
Chapter 4), and consider the controlled SDE

(3.1)

{
dX(t) = [

AX(t) + GL
(
u(t)

)]
dt + σ dW(t), t ≥ 0,

X(0) = x,

where the control process u(·), taking values in �, belongs to a suitable space of
admissible controls and the coefficients A,G,L,σ satisfy the following assump-
tions, which will be standing and not repeated throughout the paper.

ASSUMPTION 3.1. (i) A : D(A) ⊆ H → H is a closed densely defined linear
operator generating a C0-semigroup {etA}t≥0 of operators of L(H).

(ii) σ ∈ L(�,H), esAσσ ∗esA∗ ∈ L1(H) for all s > 0, and there exists γ ∈
(0,1/2) such that ∫ t

0
s−2γ Tr

[
esAσσ ∗esA∗]

ds < ∞ ∀t ≥ 0.
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(iii) G : D(G) ⊆ K → H is a closed densely defined2 linear operator such that
esAG : D(G) → H can be extended for every s > 0 to a continuous linear operator
defined on K that we denote by esAG. Moreover, there exists CG > 0, aG ∈ R and
β ∈ [0,1) such that

(3.2)
∣∣esAG

∣∣
L(K,H) ≤ CG

(
s−β ∨ 1

)
eaGs ∀s > 0.

(iv) L : � → K is measurable and |L(u)|K ≤ CL(1 + |u|U) for some CL > 0.

REMARK 3.2. Since for every t > 0 and s ≥ 0 the operators e(s+t)AG and
esAetAG belong to L(K,H) and coincide on the dense subset D(G) ⊆ K , we
have

(3.3) e(s+t)AG = esAetAG ∀t > 0,∀s ≥ 0.

This implies that the map (0,+∞) → L(K,H), s �→ esAG is strongly continuous,
that is, s �→ esAGx is continuous for each x ∈ H .

We now take

(3.4) p ∈
(

1

1 − β
,+∞

)
,

which will be fixed in the rest of the paper. We consider, as space of admissible
controls, the space of processes

Up :=
{
u : � × [0,+∞) → � prog. meas. and s.t.

(3.5) ∫ t

0
E
[∣∣u(s)

∣∣p
U

]
ds < ∞ ∀t ≥ 0

}
.

The reason for the choice of β in (3.2) and of p in (3.4) relies on the following
result (cf. also [20], Proposition 8.8, and [23], Lemma 3.2), which will guarantee
well-posedness of the controlled state equation (Proposition 3.4).

LEMMA 3.3. Let E,V be real Banach spaces, let β ∈ [0,1), p > 1
1−β

. Let

f ∈ L
p
loc([0,+∞);E) and let g : (0,+∞) → L(E,V ) be strongly continuous3

and such that |g(s)|L(E,V ) ≤ C0(s
−β ∨ 1) for some C0 > 0 for every s ∈ (0,+∞).

Then F :R+ → V defined as Bochner integral by

F(t) :=
∫ t

0
g(t − s)f (s) ds, t ∈ R+,

is well-defined and continuous.

2The assumption that G is densely defined can be done without loss of generality, as one can
always restrict K to D(G).

3Meaning that g(·)e : (0,+∞) → V is continuous for each e ∈ E.
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PROOF. Let t > 0. First of all, we note that the map

[0, t) → V, s �→ g(t − s)f (s),

is measurable for each t > 0. Indeed, given t > 0 the above map can be seen as the
composition h1 ◦ h2 where

h1 : (0, t] × E → V, h1(s, e) = g(s)e;
h2 : [0, t) → (0, t] × E, h2(s) = (

t − s, f (s)
)
.

Now, h2 is clearly measurable. Also h1 is measurable, as it is continuous: indeed
g(·)e is continuous for each e ∈ E and {g(s)}s∈[ε,t] ⊆ L(E,V ) is a family of uni-
formly bounded operators for each ε ∈ (0, t). Hence h1 ◦ h2 is measurable.

Given the above, it makes sense to consider
∫ t

0 g(t − s)f (s) ds in Bochner sense
for each t > 0. By Hölder’s inequality, setting κ := − βp

p−1 + 1 > 0, we have for
each t > 0∫ t

0

∣∣g(t − s)f (s)
∣∣
V ds ≤

∫ t

0
(t − s)−β

∣∣f (s)
∣∣
V ds

≤
(∫ t

0
(t − s)

−β
p

p−1 ds

)p−1
p |f |Lp([0,T ];R)

=
(

tκ

κ

)p−1
p |f |Lp([0,T ];R).

This show, at once, that F is well-defined as Bochner integral in V and that
limt→0+ F(t) = 0, so F is continuous at 0.

Let us show now that F is continuous on each interval of the form [t0, T ] with
t0 ∈ (0, T ). Set, for ε ∈ (0, t0),

Fε(t) :=
∫ t−ε

0
g(t − s)f (s) ds, t ∈ [t0, T ].

By dominated convergence we easily see that Fε is continuous on [t0, T ]. More-
over, using again Hölder’s inequality we have, for all t ∈ [t0, T ],

∣∣F(t) − Fε(t)
∣∣ ≤ (∫ t

t−ε
(t − s)

−β
p

p−1 ds

)p−1
p |f |Lp([0,T ];R)

=
(

εκ

κ

)p−1
p |f |Lp([0,T ];R).

This show Fε → F uniformly in [t0, T ], hence F is continuous in [t0, T ], conclud-
ing the proof. �

PROPOSITION 3.4. For each u(·) ∈ Up , the process

(3.6) X
(
t;x,u(·)) := etAx +

∫ t

0
e(t−s)Aσ dW(s) +

∫ t

0
e(t−s)AGL

(
u(s)

)
ds,
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is well-defined and belongs to K1,loc
P (H). Moreover, it admits a version with con-

tinuous trajectories.

PROOF. By Remark 3.2 and Assumption 3.1(iii)–(iv), we can apply Lem-
ma 3.3 with

E = L1(�;K), V = L1(�;H), f (s) = L
(
u(s)

)
and g : (0,+∞) → L(E,V ) defined by[

g(s)Z
]
(ω) := esAGZ(ω), Z ∈ L1(�;K).

It follows that

(3.7) t �−→
∫ t

0
e(t−s)AGL

(
u(s)

)
ds

is well-defined as stochastic process and belongs to K1,loc
P (H). We can repeat the

argument employed above dealing now with trajectories. Fixing ω ∈ � and apply-
ing Lemma 3.3 with

E = K, V = H, f (s) := L
(
u(s)(ω)

)
, g(s) = esAG,

it follows that the map

R+ → H, t �→
∫ t

0
e(t−s)AGL

(
u(s)(ω)

)
ds

is continuous. The latter integral expression, for varying ω ∈ �, clearly provides a
version of (3.7) with continuous trajectories.

On the other hand, in view of Assumption 3.1(ii), from [10], Theorem 5.2 and
Theorem 5.11, we know that the stochastic convolution

WA(t) :=
∫ t

0
e(t−s)Aσ dW(s), t ≥ 0,

is a (well-defined) stochastic process belonging to K2,loc
P (H) and admitting a ver-

sion with continuous trajectories, concluding the proof. �

We refer to the process (3.6) as the controlled Ornstein–Uhlenbeck process or
mild solution of SDE (3.1). We always consider its version (unique, up to indistin-
guishability) with continuous trajectories.

Let λ > 0, x ∈ H , and let l : H × � →R be such that

(3.8) l is measurable and bounded from below.4

4Cases where l is not bounded from below can be treated adding suitable growth conditions which
depends on the specific problem at hand. We do not do it here for brevity. See also Remark 4.9 on
this.
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Consider the functional

(3.9) J
(
x;u(·)) = E

[∫ ∞
0

e−λsl
(
X

(
s;x,u(·)), u(s)

)
ds

]
, x ∈ H,u(·) ∈ Up.

By (3.8), the functional above is well-defined (possibly with value +∞) for all x ∈
H and u(·) ∈ Up . The stochastic optimal control problem consists in minimizing
(3.9) over the set of admissible controls Up , that is, in solving the optimization
problem

(3.10) V (x) := inf
u(·)∈Up

J
(
x;u(·)), x ∈ H.

The function V : H → R ∪ {+∞} is the so-called value function of the op-
timization problem. If x ∈ H is such that V (x) < ∞ and u∗(·) is such that
V (x) = J (x;u∗(·)), then u∗(·) is called optimal strategy and the associated state
trajectory is called optimal state; moreover, the couple (u∗(·),X(·;x,u∗(·))) is
called an optimal couple.

4. Generalized Dynkin’s formula. The aim of the present section is to prove
an abstract Dynkin formula for the controlled Ornstein–Uhlenbeck process (3.6)
composed with suitably smooth functions ϕ : H →R.

4.1. Transition semigroups, generators and G-derivatives. We consider the
family of transition semigroups associated to (3.6) under constant controls. Pre-
cisely, we denote by X(k)(·;x), where k ∈ K , the Ornstein–Uhlenbeck process
starting at x ∈ H with extra drift Gk; that is, the mild solution to

(4.1)

{
dX(t) = [

AX(t) + Gk
]
dt + σ dW(t), t ≥ 0,

X(0) = x.

Its explicit expression is

(4.2) X(k)(t;x) := etAx +
∫ t

0
e(t−s)Aσ dW(s) +

∫ t

0
e(t−s)AGk ds.

Correspondingly, we define the family of linear operators {P (k)
t }t≥0 in the space

Cb(H) as

(4.3) P
(k)
t [ϕ](x) := E

[
ϕ
(
X(k)(t;x)

)]
, ϕ ∈ Cb(H), x ∈ H, t ≥ 0.

