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When Is a Sensitivity Parameter
Exactly That?
Paul Gustafson and Lawrence C. McCandless

Abstract. Sensitivity analysis is used widely in statistical work. Yet the no-
tion and properties of sensitivity parameters are often left quite vague and
intuitive. Working in the Bayesian paradigm, we present a definition of when
a sensitivity parameter is “pure,” and we discuss the implications of a param-
eter meeting or not meeting this definition. We also present a diagnostic with
which the extent of violations of purity can be visualized.
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data, selection bias, sensitivity analysis.

1. INTRODUCTION

In many statistical applications, the data we can col-
lect are not enough. Fulsome insight into the scientific
issue at hand may additionally require external infor-
mation or inputs, and often this information is impre-
cise. When the external inputs are manifested as one
or more numerical parameters (henceforth sensitivity
parameters), with uncertainties about their true values,
then the problem devolves to some sort of sensitivity
analysis. A plausible setting of the sensitivity param-
eters, combined with the information from the data,
yields a particular inference about a target parameter.
Of course changing to an alternate but equally plausi-
ble setting of the sensitivity parameters leads to a quan-
titatively different inference. It is important to know
whether the change in inference is slight or substantial.

To focus the discussion, consider the realm of obser-
vational studies, particularly in the health sciences do-
main. Often such studies are faced with one or more
threats to validity, with the nature and extent of the
threat governed by one or more sensitivity parameters.
For instance, the sampling scheme may be systemati-
cally biased for/against potential study subjects having
certain attributes, with sensitivity parameters describ-
ing this bias. Or a variable might be prone to miss-
ingness, with sensitivity parameters describing how the
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chance of missingness depends on the underlying value
of the variable itself. Or a variable might be prone
to measurement error, with sensitivity parameters de-
scribing the magnitude of this error. In all these cir-
cumstances, unless one additionally has access to some
“threat-free” data (i.e., some validation data), we must
resort to sensitivity analysis.

As an extremely simple example, say we wish we
had threat-free data in the form of n i.i.d. realizations
of Y , with mean ψ = E(Y ) being the target of infer-
ence. However, selection bias has a corrupting influ-
ence, forcing us to draw data from the distribution of
(Y | S = 1), for a binary selection variable S. In actu-
ality then, our i.i.d. datapoints have mean φ = ψ − λ,
where λ = E(Y )−E(Y | S = 1) governs the impact of
the selection bias. We then think of our inference pro-
cess as involving an amalgamation of what the data say
about φ along with what justifiable sensitivity assump-
tions say about λ, in order to infer ψ = φ +λ. Here the
target parameter is a straight sum of a term informed by
the data and a term not informed by the data, yielding
intuitive headway about how inference works. In more
complex situations, however, some definitions and the-
ory can provide helpful guidance.

One common and general strategy for sensitivity
analysis could be referred to as the “tabular” method.
A discrete set of plausible values is specified for each
sensitivity parameter involved in the problem. This
generates a number of different scenarios, usually in a
factorial manner presuming there is more than one sen-
sitivity parameter at hand. The inferences arising under
all these scenarios are then simply reported in a (typi-
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cally large) table. Methods for tabular sensitivity anal-
ysis that have attracted considerable attention include
Rosenbaum and Rubin (1983), Greenland (1996), Lin,
Psaty and Kronmal (1998).

A rather different approach is the “how do I break
this” strategy. That is, one has a baseline scenario in
mind, often involving the presumption that there are no
threats to validity. Then one seeks values of the sensi-
tivity parameters that produce a qualitatively different
inference than the baseline inference. For instance, if
the baseline analysis yields a statistically significant as-
sociation, then the task is to compute values of the sen-
sitivity parameters at which the result “tips” from sig-
nificant to nonsignificant. Then the question is whether
or not these values are so extreme as to be implausible.
For overviews of this approach, see Phillips (2003),
Rosenbaum (2002, 2010).

A rather principled approach to sensitivity analy-
sis is via Bayesian inference. The plausible set of
sensitivity parameter values used in tabular analysis
gives way to a joint prior distribution over the sensi-
tivity parameters. Then Bayesian updating is applied
as usual, to combine what this prior distribution says
with what the data say. The advantage here is that
the posterior distribution over a target parameter seam-
lessly amalgamates two sources of uncertainty: the
usual statistical uncertainty due to sampling (i.e., the
result of having a finite rather than infinite sample),
plus the uncertainty about the values of the sensitiv-
ity parameters. Examples of Bayesian sensitivity anal-
ysis include Scharfstein, Daniels and Robins (2003),
McCandless, Gustafson and Levy (2007), Daniels and
Hogan (2008), Gustafson et al. (2010), Geneletti et al.
(2013).