In Proposition 4.3(i), we will show that the family {P (k)
t }t≥0 is a one-parameter

semigroup of linear operators in the space Cb(H). According to the related the
literature, we call it the transition semigroup associated to the process X(k). Un-
fortunately, such semigroup is not in general a C0-semigroup in Cb(H), not even
in the case k = 0. Indeed, in the framework of spaces of functions not vanishing at
infinity, the C0-property, that is, the fact that lims→0+ P

(k)
s ϕ = ϕ in the sup norm
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for every ϕ, fails even in basic cases. For instance, this property fails in the case
of the Ornstein–Uhlenbeck semigroup in the space Cb(R) (see, e.g., [4], Exam-
ple 6.1, for a counterexample in UCb(R), or [8], Lemma 3.2, which implies this
is a C0-semigroup in UCb(R) if and only if the drift of the SDE vanishes). Even
worse: given ϕ ∈ Cb(H), the map [0,+∞) → Cb(H), t �→ P

(k)
t ϕ is not in general

measurable, as shown in [16], Example 4.5. This prevents, for instance, to intend
in Bochner sense, in the space Cb(H) for each g ∈ Cb(H), the integral defining
the Laplace transform

(4.4)
∫ ∞

0
e−λsP (k)

s [g]ds.

Nevertheless, one can get, in a weaker sense, several statements of the classi-
cal theory of C0-semigroups. This is performed, for example, by the theory of
K-semigroups (introduced in [4], see also [6], with the different terminology of
weakly continuous semigroups) and π -semigroups (introduced in [43, 44]). Both
theories (a survey of which can be found in Appendix B.5 of [14]) can be applied
here getting substantially the same results. We employ the π -semigroups approach,
as it seems more natural in our context. The definition of π -convergence can be
found, for example, in [12], p. 111, where it is called bp-convergence (bounded-
pointwise convergence) and in [43, 44]; the former in the space Cb(H), the latter
in the space UCb(H).

DEFINITION 4.1 (π -convergence). A sequence of functions (fn) ⊆ Cb(H) is
said to be π -convergent to a function f ∈ Cb(H) if

sup
n∈N

|fn|Cb(H) < ∞ and lim
n→∞fn(x) = f (x) ∀x ∈ H.

Such convergence is denoted by fn
π−→ f or by f = π - limn→∞ fn.

Now we recall the definition of π -semigroup as given in [43, 44]. Here, we
state it in the space of continuous and bounded functions [the aforementioned ref-
erences deal with the space of uniformly continuous and bounded functions, but
also explain how to extend the definition to Cb(H)].

DEFINITION 4.2. A semigroup {Pt }t≥0 of bounded linear operators on Cb(H)

is called a π -semigroup on Cb(H) if it satisfies the following conditions:

(P1) There exist M ≥ 1 and α ∈ R such that |Pt [f ]|∞ ≤ Meαt |f |∞ for every
t ∈R+, f ∈ Cb(H).

(P2) For each x ∈ H and f ∈ Cb(H), the map R+ → R, t �→ Pt [f ](x) is con-
tinuous.

(P3) We have

{fn}n∈N ⊂ Cb(H), fn
π−→ f ∈ Cb(H) =⇒ Pt [fn] π−→ Pt [f ] ∀t ≥ 0.
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Define

(4.5) D
(
A(k)) :=

{
ϕ ∈ Cb(H) : ∃π - lim

t→0+
P

(k)
t [ϕ] − ϕ

t

}

and

(4.6) A(k)[ϕ] := π - lim
t→0+

P
(k)
t [ϕ] − ϕ

t
, ϕ ∈ D

(
A(k)).

It is proved (see [6], Lemma. 5.7, combined with the discussion of [43], Sec-
tion 4.3) that, for ϕ sufficiently smooth,

(4.7) A(0)[ϕ](x) = 1

2
Tr

[
σσ ∗D2ϕ(x)

] + 〈
x,A∗Dϕ(x)

〉
.

We will use (4.7) to formally motivate the definition of mild solution (Defini-
tion 5.1) of the HJB equation associated to the control problem of Section 3.

PROPOSITION 4.3. Let k ∈ K :

(i) The family of linear operators {P (k)
t }t≥0 defined in (4.3) is a π -semigroup

on Cb(H). We denote by A(k) its infinitesimal generator.
(ii) The operator

R
(k)
λ [g](x) :=

∫ ∞
0

e−λsP (k)
s [g](x) ds, g ∈ Cb(H), x ∈ H,

belongs to L(Cb(H)) for every λ > 0 and is the resolvent of A(k):
(
λ −A(k))−1 = R

(k)
λ ∀λ > 0.

(iii) We have5

d

dt
P

(k)
t [ϕ](x) = P

(k)
t

[
A(k)[ϕ]](x) = A(k)[P (k)

t [ϕ]](x)

∀ϕ ∈ D
(
A(k)),∀x ∈ H,∀t ≥ 0.

PROOF. Claims (ii)–(iii) follow from [43], Proposition 3.2, Proposition 3.6, or
[44], Proposition 6.2.7, Proposition 6.2.11,6 once one proves claim (i), which we
prove below.

5At t = 0, the derivative is intended as right derivative.
6These references deal mainly in the space of uniformly continuous and bounded functions—we

warn that the author denotes by Cb(H) the latter space. The extension to the space of continuous and
bounded function—our space Cb(H)—is illustrated in [43], Section 5 and [44], Section 6.5.
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Proof of (i). First of all, we prove that {P (k)
t }t≥0 is a semigroup of linear oper-

ators on Cb(H). The fact that P
(k)
0 = I and that P

(k)
t ∈ L(Cb(H)) for all t ≥ 0 is

immediate. The semigroup property of {etA}t≥0 and (3.3) yield

X(k)(t + s;x) = esAX(k)(t;x) +
∫ s

0
e(s−r)Aσ dW(t + r)

+
∫ s

0
e(s−r)AGk dr ∀t ≥ 0,∀s > 0.

The latter shows the strong Markov property of X(k) and then the fact that
{P (k)

t }t≥0 satisfies the semigroup property follows as consequence (see, e.g., [10],
Corollary 9.15).

Now we show the other properties of Definition 4.2. (P1) is obviously verified
with M = 1 and α = 0. (P2) of Definition 4.2 corresponds to

(4.8) E
[
f (X(k)(t;x)

] t→t0−→ E
[
f (X(k)(t0;x)

] ∀f ∈ Cb(H),∀x ∈ H,∀t0 ≥ 0.

The latter follows from continuity of trajectories of X(k)(·;x) and dominated con-
vergence. Finally, (P3) of Definition 4.2 is verified by dominated convergence. �

A key step toward the main goal of this section, that is, the proof of a generalized
Dynkin formula for ϕ(X(·;x,u(·)) with a suitably regular ϕ, consists in showing
the following decomposition of A(k) when acting on the function ϕ

(4.9) ϕ ∈ D
(
A(0)) ∩ C

1,G
b (H) ⇒

{
ϕ ∈ D

(
A(k)) ∀k ∈ K,

A(k)[ϕ] = A(0)[ϕ] + 〈
DGϕ(·), k〉K.

Looking at {P (k)
t }t≥0 as to a perturbation of {P (0)

t }t≥0, (4.9) is obtained in [25],
Theorem 5.2, in the context of C0-semigroups with respect to mixed topology
of Cb(H) and in [15], Theorem 4.6, in the context of bi-continuous semigroups.
However, these references would require that ϕ ∈ C1

b(H), that A,σ are such that
C1

b(H) ⊆ D(A(0)) and that G ∈ L(H). This would allow, in particular, to write
the term 〈DGϕ(·), k〉K in the formula above as 〈Dϕ(·),Gk〉H , simplifying a lot
the framework. Here, we need to be sharper in this respect in order to cover other
cases of interest in applications, for example, the case of unbounded G, occurring
in boundary control problems. To this purpose, we introduce the class of functions

SA,G(H) :=
{
ϕ ∈ C

1,G
b (H) : lim

t→0+
ϕ(z(t) + ∫ t

0 esAGk ds) − ϕ(z(t))

t
(4.10)

= 〈
DGϕ

(
z(0)

)
, k

〉
K ∀z ∈ C

(
R+;H )}

.

Our generalized Dynkin formula will hold for functions in D(A(0)) ∩ SA,G(H).
In Appendix 6, we provide sufficient conditions on A,G,ϕ ensuring that ϕ ∈
SA,G(H).
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PROPOSITION 4.4. Let ϕ ∈D(A(0)) ∩ SA,G(H). Then (4.9) holds.

PROOF. Since ϕ ∈ D(A(0)), we can write for every x ∈ H

A(k)[ϕ](x) = lim
t→0+

P
(k)
t [ϕ](x) − ϕ(x)

t

= lim
t→0+

P
(k)
t [ϕ](x) − P

(0)
t [ϕ](x)

t
+ lim

t→0+
P

(0)
t [ϕ](x) − ϕ(x)

t

= lim
t→0+

E[ϕ(X(k)(t;x)) − ϕ(X(0)(t, x))]
t

+A(0)[ϕ](x),

if the last limit exists. Observe that

X(k)(t;x) = X(0)(t;x) +
∫ t

0
e(t−s)AGk ds = X(0)(t;x) +

∫ t

0
esAGk ds.

Therefore, since ϕ ∈ SA,G(H), continuity of t �→ ∫ t
0 esAGk ds and dominated con-

vergence yield

lim
t→0+

E[ϕ(X(k)(t;x)) − ϕ(X(0)(t;x))]
t

= lim
t→0+ E

[
ϕ(X(0)(t;x) + ∫ t

0 esAGk ds) − ϕ(X(0)(t;x))

t

]

= E

[
lim

t→0+
ϕ(X(0)(t;x) + ∫ t

0 esAGk ds) − ϕ(X(0)(t;x))

t

]
= 〈

DGϕ(x), k
〉
K.