It is also worth noting that a “near-Bayesian” ap-
proach to sensitivity analysis has attracted a lot of at-
tention, particularly in the epidemiology literature. Of-
ten referred to as probabilistic sensitivity analysis or
Monte Carlo sensitivity analysis, this also starts with
assigning a distribution over plausible ranges to the
sensitivity parameters. However, the combination of
this distribution with the information in the data is car-
ried out in a “simpler-than-Bayesian” fashion. Rudi-
mentary versions of this approach are somewhat like
tabular sensitivity analysis, except a very large num-
ber of scenarios are constructed by sampling from the
prior distribution, and a summary of the induced dis-
tribution of an inferential quantity (say a point esti-
mate) is reported. More nuanced versions take sam-
pling variability into account, that is, each random

draw from the prior distribution of the sensitivity pa-
rameters is paired with a random draw of the nonsen-
sitivity parameters, using a data-determined distribu-
tion that appropriately characterizes sampling variabil-
ity. Some key references for these approaches gener-
ally are Greenland (2003, 2005), Lash, Fox and Fink
(2009), while MacLehose and Gustafson (2012) offer
some contrasts with a fully Bayesian approach.

Most problems where sensitivity analysis is required
come with considerable baked-in intuition: it seems ob-
vious which parameters are the sensitivity parameters
and which are not. That is, strong intuitions are usually
present about which parameters cannot be informed by
the study data, and these are treated as the sensitiv-
ity parameters. In the present paper, and working in
the Bayesian framework, we explore whether slightly
more formality leads to clearer understanding. Is it
worth thinking more formally rather than intuitively
about what it means for a quantity to be a sensitivity
parameter? Our consideration of this question leads to
a definition of when a sensitivity parameter is pure, in
terms of being completely uninformed by the observ-
able data. We also offer a graphical summary of the
extent to which an “impure” sensitivity parameter de-
viates from purity. The definition is useful, since if we
know we are dealing with a pure sensitivity parameter,
then we know there is equivalence between the quality
of external information about the sensitivity parameter
and the quality of the posterior inference on the tar-
get parameter. And the graphical summary is useful,
since if it reveals only slight impurity in the sensitivity
parameter, then we know a rough version of the afore-
mentioned equivalence still applies.

2. DETAILS

In general, consider a statistical model for n observ-
able datapoints Dn that is parameterized by a vector θ

of p unknown parameters within a parameter space �.
We say that a particular context for this model arises
when we declare (i) a particular choice of prior distri-
bution π for θ , and (ii) a particular choice of scalar
target parameter ψ = g(θ). A putative q-dimensional
sensitivity parameter is expressed as λ = h(θ). In what
follows, a “dagger” notation is used, when helpful, to
indicate true parameter values. That is, we use θ , ψ and
λ to refer to parameters generically, and to discuss the
structure of prior and posterior distributions. But when
describing what happens when data are manifested, we
use θ† to indicate the true value of θ that spawns these
data. Commensurately, ψ† = g(θ†), and λ† = h(θ†).
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Our starting point is a definition given, but not
pursued, in Section 6.1 of Gustafson (2015). Stated
slightly more formally now, this goes as follows.

DEFINITION 1. For a particular context (choice of
prior π and scalar target ψ), λ = h(θ) is a pure sen-
sitivity parameter provided there exists a reparameter-
ization from θ to (φ,λ) satisfying the following four
conditions:

C1. The distribution of the observable data Dn given
(φ,λ) does not vary with λ.

C2. The distribution of Dn given φ constitutes an
identified statistical model supporting consistent esti-
mation of φ.

C3. A priori, φ and λ are independent of one an-
other.

C4. Expressed as a function of (φ,λ), the target pa-
rameter ψ is strictly monotone in each component of λ.

As a first remark about the definition, a reparameter-
ization satisfying C1 and C2 is referred to as a trans-
parent reparameterization in Gustafson (2005). An im-
mediate consequence of C1 is that π(λ | φ,dn) = π(λ |
φ), that is, regardless of what data are observed, the
posterior conditional distribution of (λ | φ) is the same
as the prior conditional distribution. Provided that C1
and C2 both hold then, we have a very simple charac-
terization of what happens to the posterior distribution
as the sample size grows. The limiting posterior dis-
tribution (LPD) for (φ,λ) is formed by a point-mass
distribution for φ at the true value φ†, coupled with
the prior conditional distribution of λ given φ = φ†.
And this distribution induces the limiting posterior dis-
tribution of θ via transformation back to the original
parameterization.

As a second remark, taken together C1 and C3 imply
the prior and posterior marginal distributions of λ are
identical—a very strong sense of the data having noth-
ing to say about λ. Indeed, this alone seems like quite
a “pure” sense in which λ plays the role of a sensitivity
parameter, so the additional need for C4 is perhaps not
so obvious. Before discussing this in detail, however,
we make the following definition.