The claim follows. �

4.2. Proof of the generalized Dynkin’s formula. We introduce the linear space
Ks,p of K-valued p-integrable càdlàg simple processes. An element κ(·) ∈ Ks,p

is of the form

(4.11) κ(t) =
n∑

i=1

ki−11[ti−1,ti )(t),

for some n ∈ N, 0 = t0 < t1 < · · · < tn = +∞, and {ki}i=0,...,n−1 such that
ki ∈ Lp(�,Fti ,P;K) for all i = 0, . . . , n − 1. Processes in Ks,p are progressively
measurable. By arguing as in the proof of Proposition 3.4, we get that, for any
κ(·) ∈Ks,p , the process

t �→
∫ t

0
e(t−s)AGκ(s) ds
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is well-defined, belongs to M1,loc
P (H) and has a version with continuous trajec-

tories. We will always refer to the version of this process (unique up to indistin-
guishability) having continuous trajectories. Given κ(·) ∈ Ks,p , we write

Xκ(·)(t, x) := etAx +
∫ t

0
e(t−s)Aσ dW(s) +

∫ t

0
e(t−s)AGκ(s) ds.

Again arguing as in the proof of Proposition 3.4 we see that this process has a
version with continuous trajectories. As above, we will always refer to this version
(unique up to indistinguishability).

Recall that, if V1, V2 are two random variables with values, respectively, in
two measurable spaces (E1,E1) and (E2,E2), a version of the conditional law
of V1 given V2 is a family of probability measures {μ(·, v2)}v2∈E2 on (E1,E1)

such that, for every f ∈ Bb(E1 × E2;R), the map v2 �→ ∫
E1

f (v1, v2)μ(dv1, v2)

is measurable and

E
[
f (V1,V2)

] =
∫
E2

ν(dv2)

∫
E1

f (v1, v2)μ(dv1, v2),

where ν = Law(V2). This family, if it exists, is unique up to ν-null measure sets.

LEMMA 4.5. Let κ(·) ∈ Ks,p be in the form (4.11) and t ∈ [ti−1, ti) for some
i = 1, . . . , n. A version of the conditional law of Xκ(·)(t;x) given the couple
(Xκ(·)(ti−1;x), ki−1) is the family

(4.12) μt

(·, x′, k′): = Law
(
X(k′)(t − ti−1;x′)).

PROOF. The proof is standard (see [36], Chapter 2, Section 9, in finite dimen-
sion and in a much more general setting) and we omit it for brevity. �

LEMMA 4.6. Let ϕ ∈D(A(0)) ∩ SA,G(H) and κ(·) ∈Ks,p . Then
d

dt
E
[
ϕ
(
Xκ(·)(t;x)

)]
(4.13)

= E
[
A(0)[ϕ](Xκ(·)(t;x)

) + 〈
κ(t),DGϕ

(
Xκ(·)(t;x)

)〉
K

] ∀t ≥ 0,

where the derivative has to be intended as right derivative at the times {t1, . . . , tn},
where the simple process κ(·) jumps.

PROOF. Let κ(·) ∈ Ks,p be as in (4.11), t ∈ [ti−1, ti) for some i = 1, . . . , n,
and ϕ ∈ D(A(0)) ∩ C

1,G
b (H). Denote by ν the law of the couple (Xκ(·)(ti−1;x),

ki−1). By Lemma 4.5, we have

E
[
ϕ
(
Xκ(·)(t;x)

)] =
∫
H×K

ν
(
dx′, dk′) ∫

H
ϕ(ξ)μt

(
dξ ;x′, k′)

=
∫
H×K

ν
(
dx′, dk′)E[

ϕ
(
X(k′)(t − ti−1;x′))]

=
∫
H×K

ν
(
dx′, dk′)P (k′)

t−ti−1
[ϕ](x′).
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Now we differentiate under the integral sign using the fact that, by Proposition 4.4,

ϕ ∈ D(A(k′)) and the fact that (t, x′) �→ P
(k′)
t−ti−1

[A(k′)[ϕ]](x′) is bounded over
[ti−1, ti) × H . Then, using Propositions 4.3(i) and 4.4, we get

d

dt
E
[
ϕ
(
Xκ(·)(t;x)

)] =
∫
H×K

ν
(
dx′, dk′) d

dt
P

(k′)
t−ti−1

[ϕ](x′)

=
∫
H×K

ν
(
dx′, dk′)P (k′)

t−ti−1

[
A(k′)[ϕ]](x′)

=
∫
H×K

ν
(
dx′, dk′)E[

A(k′)[ϕ](X(k′)(t − ti−1);x)]

=
∫
H×K

ν
(
dx′, dk′) ∫

H
A(k′)[ϕ](ξ)μt

(
dξ ;x′, k′)

= E
[
A(ki−1)[ϕ](Xκ(·)(t;x)

)]
= E

[
A(0)[ϕ](Xκ(·)(t;x)

) + 〈
κ(t),DGϕ

(
Xκ(·)(t;x)

)〉
K

]
,

the claim. �

LEMMA 4.7. For each u(·) ∈ Up and T > 0, there exists a sequence
{κn}n∈N ⊂ Ks,p such that

κn|[0,T ]×�

Mp,T

P (H)−→ L
(
u(·))|[0,T ]×�,

Xκn(·)(·;x)|[0,T ]×�

M1,T
P (H)−→ X

(·;x,u(·))|[0,T ]×�.

PROOF. Fix T > 0 and set κ(·) := L(u(·)). By standard arguments (see, e.g.,
[34], Chapter III, Lemma. 2.4, p.132),7 we can construct a sequence {κn}n∈N ⊂
Ks,p such that

κn|[0,T ]×�

Mp,T

P (H)−→ κ(·)|[0,T ]×�.

Then, using the expression (3.6) for the state variable, the convergence

Xκn(·)(·;x)|[0,T ]×�

M1,T
P (H)−→ X

(·;x,u(·))|[0,T ]×�

follows by simply applying dominated convergence. �

7It is worth to point out some differences. First, we are dealing with càdlàg approximations (as it
is more meaningful and natural to state Proposition 4.6) rather than with càdlàg (as in [34], Chapter
III, Lemma. 2.4, p.132): this is not a problem as, from the point of view of integration, these classes
coincide. Second, we are dealing with Hilbert-valued processes: therefore, more technical care is
needed as the approximation is produced by Bochner integration.
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THEOREM 4.8 (Dynkin’s formula). Let ϕ ∈ D(A(0)) ∩ SA,G(H). Then, for
every λ > 0, T > 0, and u(·) ∈ Up , we have

E
[
e−λT ϕ

(
X

(
T ;x,u(·)))]

= ϕ(x) +E

[∫ T

0
e−λt [(A(0) − λ

)[ϕ](X(
t;x,u(·)))(4.14)

+ 〈
L
(
u(t)

)
,DGϕ

(
X

(
t;x,u(·)))〉K ]

dt

]
.

PROOF. Let u(·) ∈ Up and take the approximating sequence {κn}n∈N provided
by Lemma 4.7. Then, applying, for each n ∈ N, Lemma 4.6, we obtain from (4.13)
(by taking the right derivatives at ti ), for all t ≥ 0 and λ > 0,

(4.15)

d

dt
e−λtE

[
ϕ
(
Xκn(·)(t;x)

)]
= −λe−λtE

[
ϕ
(
Xκn(·)(t;x)

)]
+ e−λtE

[
A(0)[ϕ](Xκn(·)(t;x)

) + 〈
κn(t),D

Gϕ
(
Xκn(·)(t;x)

)〉
K

]
.

Since the function t �→ E[e−λtϕ(Xκn(·)(t;x))] is everywhere continuous and step-
wise differentiable, we can apply the fundamental theorem of calculus. So, inte-
grating on [0, T ], we get

E
[
e−λT ϕ

(
Xκn(·)(T ;x)

)]
= ϕ(x) +E

[∫ T

0
e−λt ((A(0) − λ

)[ϕ](Xκn(·)(t;x)
) + 〈

κn(t),D
Gϕ

(
Xκn(·)(t;x)

)〉
K

)
dt

]
.

Now, letting n → +∞, we get the claim by dominated convergence from
Lemma 4.7, observing that ϕ, DGϕ, and A(0)[ϕ] are bounded. �

REMARK 4.9. The results of this section, in particular Theorem 4.8, can be
extended, at the price of straightforward technical complications, to the case when
the basic space of functions is (see [16])

(4.16) Cm(H) :=
{
φ : H →R continuous : sup

x∈H

|φ(x)|
1 + |x|m < ∞

}
.

Also the results of next Section 5 can be extended to this setting covering more
general cases, in particular when the current cost of the control problem has poly-
nomial growth in x. We do not do this here for brevity.

5. HJB equation, verification theorem and optimal feedbacks. By stan-
dard dynamic programming arguments, one formally associates to the control
problem of Section 3 the following HJB equation for the value function (3.10):

(5.1) λv(x)− 1

2
Tr

[
QD2v(x)

]− 〈
Ax,Dv(x)

〉
H −F

(
x,Dv(x)

) = 0, x ∈ H,
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where Q = σσ ∗ and the Hamiltonian F is defined by

(5.2) F(x,p) := inf
u∈�

FCV(x,p;u), x ∈ H,p ∈ H,

where

(5.3) FCV(x,p;u) := 〈
GL(u),p

〉
H + l(x, u), x ∈ H,u ∈ �,p ∈ H.

Note that this definition is only formal as GL(u) may be not defined, since L(u)

may not belong to D(G). It is then convenient to introduce the modified Hamilto-
nian

(5.4) F0(x, q) := inf
u∈�

F0,CV(x, q;u), x ∈ H,q ∈ K,

where

(5.5) F0,CV(x, q;u) := 〈
L(u), q

〉
K + l(x, u), x ∈ H,u ∈ �,q ∈ K.

Observing that

F(x,p) = F0
(
x,G∗p

) ∀p ∈D
(
G∗),

(5.1) can be formally rewritten as

(5.6) λv(x)− 1

2
Tr

[
QD2v(x)

]− 〈
Ax,Dv(x)

〉
H −F0

(
x,DGv(x)

) = 0, x ∈ H.

Note that, in principle, F0 may take the value −∞ somewhere. The concept of
mild solution to (5.6) relies on Proposition 4.3(ii) and on (4.7), inspiring an integral
form of (5.6) through the use of the semigroup {P (0)

s }s≥0.

DEFINITION 5.1. We say that a function v : H →R is a mild solution to (5.6)
if v ∈ C

1,G
b (H), F0(·,DGv(·)) ∈ Cb(H), and

(5.7) v(x) =
∫ ∞

0
e−λsP (0)

s

[
F0

(·,DGv(·))](x) ds ∀x ∈ H.

REMARK 5.2. The problem of existence and uniqueness of mild solutions for
equations in the form (5.6) is addressed in [16] and in [14], Chapter 4. In particular,
existence and uniqueness of mild solutions is stated for sufficiently large λ > 0,
under the following assumptions (see [16], Corollary 4.12, Theorem 3.8(ii) with
m = 0):

(A1) etAG(K) ⊆ Q
1/2
t (H) for every t > 0, where Qt := ∫ t

0 esAσσ ∗esA∗
ds.

(A2) The operators8

�G(t) : K → H, �G(t) := Q
−1/2
t etAG, t ≥ 0,

8Here, Q
−1/2
t is the pseudo-inverse of Q

1/2
t .



3578 S. FEDERICO AND F. GOZZI

which are well-defined by (A1) and bounded by the closed graph theorem, are such
that the map t �→ |�G(t)|L(K,H) belongs to L1

loc([0,+∞),R) and is bounded in a
neighborhood of +∞.

(A3) The Hamiltonian F0 satisfies, for suitable CF0 > 0.∣∣F0(x, q1) − F0(x, q2)
∣∣ ≤ CF0 |q1 − q2| ∀x ∈ H,∀q1, q2 ∈ K,∣∣F0(x, q)
∣∣ ≤ CF0

(
1 + |q|K) ∀x ∈ H,∀q ∈ K.

Some results in the case of locally Lipschitz–Hamiltonian are available, up to now,
only in special cases (see [10], Section 13.3.1 and [5]).

Due to Proposition 4.3(ii), a mild solution v of (5.1) enjoys the property of being
a solution to the same equation also in a differential abstract way, that is, we have
the following.

PROPOSITION 5.3. Let v be a mild solution to (5.6). Then v ∈ D(A(0)) and

(5.8)
(
λ −A(0))[v](x) = F0

(
x,DGv(x)

) ∀x ∈ H.

PROOF. Using Proposition 4.3(ii), we rewrite (5.7) as

(5.9) v(x) = (
λ −A(0))−1[

F0
(·,DGv(·))](x) ∀x ∈ H.

This entails v ∈ D(A(0)) and, applying λ−A(0) to both sides, we see that v solves
(5.8). �

REMARK 5.4. By Proposition 5.3, a mild solution v to (5.6) belongs to
D(A(0)). Hence, in order to apply Theorem 4.8 to it, we only need to assume
that v ∈ SA,G(H). This is what we indeed assume in all the next results of this
section.

5.1. Verification theorem. The proof of the verification theorem relies in the
so called fundamental identity.

PROPOSITION 5.5 (Fundamental identity). Let (3.8) hold. Let v be a mild
solution to (5.6) and assume that v ∈ SA,G(H). Let x ∈ H and let u(·) ∈ Up be
such that

(5.10) J
(
x;u(·)) := E

[∫ ∞
0

e−λt l
(
X

(
t;x,u(·)), u(t)

)
dt

]
< ∞.

Then, setting X(·) := X(·;x,u(·)), we have

(5.11)

v(x) = J
(
x;u(·))

+E

[∫ ∞
0

e−λt (F0
(
X(t),DGv

(
X(t)

)) − F0,CV
(
X(t),DGv

(
X(t)

);u(t)
))

dt

]
.
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PROOF. Let x ∈ H , T > 0, and let u(·) ∈ Up be such that (5.10) holds. Set
X(·) := X(·;x,u(·)). Using Proposition 5.3 and applying the abstract Dynkin for-
mula (Theorem 4.8), we get

(5.12)

E
[
e−λT v

(
X(T )

)]
= v(x) +E

[∫ T

0
e−λt [(A(0) − λ

)[v](X(t)
) + 〈

L
(
u(t)

)
,DGv

(
X(t)

)〉
K

]
dt

]

= v(x) +E

[∫ T

0
e−λt [−F0

(
X(t),DGv

(
X(t)

)) + 〈
L
(
u(t)

)
,DGv

(
X(t)

)〉
K

]
dt

]
.

By (3.8) and (5.10), we have

E

[∫ T

0
e−λt l

(
X(t), u(t)

)
dt

]
∈ R ∀T > 0.

Then we can add and subtract the latter finite value in (5.12) and use (5.5) to get,
rearranging the terms,

(5.13)

E
[
e−λT v

(
X(T )

)] − v(x) +E

[∫ T

0
e−λt l

(
X(t), u(t)

)
dt

]

= E

[∫ T

0
e−λt [−F0

(
X(t),DGv

(
X(t)

)) + F0,CV
(
X(t),DGv

(
X(t)

);u(t)
)]

dt

]
.

Now we let T → +∞. The right-hand side has a limit (possibly +∞), as the
integrand is positive. The left-hand side clearly converges to J (x;u(·)) − v(x).
This implies that also the limit of the right-hand side is finite and

J
(
x;u(·)) − v(x)

= E

[∫ ∞
0

e−λt [−F0
(
X(t),DGv

(
X(t)

))
F0,CV

(
X(t),DGv

(
X(t)

);u(t)
)]

dt

]
.

The claim follows rearranging the terms. �

THEOREM 5.6 (Verification theorem). Let (3.8) hold. Let v be a mild solution
to (5.6) and assume that v ∈ SA,G(H). We have the following:

(i) v ≤ V over H .
(ii) Let x ∈ H and let u∗(·) ∈ Up be such that, setting X∗(·) := X(·;x,u∗(·)),

it is for a.e. t ≥ 0 (almost surely)

(5.14) F0
(
X∗(t),DGv

(
X∗(t)

)) = F0,CV
(
X∗(t),DGv

(
X∗(t)

);u∗(t)
)
.

Then v(x) = V (x) = J (x;u∗(·)).
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PROOF. (i) By (5.11), for all u(·) ∈ Up such that (5.10) holds, we have v(x) ≤
J (x;u(·)), which yields this claim.

(ii) Let u∗(·) be such that (5.14) holds. If J (x;u∗(·)) < +∞, then, from (5.11),
we immediately get v(x) = J (x;u∗(·)), which, combined with item (i), yields the
claim. We now prove that it cannot be J (x;u∗(·)) = +∞. Assume, by contradic-
tion, that J (x;u∗(·)) = +∞. By (5.14), we have for a.e. t ≥ 0 (almost sulrely)

(5.15) l
(
X∗(t), u∗(t)

) = F0
(
X∗(t),DGv

(
X∗(t)

)) − 〈
L
(
u∗(t)

)
,DGv

(
X∗(t)

)〉
K.

By (5.8), F0(·,DGv(·)) is bounded. Hence, Assumption 3.1(iv), the fact that
u∗(·) ∈ Up and (5.15) imply E[∫ T

0 e−λt l(X∗(t), u∗(t)) dt] < ∞ for all T > 0.
Then, we can argue as in the proof of Proposition 5.5 getting (5.13) with u∗(·)
in this case and, using again (5.14),

E
[
e−λT v

(
X∗(T )

)] − v(x) +E

[∫ T

0
e−λt l

(
X∗(t), u∗(t)

)
dt

]
= 0.

Letting T → +∞ we get v(x) = J (x;u∗(·)) = +∞, leading to a contradiction as
v is finite. �

5.2. Optimal feedback controls. As usual, the verification theorem is com-
posed of two statements: the first one states that the solution to the HJB equation
enjoys the property of being smaller than the value function; the second one is the
most important from the point of view of the control problem, as it furnishes a
sufficient condition of optimality [(5.14) in our case]. Then the problem becomes
the so-called synthesis of an optimal control, that is, to produce a control u∗(·) ver-
ifying such condition. The answer relies in the study of the closed loop equation.

Let v be a mild solution to HJB equation (5.6). Assuming that the infimum of
the map

� →R, u �→ F0,CV
(
x,DGv(x);u)

is attained and defining the multivalued function (feedback map)

� : H −→ 2�,

x �−→ arg min
u∈�

F0,CV
(
x,DGv(x);u),(5.16)

the closed loop equation (CLE) associated with our problem and to v is indeed a
stochastic differential inclusion:

(5.17) dX(s) ∈ [
AX(s) + GL

(
�

(
X(s)

))]
ds + σ dW(s).

We have the following result.
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COROLLARY 5.7. Let (3.8) hold. Let v be a mild solution to (5.6) and assume
that v ∈ SA,G(H). Let x ∈ H and assume that the feedback map � defined in
(5.16) admits a measurable selection φ : H → U and consider the SDE:

(5.18)

{
dX(s) = [

AX(s) + GL
(
φ
(
X(s)

))]
ds + σ dW(s),

X(0) = x.