DEFINITION 2. Consider the case that q = 1, that
is, λ is a scalar parameter. For a given context (choice
of prior and scalar target of inference), let

(1) ppri
(
λ†) = Prπ

{
λ < λ†}

indicate where the truth about λ lies within the prior
distribution. Similarly, let

(2) ppst
(
θ†) = lim

n→∞ Prπ
{
ψ < ψ† | Dn

}

indicate where the truth about the target parameter
lies in the posterior distribution, in the large-sample
limit. We say that λ is quantile-preserving for the con-
text if, for every θ† ∈ �, either ppst(θ

†) = ppri(λ
†) or

ppst(θ
†) = 1 − ppri(λ

†).

Stated intuitively, if λ is a quantile-preserving sensi-
tivity parameter, then the extent to which the true value
of the target parameter is in the tails (versus the center)
of the posterior distribution is exactly the same as the
extent to which the true value of the sensitivity param-
eter is in the tails (versus the center) of the prior dis-
tribution. For instance, the (limiting) 95% equal-tailed
posterior credible interval for the target will contain the
truth if and only if the 95% equal-tailed prior credible
interval for the sensitivity parameter contains the truth.
(Or replace 95% here with your own favorite cover-
age level.) More colloquially, if quantile-preservation
holds, the veracity of the posterior inference on the tar-
get is governed completely by the veracity of the prior
distribution for the sensitivity parameter.

Armed with definitions for when a sensitivity pa-
rameter is pure and when a sensitivity parameter is
quantile-preserving, we have the following theorem.

THEOREM 1. Consider a context (choice of prior
π and scalar target ψ) for a statistical model. Assume
that π is absolutely continuous. If a scalar parameter
λ is a pure sensitivity parameter in this context, then λ

is also quantile-preserving in this context.

PROOF. Assuming λ is pure, let (φ,λ) be a pa-
rameterization satisfying C1 through C4. From C1
through C3, the limiting posterior distribution on ψ

must be the distribution on g(θ(φ†, λ)) induced by the
(marginal) prior distribution of λ. By C4 this trans-
formation is strictly monotone. Therefore, if λ† lies
at the δth quantile of the prior distribution on λ, then
ψ† = g(θ(φ†, λ†)) must lie at either the δth or (1−δ)th
quantile of the limiting posterior distribution on ψ . �

Taking stock, we now have a good handle on the
characteristics that stem from Definition 1. A pure sen-
sitivity parameter has exactly the same marginal pos-
terior and prior distributions. Also, a scalar pure sen-
sitivity parameter is such that the veracity of its prior
distribution completely governs the veracity of the pos-
terior distribution for the target parameter (in the large-
sample limit as the role of random-sampling variation
dissipates).

According to Definition 1, the “pure sensitivity
parameter” moniker is bestowed in a very context-
specific manner. Given only a parametric model and
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a candidate sensitivity parameter λ, we cannot resolve
the question of whether λ is pure. The question is only
meaningful in the context of a specific prior distribu-
tion for θ and a particular scalar target parameter. In-
deed, later in this paper we encounter a situation where
a seemingly innocuous change to the prior distribu-
tion impacts whether λ meets the conditions for purity.
Similarly, we encounter a situation where a seemingly
innocuous change in the choice of target parameter has
the same impact.

2.1 Impurity Plots

The preceding discussion suggests a way to visual-
ize the characteristics of a putative scalar sensitivity
parameter. Particularly, the quantities (1) and (2) sug-
gest the use of a probability–probability plot to sum-
marize the nature of a putative sensitivity parameter λ

in a given context (choice of prior distribution and tar-
get parameter). Specifically, for an ensemble of θ† val-
ues, we plot points {ppri(λ

†),ppst(θ
†)} in the form of a

scatterplot. (The most obvious choice of ensemble is a
suite of values drawn from the joint prior distribution
of θ .) The aggregate extent to which the plotted points
deviate from the diagonal reference lines (ppst = ppri
and ppst = 1 − ppri) then reflects the extent to which
λ is not quantile-preserving (and therefore not pure) as
a sensitivity parameter. In particular, a point that is far
from the diagonals must correspond to the centrality of
λ† in the prior for λ differing greatly from the central-
ity of ψ† in the limiting posterior distribution for ψ .
Such a point corresponds to “more going on” than the
quality of posterior inference on the target being driven
directly by the quality of prior assertion on the putative
sensitivity parameter. Henceforth, we refer to a scatter-
plot constructed as above as an impurity plot.

The impurity plot generalizes readily to the situation
that λ is comprised of two or more parameters, at least
in situations where φ and λ are variation-independent
of one another (i.e., the parameter space is the product
space of the possible values for φ crossed with the pos-
sible values for λ). We generalize (1), which reflects
the a priori extremity of a scalar λ, to

(3)
p∗

pri
(
θ†) = Prπ

{
ψ

(
φ†, λ

)
< ψ

(
φ†, λ†)}

= Prπ
{
ψ

(
φ†, λ

)
< ψ†}

,

which reflect the a priori extremity of a vector λ in
the direction that determines the target parameter. So
the generalized procedure is to plot {p∗

pri(θ
†),ppst(θ

†)}
pairs for an ensemble of θ† values, where again a nat-
ural choice of ensemble is a sample from the prior dis-
tribution of θ . This version of the impurity plot retains

the property that if λ is a pure bias parameter then all
points fall on the diagonal reference lines.

3. EXAMPLES

3.1 Example A: Estimating Exposure-Disease
Association in the Face of Misclassified
Exposure

Say that interest lies in estimating the association be-
tween binary exposure X and binary disease status Y ,
however the observable data are of the form (X∗, Y ),
where X∗ is a possibly misclassified surrogate for X.
For simplicity, we assume nondifferential misclassifi-
cation, so that X∗ and Y are conditionally independent
given X. We also assume data arise via case-control
sampling, ergo the data directly inform us about the
(X∗ | Y) distribution.

We let γ describe the exposure classification scheme
according to γx = Pr(X∗ = x | X = x), for x = 0,1.
That is, γ0 and γ1 are respectively the specificity and
sensitivity of X∗ as a surrogate for X. For the first
version of this problem, we assume that the classifica-
tion scheme is known to never produce false positives,
that is, γ0 = 1 is known a priori. However, γ1 is taken
as an unknown parameter, as the extent to which X∗
has imperfect sensitivity is unknown. Thus, (r0, r1, γ1)

is an initial parameterization for this problem, where
ry = Pr(X = 1 | Y = y). And ψ = log OR(Y,X) =
logit(r1) − logit(r0) can be taken as the target parame-
ter.

For this problem, a reasonable prior specification
might take the three parameters as independent, with
ry ∼ U(0,1) for y = 0,1, and γ1 ∼ Beta(a1, b1). (For
a technical reason soon to be apparent, we presume
a1 > 2.) This corresponds to being noninformative
concerning the (X,Y ) association, but drawing upon
expert knowledge to arrive at a defensible choice of
hyperparameters (a1, b1), thereby committing to plau-
sible prior information about the extent of the exposure
misclassification. Clearly the classification parameter
γ1 is the putative sensitivity parameter in this setting.

For y = 0,1, let r∗
y = Pr(X∗ = 1 | Y = y) = ryγ1.

One can quickly verify that φ = (r∗
0 , r∗

1 ), λ = γ1 com-
prises a transparent parameterization, with the target
parameter expressed as

(4) ψ = log
(

r∗
1

γ1 − r∗
1

)
− log

(
r∗

0

γ1 − r∗
0

)
.

Letting g(·;a, b) denotes the Beta(a, b) density func-
tion, the prior density in the initial parameterization is

π(γ1, r0, r1) = g(γ1;a1, b1)I(0,1)(r0)I(0,1)(r1).
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Upon transforming to obtain the prior density of
(γ1, r

∗
0 , r∗

1 ), we can read off the conditional prior den-
sity of γ1 given r∗ = (r∗

0 , r∗
1 ) to be

(5) π
(
γ1 | r∗) ∝ g(γ1;a1 − 2, b1)IA1(r

∗)(γ1),

where the interval A1(r
∗) = (max{r∗

0 , r∗
1 },1) is the

support of this distribution. This characterizes the LPD.
So we see the update from the prior to limiting pos-
terior distribution of γ1 involves both a change in the
Beta hyperparameters and truncation. Moreover, (5)
clearly reveals that C3 fails, since γ1 and r∗ are a
priori dependent (and this dependence is “structural,”
being driven by the fact that γ1 and r∗ are variation-
dependent). In the present context then, γ1 is not a pure
sensitivity parameter.

To gauge the lack of purity of γ1, we produce an im-
purity plot. Since (4) is monotone in γ1 over A1(r

∗),
computing ppst(θ

†) reduces to computing the proba-
bility of a subinterval of A1(r

∗†) under the truncated
Beta prior distribution (5) (the subinterval below γ

†
1

if r
∗†
0 < r

∗†
1 , the subinterval above otherwise). As an

example, consider hyperparameters (a1, b1) = (17,3),
a situation where a priori the misclassification is as-
sumed to be mild. For an ensemble of θ† values drawn
from the prior distribution, the impurity plot appears
in Figure 1. While many points do lie close to the ref-
erence lines, we see it is possible for γ

†
1 to be near the

middle of the prior distribution on γ1, while at the same
time ψ† lies in the tail of the limiting posterior distri-
bution. This happens in circumstances where the trun-
cation takes a particularly large “bite” in moving from
the prior to limiting posterior distribution of γ1. For in-
stance, if r∗

1 > r∗
0 , then (4) is decreasing in γ1. Should

FIG. 1. Impurity plot for Example A. The points correspond
to 250 draws from the prior distribution, with hyperparameters
(a1, b1) = (17,3). Note that points for which r1 is greater (less)
than r0 are plotted as diamonds (circles).

the true value of γ1 be in the middle of its prior distri-
bution but also happen to lie only a bit above the trun-
cation point max{r∗

0 , r∗
1 } = r∗

1 , then (4) will map this a
posteriori left-tail value for γ1 into an a posteriori right-
tail value for ψ . Overall then, γ1 is not particularly pure
as a sensitivity parameter.