Assume that (5.18) has a mild solution in M1,loc
P (U), that is, there exists

Xφ(s;x) ∈ M1,loc
P (U) such that

Xφ(t;x) := etAx +
∫ t

0
e(t−s)Aσ dW(s)

(5.19)

+
∫ t

0
e(t−s)AGL

(
φ
(
Xφ(s;x)

))
ds ∀t ≥ 0.

Define, for s ≥ 0, uφ(s) := φ(Xφ(s;x)) and assume that uφ(·) ∈ Up . Then v(x) =
V (x) = J (x;uφ(·)). In particular, the couple (uφ(·),Xφ(·;x)) is optimal at x.

Moreover, if �(x) is single-valued and the mild solution to (5.18) is unique,
then the optimal control is unique.

PROOF. Consider the couple (uφ(·),Xφ(·)) and observe that Xφ(·) is the
unique mild solution (in the strong probabilistic sense) of the state equation as-
sociated to the control uφ(·), so that Xφ(·;x) ≡ X(·;x,uφ(·)). By construction
such couple satisfies (5.14). Then, by Theorem 5.6(ii) we obtain that it is optimal.

Let us address now the uniqueness issue. We observe that, if (û(·),X(·;x, û(·)))
is another optimal couple at x, we immediately have, by (5.11) and the fact that
v(x) = V (x),

E

[∫ ∞
0

e−λs[F0
(
X

(
s;x, û(·)),DGv

(
X

(
s;x, û(·))))

− F0,CV
(
X

(
s;x, û(·)),DGv

(
X

(
s;x, û(·))); û(s)

)]
ds

]
= 0.

As the integrand is always negative and as � is single-valued, this implies that
P × ds-a.e. we have û(·) = �(X(·;x, û(·))). This shows that X(·;x, û(·)) solves
(5.18). Then uniqueness of mild solutions to (5.18) gives the claim. �

We conclude the section commenting on the extension of our results to the
case when the control problem is considered in the so-called weak formulation.
So far, we have considered our family of stochastic optimal control problems in
the strong formulation. It is possible to consider the problem also in the so-called
weak formulation, that is, letting the filtered probability space and the cylindri-
cal Brownian motion vary with the control strategy u(·) (see, e.g., [48], Chap-
ter 2). More precisely, in the weak formulation, the control strategy is a 6-tuple
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(�,F, {Ft }t≥0,P,W,u(·)). Calling Up the set such control strategies, the objec-
tive is to minimize the cost (3.9) over Up . The resulting value function V is, in
principle, smaller than V . The main advantage in choosing such formulation is
that existence of optimal control strategies in feedback form is easier to obtain.
The verification theorem above also holds when we consider the control problem
in its weak formulation. Indeed, the proof of Theorem 5.6 works for every filtered
probability space and any cylindrical Brownian motion on it. Hence, letting the
filtered probability space and the cylindrical Brownian motion vary, one gets that
v ≤ V over H . Moreover, if (5.14) holds for a given control strategy9 u∗(·) ∈ Up ,
then we have v(x) = V (x) = J (x;u∗(·)). One gets the following.

COROLLARY 5.8. Let (3.8) hold. Let v be a mild solution to (5.6) and as-
sume that v ∈ SA,G(H). Let x ∈ H and assume that the feedback map � de-
fined in (5.16) admits a measurable selection φ : H → U . Assume that (5.18) has
a martingale solution10 (see [10], p. 220, or [23], Definition 3.1, p. 75, for the
definition) Xφ(·;x) in some filtered probability space (�,F, {Ft }t≥0,P) and for
some �-valued cylindrical Brownian motion W defined on it. Define, for s ≥ 0,
uφ(s) = φ(Xφ(s;x)) and assume uφ(·) ∈ Up .11 Then v(x) = V (x) = J (x;uφ(·)).
In particular (uφ(·),Xφ(·;x)) is an optimal couple.

6. Applications. In the present section, we provide two examples of applica-
tion of our results.

The first example, fully developed, concerns the optimal control of the stochas-
tic heat equation in a given space region O ⊆ Rd when the control can be exercised
only at the boundary ∂O. Precisely, we consider the case when the control at the
boundary enters through a Neumann-type boundary condition, corresponding to
control the heat flow at the boundary. The existence and uniqueness of mild so-
lutions to the associated elliptic HJB equation in this case is guaranteed (under
suitable conditions) by the results of [16].

The second example concerns the optimal control of a stochastic differential
equation with delay in the control process (see [29, 30] for the treatment of the
same problem over finite horizon). In this case, the result we give needs to assume
the existence of a mild solution to the associated elliptic HJB equation. The reason
for that is that a theory of mild solutions for elliptic HJB equations associated to
this kind problem has not been yet developed in the elliptic case. Indeed, unlike the
first example, this kind of equations is not covered by the results of [16], due to the
lack of G-smoothing. In this case, it is needed an ad hoc treatment of the equation,

9Elements of Up are, rigorously speaking, 6-tuples; however, for simplicity, we denote them sim-
ply by u(·).

10Weak-mild solution in the terminology of [14].
11In the sense that the 6-tuple identified by uφ belongs to Up .
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dealing with the specific case at hand, to show the existence of mild solutions (see,
e.g., the aforementioned references [29, 30] in the parabolic case). Although a
result of this kind for elliptic equation seems straightforward, a rigorous statement
of this result has not been rigourously fixed yet. For this reason, we limit ourselves
to provide a weaker result taking the existence of mild solutions to the associated
HJB equation as an assumption and leaving the investigation of that for future
work. Due to the lack of a rigourous background on which relying our results, we
do not state in this case a theorem and just keep the arguments at the level of an
informal exposition.

6.1. Neumann boundary control of a stochastic heat equation with additive
noise. We consider the optimal control of a nonlinear stochastic heat equation
in a given space region O ⊆ Rd when the control can be exercised only at the
boundary of O.

6.1.1. Problem setup. Let O be an open, connected, bounded subset of Rd

with regular (in the sense of [37], Section 6) boundary ∂O.12 We consider the
controlled dynamical system driven by the following SPDE in the time interval
[0,+∞):

(6.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂y(t, ξ)

∂t
= �y(t, ξ) + σẆ(t, ξ), (t, ξ) ∈ [0,+∞) ×O,

y(0, ξ) = x(ξ), ξ ∈ O,

∂y(t, ξ)

∂n
= γ0(t, ξ), (t, ξ) ∈ [0,+∞) × ∂O,

where:

• y : [0,+∞) ×O × � →R is the stochastic process describing the evolution of
the temperature distribution and is the state variable of the system;

• γ0 : [0,+∞)×∂O×� →R is the stochastic process representing the heat flow
at the boundary; it is the control variable of the system and acts at the boundary
of it: this is the reason of the terminology “boundary control”;

• n is the outward unit normal vector at the boundary ∂O;
• x ∈ L2(O) is the initial state (initial temperature distribution) in the region O;
• W is a cylindrical Wiener process in L2(O);
• σ ∈ L(L2(O)).

Assume that this equation is well posed (in some suitable sense, see below for
the precise setting) for every given γ0(·, ·) in a suitable set of admissible control
processes and denote its unique solution by yx,γ0(·,·) to underline the dependence

12We stress that such conditions may allow corners in the boundary: in particular, when d = 2
squares satisfy the required regularity.
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of the state y on the control γ0(·, ·) and on the initial datum x. The controller aims
at minimizing, over the set of admissible controls, the objective functional

(6.2) E

[∫ ∞
0

e−λt

(∫
O

�1
(
yx,γ0(·,·)(t, ξ)

)
dξ +

∫
∂O

�2
(
γ0(t, ξ)

)
dξ

)
dt

]
,

where �1, �2 : R → R are given measurable functions bounded from below and
λ > 0 is a discount factor.

6.1.2. Infinite dimensional setting. We now rewrite the state equation (6.1)
and the functional (6.2) in an infinite dimensional setting in the space H := L2(O).
For more details, we refer to [16], Section 5, and references therein. Consider
the realization of the Laplace operator with vanishing Neumann boundary condi-
tions:13

(6.3)

⎧⎪⎨
⎪⎩
D(AN) :=

{
φ ∈ W 2,2(O;R) : ∂φ

∂n
= 0 on ∂O

}
,

ANφ := �φ ∀φ ∈ D(AN).

It is well known (see, e.g., [39], Chapter 3) that AN generates a strongly continuous
analytic semigroup {etAN }t≥0 in H . Moreover, AN is a self-adjoint and dissipative
operator. In particular (0,+∞) ⊂ �(AN), where �(AN) denotes the resolvent set
of AN . So, if δ > 0, then (δI −AN) is invertible and (δI −AN)−1 ∈ L(H). More-
over (see, e.g., [37], Appendix B) the operator (δI − AN)−1 is compact. Con-
sequently, there exists an orthonormal complete sequence {ek}k∈N such that the
operator AN is diagonal with respect to it:

(6.4) ANek = −μkek, k ∈N,

for a suitable sequence of eigenvalues {μk}k∈N ⊆ R+ repeated according to their
multiplicity (they are nonnegative due to dissipativity of AN ). We assume that such
sequence is increasingly ordered. Then, μ0 = 0, as clearly the constant functions
belong to Ker (AN), and μk > 0 for each k ∈ N0 := N \ {0}, since, as an immedi-
ate consequence of the Gauss–Green formula, only the constant functions belong
to Ker (AN). Moreover, [46], Section 5.6.2, p. 395 (see also [37], Appendix B)
provides also a growth rate for the sequence of eigenvalues; indeed

(6.5) μk ∼ k2/d .