An obvious extension to this example arises when
both classification parameters, sensitivity and speci-
ficity, are unknown. This proves somewhat challeng-
ing, in that λ has two components, but is not variation-
independent of φ. So neither (1) nor (3) applies. How-
ever, it turns out we can customize (3) to deal with this
situation. We take this up later in Section 3.4.

3.2 Example B: Estimating Prevalence in the Face
of Nonignorable Missingness

Say that interest lies in estimating the prevalence
of a binary trait Y , that is, ψ = E(Y ) = Pr(Y = 1).
However, random sampling from the population re-
sults in Y being unobserved for some sampled subjects.
In contrast, an auxiliary binary variable X can be ob-
tained for all those sampled. Taking a “pattern mixture
model” approach to the missing data problem, and let-
ting R = 1 and R = 0 indicate observation and miss-
ingness of Y respectively, the available data can be re-
garded as i.i.d. realizations of (X,R,YR).

Let s = Pr(X = 1), let tx = Pr(R = 1 | X = x), and
let urx = Pr(Y = 1 | R = r,X = x). Then the seven
parameters θ = (s, t, u) clearly characterize the joint
distribution of (X,R,Y ) and can be taken as an initial
parameterization for this problem.

Prior specification (i): A first prior specification
arises by cleaving the elements of θ into φ(1) =
(s, t0, t1, u10, u11) and λ(1) = (u00, u01). This satisfies
C1 and C2. Moreover, since φ(1) and λ(1) are varia-
tion independent, one can legitimately choose a prior
distribution for θ under which φ(1) and λ(1) are inde-
pendent, that is, one can opt to satisfy C3. Finally, the
target parameter

ψ =
1∑

x=0

1∑
r=0

sx(1 − s)1−xtrx (1 − tx)
1−rurx

is clearly coordinate-wise monotonic in λ(1) for fixed
φ(1). Therefore C4 holds, and λ(1) meets the criteria
for being a pure sensitivity parameter.

With a priori independence of φ(1) and λ(1), it is not
possible to express a probabilistic bound on the extent
to which the missing at random (MAR) assumption is
violated. That is, we do not have direct control in the
prior distribution over the extent to which (u00, u01)



WHEN IS A SENSITIVITY PARAMETER EXACTLY THAT? 91

might deviate from (u10, u11). This leads us to the fol-
lowing alternative.

Prior specification (ii): Let φ(2) = (s, t0, t1, u10, u11)

(exactly the same as φ(1)), but now consider λ(2) =
(δ0, δ1), where

δx = log OR(Y,R | X = x).

Straightforward exercises verify that the map from
(φ(1), λ(1)) to (φ(2), λ(2)) is invertible, and that φ(2)

and λ(2) are variation independent. The latter prop-
erty allows us to assert a priori independence of φ(2)

and λ(2) if we wish. Moreover, expressed as a function
of (φ(2), λ(2)), ψ is readily seen to be coordinate-wise
monotonic in λ(2). Thus, λ(2) is a pure sensitivity pa-
rameter under this specification. In addition, this prior
lends itself to probabilistically bounding the extent of
deviation from the MAR assumption of λ(2) = (0,0).
For instance, upon assigning a mean zero bivariate nor-
mal distribution to λ(2), the choice of covariance matrix
describes the potential magnitude of departure from
MAR.

One perhaps troubling aspect of prior specification
(ii) is a lack of symmetry. The distribution of (Y | R =
1,X) appears explicitly, while the distribution of (Y |
R = 0,X) is entirely implicit. A more symmetric prior
construction is as follows.

Prior specification (iii): Let vx = Pr(Y = 1 |
X = x). Then one could work with θ(3) = (s, t0, t1, v0,

v1, δ0, δ1) as a parameterization, and it would be nat-
ural to assert a priori independence between (s, t0, t1,

v0, v1) and (δ0, δ1). From here, a transparent parame-
terization takes the form

φ(3) = {
s, t0, t1, u10(t0, v0, δ0), u11(t1, v1, δ1)

}
,

along with λ(3) = (δ0, δ1), where u1x(tx, vx, δx) is de-
fined implicitly as the solution to

vx = (1 − tx) expit
{
logit(u1x) − δx

} + txu1x,

for x = 0,1. Applying the change of variables, the
prior density of (φ(3), λ(3)) takes the form

(6)

π
(
φ(3), λ(3))
= πs,t,v

(
s, t, v(t, u, δ)

)
πδ(δ)

×
1∏

x=0

{
tx

+ (1 − tx)
w[expit{logit(ux) − δx}]

w(ux)

}
,

where w( ) is simply defined as w(p) = p(1 − p).