We have (see, e.g., [37], Appendix B) the isomorphic identification

(6.6) D
(
(δI − AN)α

) = H 2α(O) ∀α ∈
(

0,
3

4

)
,∀δ > 0,

13To be precise, D(AN) is the closure in H 2(O) of the set of functions φ ∈ C2(O) having vanishing
normal derivative at the boundary ∂O.
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where Hs(O) denotes the Sobolev space of exponent s ∈ R. Next, consider the
following problem with Neumann boundary condition:

(6.7)

⎧⎨
⎩

�w(ξ) = δw(ξ), ξ ∈ O,
∂w

∂n
(ξ) = α(ξ), ξ ∈ ∂O.

Given any δ > 0 and α ∈ L2(∂O), there exists a unique solution Nδα ∈ H 3/2(O)

to (6.7). Moreover, the operator (Neumann map)

(6.8) Nδ : L2(∂O) → H 3/2(O),

is continuous (see [38], Theorem 7.4). So, in view of (6.6), the map

(6.9) Nδ : L2(∂O) → D
(
(δI − AN)

3
4 −ε), ε ∈ (0,3/4),

is continuous. In [16], Section 5, it is shown that the natural abstract reformulation
of the original control problem in the space H is

(6.10)

{
dX(t) = [

ANX(t) + G
δ,ε
N L

δ,ε
N γ (t)

]
dt + σ dW(t),

X(0) = x,

where L
δ,ε
N := (δI − AN)

3
4 −εNδ ∈ L(L2(∂O);H), G

δ,ε
N := (δI − AN)

1
4 +ε , and

u(t) := γ0(t, ·) ∈ L2(∂O) for t ≥ 0. We are now in the framework of (3.1), with
K = H , A = AN , G = G

δ,ε
N , L = L

δ,ε
N , and U = L2(∂O). Let us consider, as set

of admissible controls,

Up :=
{
u : [0,+∞) × � → � : u(·) is {Ft }t≥0-prog. meas. and s.t.

∫ t

0
E
[∣∣u(s)

∣∣p
L2(∂O)

]
ds < ∞ ∀t ≥ 0

}
,

where � ⊆ L2(∂O) and p will be specified later according to (3.4). Defining

l1(x) :=
∫
O

�1
(
x(ξ)

)
dξ, l2(u) :=

∫
∂O

�2
(
u(ξ)

)
dξ,

and

l : H × � →R, l(x, u) := l1(x) + l2(u),

the functional (6.2) can be rewritten in the Hilbert space framework as

(6.11) J
(
x;u(·)) := E

[∫ ∞
0

e−λt l
(
X

(
t;x,u(·)), u(t)

)
dt

]
.
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6.1.3. HJB equation and verification theorem. Setting Q := σσ ∗, the HJB
equation associated to the minimization of (6.11) is

λv(x) − 1

2
Tr

[
QD2v(x)

] − 〈
ANx,Dv(x)

〉
H − l1(x)

(6.12)
− inf

u∈�

{〈
L

δ,ε
N u,DG

δ,ε
N v(x)

〉
H + l2(u)

} = 0.

Since the semigroup {etAN }t≥0 is strongly continuous and analytic, then by [42],

Theorem 6.13(c), etAN G
δ,ε
N can be extended to etAN G

δ,ε
N = G

δ,ε
N etAN ∈ L(H) for

every t > 0 and

(6.13)
∣∣etAN G

δ,ε
N

∣∣
L(H) ≤ Ct

1
4 +ε ∀t > 0.

Hence, Assumption 3.1(i) and (iii) is satisfied with A = AN , G = G
δ,ε
N , and β =

ε + 1/4. Consequently, recalling (3.4), we choose p > 1
3
4 −ε

.

Now, assume the following:

(H1) σ satisfies Assumption 3.1(ii).
(H2) Conditions (A1) and (A2) of Remark 5.2 hold true with G = G

δ,ε
N .

(H3) �1 ∈ Cb(R), so l1 ∈ Cb(H).14 Moreover the map q �→ F1(q), defined by

F1(q) := inf
u∈�

{〈
L

δ,ε
N u, q

〉
H + l2(u)

}
, q ∈ H,

is Lipschitz continuous. These conditions imply that F0(x, q) = l1(x)+F1(q) sat-
isfies condition (A3) of Remark 5.2.

Then, under such assumptions, by Remark 5.2, for sufficiently large λ > 0 there
exists a unique mild solution v to (6.12). By definition of mild solution, we have
v ∈ C

1,G
b (H). Furthermore, Assumption A.2 is verified through Remark A.3 in

this case. Hence Proposition A.4 applies yielding v ∈ SA,G(H) and enabling the
application of Theorem 5.6. We now discuss the validity of the above assumptions
(H1)–(H3):

• On the validity of (H1). First of all, we note that in Assumption 3.1(ii), we
can take γ as small as we want; indeed, if this assumption holds true for some
γ̄ ∈ (0,1/2), then it holds true also for all γ ∈ (0, γ̄ ). By (6.4), the operator etAN

is diagonal with respect to the orthonormal basis {ek} with eigenvalues e−tμk .
Assumption 3.1(ii) rewrites as∫ t

0

(
s−2γ

∑
k∈N

〈
esAQesA∗

ek, ek

〉
H

)
ds

14According to Remark 4.9, it is possible to deal with the case when �1, and so l1, has polynomial
growth.
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(6.14)

=
∫ t

0

(
s−2γ

∑
k∈N

e−2μks |σek|2H
)

ds < ∞ ∀t ≥ 0.

Applying Fubini–Tonelli’s theorem and considering (6.5) we see that (6.14)
holds if

(6.15)
∑
k∈N0

k
2(2γ−1)

d |σek|2H < ∞.

Let θ ≥ 0 be such that

(6.16) lim sup
k→∞

|σek|2H
k−2θ

< ∞

[recall that σ ∈ L(H), so θ = 0 always verifies (6.16)]. Considering that γ can
be taken as small as we want and combining (6.15) and (6.16), we conclude that
(H1) holds if we may take in (6.16)

(6.17) θ >
1

2
− 1

d
.

In particular, if d = 1, then (H1) holds true for all σ ∈ L(H).
• On the validity of (H2). By (6.5), we have, for k ∈ N,

G
δ,ε
N ek = (δI − AN)

1
4 +εek = gkek where gk := (δ + μk)

1
4 +ε.

The operator etAN G
δ,ε
N is diagonal too with respect to {ek}k∈N and

(6.18) etAN G
δ,ε
N ek = e−μktgkek = e−μkt (δ + μk)

1
4 +εek, k ∈ N.

Assume now further that σ is diagonal with respect to {ek}k∈N and nondegen-
erate, that is, σek = σkek for every k ∈ N, where σk > 0 for every k ∈ N. Set
qk := σ 2

k > 0 for k ∈ N. Then Qt is diagonal too. Moreover, and Qte0 = tq0e0
and

Qtek = qk

2μk

(
1 − e−2μkt

)
ek if k ∈ N0,∀t ≥ 0.

Hence, with the agreement 1−e−2μkt

2μk
:= t if k = 0, we have

�G(t)ek := Q
−1/2
t etAN G

δ,ε
N ek

=
√

2μk

(1 − e−2tμk )qk

e−μkt (δ + μk)
1
4 +εek ∀k ∈ N.

Since |�G(t)|L(H) = supk∈N |�G(t)ek|H , then, with the agreement that
2μk

e2tμk −1
:= t−1 if k = 0, conditions (A1) and (A2) of Remark 5.2 hold true if
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and only if

∃η ∈ L1
loc

([0,+∞);R)
bounded in a neighborhood of +∞ s.t.√√√√2μk(δ + μk)

1
2 +2ε

(e2tμk − 1)qk

≤ η(t) ∀t > 0,∀k ∈ N.

(6.19)

Assume that

(6.20) lim inf
k→∞

qk

k−2θ
> 0 for some θ ≥ 0,

and let k0 ∈ N and c0 > 0 be such that qk ≥ c0k
−2θ for some c0 > 0 and every

k ≥ k0. Considering (6.5), let c1, c2 > 0 and k′
0 ∈ N be such that c1k

2
d ≤ μk ≤

c2k
2
d for every k ≥ k′

0. Calling k̄ := k0 ∨ k′
0 it is clear that, for a suitable C0 > 0,

sup
k<k̄

√√√√2μk(δ + μk)
1
2 +2ε

(e2tμk − 1)qk

≤ C0t
−1/2.

Hence, to prove (6.19) above, we take k ≥ k̄ and we rewrite (6.19) (up to a
constant depending on c0, c1, c2) as

∃η ∈ L1
loc

([0,+∞);R)
bounded in a neighborhood of +∞ s.t.√√√√√k

2
d (δ + k

2
d )

1
2 +2ε

(e2tk
2
d − 1)k−2θ

≤ η(t) ∀t > 0,∀k ≥ k̄.
(6.21)

Noting that C1 := sups>0
s

3
2 +2ε+dθ

es−1 < +∞, we can estimate

k
2
d (δ + k

2
d )

1
2 +2ε

(e2tk
2
d − 1)k−2θ

≤ (1 + δ)
1
2 +2εk

2
d
( 3

2 +2ε)+2θ

(e2tk
2
d − 1)

≤ C1
(1 + δ)

1
2 +2ε

(2t)
3
2 +2ε+dθ

∀k ≥ k̄.

Therefore, (H2) is satisfied whenever (6.20) holds for some θ such that 3
2 +2ε+

dθ < 2. As ε > 0 can be taken arbitrarily small, we conclude that (H2) can be
fulfilled if (6.20) holds for some θ such that

(6.22)
3

2
+ dθ < 2 ⇐⇒ θ <

1

2d
.