FIG. 2. Impurity plot for Prior (iii) in Example B. The points
correspond to 50 draws from the prior distribution, with hyperpa-
rameter σd = 0.35.

Clearly C3 is violated in this situation, that is, φ(3)

and λ(3) are not independent of one another in the prior
distribution (6). But the extent and impact of the de-
pendence is not intuitively clear from the mathemati-
cal form of (6). So we proceed to an impurity plot to
examine the extent to which λ(3) is not a pure bias pa-
rameter. A simple example ensues when all seven com-
ponents of θ(3) are assumed mutually independent in
the prior, with U(0,1) distributions for the five prob-
abilities (s, t0, t1, v0, v1), and N(0, σ 2

δ ) priors for the
two association parameters (δ0, δ1). We can “read off”
the difference between the limiting posterior and prior
densities for (δ0, δ1) from (6), that is,

π(δ | φ†)

π(δ)

∝
1∏

x=0

{
t†
x + (

1 − t†
x

)w[expit{logit(u†
1x) − δx}]

w(u
†
x)

}
.

Given this form, for a given θ† it is a simple exercise
in two-dimensional numerical integration to compute
both p∗

pri(θ
†) as per (3) and ppst(θ

†) as per (2). Taking
the hyperparameter value σδ = 0.35, this is done for an
ensemble of θ† values drawn from the prior distribu-
tion, with the resulting impurity plot given in Figure 2.
Here the points are quite clustered around the reference
line, indicating that λ(3) is only “mildly impure” as a
sensitivity parameter.

3.3 Example C: Estimation in the Face of a Hidden
Subpopulation

Here we elaborate on a problem studied by Xia and
Gustafson (2012), Xia and Gustafson (2014), as moti-
vated by the use of venue sampling to make inferences
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about hard-to-reach populations. Say data are available
in the form of i.i.d. realizations of (X,Y,Q), where X

and Y are binary traits of interest, while Q is positive
and continuous. In fact, each realization arises from
weighted sampling of the population, where a unit’s
selection probability is proportional to Q. In the venue
sampling context, for example, Q can be observed by
asking sampled individuals about their proclivity to at-
tend venues where sampling occurs. The plot thickens,
however, in situations where some population mem-
bers are hidden. That is, an unknown proportion p of
population members have Q = 0, hence will never be
sampled. In the venue sampling context, for instance,
a proportion p of the population are never-attenders at
all venues where sampling is undertaken. Intuitively, at
least, p feels like a sensitivity parameter. Nothing in
the observable data speaks directly to whether the hid-
den proportion is small or large.

To organize inference for this problem, we use
f (x, y, q) to denote the joint density from which the
observed data realizations arise, noting that by con-
struction this density puts all its mass on Q > 0.
Against this, the actual distribution of (X,Y,Q) across
the population of interest is given by

(7)

f̃ (x, y, q)

=
{
pδ0(q)

+ (1 − p)
q−1f (q)I(0,∞)(q)

Ef (Q−1)

}
f (x, y|q),

where δ0( ) is the Dirac delta function, that is, the “den-
sity” of a point-mass distribution at zero. Importantly,
here the conditional distribution of (X,Y | Q = q) is
assumed to be continuous in q at q = 0, so that the law
of (X,Y | Q = 0) can be learned from the observable
data. In the venue sampling context, this continuity as-
sumption corresponds to never attenders “looking like”
the limiting case of ever-more-seldom attenders.

Directly letting φ parameterize f (x, y, q) while set-
ting λ = p, we immediately have a transparent pa-
rameterization, that is, C1 and C2 hold. Moreover, in
light of the interpretation of p as the proportion of the
population that is hidden, it seems quite reasonable to
make independent prior assertions about φ and p, so
we can plausibly choose a prior distribution for which
C3 holds. (In fact, it seems hard to imagine any intu-
itively sensible way in which a priori dependence be-
tween p and φ could be introduced.) Thus, whether or
not p is a pure sensitivity parameter for a given target
parameter of interest comes down to condition C4.

If the target parameter of interest is a population
mean with respect to f̃ , then the monotonicity of (7)
with respect to p for fixed f () immediately ensures
C4 is satisfied. So for target parameters such as E

f̃
(X)

or E
f̃
(Y ), the population prevalence of X or of Y , p is

a pure sensitivity parameter.
On the other hand, say the association between X

and Y in the target population is of interest. For in-
stance, the log odds-ratio,

(8) ψ = log
E

f̃
{(1 − X)(1 − Y)}E

f̃
{XY }

E
f̃
{(1 − X)Y }E

f̃
{X(1 − Y)} ,

might be targeted. While each of the four constituent
terms on the right-hand side of (8) is monotone in p

for fixed f (), this does not guarantee monotonicity of
(8) as a whole.

To explore this situation, say that f (), the observ-
able distribution of (X,Y,Q), is parameterized by φ =
(a, b, γ (0), γ (1)) according to Q ∼ Beta(a, b) [where
necessarily a > 1, to ensure (7) is well defined], while

Pr(X = x,Y = y | Q) = (1 − Q)γ (0)
xy + Qγ (1)

xy .

Under this specification, the terms in (8) have simple
structure. For instance,

E
f̃
(XY) = pγ

(0)
11 + (1 − p)

ka,b(−1,1)γ
(0)
11 + γ

(1)
11

ka,b(−1,0)
,

where ka,b(c, d) = E{Bc(1−B)d} for B ∼ Beta(a, b).
For illustration, say the available prior information

about the relative magnitude of the hidden popula-
tion is p ∼ Beta(2,18). This corresponds to a prior
mean of 0.1, a prior mode of 0.056, and a prior 95th
percentile of 0.226. We complete the prior specifica-
tion with a ∼ Unif(1,3), b ∼ Unif(0,2), and γ (i) ∼
Dirichlet(2,2,2,2), for i = 0,1. Generating an en-
semble of parameter values from this prior distribu-
tion yields the impurity plot in Figure 3. The result-
ing behaviour is rather curious. The vast majority of
points lie on a reference line, but there are a few ex-
ceptions. This arises as for most, but not all, values of
φ† = (a†, b†, γ (0)†, γ (1)†), ψ is monotone in p.

To elaborate, Figure 4 explores the situation for three
“cherry-picked” exceptional values for φ† under which
ψ is indeed not monotone in p. These underscore the
possibility of a true value of p in the middle of the prior
distribution producing a true value of the target ψ in the
tail of the posterior. Conversely, the plots also show it
possible that a value of p in the tail of the prior gives
rise to a value of ψ in the mid-range of the posterior.
The intuition that the quality of the inference on the
target is driven exclusively by the quality of the prior
information about the hidden proportion, while good in
most instances, can fail.
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FIG. 3. Impurity plot for Example C. The 1000 parameter values
are generated from the prior distribution described in the text.

3.4 Example A, Continued

We now return to Example A from Section 3.1. Now,
however, we extend to both exposure classification pa-
rameters being unknown. Recall these parameters are
the sensitivity γ1 = Pr(X∗ = 1 | X = 1) and the speci-
ficity γ0 = Pr(X∗ = 0 | X = 0). We extend the earlier
prior distribution as

π(r0, r1, γ1, γ0)

∝ g(r0;1,1)g(r1;1,1)

× g(γ1;a1, b1)g(γ0;b0, b0)I {γ1 + γ0 > 1},
where the truncation is to the region where the clas-
sification scheme is better than random. Following
Gustafson, Le and Saskin (2001), the LPD is then char-
acterized by

π
(
γ1, γ0 | r∗)

∝ g(γ1;a1, b1)g(γ0;b0, b0)IA1(r
∗)(γ1)IA0(r

∗)(γ0)

(γ1 + γ0 − 1)2 ,

(9)

where A0(r
∗) = (1 − min{r∗

0 , r∗
1 },1), while, as before,

A1(r
∗) = (max{r∗

0 , r∗
1 },1). Thus again updating from

the marginal prior to limiting posterior of (γ1, γ0) in-
volves both a change in shape of density and trunca-
tion. Computations associated with the LPD (9) can be
handled with two-dimensional numerical integration.

In the present situation the putative sensitivity pa-
rameter γ = (γ1, γ0) is bivariate, and is not variation-
independent of φ = r∗. Thus, neither (1) nor (3) can
form the basis of an impurity plot. In particular, (3) is
not well defined, since ψ(φ†, λ) is not well defined for

FIG. 4. Target log-odds ratio ψ as a function of hidden pro-
portion p with φ† fixed (left panels), and the corresponding re-
stricted impurity plots (right panels). In the left panels, the prior
distribution of p and the 90% equal-tailed limiting posterior cred-
ible interval for ψ (dotted horizontal lines) are superimposed. The
right panels are impurity plots which are restricted in the sense
that only p varies, with φ† = (a†, b†, γ (0)†, γ (1)†) fixed. The red
areas correspond to lowest 5% and highest 5% tails. Through-
out, a† = 2 and b† = 1. In the first row, γ (0)† and γ (1)† are
(0.53,0.01,0.36,0.1) and (0.07,0.4,0.22,0.31), respectively [us-
ing the order γ = (γ00, γ11, γ10, γ01)]. In the second panel, these
values are (0.02,0.28,0.33,0.37) and (0.19,0.03,0.29,0.49). In
the third panel, these values are (0.04,0.38,0.22,0.37) and
(0.1,0.16,0.61,0.13).

all a priori plausible values of λ. However, there is a
natural adaptation. Rather than (3) we now work with