• On the simultaneous validity of (H1)–(H2). Looking at (6.17) and (6.22), we
see that (H1)–(H2) can be simultaneously fulfilled by choosing a suitable ε > 0
if σ is diagonal with respect to {ek}k∈N and (6.20) is verified for some θ ≥ 0
such that

(6.23)
1

2
− 1

d
< θ <

1

2d
.

These requirements can be fulfilled only for dimension d ≤ 2.
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• On the validity of (H3). This is guaranteed, for instance, if � is bounded, �1 is
continuous and bounded, �2 is measurable.

6.1.4. Optimal feedback controls. In the framework of the previous subsec-
tion, we look now at the existence of optimal feedback controls.

THEOREM 6.1. Let (H1)–(H3) of the previous subsection hold. Assume that
the multi-valued map

(6.24) � : H → �, q �→ arg min
u∈�

{〈
L

δ,ε
N u, q

〉
H + l2(u)

}
admits a Lipschitz continuous selection ψ and that DG

δ,ε
N v is Lipschitz continuous.

Set φ := ψ ◦ DG
δ,ε
N v. Then the SDE

(6.25)

{
dX(t) = [

ANX(t) + G
δ,ε
N L

δ,ε
N

(
φ
(
X(t)

))]
dt + σ dW(t), t ≥ 0,

X(0) = x,

admits a unique mild solution Xφ(·;x) ∈ K1,loc
P (H) [in the sense of (5.19)] ad-

mitting a version with continuous trajectories. As a consequence, Corollary 5.7(i)
applies providing the optimality of the couple (uφ(·),Xφ(·;x)), where uφ(t) :=
φ(Xφ(t;x)) for t ≥ 0.

PROOF. By the assumptions, the map φ is Lipschitz continuous, too. Then the
proof follows the classical fixed point arguments as in standard results of existence
and uniqueness of SDEs in infinite dimension; see, for example, [10], Theorem 7.5.

Here we only need to take care of dealing with esAN G
δ,ε
N in place of esAN in the

convolution term and use (3.2) with G = G
δ,ε
N . �

The assumption that � defined in (6.24) admits a Lipschitz continuous selection
ψ is guaranteed, for example, if � = U , l2 : U →R is strictly convex,

lim|u|U→+∞
l2(u)

|u|U = +∞,

l2 is Fréchet differentiable, and Dl2 has Lipschitz continuous inverse. Indeed, in
this case the infimum in (6.24) is uniquely achieved (hence, � is single-valued) at

u∗(q) = (Dl2)
−1((Lδ,ε

N

)∗
q
)
, q ∈ H.

Hence, if we are able to check that DG
δ,ε
N v is Lipschitz continuous, we can then

apply Corollary 5.7(i) in its strongest form to get uniqueness of the optimal control
constructed.

On the other hand, checking that DG
δ,ε
N v is Lipschitz continuous might be, in

general, a very difficult task,15 whereas mere continuity of DG
δ,ε
N v is a condition

15This can be done assuming more regularity of �1—hence of l1—and proving a suitable C2 prop-
erty of v; see, for example, the approach used in [31] or in [29].
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already “contained” in the definition of mild solution to (6.12). Hence, it would be
meaningful to provide a Peano-type result16 of existence of mild solutions to CLE
(6.25). This seems possible when a selection ψ of � in (6.24) is known to be only
continuous and bounded on bounded sets, as:

(i) the semigroup {etAN }t≥0 is compact;

(ii) as DG
δ,ε
N v is continuous and bounded by construction, the map φ := ψ ◦

DG
δ,ε
N v is continuous and bounded.

Indeed, in such a framework, it seems possible to use the methods of [7], Propo-
sition 3 (see also [22]), passing through the use of the so-called Skorohod repre-
sentation theorem, to construct martingale solutions to (6.25); hence, to construct
optimal feedback controls in the weak formulation.

REMARK 6.2. In the specific case we are handling, where the diffusion
term is just additive in the equation, a way to construct the solution in the
original probability space � might consist in constructing a pathwise solu-
tion dealing with a parameterized family of deterministic problems with pa-
rameter ω ∈ � (see [2], [9], Sections 14.2 and 15.2, [19, 40]). Once this
is done, the problem is to prove that the family of solutions constructed ω

by ω admits an adapted selection. The existence of a selection measurable
with respect to F can be obtained using measurable selection theorems (see
again [2]); proving that this selection is also adapted is a problematic task,
which is still open. In the case, when one knows ex ante that the pathwise
solution is unique for a.e. ω ∈ �, then F. Flandoli (personal communication)
showed us how to accomplish this task. Unfortunately, in our case, the unique-
ness of the solutions of the deterministic equations for a.e. ω ∈ � only holds
when the properties of the coefficients allow to find directly mild solutions to
SDE (6.25).

6.2. Stochastic optimal control with delay in the control variable. Here, we
consider an infinite horizon version of a control problem studied in [29, 30]. Con-
sider the following linear controlled one dimensional SDE:

(6.26) dy(t) =
[
a0y(t) + b0u(t) +

∫ 0

−d
b1(ξ)u(t + ξ) dξ

]
dt + σ0 dW(t), t ≥ 0,

under the initial conditions y(0) = y0 and u(ξ) = u0(ξ) for ξ ∈ [−d,0), where y0
is the inotial state u0 is the history of the control at the initial date t = 0. In the
equation above:

• W = {W(t)}t≥0 is a standard one dimensional Brownian motion;
• a0, b0, σ0 ∈ R, σ0 > 0;

16This is not straightforward: in infinite dimension Peano’s theorem fails in general (see [24]).



VERIFICATION FOR STOCHASTIC CONTROL IN HILBERT SPACES 3591

• d > 0 represents the maximum delay the control takes to affect the system;
• b1(·) is a (real-valued) function weighting the aftereffects of the control on

the system; we consider here the case of distributed delay, that is, when b1 ∈
L2([−d,0],R).

The control u takes values in a closed subset � ⊆ U := R and belongs to U2
[defined by (3.5) with p = 2].

Such kind of equations (even in a deterministic framework) have been used to
model the effect of advertising on the sales of a product [17, 27, 28], the effect
of investments with time to build on growth [1, 13], to model optimal portfolio
problems with execution delay [3], to model the interaction of drugs with tumor
cells [35], p. 17.

Denoting by yy0,u0,u(·) the unique solution to (6.26), the goal of the problem is
to minimize, over all control strategies in U2, the following objective functional:

(6.27) E

[∫ ∞
0

e−λt (�0
(
yy0,u0,u(·)(t)

) + �1
(
u(t)

))
dt

]
,

where �0 : R → R and �1 : � → R are measurable and bounded from below. It is
important to note that here �0 and �1 do not depend on the past of the state and/or
control. This is a very common feature of many applied problems.

A standard way to approach these delayed control problems, introduced in [47]
for the deterministic case and extended to the stochastic case in [27, 28], is to refor-
mulate them as equivalent infinite dimensional control problems without delay.17

The details are given in [29] for the finite horizon case, which is completely similar
to the infinite horizon case, with the obvious changes (see also [17] for the infi-
nite horizon case in a deterministic framework with a different embedding space).
Consider the Hilbert space H := R×L2([−d,0],R), set b := (b0, b1(·)) ∈ H , and
assume, without loss of generality, |b|H = 1. The state equation (6.26) is rephrased
in H as a linear SDE with state variable X = (X0,X1(·)) as follows:

(6.28)

{
dX(t) = [

AX(t) + Gu(t)
]
dt + σ dW(t), t ≥ 0,

X(0) = x = (
x0, x1(·)),

where

D(A) = {(
x0, x1(·)) ∈ R× W 1,2([−d,0];R) : x1(−d) = 0

}
,

Ax = (
a0x0 + x1(0),−x′

1
)
, x ∈ D(A);

G : R → H, G(u) = ub;
σ : R → H, σ(z) = (σ0z,0);

17It must be noted that, under suitable restrictions on the data, one can treat (stochastic) optimal
control problems with delay avoiding to look at them as infinite dimensional systems (see [18]).
However, this is possible only in very special cases, leaving out many concrete applications.
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x0 = y0,

x1(ξ) =
∫ ξ

−d
b1(ς)u0(ς − ξ) dς, ξ ∈ [−d,0].

It is well known that A is the generator of a C0-semigroup of linear bounded
operators on H . Note that the infinite dimensional datum x1(·) depends on the
“initial past” u0(·) of the control. It turns out that X0(t;x,u(·)) = yy0,u0,u(·), so
(6.27) is rewritten as

(6.29) J
(
x;u(·)) := E

[∫ ∞
0

e−λt (�0
(
X0

(
t;x,u(·)) + �1

(
u(t)

))
dt

]
.

Setting Q := σσ ∗, the HJB equation associated to the minimization of (6.29) is

λv(x) = 1

2
Tr

[
QD2v(x)

] + 〈
Ax,Dv(x)

〉
H

(6.30)
+ inf

u∈�

{
uDGv(x) + �1(u)

} + �0(x0), x ∈ H.

Notice that DG = ∂
∂b

, where the latter symbol denotes the directional derivative
along the direction b. So, the nice feature of the equation above is that the nonlin-
earity on the gradient only involves the directional derivative DG. Note also that
here we do not have the so-called structural condition G(R) ⊆ σ(R); this pre-
vents the use of techniques based on backward SDEs (see, e.g., [21]) to tackle the
problem.

Now we discuss the assumptions of our main result Theorem 5.6 in this ex-
ample. First of all, it is easy to check that Assumption 3.1 and (3.8). The third
assumption, that is, the existence of a mild solution v ∈ SA,G(H) to (6.30) needs
to be discussed carefully.