(10) p∗∗
pri

(
θ†) = Prπ

{
ψe

(
φ†, λ

)
< ψ†}

,

for a suitable extension ψe(·, ·) of ψ(·, ·), to the prod-
uct space of the prior support of φ crossed with the
prior support of λ. The particular extension is moti-
vated by the following observation. Say r∗ is fixed,
with r∗

0 < r∗
1 . Then the target ψ increases to positive

infinity as γ0 or γ1 decreases to the lower boundary
of the rectangle A0(r

∗) × A1(r
∗). That is, the a priori
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FIG. 5. Impurity plot for the extended version of Example A. The
points correspond to 250 draws from the prior distribution, with
hyperparameters (a1, b1) = (b0, b0) = (17,3). Note that points for
which r1 is greater (less) than r0 are plotted as diamonds (circles).

plausible values of γ that are excluded a posteriori can
be viewed as mapping to “beyond” the right tail of the
posterior distribution. Similarly, if r∗

1 < r∗
0 , then ψ de-

creases to negative infinity as γ1 and/or γ0 decrease to
the same lower boundary. This motivates

(11) ψe

(
r∗, γ

) =

⎧⎪⎪⎨
⎪⎪⎩

ψ
(
r∗, γ

)
if γ ∈ A

(
r∗)

,

+∞ if γ /∈ A
(
r∗)

, r∗
0 < r∗

1 ,

−∞ if γ /∈ A
(
r∗)

, r∗
0 > r∗

1 ,

where A(r∗) = A0(r
∗) × A1(r

∗).
Using the extended target (11) leads to the impurity

plot in Figure 5. The wide scatter of points reflects the
fact that γ is actually quite impure as a sensitivity pa-
rameter. In particular, much as was seen with the sim-
pler version of this problem, the plot reflects the pos-
sibility that a priori nonextreme values of γ † can give
rise to a posteriori extreme values of ψ†. This can oc-
cur precisely because of the truncation inherent in the
prior-to-posterior updating.

4. DISCUSSION

We are not the first to attempt to define what a sen-
sitivity parameter is. For instance, Daniels and Hogan
(2008) give a definition of a sensitivity parameter that
is well adapted to missing data problems. While their
definition has some elements in common with ours, it
is not sufficiently detailed to distinguish between what
we are calling “pure” and “impure” situations. And in
fact much of the literature on sensitivity analysis really
does rely on intuition concerning what constitutes a
sensitivity parameter. It is common to see, for instance,

either an explicit or implicit suggestion that a sensitiv-
ity parameter is simply something that, if fixed, renders
all the other parameters identified. [A more explicit
example of such a suggestion appears in Greenland
(2005), whereas both Greenland (2003) and Lash, Fox
and Fink (2009) are more implicit.]

One thought to take away from the present work is
that if one can reasonably work with a pure sensitivity
parameter, then there are advantages to doing so. One
can proceed knowing that final inferences are drawn
together from the data and prior in a simple, intuitive
way: the prior on the pure sensitivity parameter will
be crucial, while the prior on other parameters will get
swamped by enough data, in the usual manner. And
there can’t be any “funny business” in terms of the
quality of the prior information on the pure sensitiv-
ity parameter being upgraded or downgraded in its im-
pact on the quality of the posterior distribution on the
target parameter. However, the “if one can reasonably
work” qualifier above cannot be ignored. For instance,
the first prior specification in Example B yields a pure
sensitivity parameter. However, while pure, it’s not a
very useful sensitivity parameter. Assigning a prior to
this λ and asserting prior independence between λ and
φ just does not work in a practical sense. It precludes
the investigator from specifying a prior that sensibly
and probabilistically limits the extent of departure from
MAR. So going for purity at any cost is not a sensible
strategy.

Another rationale for wanting a definition of a pure
sensitivity parameter lies in the reality that intuition
alone can be unreliable. And this applies notwithstand-
ing one’s level of statistical expertise. As is empha-
sized in Kahneman (2011), even experts can flunk out
when asked to solve statistical problems by intuition
alone (specifically see the introduction to this book for
a description of empirical tasks on which it was shown
that “even statisticians were not good intuitive statisti-
cians”). Along these lines, we think that relying on in-
tuition alone to determine the nature of a sensitivity pa-
rameter does present some dangers. For example, one
might easily intuit in Example C that the proportion
of the population that is hidden would be “informally”
very pure as a sensitivity parameter. Without having
a definition, and without delving into its applicability,
one could easily be misled. That is, without a mathe-
matical investigation of whether the target parameter
is monotone in the sensitivity parameter, an important
nuance could be missed. In fact, the prior information
about the hidden proportion propagates through to the
posterior distribution on the target in either a simple or
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complicated way, depending on which target param-
eter is under consideration. In subtle situations such
as these, having a definition, and knowing the impli-
cations of whether the putative sensitivity parameter
meets the test of purity, seems like a step forward.
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