In [29], the authors study a finite horizon optimal control problem with the same
state equation (6.26) and a similar objective functional. Exploiting only partial
smoothing properties of the transition semigroup associated to the state equation
(6.28) with null control, the authors are able to provide, under suitable reasonable
assumptions on the data, existence and uniqueness results for the parabolic HJB
equation associated to the control problem.

We believe that the approach of [29] can be adapted to our infinite horizon case,
getting a mild solution v ∈ D(A(0)) ∩ C

1,G
b (H) to HJB (6.30). Then, to apply our

theory one should prove that such function v is Lipschitz continuous on compact
sets, which enables to apply Proposition A.6 (indeed Assumption A.5 is verified) to
get v ∈ SA,G(H). To get this goal, one can proceed as in [29] by assuming more
regularity on the data of the problem. More precisely, assuming that l0 ∈ C1

b(R)

and that the Hamiltonian p �→ infu∈�{up + �1(u)} is differentiable with Lipschitz
continuous derivative, [29] proves that the mild solution v ∈ C1

b(H). This fact,
in particular, implies the required Lipschitz continuity of v. In [30], the authors
also provide a verification theorem for their finite horizon problem. They use an
approximation procedure of the solution of the HJB equation, which our results
allow to avoid here.
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APPENDIX

Recall that, given G ∈ Lu(K,H), the pseudo-inverse G−1 : R(G) → D(G) is
defined as the operator that associates to each h ∈ R(G) the element of G−1({h})
having minimum norm.18 Note that G−1G : D(G) → D(G) is bounded, so it can
be extended to a bounded operator G−1G ∈ L(K).

LEMMA A.1. We have

(A.1)
〈
DGf (x),G−1Gk

〉
K = 〈

DGf (x), k
〉
K ∀k ∈ K,∀x ∈ H.

PROOF. Assume first that k ∈ D(G). In this case GG−1Gk = Gk. Then, using
Remark 2.4, we write

〈
DGf (x),G−1Gk

〉
K = lim

s→0

f (x + sGG−1Gk) − f (x)

s

= lim
s→0

f (x + sGk) − f (x)

s

= 〈
DGf (x), k

〉
K ∀x ∈ H.

If k /∈ D(G), we can take a sequence {kn} ⊆ D(G) converging to k. Considering
(A.1) on kn and passing to the limit the claim follows taking into account that
G−1G is bounded. �

ASSUMPTION A.2. The operator G ∈ Lu(K,H) is such that for every
k ∈ K :

(i) there exists ε > 0 such that {∫ t
0 esAGk ds}t∈(0,ε) ⊆R(G);

(ii) G−1(1
t

∫ t
0 esAGk ds) → G−1Gk, as t → 0+.

REMARK A.3. Note that
∫ t

0 esAhds ∈ D(A) for every t > 0 and h ∈ H . So, in

view of the fact that G−1G is bounded, Assumption A.2 is verified, in particular,
if K = H , D(A) ⊆ D(G) and, for sufficiently small ε > 0,

G

∫ t

0
esAhds =

∫ t

0
esAGhds ∀t ∈ (0, ε),∀h ∈ H.

This applies, for example, to the case when A is dissipative and generates an an-
alytic semigroup, and G = (δI − A)β with δ > 0 and β ∈ (0,1) (see the example
of Section 6.1).

PROPOSITION A.4. Let Assumption A.2 holds. Then SA,G(H) = C
1,G
b (H).

18Existence and uniqueness of such an element follows from the fact that G is a closed operator
and applying the results of [11], Section II.4.29, p. 74.
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PROOF. Fix k ∈ K , z ∈ C(R+;H) and let ε > 0 be as in Assumption A.2(i).
Noting that GG−1h = h for every h ∈ R(G), by Assumption A.2(i) we can write

(A.2)
∫ t

0
esAGk ds = Gk(t) where k(t) := G−1

∫ t

0
esAGk ds,∀t ∈ (0, ε).

Moreover, by Assumption A.2(ii), we have

(A.3)
k(t)

t

t→0+−→ G−1Gk.

Fix now t ∈ (0, ε). Using (A.2), we write

ϕ(z(t) + ∫ t
0 esAGk ds) − ϕ(z(t))

t

= ϕ(z(t) + Gk(t)) − ϕ(z(t)) − 〈DGf (x(t)), k(t)〉K
t

(A.4)

+
〈
DGϕ

(
z(t)

)
,
k(t)

t

〉
K

.

Mean value theorem applied to the function [0,1] → R, ξ �→ f (x(t) + ξGk(t))

yields (see also Remark 2.4)

ϕ
(
z(t) + Gk(t)

) − ϕ
(
z(t)

)
=

∫ 1

0

d

dξ
ϕ
(
z(t) + ξGk(t)

)
dξ

=
∫ 1

0
lim
η→0

ϕ(z(t) + (ξ + η)Gk(t)) − ϕ(z(t) + ξGk(t))

η
dξ

=
∫ 1

0

〈
DGϕ

(
z(t) + ξGk(t)

)
, k(t)

〉
K dξ.

Hence, (A.4) rewrites as

ϕ(z(t) + ∫ t
0 esAGk ds) − ϕ(z(t))

t

=
∫ 1

0

〈
DGϕ

(
z(t) + ξGk(t)

) − DGϕ
(
z(t)

)
,
k(t)

t

〉
K

dξ(A.5)

+
〈
DGϕ

(
z(t)

)
,
k(t)

t

〉
K

.

Moreover, we can estimate∣∣∣∣
〈
DGϕ

(
z(t) + ξGk(t)

) − DGϕ
(
z(t)

)
,
k(t)

t

〉
K

∣∣∣∣
(A.6)

≤ ∣∣DGϕ
(
z(t) + ξGk(t)

) − DGϕ
(
z(t)

)∣∣
K ·

∣∣∣∣k(t)

t

∣∣∣∣
K

∀ξ ∈ [0,1].
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Now we are going to take the limit for t → 0+ in (A.5). To this purpose, we observe
that, as DGϕ ∈ Cb(H,K) and {z(t)}t∈(0,ε) is compact in H , we have

(A.7) sup
t∈(0,ε)

∣∣DGϕ
(
z(t) + h

) − DGf
(
z(t)

)∣∣
K

|h|→0+
−→ 0.

By definition of k(t) [see (A.2)], we have |Gk(t)|H t→0+−→ 0. Hence, (A.7) provides

(A.8) sup
ξ∈[0,1]

∣∣DGϕ
(
z(t) + ξGk(t)

) − DGϕ
(
z(t)

)∣∣
K

t→0+−→ 0.

Hence, combining (A.3), (A.6) and (A.8), we get

(A.9)
∫ 1

0

〈
DGϕ

(
z(t) + ξGk(t)

) − DGϕ
(
z(t)

)
,
k(t)

t

〉
K

dξ
t→0+−→ 0.

Moreover, (A.3) and the continuity of the maps t �→ z(t) and x �→ DGϕ(x) entail

(A.10)
〈
DGϕ

(
z(t)

)
,
k(t)

t

〉
K

t→0+−→ 〈
DGϕ

(
z(0)

)
,G−1Gk

〉
K.

Combining (A.5), (A.9), (A.10) and Lemma A.1, the claim follows. �

ASSUMPTION A.5. G ∈ L(K,H).

PROPOSITION A.6. Let Assumption A.5 hold and let ϕ ∈ C
1,G
b (H) be Lips-

chitz continuous on compact sets. Then ϕ ∈ SA,G(H).

PROOF. Let k ∈ K . Observe that, as G ∈ L(K,H), we have k ∈ K = D(G),
esAGk = esAGk for every s > 0, and

(A.11) lim
t→0+

1

t

∫ t

0
esAGk ds → Gk.

Let t > 0. We can split

ϕ(z(t) + ∫ t
0 esAGk ds) − ϕ(z(t))

t

= ϕ(z(t) + ∫ t
0 esAGk ds) − ϕ(z(t) + tGk)

t
(A.12)

+ ϕ(z(t) + tGk) − ϕ(z(t))

t
.

The set {z(t) + ∫ t
0 esAGk ds}t∈(0,1) ∪ {z(t) + tGk}t∈(0,1) ⊂ K is precompact.

Hence, by Lipschitz continuity of ϕ on compact sets, we have for some C0 > 0
independent of t ∈ (0,1)∣∣∣∣ϕ(z(t) + ∫ t

0 esAGk ds) − ϕ(z(t) + tGk)

t

∣∣∣∣ ≤ C0

∣∣∣∣1t
∫ t

0
esAGk ds − Gk

∣∣∣∣.(A.13)
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We let now t → 0+ in (A.12). Combining with (A.13) and (A.11), we get

lim
t→0+

ϕ(z(t) + ∫ t
0 esAGk ds) − ϕ(z(t))

t
(A.14)

= lim
t→0+

ϕ(z(t) + tGk) − ϕ(z(t))

t
,

provided that the limit in the right-hand side above exists, as we are going to show.
We write

ϕ
(
z(t) + tGk

) − ϕ
(
z(t)

) =
∫ 1

0

d

dξ
ϕ
(
z(t) + ξ tGk

)
dξ

=
∫ 1

0
lim
η→0

ϕ(z(t) + (ξ + η)tGk) − ϕ(z(t) + ξ tGk)

η
dξ

=
∫ 1

0

〈
DGϕ

(
z(t) + ξ tGk

)
, tk

〉
K dξ.

By the equalities above and considering that DGϕ ∈ Cb(H ;K), we have

lim
t→0+

ϕ(z(t) + tGk) − ϕ(z(t))

t
= lim

t→0+

∫ 1

0

〈
DGϕ

(
z(t) + ξ tGk

)
, k

〉
K dξ

= 〈
DGϕ

(
z(0)

)
, k

〉
K

and the claim follows from (A.14). �
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